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ABSTRACT

Bayesian optimization is a class of global optimization techniques. In Bayesian
optimization, the underlying objective function is modeled as a realization of a
Gaussian process. Although the Gaussian process assumption implies a random
distribution of the Bayesian optimization outputs, quantification of this uncer-
tainty is rarely studied in the literature. In this work, we propose a novel approach
to assess the output uncertainty of Bayesian optimization algorithms, which pro-
ceeds by constructing confidence regions of the maximum point (or value) of the
objective function. These regions can be computed efficiently, and their confi-
dence levels are guaranteed by the uniform error bounds for sequential Gaussian
process regression newly developed in the present work. Our theory provides a
unified uncertainty quantification framework for all existing sequential sampling
policies and stopping criteria.

1 INTRODUCTION

The empirical and data-driven nature of data science field makes uncertainty quantification one of
the central questions that need to be addressed in order to guide and safeguard decision makings.
In this work, we focus on Bayesian optimization, which is effective in solving global optimization
problems for complex blackbox functions. Our objective is to quantify the uncertainty of Bayesian
optimization outputs. Such uncertainty comes from the Gaussian process prior, random input and
stopping time. Closed-form solution of the output uncertainty is usually intractable because of the
complicated sampling scheme and stopping criterion.

1.1 PROBLEM OF INTEREST AND OUR RESULTS

Let f be an underlying deterministic continuous function over Ω, a compact subset of Rp. The goal
of global optimization is to find the maximum of f , denoted by maxx∈Ω f(x), or the point xmax
which satisfies f(xmax) = maxx∈Ω f(x). In many scenarios, objective functions can be expensive
to evaluate. For example, f defined by a complex computer model may take a long time to run.
Bayesian optimization is a powerful technique to deal with this type of problems, and has been
widely used in areas including designing engineering systems (Forrester et al., 2008; Jones et al.,
1998; Mockus et al., 1978), materials and drug design (Frazier & Wang, 2016; Negoescu et al.,
2011; Solomou et al., 2018), chemistry (Häse et al., 2018), deep neural networks (Diaz et al., 2017;
Klein et al., 2017), and reinforcement learning (Marco et al., 2017; Wilson et al., 2014).

In Bayesian optimization, f is treated as a realization of a stochastic process, denoted by Z. Usu-
ally, people assume that Z is a Gaussian process. Every Bayesian optimization algorithm defines
a sequential sampling procedure, which successively generates new input points, based on the ac-
quired function evaluations over all previous input points. Usually, the next input point is deter-
mined by maximizing an acquisition function. Examples of acquisition functions include probabil-
ity of improvement (Kushner, 1964), expected improvement (Huang et al., 2006; Jones et al., 1998;
Mockus et al., 1978; Picheny et al., 2013), Gaussian process upper confidence bound (Azimi et al.,
2010; Contal et al., 2013; Desautels et al., 2014; Srinivas et al., 2010), predictive entropy search
(Hernández-Lobato et al., 2014), entropy search portfolio (Shahriari et al., 2014), knowledge gra-
dient (Scott et al., 2011; Wu & Frazier, 2016; Wu et al., 2017), etc. We refer to Frazier (2018);
Shahriari et al. (2016) for an introduction to popular Bayesian optimization methods.
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Although Bayesian optimization has received considerable attention and numerous techniques have
emerged in recent years, how to quantify the uncertainty of the outputs from a Bayesian optimization
algorithm is rarely discussed in the literature. Since we assume that f is a random realization
of Z, xmax and f(xmax) should also be random. However, the highly nontrivial distributions of
xmax and f(xmax) make uncertainty quantification rather challenging. Monte Carlo approaches
can be employed to compute the posterior distributions of xmax and f(xmax), but they are usually
computationally expensive, especially when a large number of observations are available.

Our results. We develop efficient methods to construct confidence regions of xmax and f(xmax)
for Bayesian optimization algorithms, where function f is a realization of Gaussian process Z.
Our uncertainty quantification method does not rely on the specific formulae or strategies, and can
be applied to all existing methods in an abstract sense. We show that by using the collected data
of any instance algorithm of Bayesian optimization, Algorithm 2 gives a confidence upper limit
with theoretical guarantees of their confidence level in Corollary 3. To the best of our knowledge,
this is the first theoretical result of the uncertainty quantification on the maximum estimator for
Bayesian optimization. Compared with the traditional point-wise predictive standard deviation of
Gaussian process regression, denoted by σ(x), our bound is only inflated by a factor proportional to√

log(eσ/σ(x)), where σ is the prior standard deviation.

It is worth noting that uncertainty quantification typically differs from convergence analysis of al-
gorithms. In Bayesian optimization, the latter topic has been studied more often. See, for instance,
Bect et al. (2019); Calvin (2005; 1997); Ryzhov (2016); Vazquez & Bect (2010); Yarotsky (2013).
These analyses do not directly lead to techniques for uncertainty quantification. Recall that in this
work, we assume that the underlying function f is a realization of a Gaussian process, and there-
fore, the sample path properties of f , such as the smoothness, should be governed by the covariance
function of the Gaussian process. This Gaussian process assumption differs from those in some ex-
isting works, e.g., Bull (2011); Astudillo & Frazier (2019); Yarotsky (2013), where the underlying
function f is assumed to be a deterministic function satisfying pre-specified smoothness conditions.

2 PRELIMINARIES

In this section, we provide a brief introduction to Gaussian process regression and review some
existing methods in Bayesian optimization.

2.1 GAUSSIAN PROCESS REGRESSION

Recall that in Bayesian optimization, the objective function f is assumed to be a realization of a
Gaussian process Z. In this work, we suppose that Z is stationary and has mean zero, variance σ2

and correlation function Ψ, i.e., Cov(Z(x), Z(x′)) = σ2Ψ(x − x′) with Ψ(0) = 1. Under certain
regularity conditions, Bochner’s theorem (Wendland, 2004) suggests that the Fourier transform (with
a specific choice of the constant factor) of Ψ, denoted by Ψ̃, is a probability density function and
satisfies the inversion formula Ψ(x) =

∫
Rp cos(ωTx)Ψ̃(ω)dω. We call Ψ̃ the spectral density of Ψ.

Some popular choices of correlation functions and their spectral densities are discussed in Section
3.1. We further assume Ψ satisfies the following condition. For a vector ω = (ω1, . . . , ωp)

T , define
its l1-norm as ‖ω‖1 = |ω1|+ . . .+ |ωp|.

Condition 1 The correlation function Ψ has a spectral density, denoted by Ψ̃, and

A0 =

∫
Rp
‖ω‖1Ψ̃(ω)dω < +∞. (1)

Remark 1 The l1-norm in Equation 1 can be replaced by the usual Euclidean norm. However, we
use the former here because they usually have explicit expressions. See Section 3.1 for details.

Remark 2 Condition 1 imposes a smoothness condition on the correlation function Ψ, which is
equivalent to the mean squared differentiability (Stein, 1999) of the Gaussian process Z. Note that
the mean squared differentiability differs from the sample path differentiability. We refer to Driscoll
(1973); Steinwart (2019) for results on the relationship between the sample path smoothness of Z
(thus f ) and the smoothness of correlation function Ψ.
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Suppose the set of points X = (x1, . . . , xn) is given. Then f can be reconstructed via Gaussian
process regression. Let Y = (Z(x1), . . . , Z(xn))T be the vector of evaluations of the Gaussian
process at the design points. The following results are well-known and can be found in Rasmussen
& Williams (2006). For any untried point x, conditional on Y , Z(x) follows a normal distribution.
The conditional mean and variance of Z(x) are

µ(x) := E[Z(x)|Y ] = rT (x)K−1Y, (2)

σ2(x) := Var[Z(x)|Y ] = σ2(1− rT (x)K−1r(x)), (3)

where r(x) = (Ψ(x − x1), . . . ,Ψ(x − xn))T ,K = (Ψ(xj − xk))jk. Since we assume that f is a
realization of Z, µ(x) can serve as a reconstruction of f .

2.2 BAYESIAN OPTIMIZATION

In Bayesian optimization, we evaluate f over a set of input points, denoted by x1, . . . , xn. We call
them the design points, because these points can be chosen according to our will. There are two
categories of strategies to choose design points. We can choose all the design points before we
evaluate f at any of them. Such a design set is call a fixed design. An alternative strategy is called
sequential sampling, in which the design points are not fully determined at the beginning. Instead,
points are added sequentially, guided by the information from the previous input points and the cor-
responding acquired function values. An instance algorithm defines a sequential sampling scheme
which determines the next input point xn+1 by maximizing an acquisition function a(x;Xn, Yn),
where Xn = (x1, . . . , xn) consists of previous input points, and Yn = (f(x1), . . . , f(xn))T con-
sists of corresponding outputs. The acquisition function can be either deterministic or random given
Xn, Yn. A general Bayesian optimization procedure under sequential sampling scheme is shown in
Algorithm 1.

Algorithm 1 Bayesian optimization (described in Shahriari et al. (2016))
1: Input: A Gaussian process prior of f , initial observation data X1, Y1.
2: for n = 1, 2 . . . , do
3: Find xn+1 = arg maxx∈Ω a(x;Xn, Yn), evaluate f(xn+1), update data and the posterior prob-

ability distribution on f .
4: Output: The point evaluated with the largest f(x).

A number of acquisition functions are proposed in the literature, for example:

1. Expected improvement (EI) (Jones et al., 1998; Mockus et al., 1978), with the acquisi-
tion function aEI(x;Xn, Yn) := E((Z(x) − y∗n)1(Z(x) − y∗n)|Xn, Yn), where 1(·) is the
indicator function, and y∗n = max1≤i≤n f(xi).

2. Gaussian process upper confidence bound (Srinivas et al., 2010), with the acquisition func-
tion aUCB(x;Xn, Yn) := µn(x)+βnσn(x), where βn is a parameter, and µn(x) and σn(x)
are posterior mean and variance of f after nth iteration, respectively.

3. Predictive entropy search (Hernández-Lobato et al., 2014), with the acquisition function
aPES(x;Xn, Yn) := f (n)(x), where f (n) is an approximate simulation via spectral sam-
pling (Lázaro-Gredilla et al., 2010; Rahimi & Recht, 2008) from GP(0,Ψ|Xn, Yn).

Among the above acquisition functions, aEI and aUCB are deterministic functions of (x,Xn, Yn),
whereas aPES is random because it depends on a random sample from the posterior Gaussian pro-
cess. We refer to Shahriari et al. (2016) for general discussions and popular methods in Bayesian
optimization.

In practice, one also needs to determine when to stop Algorithm 1. Usually, decisions are made
in consideration of the budget and the accuracy requirement. For instance, practitioners can stop
Algorithm 1 after finishing a fixed number of iterations (Frazier, 2018) or no further significant
improvement of function values can be made (Acerbi & Ji, 2017). Although stopping criteria plays
no role in the analysis of the algorithms’ asymptotic behaviors, they can greatly affect the output
uncertainty.
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3 UNCERTAINTY QUANTIFICATION FOR BAYESIAN OPTIMIZATION

In this section, we present our uncertainty quantification methodology for Bayesian optimization in
Section 3.1. In Section 3.2, we provide theoretical guarantees for the proposed uncertainty quantifi-
cation method.

3.1 METHODOLOGY

Although the conditional distribution of Z(x) is simple as shown in Equation 2 and Equation 3,
those for xmax and Z(xmax) are highly non-trivial because they are nonlinear functionals of Z. In
this work, we construct confidence regions for the maximum points and values using a uniform error
bound for Gaussian process regression, as presented in Algorithm 2. In the rest of this work, let T
be the number of iterations when an instance of Algorithm 1 stops and DΩ be the diameter of Ω.
Given n, we denote

X1:n = (x1, . . . , xmn), (4)

where each xi is corresponding to one data point and mn is the number of sampled points after n
iterations of the algorithm, and Y1:n = (f(x1), . . . , f(xmn))T . In this work, we allow mn ≥ 1,
which means that we can sample one point or a batch of points at a time in each iteration. We will
use the notion a ∨ b := max(a, b).

Algorithm 2 Confidence regions for xmax and f(xmax)

1: Input: Significance parameter t, data X1:T , Y1:T collected from an instance of Bayesian opti-
mization algorithm.

2: For any point x ∈ Ω, set r(x) = (Ψ(x − x1), . . . ,Ψ(x − xmT ))T ,K = (Ψ(xj − xk))jk.
Calculate

µT (x) = r(x)TK−1Y1:T , (5)

sT (x) =
√
σ2(1− r(x)TK−1r(x)). (6)

3: Compute

UPPERCL(x, t,X1:T , Y1:T ) = µT (x) + sT (x)
√

log(eσ/sT (x))
(
C
√
p(1 ∨ log(A0DΩ)) + t

)
,

where A0 is as in Condition 1, and C is a universal constant.
4: Calculate

CRseq
t :=

{
x ∈ Ω : UPPERCL(x, t,X1:T , Y1:T ) ≥ max

1≤i≤mT
f(xi)

}
, (7)

CIseqt :=

[
max

1≤i≤mT
f(xi),max

x∈Ω
UPPERCL(x, t,X1:T , Y1:T )

]
. (8)

5: Output: The confidence region CRseq
t for xmax and the confidence interval CIseqt for

f(xmax).

In Section3.2, we will show that under the condition that f is a realization of Z, CRseq
t and CIseqt

are confidence regions of xmax and f(xmax), respectively, with a simultaneous confidence level at
least 1− e−t2/2, respectively. In particular, to obtain a 95% confidence region, we use t = 2.448.

Calculating A0. For an arbitrary Ψ, calculation of A0 in Equation 1 can be challenging. For-
tunately, for two most popular correlation functions in one dimension, namely the Gaussian and
the Matérn correlation functions (Rasmussen & Williams, 2006; Santner et al., 2003), A0 can be
calculated in closed form. The results are summarized in Table 1.

For multi-dimensional problems, a common practice is to use product correlation functions. Specif-
ically, suppose Ψ1, . . . ,Ψp are one-dimensional correlation functions. Then their product Ψ(x) =∏p
i=1 Ψ(xi) forms a p-dimensional correlation function, where x = (x1, . . . , xp)

T . If a product
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Table 1: Gaussian and Matérn correlation families, where Γ(·) is the Gamma function and Kν(·) is
the modified Bessel function of the second kind.

Correlation family Gaussian Matérn

Correlation function exp{−(x/θ)2} 1
Γ(ν)2ν−1

(
2
√
ν|x|
θ

)ν
Kν

(
2
√
ν|x|
θ

)
Spectral density θ

2
√
π

exp{−ω2θ2/4} Γ(ν+1/2)
Γ(ν)
√
π

(
4ν
θ2

)ν (
ω2 + 4ν

θ2

)−(ν+1/2)

A0
2√
πθ

4
√
νΓ(ν+1/2)√

π(2ν−1)θΓ(ν)
for ν > 1/2

correlation function is used, the calculation of A0 is easy. It follows from the elementary proper-
ties of Fourier transform that Ψ̃(x) =

∏p
i=1 Ψ̃i(xi). Let Xi be a random variable with probability

density function Ψi. Then A0 =
∑p
i=1 E|Xi|, i.e., the value of A0 corresponding to a product cor-

relation function is the sum of those given by the marginal correlation functions. If each Ψi is either
a Gaussian or Matérn correlation function, then E|Xi|’s can be read from Table 1.

Calibrating C via simulation studies. To use Equation 7 and Equation 8, we need to specify the
constant C. In this work, we identify C by numerical simulations. The details are presented in
Appendix F. Here we outline the main conclusions of our simulation studies.

Our main conclusions are: 1) C = 1 is a robust choice for most of the cases; 2) for the cases
with Gaussian correlation functions or small A0DΩ, choosing C = 1 may lead to very conservative
confidence regions. We suggest practitioners first consider C = 1 to obtain robust confidence
regions. When users believe that this robust confidence region is too conservative, they can use the
value in Table 2 or 3 corresponding to their specific setting, or run similar numerical studies as in
Appendix F to calibrate their own C.

3.2 THEORY

To facilitate our mathematical analysis, we first state the general Bayesian optimization framework
in a rigorous manner. Recall that we assume that f is a realization of a Gaussian process Z with
correlation function Ψ. From this Bayesian point of view, we shall not differentiate f and Z in this
section.

Denote the vectors of input and output points in the nth iteration as Xn and Yn, respectively. Let
X1:n and Y1:n be as in Section 3.1. Then, we can write the data we obtain after the nth iteration as
In = (X1:n, Y

T
1:n). Because X1:n and Y1:n are random, the data In is associated with the σ-algebra

Fn, defined as the σ-algebra generated by (X1:n, Y
T
1:n). When the algorithm just starts, no data is

gain and we set I0 = ∅. The empty I0 is associated with the trivial σ-algebra F0, which consists
of only the empty set and the entire probability space. In each sampling-evaluation iteration, a
sequential sampling strategy, which determines the next sample point or a batch of points based on
the current data, is applied. This strategy can be deterministic or random, and may vary at different
stages of the process. For example, one can choose initial designs and subsequent sampling points
with different strategies. Clearly, such strategy should not depend on unobserved data. After each
sampling-evaluation iteration, a stopping criterion is checked and to determine whether to terminate
the algorithm. A stopping decision should depend only on the current data and/or prespecified
values such as computational budget, and should not depend on unobserved data either. Let T be
the number of iterations when the algorithm stops. Then a Bayesian optimization algorithm must
satisfy the following conditions.

1. Conditional on Fn−1, Xn and Z are mutually independent for n = 1, 2, . . ..
2. T is a stopping time with respect to the filtration {Fn}∞n=0. We further require 1 ≤ T <

+∞, a.s., to ensure a meaningful Bayesian optimization procedure.

We shall establish a generic theory that bounds the uniform prediction error, which can be applied to
any instance algorithms of Bayesian optimization. It is worth noting that several literature, including
Sniekers & van der Vaart (2015); Yoo et al. (2016); Yang et al. (2017); Kuriki et al. (2019); Azzi-
monti et al. (2019); Azaı̈s et al. (2010), investigate uncertainty quantification methods which are not
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within the Bayesian optimization or sequential sampling scheme, and cannot be directly applied to
quantify the uncertainties of outputs of Bayesian optimization.

3.2.1 FIXED DESIGNS

We start with a simpler case, where we choose all the input points before we evaluate f at any of
them. Although sequential samplings are more popular in Bayesian optimization, the fixed designs
situation will serve as an important intermediate step to the general problem in Section 3.2.2. Let
X = (x1, . . . , xn) be fixed design points, and Y = (f(x1), . . . , f(xn))T . The confidence region
for xmax is then defined as

CRt :=

{
x ∈ Ω : UPPERCL(x, t,X, Y ) ≥ max

1≤i≤n
f(xi)

}
. (9)

The confidence interval for f(xmax) is defined as

CIt :=

[
max

1≤i≤n
f(xi),max

x∈Ω
UPPERCL(x, t,X, Y )

]
. (10)

Also, we shall use the convention 0/0 = 0 in all statements in this article related to error bounds.
The following theorem states a uniform error bound for Gaussian process regression, which is the
first theoretical result of this kind, to the best of our knowledge. The proof of Theorem 1 can be
found in Appendix B.

Theorem 1 (Uncertainty quantification for fixed designs) Suppose Condition 1 holds. Let M =

supx∈Ω
Z(x)−µ(x)

σ(x) log1/2(eσ/σ(x))
, where µ(x) and σ(x) are given in Equation 2 and Equation 3, respec-

tively. Then the followings are true.

1. EM ≤ C0

√
p(1 ∨ log(A0DΩ)), where C0 is a universal constant, A0 is as in Condition

1, and DΩ = diam(Ω) is the Euclidean diameter of Ω.

2. For any t > 0, P(M − EM > t) ≤ e−t2/2.

In practice, Part 2 of Theorem 1 is hard to use directly because EM is difficult to calculate accurately.
Instead, we can replace EM by its upper bound in Part 1 of Theorem 1. We state such a result in
Corollary 1. Its proof is trivial.

Corollary 1 Under the conditions and notation of Theorem 1, for any constant C such that EM ≤
C
√
p(1 ∨ log(A0DΩ)), we have

P(M − C
√
p(1 ∨ log(A0DΩ)) > t) ≤ e−t

2/2,

for any t > 0, where the constants A0 and DΩ are the same as those in Theorem 1.

It is worth noting that the probability in Corollary 1 is not a posterior probability. Therefore, the
regions given by Equation 9 and Equation 10 should be regarded as frequentist confidence regions
under the Gaussian process model, rather than Bayesian credible regions. Such a frequentist nature
has an alternative interpretation, shown in Corollary 2. Corollary 2 simply translates Corollary 1
from the language of stochastic processes to a deterministic function approximation setting, which
fits the Bayesian optimization framework better. It shows that CRt in Equation 9 and CIt in Equa-
tion 10 are confidence region of xmax and f(xmax) with confidence level 1− e−t2/2, respectively.

Corollary 2 Let C(Ω) be the space of continuous functions on Ω and PZ be the law of Z. Then
there exists a set B ⊂ C(Ω) so that PZ(B) ≥ 1 − e−t

2/2 and for any f ∈ B, its maximum
point xmax is contained in CRt defined in Equation 7, and f(xmax) is contained in CIt defined in
Equation 8.

In practice, the shape of CRt can be highly irregular and representing the region of CRt can be
challenging. If Ω is of one or two dimensions, we can choose a fine mesh over Ω and call UP-
PERCL(x, t,X, Y ) for each mesh grid point x. In a general situation, we suggest calling UP-
PERCL(x, t,X, Y ) with randomly chosen x’s and using the k-nearest neighbors algorithm to repre-
sent CRt.
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3.2.2 SEQUENTIAL SAMPLINGS

In Bayesian optimization, sequential samplings are more popular, because such approaches can
utilize the information from the previous responses and choose new design points in the area which is
more likely to contain the maximum points. Similar to Section 3.2.1, we first quantify the uncertainty
of Z(·)−µT (·). Note that Z(·)−µT (·) is generally not a Gaussian process, because in the sequential
samplings situation, the stopping time T is random. Nonetheless, an error bound similar to that in
Theorem 1 is still valid. In the following theorem, we define

µn(x) := rTn (x)K−1
n Y1:n, (11)

σ2
n(x) := σ2(1− rTn (x)K−1

n rn(x)), (12)

where rn(x) = (Ψ(x− x1), . . . ,Ψ(x− xmn))T ,Kn = (Ψ(xj − xk))jk.

Theorem 2 (Uncertainty quantification for sequential samplings) Suppose Condition 1 holds.
Given an instance of Bayesian optimization algorithm, let

Mn = sup
x∈Ω

Z(x)− µn(x)

σn(x) log1/2(eσ/σn(x))
,

where µn(x) and σn(x) are given in Equation 11 and Equation 12, respectively. Then for any t > 0,

P(MT − C
√
p(1 ∨ log(A0DΩ)) > t) ≤ e−t

2/2, (13)

where C,A0, DΩ are the same as in Corollary 1.

The proof of Theorem 2 can be found in Appendix D. The probability bound Equation 13 has a
major advantage: the constant C is independent of the specific Bayesian optimization algorithm,
and it can be chosen the same as that for fixed designs. This suggests that when calibrating C via
numerical simulations (see Section 3.1 and Appendix F), we only need to simulate for fixed-design
problems, and the resulting constant C can be used for the uncertainty quantification of all past and
possible future Bayesian optimization algorithms.

Analogous to Corollary 2, we can restate Theorem 2 under a deterministic setting in terms of Corol-
lary 3. In this situation, we have to restrict ourselves to deterministic instances of Bayesian opti-
mization algorithms, in the sense that the sequential sampling strategy is a deterministic map, such
as the first two examples in Section 2.2.

Corollary 3 Let C(Ω) be the space of continuous functions on Ω and PZ be the law of Z. Given
a deterministic instance of Bayesian optimization algorithm, there exists a set B ⊂ C(Ω) so that
PZ(B) ≥ 1− e−t2/2 and for any f ∈ B, its maximum point xmax is contained in CRseq

t defined in
Equation 7, and f(xmax) is contained in CIseqt defined in Equation 8.

4 NUMERICAL EXPERIMENTS

We compare the performance between the proposed confidence interval CIseqt as in Equation 8 and
the naive bound of Gaussian process. The nominal confidence levels are 95% for both methods. The
naive 95% confidence upper bound, denoted by CIG, is defined as the usual pointwise upper bound
of Gaussian process, i.e.,

CIG :=

[
max

1≤i≤mT
f(xi),max

x∈Ω
µT (x) + q0.05σT (x)

]
,

where q0.05 is the 0.95 quantile of the standard normal distribution, µT (x) and σT (x) are given in
Equation 5 and Equation 6, respectively. As suggested in Section 3.1, we use C0 = 1 and t = 2.448
in CIseqt . We consider the Matérn correlation functions (see Table 1) with ν = 1.5, 2.5, 3.5, and
A0DΩ = 25.

We simulate Gaussian processes on Ω = [0, 1]2 for each ν. We use optimal Latin hypercube de-
signs (Stocki, 2005) to generate 5 initial points. We employs aUCB (defined in Section 2.2) as the
acquisition function, in which the parameter βn is chosen as suggested by Srinivas et al. (2010).
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We repeat the above procedure 100 times to estimate the coverage rate by calculating the relative
frequency of the event f(xmax) ∈ CIseqt or f(xmax) ∈ CIG. We also consider the “optimal upper
bound” in the sense that we choose a constant aν and the confidence upper bound

CIa :=

[
max

1≤i≤mT
f(xi),max

x∈Ω
µT (x) + aνσT (x)

]
,

such that the relative frequency of the event f(xmax) ∈ CIa is exactly 95%, where aν only depends
on ν. Then we plot the coverage rate of CIseqt and CIG, and the width of CIseqt , CIG, and CIa
under 5, 10, 15, 20, 25, 30 iterations, respectively.

The comparison results are shown in Figure 1. Figure 1 shows the coverage rates and the width of
the confidence intervals under different smoothness with ν = 1.5, 2.5, 3.5. From the left plot in
Figure 1, we find that the coverage rate of CIseqt is almost 100% for all the experiments, while CIG
has a lower coverage rate no more than 82%. Thus the proposed method is conservative while the
naive one is permissive. Such a result shows that using the naive method may be risky in practice.
The coverage results support our theory and conclusions made in Section 3.2. As shown by the right
plot in Figure 1, the widths of CIseqt are about five times of CIG, and about 2-2.5 times of CIa.
The ratio decreases as the number of iterations increases. The inflation in the width of confidence
intervals is the cost of gaining confidence.
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Figure 1: Panel 1: Coverage rates of CIseqt and CIG. The nominal confidence level is 95%. Panel
2: Widths of CIseqt , CIG, and CIa.

5 DISCUSSION

In this work we propose a novel methodology to construct confidence regions for the outputs given
by any Bayesian optimization algorithm with theoretical guarantees. To the best of our knowledge,
this is the first result of this kind. As a cost of its high flexibility, the confidence regions may be
somewhat conservative, because they are constructed based on generic probability inequalities that
may not be tight enough. Nevertheless, given the fact that naive methods may be highly permissive,
the proposed method can be useful when a conservative approach is preferred, such as in reliability
assessments. To improve the power of the proposed method, one needs to seek for more accurate
inequalities in a future work. One might also need to derive better error bounds tailored to specific
acquisition functions.
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Florian Häse, Loı̈c M Roch, Christoph Kreisbeck, and Alán Aspuru-Guzik. Phoenics: A Bayesian
optimizer for chemistry. ACS Central Science, 4(9):1134–1145, 2018.
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itas. An entropy search portfolio for Bayesian optimization. Stat, 1050:18, 2014.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2016.

10



Under review as a conference paper at ICLR 2021

Suzanne Sniekers and Aad van der Vaart. Credible sets in the fixed design model with Brownian
motion prior. Journal of Statistical Planning and Inference, 166:78–86, 2015.

Alexandros Solomou, Guang Zhao, Shahin Boluki, Jobin K Joy, Xiaoning Qian, Ibrahim Karaman,
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