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Abstract

Fine-tuning large language models (LLMs) to aggregate multiple preferences has
attracted considerable research attention. With aggregation algorithms advancing, a
potential economic scenario arises where fine-tuning services are provided to agents
with different preferences. In this context, agents may benefit from strategically
misreporting their preferences, but this could harm the aggregation performance.
This paper addresses such incentive issues by framing it as a mechanism design
problem: an LLM provider determines the fine-tuning objective (training rule)
and the pricing scheme (payment rule) for agents. We primarily focus on training
rules that maximize social welfare subject to certain regularizations, referred to as
SW-Max rules. First, we show that under most circumstances, truthful reporting
is sub-optimal with simply a SW-Max rule, thereby highlighting the necessity of
payments. Second, we extend the VCG payment to implement SW-Max rules
in dominant-strategy incentive compatibility (DSIC). We characterize sufficient
conditions for payment equivalence and derive the necessary conditions for a
payment rule to implement a SW-Max rule in DSIC and other principles. Third,
we demonstrate that our mechanism is approximately DSIC with perturbed input,
showcasing its robustness against the inevitable errors in real-world applications.
Experiments on real LLM training results further confirm the practical implications
of our results.

1 Introduction

As large language models (LLMs) [61, 74] become increasingly widespread, users are seeking models
that not only possess general capabilities but also align with their individual values. Reinforcement
Learning from Human Feedback (RLHF) [14, 57] has emerged as a mainstream approach to achieve
this alignment, where a reward model guides the reinforcement learning process using feedback
signals that reflect human preferences.

However, standard RLHF becomes resource-intensive when catering to diverse preferences. Training
separate LLMs for every individual or group within a community, each with unique preferences,
is often impractical due to prohibitive computational costs and potential data privacy concerns. A
more feasible alternative is to train a unified model that reflects collective values while still accom-
modating distinct needs. Multiple-Objective RLHF (MORLHF) [5, 78], which aims to efficiently
integrate multiple preferences into a single model, offers a promising avenue for this. Further studies
aim to improve MORLHF algorithms from various perspectives, including efficiency [41, 62, 70],
accuracy [18, 26, 63, 82], and fairness [11].
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As these techniques advance, we explore a practical economic scenario: a platform offering a
fine-tuning service to aggregate diverse preferences from various groups into a single LLM. These
“groups”—such as different departments within a company or hospitals in the same city with various
specializations—share the same core values but have slightly different focuses. Given these shared
values and the high cost of fine-tuning, developing separate LLMs for each entity is often inefficient.
Nevertheless, each group must provide its specific preferences to account for these differing focuses.
Finally, the training cost is shared among the groups and can be non-uniform due to their differentiated
preferences.

A critical issue in this process is that groups may strategically misreport their preferences to ma-
nipulate the aggregate objective for a more favorable outcome. As illustrated in a simplified RLHF
framework (see Figure 1), a group’s true preference (rm1) could be misreported as a polarized one
(r̃m1) to steer the model toward a more desirable outcome. However, this behavior distorts the
training objective, resulting in a suboptimal model for the overall community. Given the potential
profitability of such strategies and the growing economic importance of LLMs, ensuring truthful
preference reporting is as critical as the training algorithm itself. We therefore formalize this scenario
to study its incentives. Our findings indicate that many commonly used training objectives lead to
profitable misreporting strategies. However, we also demonstrate that a simple incentive-compatible
cost allocation scheme can incentivize truthful reporting, and under certain conditions, this scheme
is uniquely determined.

Specifically, we model this as a multi-parameter mechanism design problem involving a fine-tuning
service provider and multiple groups of agents. The mechanism consists of a training rule, which
aggregates the reported sizes wi (representing a group’s scale) and preferences from different groups,
and a payment rule to determine their respective charges. The fine-tuning process is implemented
through RLHF, with reward models representing the groups’ preferences. Our focus is on training
objectives aimed at maximizing social welfare with a regularization constraint, referred to as SW-Max
training rules. Our technical contributions, which extend beyond standard mechanism design due to
the unique complexities of LLM fine-tuning objectives, are summarized as follows:

1. We show that mechanisms using only SW-Max training rules are vulnerable to profitable pref-
erence misreporting (Theorem 4.2 and Theorem 4.3). This finding highlights the need for a
payment rule to resolve incentive issues.

2. We extend the VCG payment to ensure truthfulness for SW-Max training rules (Proposition 4.4)
and further establish the uniqueness of this payment under certain conditions (Theorem 4.9 and
Corollary 4.10). Based on that, we derive necessary conditions for payment rules to implement
a SW-Max training rule in more principles (Theorem 4.11).

3. We demonstrate that our mechanism is approximately DSIC in the presence of input pertur-
bations (Theorem 4.12). This finding highlights the robustness of our mechanism against the
inevitable measurement errors in real-world applications.

4. Experiments on practical LLM setups empirically validate the existence of profitable misreporting
strategies and demonstrate the efficacy of our mechanism in incentivizing truthful reporting
(Section 5).

Related Work. Several recent studies have also examined incentive issues in RLHF and LLMs.
Duetting et al. [25] proposed a preference aggregation mechanism that satisfies monotonicity with
respect to bids; however, their work does not address strategic misreporting of preferences, which is
the central challenge we tackle. Other works that consider strategic preference reporting have different
focuses, such as implementing truthful rules with KL-divergence for ad auctions [71], analyzing
the implementability of various training rules [59], or modifying the RLHF objective to achieve
approximate truthfulness while preserving convergence [10]. In contrast, our work adopts a theoretical
perspective to analyze representative training rules, providing a comprehensive understanding of
incentive issues in RLHF. Specifically, our analysis of payment equivalence helps characterize all
possible payment rules that implement a training rule in DSIC.

Our research also connects to classic literature on auction design [52–54] and facility location
problems [21, 58]. Compared to the classic auction model, we have to consider the necessary
regularization term, which makes the training rule (or the allocation rule in the auction) more
complicated and prevents vanilla VCG from being applied. In facility locations, agents can benefit
by misreporting a more polarized preference. The idea of such a strategy is similar to our model.
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Figure 1: An illustration of the incentive issue in LLM preference aggregation. When using a basic
training rule ψ in RLHF for two groups (Alices and Bobs), fixing Bobs’ report r̃m2, Alices can gain
a higher utility by strategically reporting r̃m′

1 ̸= rm1 than truthfully reporting r̃m1 = rm1. On the
other hand, we have ASW(θ;−→rm, w⃗, θinit) > ASW(θ′;−→rm, w⃗, θinit), which means that such strategic
behavior also harms the training objective.

However, due to the complexity of the training rules that aim to catch the LLM fine-tuning scenarios
and the normalization constraints of the reward models, the reporting strategies can be more complex.
Further, combined with the discretized input spaces of the agents, most of our results cannot be
directly derived from existing literature.

Paper Organization. The remainder of the paper is organized as follows. Section 2 introduces the
necessary preliminaries, and Section 3 formulates the RLHF Game. We then analyze the properties
of mechanisms composed of SW-Max training rules and payment rules in Section 4, followed by a
presentation of our experimental results in Section 5. Finally, Section 6 offers concluding remarks
and discusses potential future research directions.

2 Preliminaries

Large Language Models. In this paper, LLMs are abstracted as stochastic mappings from a prompt
set, denoted by X , to a probability distribution over sequences of length up to K in the output
space [25]. Let T represent the set of all tokens, and define T ∗ := ∅ ∪ T ∪ T 2 ∪ . . . ∪ TK as the set
of sequences with lengths up to K. An LLM parameterized by θ is a function LLMθ : X → ∆(T ∗).
The space of LLM parameters is denoted by Θ, and it is assumed that the LLM can express any
function within this space. Our theoretical model operates on each prompt independently, so we focus
on a fixed prompt scenario and omit its notation for simplicity. We denote LLMθ(x) the probability
of a sequence x generated by the model LLMθ.

Reward Modeling. In RLHF, a reward model is a function rm : X × T ∗ → R, which maps a
prompt-response pair to a real number, indicating humans’ satisfaction with the response based on
the prompt. Similar to the LLM case, we focus on a fixed prompt scenario, so rm(x) represents
the scalar feedback for a response x ∈ T ∗. Following prior empirical work for RLHF [57, 78], we
mainly consider two types of normalization constraints for the reward model: (1) The summation of
the rewards over T ∗ is normalized to 1, i.e.

∑
x∈T∗ rm(x) = 1. (2) The maximum of the rewards

over T ∗ is normalized to 1, i.e. maxx∈T∗ rm(x) = 1. Furthermore, we also assume that the output
rewards are all non-negative, i.e., rm(x) ≥ 0 for all x ∈ T ∗. The set of all reward model functions
satisfying these conditions is denoted by R. Unless otherwise specified, the results in this paper hold
under both normalization schemes.

3 Formulation of the RLHF Game

In this section, we present the formal description of the RLHF Game. The game involves one LLM
provider and n groups of agents, denoted by [n] = {1, 2, . . . , n}. The provider has an initial model
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LLMθinit with positive probability for all sequences, i.e., LLMθinit(x) > 0 for all x ∈ T ∗. Each
group i has wi agents who share the same preference represented by a reward model rmi. Let R and
W ⊆ N+ denote the domains for each group’s reward model and group size, respectively. The group
size w should be an integer, and we assume an upper bound w̄ for W, which is public information.
The exact reward model rmi and the size wi are group i’s private information. For an agent in group
i, the valuation when it receives a model LLMθ is denoted by vi(θ; rmi), defined as follows.

Definition 3.1. An agent’s valuation of model LLMθ is its expected reward on the sequences
generated by it: v(θ; rm) = Ex∼LLMθ

rm(x) =
∑

x∈T∗ LLMθ(x)rm(x).

In practice, this can be obtained by averaging the reward of the sequences sampled from an LLM. We
also discuss the influence of possible errors in this process in Section 4.3.

Remark on the group size w⃗. We introduce the concept of group size to ensure that our model
encompasses a broader range of scenarios. As the scales of different groups may vary, our training
objective has to account for this factor to ensure fairness. Groups are also allowed to over-report their
sizes to attain a higher status in fine-tuning. The case w⃗ = 1 represents a special scenario where each
group consists of exactly one agent and is included in our general model. In certain results, we note
that the general model is technically more difficult than the w⃗ = 1 case.

The provider first announces the mechanism, including a training rule ψ and a payment rule p,

ψ : Rn ×Wn ×Θ → Θ, p : Rn ×Wn ×Θ → Rn.

Both rules take n reported reward models, n reported sizes, and an initial model as input and output
the objective fine-tuned model and each group’s payment, respectively. The provider can choose
not to charge the users by setting p always equal to 0. In this case, the model coincides with most
previous work on designing empirical algorithms, where agents’ incentives are not considered [18, 26,
41, 63, 76, 78, 82]. Specifically, the training rule seeks the model that maximizes a certain objective
function OBJ. That is, ψ(−→rm, w⃗, θinit) ∈ argmaxθ∈Θ OBJ(θ;−→rm, w⃗, θinit), with ties broken based on
further ordering of vi(θ; rmi)s.

After observing the announced mechanism (ψ, p), each group i reports a reward model, r̃mi, and
its group size w̃i. Based on the reported information, the provider fine-tunes the model and gets
the final model with parameter θfinal = ψ(

−→
r̃m, ⃗̃w, θinit). Each member in the group has access to

the fine-tuned model, so the valuation for group i is wivi(θfinal; rmi). The provider then charges
each group i a one-time payment according to the payment rule, pi(

−→
r̃m, ⃗̃w, θinit). All groups have

quasi-linear utilities, i.e., group i’s utility is the valuation it attains minus the payment:

ui(
−→
r̃m, ⃗̃w;ψ, p, rmi, wi) := wivi(θfinal; rmi)− pi(

−→
r̃m, ⃗̃w, θinit).

The groups may strategically report, thus
−→
r̃m and ⃗̃w do not necessarily equal the true −→rm and w⃗. The

LLM provider’s goal is to achieve its training objective based on the group’s true preferences, taking
into account that misreporting may distort the training outcome. To this end, it is crucial to incentivize
all groups to report their information truthfully so that the provider has access to the groups’ private
information. These desiderata for the mechanism are formally defined as follows.

Definition 3.2. A mechanism (ψ, p) satisfies dominant-strategy incentive compatibility (DSIC) if ∀i,
rmi, wi, rm′

i, w
′
i,
−→rm−i, w⃗−i, θinit, we have

ui((rmi,
−→rm−i), (wi, w⃗−i);ψ, p, rmi, wi) ≥ ui((rm′

i,
−→rm−i), (w

′
i, w⃗−i);ψ, p, rmi, wi). (DSIC)

Definition 3.3. A mechanism (ψ, p) satisfies individually rationality (IR) if ∀i, rmi, wi,
−→rm−i, w⃗−i,

θinit, we have
ui((rmi,

−→rm−i), (wi, w⃗−i);ψ, p, rmi, wi) ≥ 0. (IR)

DSIC means that truthfully reporting the reward model and the group size yields the highest utility for
any group, regardless of other groups’ reports. IR means that truthfulness always yields non-negative
utilities. When a mechanism (ψ, p) satisfies DSIC, IR, or both DSIC and IR, we say that the payment
rule p implements ψ in DSIC, IR, or both DSIC and IR. When we say the implementability of a
training rule, we refer to the property of DSIC.
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4 Incentives in the RLHF Game

This section explores incentive design within the RLHF Game framework. Our focus is mainly on
a set of training rules that aims at maximizing social welfare with regularization, which balances
efficiency and fairness and is commonly used in practice to aggregate various preferences [8, 56].
Denote Df (p||q) := Eq(x)f(p(x)/q(x)) the divergence between probability distributions p and q
measured by function f , the formal definition follows.
Definition 4.1 (SW-Max Training Rules). A Social Welfare-Maximizing training rule fine-tunes the
model to maximize the summation of the groups’ valuations subject to a regularization measured by
f -divergence [3, 19, 70]. Formally, the training objective is

OBJ(θ;−→rm, w⃗, θinit) = ASW(θ;−→rm, w⃗, θinit) :=

n∑
i=1

wivi(θ; rmi)−Df (LLMθ||LLMθinit),

where f is convex on R+ and f(1) = 0. We use ASW(θ;−→rm, w⃗, θinit) to denote the affine social
welfare.

This defines a set of training rules, and the function f includes the most commonly used regularization
terms in training a model. For example, f(x) = λx log x refers to KL-divergence, f(x) = λ(x− 1)

2

refers to χ2 divergence, f(x) = λ|x − 1| refers to total variation. We denote ψ ∈ ΨSW that ψ
belongs to this set.

In the following subsections, we will first establish the necessity of a payment rule for SW-Max
training rules. Then, we construct DSIC mechanisms for these training rules using affine maximizer
payments and demonstrate payment equivalence properties for certain distance measures f . Next,
we address the influence of noise input on the DSIC property. Finally, we discuss the efficient
implementations of the mechanisms in practice.

4.1 Necessity of Payment Rule

We start by showing that without payment rules, groups have incentives to misreport their preferences
under most circumstances. Our discussion focuses on strategies other than simply inflating the
group size wi. We assume that for ∀−→rm, w⃗, θinit, the fine-tuned model θ = ψ(−→rm, w⃗, θinit) satisfies
that LLMθ(x) > 0 for ∀x ∈ T ∗. This mainly excludes extreme cases where the outcomes remain
largely unchanged regardless of input, which may make the analysis meaningless. Based on this, we
comprehensively analyze the relationship between optimal strategy and truthful reporting. We start
with two cases with strong intuition.
Theorem 4.2. In the RLHF Game with mechanism (ψ, p) that ψ ∈ ΨSW and p ≡ 0, for group i,
define si := |{r|r = rmi(x), x ∈ T ∗}| and rmi := minx∈T∗ rmi(x):

1. If si = 1, truthfully reporting is the optimal strategy regardless of other groups’ reports.

2. If si ≥ 2 and rmi > 0, there is a strategy that yields strictly higher utility than truthfully
reporting regardless of other groups’ reports.

si = 1 is an unusual case in which group i has the same preference values for all x, resulting in
the same valuation for any model θ. In such a case, all strategies bring the same utility and hence
are optimal. However, when si ≥ 2 and rmi > 0, group i can report rm′

i that assigns a lower
value to x1 = argminx∈T∗ rmi(x) (and a larger value to x2 = argmaxx∈T∗ rmi(x) in summation
normalization). By doing so, group i pretends to prefer x1 less, thereby increasing the likelihood
that the resulting fine-tuned model generates the outcomes it prefers more. The condition rmi > 0
ensures that group i is not completely uninterested in any x, which is more realistic in practice.

Further, we consider the case that si ≥ 2 and rmi = 0. Since the minimum value is already 0, the
strategy above cannot be applied. We need to analyze in more detail how the training results change
when one group adjusts its reported preferences. Under certain smoothness conditions of the function
f , we derive a function t(x) to estimate the gradient of the valuation for group i over the reported
value rmi(x). Based on this function, we show that if t(x) ̸= 0 for some x, it is always possible
to find a suitable direction and magnitude to report rm′

i(x) ̸= rmi(x), allowing group i to achieve
higher utility. The result is summarized in the following theorem. Due to the complicated form of the
function t, we provide a detailed version in the Theorem B.2.
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Theorem 4.3 (Simplified version of Theorem B.2). In the RLHF Game with mechanism (ψ, p) that
ψ ∈ ΨSW and p ≡ 0, when f is strongly convex and C2-smooth, there exists a function t, when
t(x,−→rm, w⃗, θinit) ̸= 0 for some x ∈ T ∗, truthfully reporting is not the optimal strategy.

The properties of f stated in Theorem 4.3 are also considered in optimization theory [48] and
encompass a wide range of divergence measures. Combining Theorem 4.2 and Theorem 4.3, we
provide a comprehensive analysis that covers the entire space of si and rmi. While the second
theorem offers only a sufficient condition for the suboptimality of truthful reporting, we demonstrate
in the proof that this condition is highly likely to occur, illustrating the impossibility of a mechanism
that aims to maximize social welfare to incentivize truthfulness without payments.

4.2 Affine Maximizer Payment

After establishing the necessity of payment rules in this scenario, we mainly address two questions in
this part:

1. Given a training rule ψ, can we find a payment rule p such that the mechanism (ψ, p) satisfies
DSIC? This is the so-called implementability of a training rule ψ.

2. For an implementable training rule ψ, can we identify the relationship between the payment
rules ps among all DSIC mechanisms (ψ, p).

For the first question, since there is an additional regularization term, we can not directly apply the
vanilla VCG payment [15, 34, 75] to the SW-Max training rules. To address this problem, we define
ASW−i(θ;

−→rm, w⃗, θinit), the affine social welfare function that excludes the contribution of group i
from the social welfare:

ASW−i(θ;
−→rm, w⃗, θinit) := ASW(θ;−→rm, w⃗, θinit)− wivi(θ; rmi).

Then, the vanilla VCG payment can be generalized to the following form, which is also known as the
affine maximizer payment rule [64] pAFF :

pAFF
i (−→rm, w⃗, θinit) = ASW−i(ψ(

−→rm−i, w⃗−i, θinit);
−→rm, w⃗, θinit)−ASW−i(ψ(

−→rm, w⃗, θinit);
−→rm, w⃗, θinit).

(1)

Following the proof of the classic VCG mechanism, we show that pAFF implements SW-Max
training rules in both DSIC and IR, implying that truthfully reporting both reward models and group
sizes constitutes a dominant Nash Equilibrium under this mechanism.
Proposition 4.4. For any ψ ∈ ΨSW , mechanism (ψ, pAFF ) satisfies DSIC and IR, and the payment
is non-negative.

The availability of the affine maximizer payment derives from the additive property of SW-Max
training rules. However, this method does not apply to training rules where the objective function
cannot be decomposed into additive components, such as Nash Social Welfare and the fairness-
oriented objective defined in MaxMin-RLHF [11]. The implementability of an arbitrary training rule
is characterized by the concept of cycle monotonicity, which is discussed in Section E but is not the
focus of this paper.

The second question is more general, so we consider the concept of payment equivalence [4] as a
bridge, which is defined as:
Definition 4.5 (Payment Equivalence). An implementable training rule ψ satisfies payment equiva-
lence if for any two mechanisms (ψ, p) and (ψ, p′) satisfying DSIC, there exists a function gi such
that for ∀rmi ∈ R, wi ∈ W

p′i(
−→rm, w⃗, θinit) = pi(

−→rm, w⃗, θinit) + gi
(−→rm−i, w⃗−i, θinit

)
.

Or equivalently, when fixing −→rm−i, w⃗−i and θinit, there is a constant c such that p′i(rmi, wi) =
pi(rmi, wi) + c for all rmi ∈ R, wi ∈ W .

Payment equivalence indicates that the only way to modify a mechanism (ψ, p) to (ψ, p′) while
maintaining the property of DSIC is to add a term that is independent of i’s report to group i’s
payment function pi. Thus, the payment equivalence of ψ is sometimes interpreted as the uniqueness
of the payment rule p that implements it in DSIC. This notion is particularly useful in the case that
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we can figure out a certain DSIC mechanism (ψ, p) for ψ because any other payment rules p′ that
also implement it in DSIC can be divided into p and an independent part.

In the context of the RLHF Game, the domain of the reward models and group sizes affects payment
equivalence. When w⃗ ≡ 1, groups only report reward models, with the domain R containing all
normalized reward models rm. Since this forms a connected set in Euclidean space, we can apply the
result from Nisan et al. [55] to show:
Proposition 4.6. When w⃗ ≡ 1 is public information, and the agents only report the reward models,
all implementable training rules satisfy payment equivalence.

However, when the group size w⃗ is also a part of the private information for all groups, the domain of
the whole private information becomes R×W that is no longer a connected set because W ⊆ N+.
To get a more meticulous characterization of the property, we define the continuity of a training rule.
Definition 4.7 (Continuous Training Rule). A training rule ψ is continuous if for any ϵ > 0,
there exists a δ > 0 such that for any θinit,

−→rm, −→rm′, w⃗ and w⃗′, if maxx∈T∗ |
∑n

i=1(wirmi(x) −
w′

irm
′
i(x))| ≤ δ, then maxx∈T∗ |LLMθ(x) − LLMθ′(x)| ≤ ϵ, where θ := ψ(−→rm, w⃗, θinit) and

θ′ := ψ(−→rm′, w⃗′, θinit).

The continuity requests that the training outcome be similar if the reported values are similar. This
definition is natural, and we identify several continuous SW-Max training rules.
Proposition 4.8. SW-Max training rules with regularizations KL-divergence, fKL(x) = λx log x,
and χ2 divergence, f2(x) = λ(x− 1)

2 (λ > 0 is a constant) are continuous.

Based on the continuity, we show a sufficient condition of payment equivalence for general training
rules.
Theorem 4.9. An implementable training rule ψ satisfies payment equivalence if it is continuous and
for ∀i, −→rm−i, w⃗−i, θinit there exists rm∗

i and θ such that ψ((rm∗
i ,
−→rm−i), (wi, w⃗−i), θinit) ≡ θ for all

wi ∈ W . In the maximum normalization case, rm∗
i must be 1.

We provide some intuitions of the theorem. Here, when fixing −→rm−i, w⃗−i, and θinit, if we can find a
rm∗

i such that when group i reports rm∗
i then the reported wi will not affect the training result, rm∗

i
actually serves to connect different wi ∈ W . For SW-Max training rules, we observe that the reward
model rm that assigns the same value for all xs, i.e., ∀x, rm(x) = 1 for maximum normalization,
and rm(x) = 1/|T ∗| for summation normalization, serves the role of rm∗

i . With the continuity of
the training rule, this makes the domain of R×W connected in another sense that can also induce
payment equivalence. Based on this, we derive the payment equivalence property:
Corollary 4.10. Each continuous training rule ψ ∈ ΨSW satisfies payment equivalence.

As a continuous SW-Max training rule always satisfies payment equivalence, we can establish the
relationship between pAFF and any other payment rule that implements it in DSIC. Combined with
the inherent property of pAFF , we derive the necessary conditions for a payment rule to satisfy more
conditions, such as non-negativity and IR.
Theorem 4.11. Given a continuous training rule ψ ∈ ΨSW and a payment rule p implements it in
DSIC: If p is always non-negative, it holds that for all i, −→rm, w⃗, and θinit,

pi(
−→rm, w⃗, θinit) ≥ pAFF

i (−→rm, w⃗, θinit).

If p implements ψ in IR, then for any ϵ > 0 and i, there exists −→rm−i, w⃗−i, and θinit, such that for all
rmi and wi,

pi(
−→rm, w⃗, θinit) ≤ pAFF

i (−→rm, w⃗, θinit) + ϵ.

This result implies that if we want to design a payment p to satisfy all these properties, pAFF is a
“lower bound” for p, and p should be sufficiently close to pAFF in some inputs.

4.3 Approximate Valuation

In this part, we study the influence of errors generated in practice on the incentive property in the
RLHF Game. We abstract it as an approximate valuation problem [13]. Formally, when group i
reports its reward model rmi, the mechanism may not use rmi but rather a noisy reward model r̂mi
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Figure 2: The simulation result for the mechanism (ψ, pAFF ) on real LLM setup. We set the group
number n = 2, and the group size (w1, w2) for each column is in the title. We report the valuation, the
payment, and the utility for group 1 when adopting different reporting parameters α and β (defined
in Section 5). Truthfully reporting (α = 1 and β = 1) brings the highest utility for all cases.

as the input. We assume that the noise is independently generated and there is an underlying joint
distribution F (·|−→rm) for the

−→
r̂m. This abstraction captures various errors that may occur in practical

training. One example is that the calculation of valuation defined in Definition 3.1 requires sampling
sequences from LLM, which may result in a deviation from the true valuation.

When the groups are rational, they could be aware of the noise and consider the influence of that
on their utility. For group i with reward model rmi and group size wi, it will computes an expected
utility Ui for reporting (rm′

i, w
′
i) given by

Ui((rm′
i,
−→rm−i), (w

′
i, w⃗−i);ψ, p, rmi, wi) = E−→

r̂m∼F (·|(rm′
i,
−→rm−i))

ui(
−→
r̂m, (w′

i, w⃗−i);ψ, p, rmi, wi).

We consider the case that the noisy input reward models r̂mi and the reported reward models rmi are
close. In that case, we show that when using a training rule ψ ∈ ΨSW , the distance between the true
optimal point and the training outcome with noisy input is bounded. Based on that, we calculate the
utility of a group under the mechanism (ψ, pAFF ) and derive the approximate incentive compatibility
of the mechanism.

Theorem 4.12. Assume that for any noisy input
−→
r̂m generated from F (·|−→rm), and i ∈ [n], there is

max
x∈T∗

|r̂mi(x)− rmi(x)| ≤ ϵ.

Then, with a training rule ψ ∈ ΨSW , (ψ, pAFF ) ensures that each group i can benefit at most 2wiϵ
from misreporting the reward model.

This theoretical result guarantees a considerable utility for truthful reporting. Since the maximum
gain of misreporting for group i is less than 2wiϵ regardless of the others’ reports, groups will tend
to truthfully report in cases where finding the optimal strategy and modifying its reward model is
costlier than 2wiϵ.

4.4 Efficient Implementation of the Mechanism

At the end of the whole section, we discuss how pAFF can be implemented in practice, as Proposi-
tion 4.4 and Theorem 4.11 show that it is “unique” to implement SW-Max training rules in DSIC. As is
defined in Equation (1), we have to compute ψ(−→rm−i, w⃗−i, θinit) for each i aside from the final model
θ∗ := ψ(−→rm, w⃗, θinit). From the definition ψ(−→rm−i, w⃗−i, θinit) := maxθ∈Θ OBJ(θ;−→rm−i, w⃗−i, θinit),
finding a maximum over whole space Θ requires a whole training process. This results in n additional
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trainings when we have n groups. To address this problem, we propose two heuristic methods that
approximate the payment computation; the core of both is to take the maximum on a constraint space
Θ′ instead of the whole space Θ.

• Heuristic 1: Intermediate Models
During the training to obtain the model ψ(−→rm, w⃗, θinit), we usually save intermediate models
at different training steps. We can set Θ′ to be these intermediate models. This requires no
additional training and maintains payment non-negativity since θ∗ is also in Θ′, but DSIC is not
strictly guaranteed as Θ′ depends on group i’s report. However, the complex dependency makes
strategic manipulation practically difficult.

• Heuristic 2: Early-Stopped Training
We can perform early-stopped training to compute the ψ(−→rm−i, w⃗−i, θinit). This means that we
use a less powerful Θ′ that is only dependent on −→rm−i, w⃗−i, θinit. Since the independence of group
i, this preserves DSIC theoretically. However, the payment may be negative as ψ(−→rm, w⃗, θinit)
may outperform the early-stopped ψ(−→rm−i, w⃗−i, θinit) in terms of ASW−i.

These heuristics provide a practical trade-off: Heuristic 1 offers maximum computational efficiency
with relaxed theoretical guarantees, while Heuristic 2 preserves DSIC with moderate additional cost.
From a theory perspective, we can derive the following result based on Theorem 4.11.
Corollary 4.13. Given a continuous training rule ψ ∈ ΨSW , if the payment rule p implements it in
DSIC, IR and is always non-negative, then for any ϵ > 0, there exists i, −→rm−i, w⃗−i and θinit, such that
for all rmi and wi, denote rm = (rmi,

−→rm−i) and w = (wi, w⃗−i), we have

pAFF
i (rm, w, θinit) ≤ pi(rm, w, θinit) ≤ pAFF

i (rm, w, θinit) + ϵ.

This indicates that any payment rule p that satisfies all these properties must closely approximate
pAFF in certain inputs. This somewhat showcases a tradeoff between theoretical guarantees and
computational efficiency. A more rigorous analysis of the efficiency loss caused by these heuristics or
an “impossibility theorem” regarding efficient implementation is left for future work.

5 Empirical Study

In this section, we present an empirical evaluation of the proposed mechanism. Our objectives are
twofold: first, to demonstrate that in practical LLM settings, agents can benefit from misreporting
their preferences and distorting the learning outcomes; and second, to intuitively show how our
mechanism incentivizes truthful reporting2.

Models and Datasets. Our experimental setup follows the literature on Multiple-Objective
RLHF [62, 70, 78]. We consider two tasks: the Helpful Assistants task [5] and the Reddit Sum-
mary task [72], using Llama-2 7b [74] as the base model for both. For the Helpful Assistants
task, the initial model LLMθinit is obtained by supervised fine-tuning a Llama-2 7b model on the
Anthropic-HH dataset [5]. We then apply two reward models during the RLHF process to measure
harmlessness and humor, respectively. For the Reddit Summary task, the model is fine-tuned on the
Summarize-from-Feedback dataset [72], with two reward models assessing the summary’s quality
and faithfulness.

We formulate these tasks as two mechanism design scenarios: the “Harmless vs. Humor” game for the
Helpful Assistants task, and the “Faithful vs. Summary” game for the Reddit Summary task. In each
game, we assume that there are two groups whose joint preferences are captured by a reward model.
For example, in “Harmless vs. Humor, ” group 1 prioritizes harmlessness, while group 2 values
humor. The corresponding reward models for these preferences are denoted as rm1 (harmlessness)
and rm2 (humor), with synthetic group size vectors (w1, w2) selected from {(3, 7), (5, 5), (7, 3)},
varying across different settings.

Implementation Details. We implement the basic training rule from Definition 4.1, using the
KL-divergence as the distance measure f . To balance model optimality with training cost, we
simplify the problem by replacing the entire parameter space Θ with a representative finite set Θ′.

2The code for the simulation is available at GitHub.
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Models are first trained using single reward models and then combined via the Rewarded Soups
technique [62] to produce a set of hybrid models, {θ1, θ2, . . . , θK}, which constitute Θ′. Optimality
is then defined over this finite set. As shown in Rame et al. [62], this approach reduces training costs
while maintaining performance comparable to full multi-objective fine-tuning.

Given the large space of potential misreporting strategies, we focus on two simple ones:

• Strategy (1): r̃mi = rmi and w̃i = αwi

Naïve overstatement: Exaggerating group size to gain more influence, requiring no knowledge
of other groups.

• Strategy (2): r̃mi = βrmi + (1− β)rm−i and w̃i = wi

Strategic manipulation: Leveraging other groups’ preferences to downplay opposing outcomes,
requiring some information about conflicts.

Intuitively, α = 1 and β = 1 represent truthful reporting. Increasing α or β allows a group to gain
more influence in the training process. Our experiments confirm that both strategies can be profitable.
However, the DSIC of our mechanism ensures that truthful reporting yields higher utility than any
misreporting strategy.

Result Analysis. Since the outputs of different reward models have varying scales, we normalize all
reward values to [0, 1], where the maximum and minimum values are 1 and 0, respectively. We then
report the normalized valuations, payments, and utilities of group i for different reporting strategies
in Figure 2. Each column represents a specific RLHF Game with a given group size (w1, w2).

As shown in the figure, increasing α or β leads to a higher valuation for the group, confirming that
groups can benefit from simple misreporting in the absence of payments. However, when the payment
pAFF is applied, it increases with α or β, offsetting the gains in valuation. This ensures that truthful
reporting (α = 1, β = 1) maximizes utility in all cases. Additional simulation settings are provided
in Appendix F.

6 Conclusion and Future Work

This paper studies incentive issues in a potential economic scenario where a platform offers LLM
fine-tuning services to aggregate preferences and agents strategically report to get a preferred outcome.
We focus on aggregation objectives that maximize social welfare subject to regularization constraints,
referred to as SW-Max rules. Through a comprehensive analysis of strategic reporting, we demonstrate
the critical role of payment schemes in incentivizing truthful reporting under SW-Max rules. We derive
sufficient conditions for payment equivalence and identify necessary conditions for implementing SW-
Max rules within additional constraints. Moreover, we analyze how perturbed input will influence the
mechanism to account for practical errors that inevitably arise and show that the mechanism satisfies
approximate DSIC. Finally, we conduct experiments within real-world LLM setups, showcasing how
the proposed mechanism effectively incentivizes truthful reporting.

Building on our proposed scenario and formulated model, we identify several promising directions
for future research from both theoretical and empirical perspectives. First, exploring and modeling
more general training rules could enhance our understanding of the framework. As noted in Appendix
E, cycle monotonicity is a necessary and sufficient condition for implementability, but its validation is
complex. Identifying a simpler condition to ensure implementability and investigating properties like
payment equivalence for these rules are critical next steps. Second, studying preference aggregation
across multiple models, particularly with diversity considerations, is a valuable direction. Third, as
discussed in Section 4.4, developing mechanisms or criteria that balance computational efficiency
and incentive compatibility in the RLHF Game could improve its real-world applicability. Finally,
applying mechanism design theory to other large language model contexts, such as API pricing,
retrieval-augmented generation (RAG), and prompt engineering, offers significant opportunities for
further exploration.
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Limitation

The main limitation of this paper is that we mainly consider the SW-Max training rules and their
theoretical properties. Further study could consider more training rules and extend our model to the
DPO scenario, in which each group only provides pairs of data rather than a reward model.

A Further Related Work

In this section, we review relevant research across various domains that are related to our paper,
including works on RLHF with multiple reward models, multi-parameter auctions, and the intersection
of game theory and LLMs.

A.1 RLHF with Multiple Reward Models

Research involving multiple reward models primarily focuses on developing algorithms to enhance
practical performance. Some studies design methods simultaneously satisfying multiple prefer-
ences [11, 41, 62, 63, 70, 78, 81]. They develop more efficient algorithms to extend the Pareto frontier
among different objectives [41, 62, 70, 81] and balance issues from various perspectives [11, 59, 63].

Additionally, there is a body of work that trains multiple models for a single preference and then
ensembles them to improve the robustness of RLHF [18, 82], mitigate the influence of incorrect and
ambiguous preferences in the dataset [76], and reduce reward hacking [26]. Unlike these approaches,
our work considers how to collect misaligned preferences truthfully from different agents. As we have
mentioned, these works are often assumed to be accessible to humans’ actual preferences, neglecting
the incentive issue for motivating rational agents to report truthfully.

A.2 Multi-parameter Auctions

Several studies have explored the properties relevant to our paper in various multi-parameter auction
scenarios, such as implementability [4, 7, 16, 49, 65, 67] and payment equivalence [6, 38, 39, 60].
Another central topic in auction theory is to design mechanisms that satisfy DSIC and IR while
maximizing the expected revenue for the auctioneer. Although the single-parameter scenario has
been resolved by Myerson [53], the optimal auction design for multi-parameter settings remains an
open question. Therefore, there is a stream of research focusing on a specific subset, affine maximizer
auctions, which inherently satisfy DSIC and IR [9, 42, 44, 64, 68, 73], and proposing optimizations
to enhance empirical performance [20, 22, 23]. Compared to these works, we are the first to discuss
the property of payment equivalence and the revenue-maximizing solution for SW-Max training rules
in the scenario of fine-tuning LLMs.

A.3 Game Theory and LLMs

In addition to the work we review in the primary related work, others have explored the intersection
of game theory and large language models from different perspectives. A line of work studies other
LLM-related scenarios from the algorithmic game theory perspective. Laufer et al. [43] abstracted the
fine-tuning process as a bargaining game and characterized the perfect sub-game equilibria. Dubey et
al. [24] proposed an auction where bidders compete to place their content within a summary generated
by an LLM. Conitzer et al. [17] considered incorporating social choice theory in LLM alignment.
Feizi et al. [29] explored the potential for leveraging LLMs in online advertising systems.

More broadly, some research has proposed algorithms for training LLMs inspired by concepts
in game theory, such as Nash learning from human feedback [51], consensus game [40], direct
Nash optimization [66], and Gemp et al. [33]. And various studies assess LLMs from a game-
theoretical perspective, examining aspects such as rationality [12, 28], behavior in matrix games [2,
32, 45], and performance in strategic games like auctions [35, 36], Werewolf [79, 80], Avalon [77],
Diplomacy [27, 50], card game [30] and electronic game [1, 47, 69]. There are also comprehensive
surveys [31, 37, 83].
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B Omitted Proofs in Section 4.1

Theorem 4.2. In the RLHF Game with mechanism (ψ, p) that ψ ∈ ΨSW and p ≡ 0, for group i,
define si := |{r|r = rmi(x), x ∈ T ∗}| and rmi := minx∈T∗ rmi(x):

1. If si = 1, truthfully reporting is the optimal strategy regardless of other groups’ reports.

2. If si ≥ 2 and rmi > 0, there is a strategy that yields strictly higher utility than truthfully
reporting regardless of other groups’ reports.

Proof. If si = 1, the group gets the same utility from all training outcomes. Therefore, any strategy
is optimal. We then analyze the case si ≥ 2 and rmi > 0 in the following. First, the optimization of
ψ can be written as an equivalent constraint programming problem on the LLMθ:

argmax
LLMθ

n∑
i=1

wivi(θ; rmi)−
∑
x∈T∗

LLMθinit(x)f

(
LLMθ(x)

LLMθinit(x)

)
s.t.

∑
x∈T∗

LLMθ(x) = 1

LLMθ(x) ≥ 0 ∀x ∈ T ∗

Because of the assumption that the optimal policy satisfies LLMθ(x) > 0 for all x ∈ T ∗, we can
infer that the condition LLMθ(x) ≥ 0, ∀x ∈ T ∗ is not active for the optimal solution. Since the
convexity of the function f , by KKT condition, the necessary condition for the optimal θ∗ is that
there exists µ ∈ R [46], such that

n∑
i=1

wi
∂vi

∂LLMθ(x)
− f ′

(
LLMθ(x)

LLMθinit(x)

)
= µ ∀x ∈ T ∗,

∑
x∈T∗

LLMθ(x) = 1.

Under Definition 3.1, ∂vi

∂LLMθ(x)
= rmi(x), so we have

n∑
i=1

wirmi(x)− f ′
(

LLMθ(x)

LLMθinit(x)

)
= µ ∀x ∈ T ∗. (OPT)

We mainly discuss the strategies other than simply over-reporting the group size w⃗. We omit the
notation w⃗ for simplicity.

Next, our main technique is to construct a report reward model rm′
i ̸= rmi for group i such that

vi(ψ((rm′
i,
−→rm−i), θinit); rmi) > vi(ψ((rmi,

−→rm), θinit); rmi) holds for all −→rm−i and θinit.

The Summation Normalization Case. We first discuss the case of the reward model being
normalized by summation. We take the x1 ∈ argmaxx∈T∗ rmi(x),x2 ∈ argminx∈T∗ rmi(x).
Since minx∈T∗ rmi(x) > 0, we have rmi(x1) < 1 and rmi(x2) > 0. Then we take a small
ϵ < min{1− rmi(x1), rmi(x2)} and define rm′

i as:

rm′
i(x) =


rmi(x) + ϵ, x = x1,

rmi(x)− ϵ, x = x2

rmi(x), x ̸= x1,x ̸= x2.

Intuitively, by reporting rm′
i, group i pretends to value more for the most preferred x and less for the

least preferred x. Let θ = ψ((rmi,
−→rm−i), θinit) and θ′ = ψ((rm′

i,
−→rm−i), θinit), we use µ and µ′ to

denote the variable in the necessary condition for LLMθ and LLMθ′ , and we can derive the following
results.

(a) LLMθ′(x1) > LLMθ(x1) and LLMθ′(x2) < LLMθ(x2). We prove the former by contradiction:
if LLMθ′(x1) ≤ LLMθ(x1), then by the convexity of f , we have

f ′
(

LLMθ′(x1)

LLMθinit(x)

)
≤ f ′

(
LLMθ(x1)

LLMθinit(x)

)
.

With rm′
i(x1) > rmi(x1), we can infer that µ′ > µ. However, since for all x ̸= x1, we have

rm′
i(x) ≤ rmi(x), to satisfy the optimal condition in (OPT), there must be for all x ̸= x1,

f ′
(

LLMθ′(x)

LLMθinit(x)

)
< f ′

(
LLMθ(x)

LLMθinit(x)

)
.
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Which is equivalent to LLMθ′(x) < LLMθ(x), and hence results in
∑

x∈T∗ LLMθ′(x) <∑
x∈T∗ LLMθ(x) = 1. The latter, LLMθ′(x2) < LLMθ(x2), can be proved by totally same

method.

(b) The order of LLMθ(x) and LLMθ′(x) for all x /∈ {x1,x2} is consistent. Without loss of
generality, we assume there is x3 /∈ {x1,x2} such that LLMθ′(x3) ≥ LLMθ(x3). Then we have

f ′
(

LLMθ′(x3)

LLMθinit(x)

)
≥ f ′

(
LLMθ(x3)

LLMθinit(x)

)
.

Then, we can infer that µ′ ≤ µ. For all x /∈ {x1,x2}, to satisfy Equation (OPT), there must be

f ′
(

LLMθ′(x)

LLMθinit(x)

)
≥ f ′

(
LLMθ(x)

LLMθinit(x)

)
.

which is equivalent to LLMθ′(x) ≥ LLMθ(x). Similarly, if there is x3 /∈ {x1,x2} such that
LLMθ′(x3) ≤ LLMθ(x3), then for all x /∈ {x1,x2}, there is LLMθ′(x) ≤ LLMθ(x).

Finally, with the results in (a) and (b), when LLMθ′(x) ≤ LLMθ(x) for all x /∈ {x1,x2}, the
change in the utility of group i can be calculated by∑

x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x)

=
∑

x̸=x1,x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x) + (LLMθ′(x1)− LLMθ(x1)) rmi(x1)

=−
∑

x ̸=x1,x∈T∗

(LLMθ(x)− LLMθ′(x)) rmi(x) + (LLMθ′(x1)− LLMθ(x1)) rmi(x1)

(2)

≥ −
∑

x ̸=x1,x∈T∗

(LLMθ(x)− LLMθ′(x)) rmi(x1) + (LLMθ′(x1)− LLMθ(x1)) rmi(x1)

=rmi(x1)

LLMθ′(x1)− LLMθ(x1)−
∑

x ̸=x1,x∈T∗

(LLMθ(x)− LLMθ′(x))


=rmi(x1)

∑
x∈T∗

(LLMθ′(x)− LLMθ(x)) = 0.

When LLMθ′(x) ≥ LLMθ(x) for all x ̸= x1,x2, the change in the utility of group i can be
calculated by∑

x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x)

=
∑

x̸=x2,x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x) + (LLMθ′(x2)− LLMθ(x2)) rmi(x2)

=
∑

x ̸=x2,x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x)− (LLMθ(x2)− LLMθ′(x2)) rmi(x2)

(3)

≥
∑

x ̸=x2,x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x2)− (LLMθ(x2)− LLMθ′(x2)) rmi(x2)

=rmi(x2)

 ∑
x̸=x2,x∈T∗

(LLMθ′(x)− LLMθ(x))− (LLMθ(x2)− LLMθ′(x2))


=rmi(x2)

∑
x∈T∗

(LLMθ′(x)− LLMθ(x)) = 0.

Note that both (2) and (3) are because of rmi(x1) ≥ rmi(x2). And unless rmi(x1) = rmi(x2),
which is excluded by si ≥ 2, the “>”s are hold.
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The Maximum Normalization Case. The case of the reward model being normalized by the
maximum is similar. We take the x1 ∈ argminx∈T∗ rmi(x). Since minx∈T∗ rmi(x) > 0, we have
rmi(x1) > 0. Then we take a small ϵ < rmi(x1) and define rm′

i as:

rm′
i(x) =

{
rmi(x)− ϵ, x = x1,

rmi(x), x ̸= x1.

With the same technique, we first show that LLMθ′(x1) < LLMθ(x1) and LLMθ′(x) > LLMθ(x)
for all x ̸= x1. After that, it is easy to derive that when si ≥ 2, the change in the utility of group i
satisfies ∑

x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x) > 0.

Lemma B.1. When the training rule ψ ∈ ΨSW , and the divergence function f is α-strongly convex
and C2-smooth, then ψ satisfies Definition 4.7.

Proof. As is shown in the proof of Theorem 4.2, we have two Lagrangian variables µ and µ′ for
(−→rm, w⃗) and (−→rm, w⃗), respectively. We have the following equations:

n∑
i=1

wirmi(x)− f ′
(

LLMθ(x)

LLMθinit(x)

)
= µ, ∀x ∈ T ∗.

n∑
i=1

w′
irm

′
i(x)− f ′

(
LLMθ′(x)

LLMθinit(x)

)
= µ′, ∀x ∈ T ∗.

Firstly, we have |µ′ − µ| ≤ maxx∈T∗ |
∑n

i=1 wirmi(x)−
∑n

i=1 w
′
irm

′
i(x)|. Otherwise, without loss

of generality, assume that µ′ − µ > maxx∈T∗ |
∑n

i=1 wirmi(x) −
∑n

i=1 w
′
irm

′
i(x)|, then we can

derive that ∀x ∈ T ∗,

f ′
(

LLMθ(x)

LLMθinit(x)

)
< f ′

(
LLMθ′(x)

LLMθinit(x)

)
.

This means that LLMθ(x) < LLMθ′(x) for all x, which leads the contradiction. Therefore, we have
for all x ∈ T ∗∣∣∣∣f ′( LLMθ(x)

LLMθinit(x)

)
− f ′

(
LLMθ′(x)

LLMθinit(x)

)∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

wirmi(x)−
n∑

i=1

w′
irm

′
i(x) + µ′ − µ

∣∣∣∣∣
≤ 2

∣∣∣∣∣
n∑

i=1

wirmi(x)−
n∑

i=1

w′
irm

′
i(x)

∣∣∣∣∣ .
By C2-smoothness of f and the α-strongly convexity, we have for all x ∈ T ∗

|LLMθ(x)− LLMθ′(x)| ≤ LLMθinit(x)

α

∣∣∣∣f ′( LLMθ(x)

LLMθinit(x)

)
− f ′

(
LLMθ′(x)

LLMθinit(x)

)∣∣∣∣
≤ 2LLMθinit(x)

α

∣∣∣∣∣
n∑

i=1

wirmi(x)−
n∑

i=1

w′
irm

′
i(x)

∣∣∣∣∣ .
Therefore, for any ϵ > 0, if |

∑n
i=1 wirmi(x)−

∑n
i=1 w

′
irm

′
i(x)| < αϵ

2 , then
|LLMθ(x)− LLMθ′(x)| ≤ ϵ.

Theorem B.2 (Detailed version of Theorem 4.3). In the RLHF Game with mechanism (ψ, p) that
ψ ∈ ΨSW and p ≡ 0, when f is α-strongly convex and C2-smooth, suppose group i has preference
rmi and group size wi, other groups report (−→rm−i, w⃗−i) and the initial model θinit, we define

t(z) :=
∑
x∈T∗

(rmi(z)− rmi(x))LLMθinit(x)

f ′′
(

LLMθ(x)
LLMθinit (x)

) ,

in which θ = ψ(−→rm, w⃗, θinit). When si ≥ 2 and rmi = 0:
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1. For the maximum normalization case, if there exist x1 ∈ T ∗, t(x1) ̸= 0 and 0 < rmi(x1) <
1, truthful reporting is not the optimal strategy.

2. For the summation normalization case, if there exist x1 ∈ T ∗, t(x1) < 0 and 0 <
rmi(x1) < 1, truthful reporting is not the optimal strategy.

3. For the summation normalization case, if there exist x1 ∈ T ∗, t(x1) > 0 and we can also

find x2 ∈ T ∗, such that 1 > rmi(x1) ≥ rmi(x2) > 0 and 1
LLMθinit (x1)

f ′′
(

LLMθ(x1)
LLMθinit (x1)

)
<

1
LLMθinit (x2)

f ′′
(

LLMθ(x2)
LLMθinit (x2)

)
, truthful reporting is not the optimal strategy.

Proof. As is shown in the proof of Theorem 4.2, the necessary condition for the solution θ is that
there exists a µ ∈ R such that

n∑
i=1

wirmi(x)− f ′
(

LLMθ(x)

LLMθinit(x)

)
= µ ∀x ∈ T ∗,

∑
x∈T∗

LLMθ(x) = 1.

And by Lemma B.1, we can also use the condition Definition 4.7.

The Maximum Normalization Case (1). Without loss of generality, we assume that there exists x1

such that t(x1) > 0, we take 0 < ϵ < 1− rmi(x1) to construct a report rm′
i

rm′
i(x) =

{
rmi(x) + ϵ, x = x1,

rmi(x), x ̸= x1.

Suppose that µ′ is the Lagrangian variable for the optimal solution θ′ when reporting rm′
i, we can

derive that

µ′ − µ = wiϵIx=x1
−
(
f ′
(

LLMθ′(x)

LLMθinit(x)

)
− f ′

(
LLMθ(x)

LLMθinit(x)

))
∀x ∈ T ∗.

With a similar analyze in the proof of Theorem 4.2, we can induce that µ′ > µ and LLMθ′(x) <
LLMθ(x) for all x ̸= x1. By the C2-smoothness of f , for each x ̸= x1, there exits a LLMθ′(x) ≤
z ≤ LLMθ(x) such that

µ′ − µ = −f ′′( z

LLMθinit(x)
)

(
LLMθ′(x)− LLMθ(x)

LLMθinit(x)

)
.

For convenience, we let LLMθ′′(x) refer to the corresponding z for x, note that LLMθ′′ is not
necessarily a distribution. We then compute the change in the group i’s utility:∑

x∈T∗

rmi(x)(LLMθ′(x)− LLMθ(x))

=rmi(x1)(LLMθ′(x1)− LLMθ(x1)) +
∑
x ̸=x1

rmi(x)(LLMθ′(x)− LLMθ(x))

=rmi(x1)
∑
x̸=x1

(LLMθ(x)− LLMθ′(x))−
∑
x ̸=x1

rmi(x)(LLMθ(x)− LLMθ′(x))

=
∑
x̸=x1

(µ′ − µ)(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
.

Then, we show that when the ϵ we choose is sufficiently small, the above term is positive. We define
the lower bound:

δ1 := min
x∈T∗

f ′′(
LLMθ(x)

LLMθinit(x)
).

Since function f is α-strongly convex, δ1 ≥ α > 0. By the C2-smoothness of the f , there exists an
δ2 > 0, such that for each θ, θ′ satisfying maxx |LLMθ(x)− LLMθ′(x)| < δ2, we have

max
x∈T∗

∣∣∣∣f ′′( LLMθ(x)

LLMθinit(x)
)− f ′′(

LLMθ′(x)

LLMθinit(x)
)

∣∣∣∣ ≤ min{δ1
2
,
δ21t(x1)

4|T ∗|
}.
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Besides, because of the Definition 4.7, there exists δ3, such that for each (w⃗,−→rm) and (w⃗′,−→rm′) satisfy-
ing maxx∈T∗ |

∑n
i=1 wirmi(x)−

∑n
i=1 w

′
irm

′
i(x)| ≤ δ3, we have maxx |LLMθ(x)−LLMθ′(x)| <

δ2.

Combining these, we set ϵ < δ3
wi

, then it is suffice to show that∣∣∣∣∣∣
∑
x̸=x1

(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
−
∑
x̸=x1

(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ(x)
LLMθinit (x)

)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x̸=x1

(rmi(x1)− rmi(x))
(
f ′′( LLMθ(x)

LLMθinit (x)
)− f ′′( LLMθ′′ (x)

LLMθinit (x)
)
)

LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

) · f ′′( LLMθ(x)
LLMθinit (x)

)

∣∣∣∣∣∣
≤
∑
x̸=x1

|rmi(x1)− rmi(x)|
∣∣∣f ′′( LLMθ(x)

LLMθinit (x)
)− f ′′( LLMθ′′ (x)

LLMθinit (x)
)
∣∣∣LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

) · f ′′( LLMθ(x)
LLMθinit (x)

)

<|T ∗| · δ
2
1t(x1)

4|T ∗|
· 2

δ1 · δ1
=
t(x1)

2
.

This means that∑
x ̸=x1

(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
>
∑
x ̸=x1

(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ(x)
LLMθinit (x)

)
− t(x1)

2

= t(x1)−
t(x1)

2
=
t(x1)

2
> 0.

Combined with µ′ > µ, the proof concludes.

The Summation Normalization Case (2). Assume that there exists x1 such that t(x1) < 0, we
select x2 := argmaxx∈T∗ rmi(x) and take 0 < ϵ < min{rmi(x1), 1 − rmi(x2)} to construct a
report rm′

i

rm′
i(x) =


rmi(x)− ϵ, x = x1,

rmi(x) + ϵ, x = x2,

rmi(x), x /∈ {x1,x2}.
Still, we use µ′ to denote the Lagrangian variable for the optimal solution θ′ when reporting rm′

i.
Then, there are two possibilities for the relationship between µ and µ′. If µ ≤ µ′, by the optimal
condition OPT, for all x ̸= x2, we have LLMθ(x) ≥ LLMθ′(x). Since x2 has the highest reward
value, such a change in the training outcome must be more preferred by the group i. Therefore,
we only have to consider the case that µ > µ′. Similarly, in this case, for all x ̸= x1, we have
LLMθ(x) < LLMθ′(x). By the C2-smoothness of f , for each x ̸= x1, there exits a LLMθ(x) ≤
z ≤ LLMθ′(x) such that

µ′ − µ = wiϵIx=x2
− f ′′(

z

LLMθinit(x)
)(

LLMθ′(x)− LLMθ(x)

LLMθinit(x)
).

Let LLMθ′′(x) refer to the corresponding z for x, we then compute the change in the group i’s
utility:∑

x∈T∗

rmi(x)(LLMθ′(x)− LLMθ(x))

=rmi(x1)(LLMθ′(x1)− LLMθ(x1)) +
∑
x ̸=x1

rmi(x)(LLMθ′(x)− LLMθ(x))

=rmi(x1)
∑
x ̸=x1

(LLMθ(x)− LLMθ′(x))−
∑
x ̸=x1

rmi(x)(LLMθ(x)− LLMθ′(x))

=
∑
x̸=x1

(µ′ − µ)(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
− wiϵ

(rmi(x1)− rmi(x2))LLMθinit(x2)

f ′′( LLMθ′′ (x2)
LLMθinit (x2)

)

≥
∑
x ̸=x1

(µ′ − µ)(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
.
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With the same technique we used in the maximum normalized case (1), we can show that with
sufficient small ϵ > 0, the above term

∑
x ̸=x1

(rmi(x1)−rmi(x))LLMθinit (x)

f ′′(
LLM

θ′′ (x)

LLMθinit
(x)

)
< t(x1)

2 < 0. Combined

with µ′ < µ, the proof concludes.

The Summation Normalization Case (3). Assume that there exists x1 such that t(x1) > 0,and x2,
rmi(x1) ≥ rmi(x2) > 0, we take 0 < ϵ < min{rmi(x2), 1− rmi(x1)} to construct a report rm′

i

rm′
i(x) =


rmi(x) + ϵ, x = x1,

rmi(x)− ϵ, x = x2,

rmi(x), x /∈ {x1,x2}.

Still, we use µ′ to denote the Lagrangian variable for the optimal solution θ′ when reporting rm′
i.

Since we know for sure that LLMθ(x1) < LLMθ′(x1) and LLMθ(x2) > LLMθ′(x2), by the
C2-smoothness of f , LLMθ′(x2) ≤ LLMθ′′(x2) ≤ LLMθ(x2) and LLMθ(x1) ≤ LLMθ′′(x1) ≤
LLMθ′(x1) such that

µ′ − µ = wiϵ− f ′′(
LLMθ′′(x1)

LLMθinit(x1)
)

LLMθ′(x1)− LLMθ(x1)

LLMθinit(x1)
,

µ′ − µ = −wiϵ− f ′′(
LLMθ′′(x2)

LLMθinit(x2)
)

LLMθ′(x2)− LLMθ(x2)

LLMθinit(x2)
.

(2)

Let δ1 := minx LLMθinit(x), by the C2-smoothness of the f , there exists an δ2 > 0, such that for
each θ, θ′ satisfying maxx |wirmi(x)− w′

irm
′
i(x)| < δ2, we have

max
x∈T∗

∣∣∣∣f ′′( LLMθ(x)

LLMθinit(x)
)− f ′′(

LLMθ′(x)

LLMθinit(x)
)

∣∣∣∣ ≤ δ1
LLMθinit (x2)

f ′′
(

LLMθ(x2)
LLMθinit (x2)

)
− δ1

LLMθinit (x1)
f ′′
(

LLMθ(x1)
LLMθinit (x1)

)
3

.

(3)

We take ϵ < δ2
wi

and first prove that when taking such ϵ, there is µ ≤ µ′. By contradiction, if
µ′ < µ, then by condition Equation (OPT), for all x /∈ {x1,x2}, there is LLMθ′(x) > LLMθ(x).
Therefore, LLMθ′(x1) − LLMθ(x1) =

∑
x/∈{x1,x2}(LLMθ(x) − LLMθ′(x)) + LLMθ(x2) −

LLMθ′(x2) < LLMθ(x2)− LLMθ′(x2). However, by Equation (2), if µ′ < µ, we get

f ′′
(

LLMθ′′(x1)

LLMθinit(x1)

)
LLMθ′(x1)− LLMθ(x1)

LLMθinit(x1)
> f ′′

(
LLMθ′′(x2)

LLMθinit(x2)

)
LLMθ(x2)− LLMθ′(x2)

LLMθinit(x2)

By Equation (3), we can derive that

f ′′
(

LLMθ′′(x1)

LLMθinit(x1)

)
1

LLMθinit(x1)
< f ′′

(
LLMθ′′(x2)

LLMθinit(x2)

)
1

LLMθinit(x2)
,

and thus, we get

LLMθ′(x1)− LLMθ(x1) > LLMθ(x2)− LLMθ′(x2),

which brings the contradiction.

After proving that µ ≤ µ′, we know that for all x /∈ {x1,x2}, LLMθ(x) ≥ LLMθ′(x). Then, by
the C2-smoothness of f , for each x ̸= x1, there exits a LLMθ′(x) ≤ z ≤ LLMθ(x) such that

µ′ − µ = −wiϵIx=x2
− f ′′(

z

LLMθinit(x)
)(

LLMθ′(x)− LLMθ(x)

LLMθinit(x)
).
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Let LLMθ′′(x) refer to the corresponding z for x, we then compute the change in the group i’s
utility:∑

x∈T∗

rmi(x)(LLMθ′(x)− LLMθ(x))

=rmi(x1)(LLMθ′(x1)− LLMθ(x1)) +
∑
x ̸=x1

rmi(x)(LLMθ′(x)− LLMθ(x))

=rmi(x1)
∑
x ̸=x1

(LLMθ(x)− LLMθ′(x))−
∑
x ̸=x1

rmi(x)(LLMθ(x)− LLMθ′(x))

=
∑
x̸=x1

(µ′ − µ)(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
+ wiϵ

(rmi(x1)− rmi(x2))LLMθinit(x2)

f ′′( LLMθ′′ (x2)
LLMθinit (x2)

)

≥
∑
x ̸=x1

(µ′ − µ)(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
.

With the same technique we used in the maximum normalized case (1), we can show that with
sufficient small ϵ > 0, the above term

∑
x ̸=x1

(rmi(x1)−rmi(x))LLMθinit (x)

f ′′(
LLM

θ′′ (x)

LLMθinit
(x)

)
> t(x1)

2 > 0. Combined

with µ′ < µ, the proof concludes.

C Omitted Proofs in Section 4.2

Proposition 4.4. For any ψ ∈ ΨSW , mechanism (ψ, pAFF ) satisfies DSIC and IR, and the payment
is non-negative.

Proof. We assume that for group i, the true reward model is rmi, and the agent number is wi. The
reports of other groups are (−→rm−i, w⃗−i) and the initial model is θinit.

(1) (ψ, pAFF ) satisfies DSIC.

We compare the utility between reporting (rmi, wi) and any other (rm′
i, w

′
i). For convenience, we

first simplify the notations by letting

θ = ψ(((rmi,
−→rm−i), (wi, w⃗−i)), θinit),

θ′ = ψ(((rm′
i,
−→rm−i), (w

′
i, w⃗−i)), θinit).

The valuation of group i is the valuation for each agent multiplied by the real agent number:

vi = wivi(θ; rmi),

v′i = wivi(θ
′; rmi).

According to the payment rule pAFF , the payment pi for (rmi, wi) and p′i for (rm′
i, w

′
i) is

pi = ASW−i(ψ(
−→rm−i, w⃗−i, θinit);

−→rm−i, w⃗−i, θinit)−ASW−i(θ;
−→rm−i, w⃗−i, θinit)

p′i = ASW−i(ψ(
−→rm−i, w⃗−i, θinit);

−→rm−i, w⃗−i, θinit)−ASW−i(θ
′;−→rm−i, w⃗−i, θinit)

Therefore, we can calculate the change in the utility:

u′i − ui =(v′i − p′i)− (vi − pi)

=
(
wivi(θ

′; rmi) + ASW−i(θ
′;−→rm−i, w⃗−i, θinit)

)
−
(
wivi(θ; rmi) + ASW−i(θ;

−→rm−i, w⃗−i, θinit)
)

=ASW((θ′; (rmi,
−→rm−i), (wi, w⃗−i)), θinit)−ASW((θ; (rmi,

−→rm−i), (wi, w⃗−i)), θinit)

≤0.

The last inequality holds by the definition of θ

θ = ψ(((rmi,
−→rm−i), (wi, w⃗−i)), θinit) = argmax

θ̂∈Θ
ASW((θ̂; (rmi,

−→rm−i), (wi, w⃗−i)), θinit).
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Therefore, we can conclude that, for all −→rm, w⃗, rm′
i, w

′
i, we have

ui((
−→rm, w⃗);ψ, pAFF , rmi, wi) ≥ ui((rm′

i,
−→rm−i), (w

′
i, w⃗−i);ψ, p

AFF , rmi, wi).

(2) (ψ, pAFF ) satisfies IR.

We reuse the notations above and denote θ−i to be the optimal parameter for groups except for i, i.e.
θ−i = ψ(−→rm−i, w⃗−i, θinit). When group i truthfully report its reward model rmi and agent number
wi, the utility can be written as:

ui = vi − pi

= wivi(θ; rmi)−ASW−i(θ−i;
−→rm−i, w⃗−i, θinit) + ASW−i(θ;

−→rm−i, w⃗−i, θinit)

= wivi(θ; rmi) + ASW−i(θ;
−→rm−i, w⃗−i, θinit)−ASW−i(θ−i;

−→rm−i, w⃗−i, θinit)

= ASW(θ;−→rm, w⃗, θinit)−ASW−i(θ−i;
−→rm−i, w⃗−i, θinit)

≥ ASW(θ−i;
−→rm, w⃗, θinit)−ASW−i(θ−i;

−→rm−i, w⃗−i, θinit)

= wivi(θ−i; rmi) + ASW−i(θ−i;
−→rm, w⃗, θinit)−ASW−i(θ−i;

−→rm−i, w⃗−i, θinit)

= wivi(θ−i; rmi) ≥ 0.

Therefore, we can conclude that, for all −→rm, w⃗, we have

ui((
−→rm, w⃗);ψ, pAFF , rmi, wi) ≥ 0.

Proposition 4.6. When w⃗ ≡ 1 is public information, and the agents only report the reward models,
all implementable training rules satisfy payment equivalence.

Proof. We follow the result Theorem 1.37 in Nisan et al. [55].

Lemma C.1 (Theorem 1.37 in Nisan et al. [55]). Let Ri be group i’s preference domain. Assume
that the R1,R2, . . . ,Rn are connected sets in the Euclidean space, then all implementable training
rules ψ satisfy payment equivalence.

In our paper, we assume that for all i ∈ [n], Ri is the set of all non-negative and normalized |T ∗|-dim
vectors. Either in the summation normalization case or the maximum normalization case, this is a
connected set in the Euclidean space. Hence, the theorem holds.

Proposition 4.8. SW-Max training rules with regularizations KL-divergence, fKL(x) = λx log x,
and χ2 divergence, f2(x) = λ(x− 1)

2 (λ > 0 is a constant) are continuous.

Proof. (1) For fKL(x) = λx log x (KL-divergence), since T ∗ is a finite set, we can rewrite the training
rule ψ as an optimization problem as follows:

argmax
LLMθ

∑
x∈T∗

(
LLMθ(x)

n∑
i=1

wirmi(x)− λLLMθ(x) log
LLMθ(x)

LLMθinit(x)

)
s.t.

∑
x∈T∗

LLMθ(x) = 1

LLMθ(x) ≥ 0 ∀x ∈ T ∗.

Since for KL divergence, the optimal model LLMθ must satisfy that LLMθ(x) > 0, for all x ∈ T ∗.
The necessary condition for an optimal θ is that there exists µ ∈ R, such that

n∑
i=1

wirmi(x)− λ log
LLMθ(x)

LLMθinit(x)
− λ = µ ∀x ∈ T ∗,

∑
x∈T∗

LLMθ(x) = 1.

Similarly, for the input (−→rm′, w⃗′), there exists µ′ ∈ R, such that the optimal θ′ satisfies
n∑

i=1

w′
irm

′
i(x)− λ log

LLMθ′(x)

LLMθinit(x)
− λ = µ′ ∀x ∈ T ∗,

∑
x∈T∗

LLMθ′(x) = 1.
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For convenience, we define ∆(x) =
∑n

i=1 w
′
irm

′
i(x) −

∑n
i=1 wirmi(x). Then the relationship

between LLMθ(x) and LLMθ′(x) is given by

LLMθ′(x) = LLMθ(x)e
1
λ (∆(x)+µ−µ′).

Note that we also have the condition∑
x∈T∗

LLMθ′(x) =
∑
x∈T∗

LLMθ(x)e
1
λ (∆(x)+µ−µ′) = 1.

Since
∑

x∈T∗ LLMθ(x)e
1
λ (∆(x)+µ−µ′) = e

1
λ (µ−µ′)

∑
x∈T∗ LLMθ(x)e

1
λ∆(x), we can infer that

1 = e
1
λ (µ−µ′)

∑
x∈T∗

LLMθ(x)e
1
λ∆(x) ≤ e

1
λ (µ−µ′) max

x∈T∗
e

1
λ∆(x),

1 = e
1
λ (µ−µ′)

∑
x∈T∗

LLMθ(x)e
1
λ∆(x) ≥ e

1
λ (µ−µ′) min

x∈T∗
e

1
λ∆(x).

This is equivalent to

min
x∈T∗

∆(x) ≤ µ′ − µ ≤ max
x∈T∗

∆(x).

Thus, the difference for LLMθ(x) and LLMθ′(x) can be bounded by

|LLMθ′(x)− LLMθ(x)| =
∣∣∣1− e

1
λ (∆(x)+µ−µ′)

∣∣∣LLMθ(x)

≤
∣∣∣1− e

1
λ (∆(x)+µ−µ′)

∣∣∣
≤ max{max

x∈T∗
e

2∆(x)
λ − 1, max

x∈T∗
1− e

2∆(x)
λ }.

For any δ > 0, when we set maxx∈T∗ |∆(x)| ≤ min{λ
2 log 1

1−δ ,
λ
2 log(1 + δ)}, we have

|LLMθ′(x)− LLMθ(x)| ≤ max{max
x∈T∗

e
2∆(x)

λ − 1, max
x∈T∗

1− e
2∆(x)

λ } ≤ δ.

(2) For f2(x) = λ(x− 1)
2 (χ2 divergence), since T ∗ is a finite set, we can rewrite the training rule ψ

as an optimization problem as follows:

argmax
LLMθ

∑
x∈T∗

(
LLMθ(x)

n∑
i=1

wirmi(x)− λ
(LLMθ(x)− LLMθinit(x))

2

LLMθinit(x)

)
s.t.

∑
x∈T∗

LLMθ(x) = 1

LLMθ(x) ≥ 0 ∀x ∈ T ∗.

Since we have assumed a relatively large λ so that the optimal model LLMθ satisfies that LLMθ(x) >
0, for all x ∈ T ∗. The necessary condition for an optimal θ is that there exists µ ∈ R, such that

n∑
i=1

wirmi(x)− 2λ
LLMθ(x)− LLMθinit(x)

LLMθinit(x)
= µ ∀x ∈ T ∗,

∑
x∈T∗

LLMθ(x) = 1.

Similarly, for the input (−→rm′, w⃗′), there exists µ′ ∈ R, such that the optimal θ′ satisfies
n∑

i=1

w′
irm

′
i(x)− 2λ

LLMθ′(x)− LLMθinit(x)

LLMθinit(x)
= µ′ ∀x ∈ T ∗,

∑
x∈T∗

LLMθ′(x) = 1.

For convenience, we define ∆(x) =
∑n

i=1 w
′
irm

′
i(x)−

∑n
i=1 wirmi(x) Then the relationship between

LLMθ(x) and LLMθ′(x) is given by

LLMθ′(x) = LLMθ(x) +
LLMθinit(x)

2λ
(∆(x) + µ− µ′).
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Note that we also have the condition∑
x∈T∗

LLMθ′(x) =
∑
x∈T∗

LLMθ(x) +
LLMθinit(x)

2λ
(∆(x) + µ− µ′) = 1.

Since
∑

x∈T∗ LLMθ(x) = 1, we can infer that∑
x∈T∗

LLMθinit(x)

2λ
(∆(x) + µ− µ′) = 0.

This is equivalent to

µ′ − µ =
∑
x∈T∗

LLMθinit(x)∆(x).

Thus, the difference for LLMθ(x) and LLMθ′(x) can be bounded by

|LLMθ′(x)− LLMθ(x)| =
∣∣∣∣LLMθinit(x)

2λ
(∆(x) + µ− µ′)

∣∣∣∣ ≤ 1

λ
max
x∈T∗

|∆(x)|

For any δ > 0, when we set maxx∈T∗ |∆(x)| ≤ λδ, we have

|LLMθ′(x)− LLMθ(x)| ≤
1

λ
max
x∈T∗

|∆(x)| ≤ δ.

Theorem 4.9. An implementable training rule ψ satisfies payment equivalence if it is continuous and
for ∀i, −→rm−i, w⃗−i, θinit there exists rm∗

i and θ such that ψ((rm∗
i ,
−→rm−i), (wi, w⃗−i), θinit) ≡ θ for all

wi ∈ W . In the maximum normalization case, rm∗
i must be 1.

Proof. We prove the equivalent version of payment equivalence: For any group i, when fixing
other groups reports (−→rm−i, w⃗−i) and θinit, any two payment rules p, p′ that implement ψ in DSIC
must satisfy that there exists a constant c, such that pi(rmi, wi)− p′i(rmi, wi) = c for any rmi and
wi. Therefore, in the rest of the proof, we suppose fixed (−→rm−i, w⃗−i) and θinit and will omit these
notations.

Firstly, we introduce a new notation ti to represent the combination (rmi, wi), whose domain is
R × W . Without specially claim, ti is used to represented for the rmi and wi with the same
superscript and subscript, for example, tki = (rmk

i , w
k
i ). Then, we define the functions l(·, ·) and

V (·, ·) as follows. l(t′i, ti) is the change in valuation from misreporting type t′i to reporting type ti
truthfully. In formal,

l(t′i, ti) := wivi(ψ(ti); rmi)− wivi(ψ(t
′
i); rmi).

And V (t′i, ti) refers to the smallest values of l on a finite and distinct path from t′i to ti

V (t′i, ti) := inf
A finite and distinct sequence
[t0i :=t′i,t

1
i ,...,t

k
i ,t

k+1
i :=ti]

k∑
j=0

l(tji , t
j+1
i ).

We prove the following lemma, which is a special case in Heydenreich et al. [38],

Lemma C.2 (Heydenreich et al. [38]). In the RLHF Game, an implemented training rule ψ satisfies
payment equivalence if for any agent i, and any types ti, t′i, we have

V (ti, t
′
i) = −V (t′i, ti).

Proof. Assume there is a mechanism (ψ, p) that satisfies DSIC. For any two types ti, t′i and a finite
and distinct sequence [t′i, t

1
i , . . . , t

k
i , ti], let t0i = t′i and tk+1

i = ti, we have that

wj+1
i vi(ψ(t

j+1
i ), rmj+1

i )− pi(t
j+1
i ) ≥ wj+1

i vi(ψ(t
j
i ), rm

j+1
i )− pi(t

j
i ) ∀0 ≤ j ≤ k.

This can be rewritten as

wj+1
i vi(ψ(t

j+1
i ), rmj+1

i )− wj+1
i vi(ψ(t

j
i ), rm

j+1
i ) ≥ pi(t

j+1
i )− pi(t

j
i ) ∀0 ≤ j ≤ k.
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Sum over j, we get the following inequality
k∑

j=0

l(tji , t
j+1
i ) =

k∑
j=0

wj+1
i vi(ψ(t

j+1
i ), rmj+1

i )− wj+1
i vi(ψ(t

j
i ), rm

j+1
i )

≥
k∑

j=0

pi(t
j+1
i )− pi(t

j
i ) = p(ti)− p(t′i).

Since this holds for arbitrary finite and distinct sequences, we can infer that V (t′i, ti) ≥ p(ti)− p(t′i).
Similarly, there is V (ti, t

′
i) ≥ p(t′i) − p(ti). Combining these results with V (ti, t

′
i) = −V (t′i, ti),

there is
V (ti, t

′
i) = −V (t′i, ti) ≤ p(t′i)− p(ti) ≤ V (ti, t

′
i),

which means that p(t′i) − p(ti) = V (ti, t
′
i). Note that this holds for arbitrary ti and t′i. Therefore,

when for some ti, the payment p(ti) is determined, then the payment for all other t′is is determined.
For example, if there are any two payment rules p and p′ both implement ψ in DSIC, and we set the
payment when i reports preference rm defined in Equation (5) and wi = 1 as p∗ and p′∗ respectively,
then ∀ti

pi(ti)− p′i(ti)

= (pi(ti)− p∗)− (p′i(ti)− p′∗) + p∗ − p′∗

=V ((rm, 1), ti)− V ((rm, 1), ti) + p∗ − p′∗

=p∗ − p′∗.

Note that p∗ and p′∗ are not influenced by i’s report, but they may vary for different −→rm−i, w⃗−i and
θinit, which means that we can consider the term p∗ − p′∗ as a function f on (−→rm−i, θinit).

Then, we show that the training rule satisfying the conditions in Theorem 4.9 is sufficient for the
condition stated in Lemma C.2. Firstly, we show that for any ti, t′i, we have V (ti, t

′
i) + V (t′i, ti) ≥ 0.

By definition of the function V (·, ·), V (ti, t
′
i) and V (t′i, ti) correspond to the shortest path from ti to

t′i and from t′i to ti respectively, which means that V (ti, t
′
i) + V (t′i, ti) is the shortest weight for a

cycle that goes through ti and t′i. Since the SW-Max training rule is implementable, we know that the
weight for any cycle is non-negative by cycle monotonicity [65]. Therefore, V (ti, t

′
i) + V (t′i, ti) ≥ 0

must be satisfied.

Then we show that for any ti, t′i and ϵ > 0, V (ti, t
′
i) + V (t′i, ti) ≤ ϵ. We prove this by constructing a

finite and distinct sequence [ti, t
1
i , . . . , t

k
i , t

′
i] such that

k∑
j=0

l(tji , t
j+1
i ) +

k∑
j=0

l(tj+1
i , tji ) ≤ ϵ. (4)

This suffices for proving V (ti, t
′
i) + V (t′i, ti) ≤ ϵ since V (ti, t

′
i) and V (t′i, ti) are the lower bound

for
∑k

j=0 l(t
j
i , t

j+1
i ) and

∑k
j=0 l(t

j+1
i , tji ) respectively.

Initially, we rewrite the LHS of Equation (4) by using the definition of the function l(·, ·).
k∑

j=0

l(tji , t
j+1
i ) +

k∑
j=0

l(tj+1
i , tji )

=

k∑
j=1

(
wj+1

i vi(ψ(t
j+1
i ), rmj+1

i )− wj+1
i vi(ψ(t

j
i ), rm

j+1
i )

)
+

k∑
j=0

(
wj

i vi(ψ(t
j
i ), rm

j
i )− wj

i vi(ψ(t
j+1
i ), rmj

i )
)

=

k∑
j=0

wj+1
i (LLMθj+1 − LLMθj ) · rmj+1

i +

k∑
j=0

wj
i (LLMθj − LLMθj+1) · rmj

i

=

k∑
j=0

(LLMθj+1 − LLMθj ) · (wj+1
i rmj+1

i − wj
i rmj

i )

=

k∑
j=0

∑
x∈T∗

(LLMθj+1(x)− LLMθj (x))(wj+1
i rmj+1

i (x)− wj
i rmj

i (x)).
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In the above equations, θj = ψ(tji ) for 0 ≤ j ≤ k refers to the fine-tuned model when group i reports
tji .

By the condition, when −→rm−i, w⃗−i and θinit are fixed, there exits δ > 0 such that if
maxx∈T∗ |wirmi(x) − w′

irm
′
i(x)| ≤ δ, then maxx∈T∗ |LLMθ(x) − LLMθ′(x)| ≤ ϵ

4w̄ (in max-
imum normalization case, we take ϵ

4w̄|T∗| ), where θ := ψ((rmi,
−→rm−i), (wi, w⃗−i); θinit) and

θ′ := ψ((rm′
i,
−→rm−i), (w

′
i, w⃗−i); θinit).

We construct the sequence P as follows: we set k = 2n, n ≥ w̄
δ + 1 and let t0i = ti, t

k+1
i = t′i. For

each 0 ≤ j ≤ n,

wj
i = wi, rmj

i = rm + j(
rm∗

i − rm
n

).

And for each n+ 1 ≤ j ≤ 2n+ 1,

wj
i = w′

i, rmj
i = rm∗

i + (j − n− 1)(
rm′ − rm∗

i

n
).

Note that the rm∗
i is the one given by the condition in Theorem 4.9. In this construction, any rmj

i is
either an weighted average of rm and rm∗

i or rm′ and rm∗
i . This ensures that all reward models in the

sequence are valid (normalized by summation or maximum and non-negative). We can then divide
the above equation into three parts, making the wi the same in the first and the last parts.

k∑
j=0

∑
x∈T∗

(LLMθj+1(x)− LLMθj (x))(wj+1
i rmj+1

i (x)− wj
i rmj

i (x))

=

n−1∑
j=0

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))(rmj+1
i (x)− rmj

i (x)) (a)

+
∑
x∈T∗

(LLMθn+1(x)− LLMθn(x))(w′
irm

n+1
i (x)− wirmn

i (x)) (b)

+

2n∑
j=n+1

∑
x∈T∗

w′
i(LLMθj+1(x)− LLMθj (x))(rmj+1

i (x)− rmj
i (x)) (c)

We first claim that (b) equals 0. This is because of the property of rmn
i = rmn+1

i = rm∗
i , which can

induces LLMθn = LLMθn+1 .

Then we turn to (a). By the construction, for any x ∈ T ∗ and 0 ≤ j ≤ n − 1, |wj
i rmj

i (x) −
wj

i rmj+1
i (x)| ≤ w̄

n ≤ δ, so that |LLMθj (x) − LLMθj+1(x)| ≤ ϵ
4w̄ holds for all x. Then we can

derive that:
n−1∑
j=0

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))(rmj+1
i (x)− rmj

i (x))

=

n−1∑
j=0

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))
rm∗

i (x)− rmi(x)

n

≤
n−1∑
j=0

∑
x∈T∗

wi
ϵ

4w̄

|rm∗
i (x)− rmi(x)|

n

≤
∑
x∈T∗

ϵ

4
|rm∗

i (x)− rmi(x)|

≤
∑
x∈T∗

ϵ

4
(rm∗

i (x) + rmi(x)) ≤
ϵ

2
.

The case is similar to (c). By the construction, for any x ∈ T ∗ and n+ 1 ≤ j ≤ 2n, |wj
i rmj

i (x)−
wj

i rmj+1
i (x)| ≤ w̄

n ≤ δ, so that |LLMθj (x) − LLMθj+1(x)| ≤ ϵ
4w̄ holds for all x. Then we can

28



derive that:
2n∑

j=n+1

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))(rmj+1
i (x)− rmj

i (x))

=

2n∑
j=n+1

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))
rm′

i(x)− rm∗
i (x)

n

≤
2n∑

j=n+1

∑
x∈T∗

wi
ϵ

4w̄

|rm′
i(x)− rm∗

i (x)|
n

≤
∑
x∈T∗

ϵ

4
|rm′

i(x)− rm∗
i (x)|

≤
∑
x∈T∗

ϵ

4
(rm′

i(x) + rm∗
i (x)) ≤

ϵ

2
.

Combining the results from (a), (b), and (c), we have that under this construction,

k∑
j=0

l(tji , t
j+1
i ) +

k∑
j=0

l(tj+1
i , tji ) ≤

ϵ

2
+
ϵ

2
= ϵ.

By the arbitrariness of ϵ > 0, this is suffice to demonstrate that V (ti, t
′
i) + V (ti, t

′
i) ≤ 0.

Therefore, it is proven that
V (ti, t

′
i) + V (ti, t

′
i) = 0.

which means that V (ti, t
′
i) = −V (t′i, ti). By Lemma C.2, this is a sufficient condition for the

payment equivalence of ψ.

Corollary 4.10. Each continuous training rule ψ ∈ ΨSW satisfies payment equivalence.

Proof. We construct the reward model as follows and show that this satisfies the condition in
Corollary 4.10 for when the mechanism uses SW-Max training rules.

rm∗(x) =


1

|T ∗|
Summation Normalization Case,

1 Maximum Normalization Case.
(5)

We prove this by contradiction. Assuming that there exist i, −→rm−i, w⃗−i, θinit, wi, w′
i such that

θ := ψ((rm∗
i ,
−→rm−i), (wi, w⃗−i), θinit) ̸= ψ((rm∗

i ,
−→rm−i), (w

′
i, w⃗−i), θinit) =: θ′

We denote the further tie-breaking rule as ≻−→rm. Then, considering the optimality of θ, we have one of
the following satisfied.

ASW(θ; (rm∗
i ,
−→rm−i), (wi, w⃗−i), θinit) > ASW(θ′; (rm∗

i ,
−→rm−i), (wi, w⃗−i), θinit),

or

ASW(θ; (rm∗
i ,
−→rm−i), (wi, w⃗−i), θinit) = ASW(θ′; (rm∗

i ,
−→rm−i), (wi, w⃗−i), θinit), and LLMθ ≻−→rm LLMθ′ .

Note that vi(θ; rm∗
i ) = vi(θ

′; rm∗
i ), and ASW(θ; (rm∗

i ,
−→rm−i), (wi, w⃗−i), θinit) = (w′

i−wi)vi(θ; rm∗
i )

+ ASW(θ; (rm∗
i ,
−→rm−i), (w

′
i, w⃗−i), θinit), we have

ASW(θ; (rm∗
i ,
−→rm−i), (w

′
i, w⃗−i), θinit) > ASW(θ′; (rm∗

i ,
−→rm−i), (w

′
i, w⃗−i), θinit)

or

ASW(θ; (rm∗
i ,
−→rm−i), (w

′
i, w⃗−i), θinit) = ASW(θ′; (rm∗

i ,
−→rm−i), (w

′
i, w⃗−i), θinit), and LLMθ ≻−→rm LLMθ′ .

Both cases contradicted the optimality of θ′.
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Theorem 4.11. Given a continuous training rule ψ ∈ ΨSW and a payment rule p implements it in
DSIC: If p is always non-negative, it holds that for all i, −→rm, w⃗, and θinit,

pi(
−→rm, w⃗, θinit) ≥ pAFF

i (−→rm, w⃗, θinit).

If p implements ψ in IR, then for any ϵ > 0 and i, there exists −→rm−i, w⃗−i, and θinit, such that for all
rmi and wi,

pi(
−→rm, w⃗, θinit) ≤ pAFF

i (−→rm, w⃗, θinit) + ϵ.

Proof. For a continuous SW-Max training rule ψ, we know that it satisfies payment equivalence. By
the definition of payment equivalence, for any other payment rule p that also implements ψ in DSIC,
there exists a function gi such that

pi(
−→rm, w⃗, θinit) = pAFF

i (−→rm, w⃗, θinit) + gi(
−→rm−i, w⃗−i, θinit).

Non-negative Payment. To ensure that pi(
−→rm, w⃗, θinit) ≥ 0 always satisfied, we have the equivalent

condition:
gi(

−→rm−i, w⃗−i, θinit) ≥ − inf
rmi,wi

pAFF
i (−→rm, w⃗, θinit).

However, for any −→rm−i, w⃗−i, θinit, when we set rmi to the uniform reward model Equation (5), we
have shown in the previous proof that this will not change the training outcome regardless of the
value of wi and hence does not impact the ASW−i. This means that the payment defined by the
affine maximizer is exactly 0, and the RHS of the above equation will always be non-negative.
Therefore, there must be gi ≥ 0 for all inputs, which means that for all i, −→rm, w⃗, and θinit, we have
pi(

−→rm, w⃗, θinit) ≥ pAFF
i (−→rm, w⃗, θinit).

Individually Rationality. To ensure the utility of any group is not negative, we have to constrain the
function gi as follows:

gi(
−→rm−i, w⃗−i, θinit) ≤ inf

rmi,wi

uAFF
i (−→rm, w⃗, θinit),

where we denote uAFF
i the utility of group i under the mechanism. We construct an extreme case such

that the RHS can be sufficiently small. Without loss of generality, we assume that T ∗ = {x1,x2}.
The initial model LLMθinit(x1) = ϵ, LLMθinit(x2) = 1− ϵ. Group i has preference rmi(x1) = 1 and
rmi(x2) = 0, and other groups have opposite preference: rmj(x1) = 0 and rmj(x2) = 1 for j ̸= i.
The group size is set to wk = 1 for all k ∈ [n].

In this case, as we have
∑n

k=1 wkrmk(x1) <
∑n

k=1 wkrmk(x2), we can directly derived from the
optimal condition Equation (OPT) that the final model satisfies that LLMθ(x1) ≤ LLMθinit(x1).
Since pAFF is always non-negative, the utility of group i is at most rmi(x1) · LLMθinit(x1) = ϵ.
To ensure that p implements ψ in IR, we have to set gi(

−→rm−i, w⃗−i, θinit) ≤ ϵ for this case. This is
equivalent to pi(

−→rm, w⃗, θinit) ≤ pAFF
i (−→rm, w⃗, θinit).

D Omitted Proofs in Section 4.3

Lemma D.1. For any rm, rm′, if maxx∈T∗ |rm(x)− rm′(x)| = ϵ, then for any model θ, we have

|v(θ; rm)− v(θ; rm′)| ≤ ϵ

Proof. We can derive that

|v(θ; rm)− v(θ; rm′)| = |
∑
x∈T∗

LLMθ(x)(rm(x)− rm′(x))| ≤
∑
x∈T∗

LLMθ(x)|rm(x)− rm′(x)|

≤
∑
x∈T∗

LLMθ(x)ϵ = ϵ.

Lemma D.2. Assume that for any noisy input
−→
r̂m generated from F (·|−→rm), and i ∈ [n], there is

max
x∈T∗

|r̂mi(x)− rmi(x)| ≤ ϵ.
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Then for any ψ ∈ ΨSW and
−→
r̂m generated from F (·|−→rm), the distance between the training outcome

and the optimal is bounded by:

ASW(ψ(
−→
r̂m, w⃗, θinit);

−→rm, w⃗, θinit) ≥

ASW(ψ(−→rm, w⃗, θinit);
−→rm, w⃗, θinit)− 2ϵ

n∑
i=1

wi.

Proof. Let θ̂ = ψ(
−→
r̂m, w⃗, θinit) and θ = ψ(−→rm, w⃗, θinit). θ̂ is the optimal parameter for biased input,

and θ is the optimal parameter for the true input.

ASW(θ̂;−→rm, w⃗, θinit) =

n∑
i=1

wivi(θ̂; rmi)−Df (LLMθ̂||LLMθinit)

(1)

≥
n∑

i=1

wi

(
vi(θ̂; r̂mi)− ϵ

)
−Df (LLMθ̂||LLMθinit)

= ASW(θ̂;
−→
r̂m, w⃗, θinit)−

n∑
i=1

wiϵ

(2)

≥ ASW(θ;
−→
r̂m, w⃗, θinit)−

n∑
i=1

wiϵ

=

n∑
i=1

wivi(θ; r̂mi)−Df (LLMθ||LLMθinit)−
n∑

i=1

wiϵ

(3)

≥
n∑

i=1

wi (vi(θ; rmi)− ϵ)−Df (LLMθ||LLMθinit)−
n∑

i=1

wiϵ

= ASW(θ;−→rm, w⃗, θinit)− 2

n∑
i=1

wiϵ.

(1) and (3) can be directly induced by Lemma D.1, and (2) holds by the definition of θ̂.

θ̂ = ψ(
−→
r̂m, w⃗, θinit) = argmax

θ∈Θ
ASW(θ;

−→
r̂m, w⃗, θinit).

Theorem 4.12. Assume that for any noisy input
−→
r̂m generated from F (·|−→rm), and i ∈ [n], there is

max
x∈T∗

|r̂mi(x)− rmi(x)| ≤ ϵ.

Then, with a training rule ψ ∈ ΨSW , (ψ, pAFF ) ensures that each group i can benefit at most 2wiϵ
from misreporting the reward model.

Proof. Recall that the calculation of payment in pAFF is

pAFF
i (−→rm, w⃗, θinit) = ASW−i(ψ(

−→rm−i, w⃗−i, θinit);
−→rm, w⃗, θinit)−ASW−i(ψ(

−→rm, w⃗, θinit);
−→rm, w⃗, θinit).

Let w⃗ = (wi, w⃗−i), the utility function can be written as:

ui((rm′
i,
−→rm−i), w⃗;ψ, p, rmi, wi) = wivi(θ; rmi)− pAFF

i ((rm′
i,
−→rm−i), w⃗, θinit)

= wivi(θ; rmi)−ASW−i(θ−i;
−→rm, w⃗, θinit) + ASW−i(θ;

−→rm, w⃗, θinit)

= ASW(θ;−→rm, w⃗, θinit)−ASW−i(θ−i;
−→rm, w⃗, θinit),

where we define θ = ψ((rm′
i,
−→rm−i), w⃗, θinit), and θ−i = ψ(−→rm−i, w⃗−i, θinit). Note that the term

ASW−i(θ−i;
−→rm, w⃗, θinit) is not influenced by the change of rmi or wi.

31



Therefore, we can derive that for any −→rm−i, w⃗, let θ−i = ψ(−→rm−i, w⃗−i, θinit):

Er̂mi∼Fi(·|rmi)

[
ui((r̂mi,

−→rm−i), w⃗;ψ, p, rmi, wi) + ASW−i(θ−i;
−→rm, w⃗, θinit)

]
=Er̂mi∼Fi(·|rmi)

[
ASW(θ̂;−→rm, w⃗, θinit)

]
=Er̂mi∼Fi(·|rmi)

wivi(θ̂; rmi) +
∑
j ̸=i

wjvj(θ̂; rmj)−Df (LLMθ̂||LLMθinit)


(1)

≥Er̂mi∼Fi(·|rmi)

wivi(θ̂; r̂mi) +
∑
j ̸=i

wjvj(θ̂; rmj)−Df (LLMθ̂||LLMθinit)

− wiϵ

(2)

≥Er̂mi∼Fi(·|rmi)

wivi(θ; r̂mi) +
∑
j ̸=i

wjvj(θ; rmj)−Df (LLMθ||LLMθinit)

− wiϵ

(3)

≥Er̂mi∼Fi(·|rmi)

wivi(θ; rmi) +
∑
j ̸=i

wjvj(θ; rmj)−Df (LLMθ||LLMθinit)

− 2wiϵ

(4)
=Er̂mi∼Fi(·|rm′

i)

wivi(θ; rmi) +
∑
j ̸=i

wjvj(θ; rmj)−Df (LLMθ||LLMθinit)

− 2wiϵ

(5)

≥Er̂mi∼Fi(·|rm′
i)

wivi(θ̂; rmi) +
∑
j ̸=i

wjvj(θ̂; rmj)−Df (LLMθ̂||LLMθinit)

− 2wiϵ

=Er̂mi∼Fi(·|rm′
i)

[
ASW(θ̂;−→rm, w⃗, θinit)

]
− 2wiϵ

=Er̂mi∼Fi(·|rm′
i)

[
ui((r̂mi,

−→rm−i), w⃗;ψ, p, rmi, wi) + ASW−i(θ−i;
−→rm, w⃗, θinit)

]
− 2wiϵ

All the θ̂ in the above inequalities refers to the optimal parameter for input (r̂mi,
−→rm−i), w⃗, θinit,

i.e. θ̂ = ψ((r̂mi,
−→rm−i), w⃗, θinit). Specifically, (1) and (3) come from the bounded distance be-

tween rmi and r̂mi (Lemma D.1). (2) and (5) hold by the definitions: θ̂ = ψ((r̂mi,
−→rm−i), w⃗, θinit)

= argmaxθ′∈Θ ASW(θ′; (r̂mi,
−→rm−i), w⃗, θinit) and θ = ψ((rmi,

−→rm−i), w⃗, θinit) = argmaxθ′∈Θ

ASW(θ′; (rmi,
−→rm−i), w⃗, θinit). And (4) holds since the inner term is irrelevant to r̂mi.

Therefore, we get

Ui((rmi,
−→rm−i), w⃗;ψ, p, rmi, wi)

=E−̂→rm∼F(·|(rmi,
−→rm−i))

[
ui(

−̂→rm, w⃗;ψ, p, rmi, wi)
]

=Er̂mi∼Fi(·|rmi)E−̂→rm−i∼F−i(·|−→rm−i)

[
ui((r̂mi,

−̂→rm−i), w⃗;ψ, p, rmi, wi)
]

≥Er̂mi∼Fi(·|rm′
i)
E−̂→rm−i∼F−i(·|−→rm−i)

[
ui((r̂mi,

−̂→rm−i), w⃗;ψ, p, rmi, wi)− 2wiϵ
]

=E−̂→rm∼F(·|(rm′
i,
−→rm−i))

[
ui(

−̂→rm, w⃗;ψ, p, rmi, wi)− 2wiϵ
]

=Ui((rm′
i,
−→rm−i), w⃗;ψ, p, rmi, wi)− 2wiϵ..

E Further Discussion on General Training Rules

In practice, some other training principles do not belong to SW-Max training rules, including those
that maximize the Nash Social Welfare and focus more on fairness issues, like MaxMin-RLHF [11].
As an initial study on the incentive property of the RLHF Game, we primarily consider the mainstream
training rules, SW-Max training rules, that aim to maximize social welfare under certain regularization.
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Therefore, analyzing the properties of general forms of training rules is out of the scope of this paper.
However, we also make a preliminary step for analyzing the two questions proposed in Section 4.2.
The second question is partly included in Theorem 4.9, and for the implementability of a training
rule, we utilize the notion of cycle monotonicity proposed by Rochet [65], which is a generalized
version of monotonicity defined in a single-parameter scenario [53]. In the RLHF Game, we use the
notation ti to represent the combination of (rmi, wi) with the same superscript and subscript. We
define the function l(t′i, ti; t⃗−i, θinit) := wivi(ψ((ti, t⃗−i), θinit); rmi) − wivi(ψ((t

′
i, t⃗−i, θinit)); rmi)

to measure group i’s valuation gains from misreporting (t′i) to truthfully reporting (ti) under t⃗−i and
θinit. The cycle monotonicity is defined based on this function:

Definition E.1 (Cycle Monotonicity). The training rule ψ satisfies cycle monotonicity if for any
group i, ti, t′i ∈ R×W , any finite, distinct sequence of reward models [ti, t1i , t

2
i , . . . , t

k
i , t

′
i] (k ≥ 0),

and any t⃗−i, θinit, defining t0i = tk+2
i := ti and tk+1

i := t′i, we have

k+1∑
j=0

l(tji , t
j+1
i ; t⃗−i, θinit) ≥ 0.

For general training rules, cycle monotonicity is a sufficient and necessary condition for imple-
mentability.

Proposition E.2 (Rochet [65]). A training rule ψ is implementable if and only if it satisfies cycle
monotonicity.

Proof. We fix the other groups’ report −→rm−i, w⃗−i, θinit, and also omit their notations for simplicity.

We first prove the necessity: if ψ is implementable, it satisfies cycle monotonicity. Since ψ is
implementable, there exists p such that (ψ, p) satisfies DSIC. We use notation tji to represent the
combination of (rmj

i , w
j
i ). For any types ti, t′i ∈ R×W , any finite and distinct sequence of types

[ti, t
1
i , t

2
i , . . . , t

k
i , t

′
i], k ≥ 0, we let t0i = tk+2

i := ti and tk+1
i := t′i. By the property of DSIC, we

have

wj+1
i vi(ψ(t

j+1
i ); rmj+1

i )− pi(t
j+1
i ) ≥ wj+1

i vi(ψ(t
j
i ); rmj+1

i )− pi(t
j
i ) ∀0 ≤ j ≤ k + 1.

By definition of the function l, this is equivalent to

l(tji , t
j+1
i ) ≥ pi(t

j+1
i )− pi(t

j
i ) ∀0 ≤ j ≤ k + 1.

Sum over all j, we get

k+1∑
j=0

l(tji , t
j+1
i ) ≥

k+1∑
j=0

(
pi(t

j+1
i )− pi(t

j
i )
)
= 0.

By the arbitrariness of the sequence [ti, t1i , t
2
i , . . . , t

k
i , t

′
i], this means that ψ satisfies cycle monotonic-

ity.

Then, we prove the sufficiency: By cycle monotonicity, we have that for any finite and distinct
sequence [ti, t

1
i , t

2
i , . . . , t

k
i , t

′
i],

k∑
j=0

l(tji , t
j+1
i ) + l(t′i, ti) =

k+1∑
j=0

l(tji , t
j+1
i ) ≥ 0.

By the arbitrariness of the sequence, we can infer that

V (ti, t
′
i) + l(t′i, ti) ≥ 0.

Since l(t′i, ti) is bounded, V (ti, t
′
i) is also finite and V (ti, t

′
i) ≥ −l(t′i, ti). Then, we can establish a

payment rule p such that for any agent i,

pi(ti) = V (t∗, ti).

where t∗ ∈ R×W is a certain type.
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Then, for any ti = (rmi, wi), we have

wivi(ψ(ti); rmi)− pi(ti)

=wivi(ψ(ti); rmi)− V (t∗, ti)

=wivi(ψ(t
′
i); rmi) + l(t′i, ti)− V (t∗, ti)

(2)

≥wivi(ψ(t
′
i), rmi)− V (t∗, t′i)

=wivi(ψ(t
′
i); rmi)− pi(t

′
i).

Note that (2) comes from the definition of V that:

V (t∗, ti) = inf
A finite and distinct sequence
[t0i :=t∗,t1i ,...,t

k
i ,t

k+1
i :=ti]

k∑
j=0

l(tji , t
j+1
i )

≤ inf
A finite and distinct sequence
[t0i :=t∗,t1i ,...,t

k
i ,t

k+1
i :=t′i]

k∑
j=0

l(tji , t
j+1
i ) + l(t′i, ti)

= V (t∗, t′i) + l(t′i, ti).

This means that mechanism (ψ, p) satisfies DSIC, and suffices to show that ψ is implementable.

Validating whether a training rule satisfies cycle monotonicity is a complex task. Thus, finding a
more concise condition that can induce the implementability for a general training rule or a subset of
training rules is a valuable further direction.

F Additional Experimental Results

Synthetic RLHF Game. We construct a synthetic RLHF Game: We set the group number to be 5
and assume the size of the outcome space to be 10. Each group’s preference is first sampled from a
uniform distribution U [0, 1]

10 and then normalized. The group sizes are uniformly sampled from
{1, 2, . . . , 10}10.

We consider the misreporting strategy that is used to prove Theorem 4.2. Specifically, given a group’s
preference rm. We first find the most preferred and the least preferred outcome x1 = argmaxx rm(x),
x2 = argminx rm(x). Then we set the reported reward model to be r̃m(x1) = rm(x1) + ϵ,
r̃m(x2) = rm(x2)− ϵ, and r̃m(x) = rm(x) for other xs.

Table 1: Average changes in valuation and utility when adopting the misreporting strategy from
Theorem 4.2, holding other groups’ reports fixed. The parameter ϵ controls the extent of deviation
from truthful reporting. As shown in the table, such a misreporting strategy brings valuation gain but
decreases the utility.

Reporting Parameter ϵ Type 0.001 0.002 0.005 0.01 0.02 0.05 0.1

∆Valuation (*1e2) Mean 0.1073 0.2096 0.4881 0.8667 1.3674 1.7978 1.8154
Std < 0.0001 < 0.0001 0.0003 0.0004 0.0013 0.0026 0.0032

∆Utility (*1e4) Mean -0.1064 -0.4135 -2.3696 -8.1557 -23.7334 -53.1552 -55.8977
Std < 0.0001 0.0001 0.0011 0.0046 0.0196 0.0573 0.1415

We let group 1 use this strategy and maintain the other group truthfully reporting. The payment is set
according to the mechanism introduced in Section 4.2. We take 100, 000 samples and the average
change in valuation and utility for group 1 is reported in Table 1. The result shows that such a strategy
can indeed improve the valuation and is, hence, beneficial when there is no payment. However, with
the introduced payment, no strategy will bring higher utility than truthfully reporting.

More Complex Preferences. The experiment setup of this part follows the Section 5. We consider
two scenarios with more complex, multiple preferences.
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1. We simulated scenarios from data reported in [70] (Table 6), involving three groups, each
valuing helpfulness, harmlessness, and humor, respectively. Normalization and other settings
follow our paper. The true group sizes and the numerical results are shown in the tables
below.

2. We examined a scenario where the group’s preference is a linear combination of two reward
models. Specifically, group 1 values 0.2 × Helpfulness + 0.8 × Harmlessness, group 2
values 0.8 × Helpfulness + 0.2 × Harmlessness, and group 3 values Humor.

All of the above results show that truthfully reporting is among the optimal strategies under the
mechanism.

Table 2: Valuation, utility, and social welfare outcomes when varying reporting parameters for Group
1, with other groups’ reports held fixed (α = 1 means truthful reporting). Group sizes are set as
(w1, w2, w3) = (3, 2, 1). The three groups value Helpfulness, Harmlessness, and Humor, respectively.
The highest value in each row is highlighted in bold.

Reporting Parameter α 0.2 0.5 1 1.5 2 3

Valuation 0.00 0.79 2.66 3.00 3.00 3.00
Utility (= Valuation-Payment) 0.00 0.44 0.57 0.50 0.50 0.50

Social Welfare 2.51 2.94 3.08 3.00 3.00 3.00

Table 3: Valuation, utility, and social welfare outcomes when varying reporting parameters for Group
1, with other groups’ reports held fixed (α = 1 means truthful reporting). Group sizes are set as
(w1, w2, w3) = (4, 5, 3). The three groups value Helpfulness, Harmlessness, and Humor, respectively.
The highest value in each row is highlighted in bold.

Reporting Parameter α 0.2 0.5 1 1.5 2 3

Valuation 0.00 0.00 1.05 1.05 3.54 4.00
Utility (= Valuation-Payment) 0.00 0.00 0.43 0.43 -1.83 -2.51

Social Welfare 6.51 6.51 6.94 6.94 4.68 4.00

Table 4: Valuation, utility, and social welfare outcomes when varying reporting parameters for Group
1, with other groups’ reports held fixed (β = 1 means truthful reporting). Group sizes are set as
(w1, w2, w3) = (5, 5, 2). The three groups value Helpfulness, Harmlessness, and Humor, respectively.
The highest value in each row is highlighted in bold.

Reporting Parameter β 0.5 0.8 1 1.5 2 3

Valuation 0.00 0.33 1.31 4.67 5.00 5.00
Utility (= Valuation-Payment) 0.00 0.09 0.20 -0.72 -1.01 -1.01

Social Welfare 6.01 6.10 6.20 5.29 5.00 5.00
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Table 5: Valuation, utility, and social welfare outcomes when varying reporting parameters for Group
1, with other groups’ reports held fixed (β = 1 means truthful reporting). Group sizes are set as
(w1, w2, w3) = (3, 1, 4). The three groups value Helpfulness, Harmlessness, and Humor, respectively.
The highest value in each row is highlighted in bold.

Reporting Parameter β 0.5 0.8 1 1.5 2 3

Valuation 0.79 0.79 0.79 0.79 2.66 3.00
Utility (= Valuation-Payment) 0.79 0.79 0.79 0.79 -1.04 -1.58

Social Welfare 5.37 5.37 5.37 5.37 3.54 3.00

Table 6: Valuation, utility, and social welfare outcomes when varying reporting parameters for
Group 1, with other groups’ reports held fixed (α = 1 means truthful reporting). Group sizes are
set as (w1, w2, w3) = (2, 3, 1). The three groups value 0.8 × Helpfulness + 0.2 × Harmlessness,
0.2× Helpfulness + 0.8× Harmlessness, and Humor, respectively. The highest value in each row is
highlighted in bold.

Reporting Parameter α 0.2 0.5 1 1.5 2 3

Valuation 0.53 0.53 1.03 1.51 1.60 1.60
Utility (= Valuation-Payment) 0.52 0.52 0.61 0.39 0.31 0.31

Social Welfare 2.92 2.92 3.01 2.79 2.71 2.71
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We are sure that the main claims made in the abstract and introduction
accurately reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The discussion is put in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions and rigorous proofs are provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The full information combined with the code is provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use open-source datasets, and some data is simulated from certain distribu-
tions, which are described in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For the deterministic numerical simulation, there are no error bars. For others,
we have provided clarification on the error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All information is provided in the README file of the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have checked.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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