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1 Reproducibility Summary

Our paper focuses on the reproducibility of studies within the domain of human‐robot
interaction (HRI) by revisiting and expandingupon the groundbreakingwork ofMuham‐
mad Fahad, Zhuo Chen, and Yi Guo in their study on maximum entropy deep inverse
reinforcement learning (MEDIRL) [1] for understanding human navigation behaviors
in crowded environments. Our objective is to rigorously retest and augment their find‐
ings, emphasizing the need for robust and socially intelligent navigation systems in HRI
scenarios.
Our re‐experimentation process involves:

1. ComprehensiveReplicationandValidation: Weaim to replicate the originalmethod‐
ology while conducting a thorough validation process, ensuring the reliability and
applicability of the MEDIRL model in real‐world HRI scenarios.

2. In‐Depth Component Analysis: Our focus is on dissecting and analyzing the indi‐
vidual components of the MEDIRL model through ablation studies. These studies
involve the selective removal or alteration of critical elements, such as learning
rate, state dimensions, network layers, and the loss function, to understand their
impact on the model’s performance.

3. Refinement and Enhancement: We seek to refine the MEDIRL model by optimiz‐
ing critical parameters, learning strategies, and eliminating biases. Our goal is
to improve the model’s robustness and adaptability, ensuring its deployment in
diverse HRI scenarios while adhering to social norms and safety protocols.

4. Deeper Insights: The results of our ablation studies will provide deeper insights
into the model’s performance dynamics, shedding light on the intricate mecha‐
nisms at play within the MEDIRL framework.

Ultimately, our experimentation serves as a testament to the pursuit of knowledge, with
the ambition to redefine and fortify the pathways to socially intelligent navigation.

Scope of Reproducibility — Recreating the original MEDIRL framework, as outlined in the
research paper, proved challenging due to the lack of comprehensive documentation.
Additionally, the absence of a publicly available GitHub repository with the necessary
data required us to independently develop the algorithm, using the limited pseudocode
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provided in the paper as guidance. The lack of substantial information about the Social
Affinity Map (SAM) feature map added to the complexity of our replication efforts. Un‐
fortunately, the paper did not provide a reference or access to the dataset used, which
further complicated our task.

Methodology — To reproduce the research paper’s results, we employed a stepwise ap‐
proach. Initially, we independently generated the MEDIRL model, relying on our in‐
terpretation of its implementation. Following this, we conducted ablation studies to
break down its individual components and functions. We additionally optimized our
efforts by subsetting the provided data and reducing the number of epochs, enabling us
to execute the code on standard computing resources (we used a MacBook Pro 2018 i7
chip). To ensure future reproducibility and enhanced accessibility, we seamlessly inte‐
grated our code into Dags Hub (https://dagshub.com/ML‐Purdue/hackathonf23‐Stacks),
along with data versioning via DVC and metrics tracked via MLFlow. It is important to
note that we chose to omit the presented SAM Feature Map to focus solely on the capa‐
bilities of the Maximum Entropy Deep Inverse Reinforcement Learning Model. As such
the comparisons we provide will be between the metrics that we gather, as to account
for the differing manner of data processing.

Results —We prioritized the consideration of the average displacement from themodel’s
predicted trajectory to the trajectory that the human in the testing data takes. The rank‐
ing from lowest displacement to highest displacement is as follows: Removed State Di‐
mension, Original, Removed Discount Factor, Removed Hidden Layer, Removed Max
Entropy and replaced with Mean Squared Error, Leaky ReLu instead of ReLU for activa‐
tion.

What was easy — During the reproducibility process, setting up our environment and un‐
derstanding what was entailed in the various experiments by the original authors was
fairly straightforward. Additionally, it was simple to get started with the algorithm logic
as the pseudo‐codewas providedby the paper alongwith the outlines for theDeepLearn‐
ing Model.

What was hard — One significant challenge we faced was implementing the model with
inadequate computational resources to handle the substantial 15 million‐line dataset
effectively. Furthermore, finding the dataset and implementing the model without any
attached source code as a reference was difficult at times.

2 Introduction

In the realmofhuman‐robot interaction (HRI), the confluence of humans and autonomous
entities within shared spaces marks a paradigm shift in technological advancements [2].
This coexistence necessitates the development of robust and socially intelligent navi‐
gation systems, ensuring not just efficient movement but also safety, user acceptance,
and the seamless integration of robots into human spaces. Within this dynamic land‐
scape, the study Learning How Pedestrians Navigate: A Deep Inverse Reinforcement
Learning Approach, by Fahad, Chen, and Guo [1] presents a pioneering methodology
that harnesses maximum entropy deep inverse reinforcement learning (MEDIRL) to un‐
derstand and replicate socially acceptable human navigation behaviors.

This groundbreaking research underscores the essential need for robots to navigate
human‐centric environments while adhering to social norms and conventions, thus fos‐
tering a natural and intuitive human‐robot interaction [3]. The Fahad, Chen, and Guo
study, which initially introduced the MEDIRL framework, serves as a cornerstone in
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this transformative domain. Their work, focusing on capturing and modeling human
navigation behaviors in crowded settings, laid the foundation for leveraging intricate
datasets of human pedestrian trajectories, a nonlinear reward function facilitated by
deep neural networks, and the integration of social affinity maps (SAM) for nuanced
navigation decision‐making.

Maximum Entropy Deep Inverse Reinforcement Learning (MEDIRL) holds a central po‐
sition as a crucial machine learning and reinforcement learning framework in the field
of human‐robot interaction (HRI). It specifically focuses on the advancement of socially
intelligent navigation. Within this multifaceted framework, the primary objective re‐
volves around endowing robots with the ability to extract valuable insights from human
behavior. This involves discerning the latent reward functions that underlie these be‐
haviors and subsequently enabling the robots to make navigation decisions that go be‐
yond mere efficiency, as described in reference [4].

Building on this pivotal research, the objective of our re‐experimentation is to delve
deeper into Fahad, Chen, and Guo’s work, rigorously retesting, and expanding their
findings. We aim not only to replicate their methodology but to significantly augment
their research through nuanced re‐analysis, additional experimentation, and a com‐
prehensive validation process. By scrutinizing and extending the boundaries of their
groundbreaking model, our goal is to further reinforce the reliability and applicability
of MEDIRL within real‐world human‐robot interaction scenarios.

A critical aspect of our re‐experimentation involves not just replicating the findings
of the initial study but expanding its horizons. Through comprehensive evaluation
against real‐world pedestrian trajectories and rigorous comparisons against established
methodologies, we aim to showcase a deeper understanding and validationof theMEDIRL
model. Our mission is to advance this model to generate pedestrian trajectories that
mirror human‐like behaviors more accurately, encompassing vital aspects such as col‐
lision avoidance strategies, leader‐follower dynamics, and intricate split‐and‐rejoin pat‐
terns.[5]

Additionally, the emphasis in our re‐experimentation will be on reinforcing the relia‐
bility of the MEDIRL model. By employing strategic refinements, such as fine‐tuning
critical parameters, optimizing learning strategies, andmeticulously eliminating biases,
we aim to ensure the robust deployment of this technology in varied real‐world HRI sce‐
narios. This rigorous refinement process is pivotal in not only upholding social norms
but also adhering to stringent safety protocols.

Crucially, our re‐experimentation will systematically deconstruct and analyze the indi‐
vidual components constituting the MEDIRL model introduced by the Original Study.
By employing meticulous ablation studies, we aim to dissect and comprehend the im‐
pact of each component on the overall performance of the model. Ablation studies play
a pivotal role in dissecting and comprehending the individual contributions of distinct
components within the MEDIRL framework [6].These studies involve selective removal
or alteration of critical elements to gauge their influence on the overall performance of
the model. 

1. Removal of Hidden Layer:

(a) The hidden layer in the MEDIRL model serves as an essential component in
deep learning architectures. It plays a critical role in capturing and repre‐
senting complex relationships within the data [7]

(b) Ablating the hidden layer involves eliminating one ormore hiddenneural net‐
work layers from the MEDIRL model. This modification seeks to understand
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how the depth of the network impacts the model’s capacity to learn intricate
features and non‐linear relationships. [8]

(c) The ablation aims to evaluatewhether a shallowernetwork can still adequately
capture the nuances of human navigation behaviors, or if a deeper network
is essential for modeling the complexity of real‐world scenarios.

2. Removal of State Dimension:

(a) The state dimension in the MEDIRL model typically represents the environ‐
mental states and conditions that the robot and pedestrians navigate in. It
encapsulates critical information about the surroundings. For our study, we
removed the height component by modifying the model to account for x and
y directions solely.

(b) By removing a state dimension, we aim to assess the model’s adaptability to
changes in the state space. This ablation examines whether the model can
generalize well andmake robust navigation decisions when a part of the state
information is missing.

(c) Understanding the impact of this ablation is vital for assessing the model’s
capacity to adapt to variations in the environment.

3. Removal of Discount Factor:

(a) The discount factor in reinforcement learning models influences the impor‐
tance of future rewards in the decision‐making process. It determines the
model’s preference for immediate rewards over long‐term goals.

(b) Removing the discount factor helps evaluate the model’s ability to make deci‐
sions solely based on immediate consequences. This ablation assesseswhether
the model can adapt to scenarios where long‐term planning and future re‐
wards are not considered.

(c) The results of this ablation will shed light on the role of discount factors
in modeling navigation decisions and their impact on the balance between
short‐term and long‐term considerations.

4. Removal of ReLU activation (replaced with Leaky ReLU):

(a) Leaky Rectified Linear Unit (ReLu) is an activation function in neural net‐
works. It allows a small gradient for negative input values, making it suitable
for capturing non‐linear relationships in the data [9].

(b) Using Leaky ReLu as an activation function replaces the standard ReLu activa‐
tion in themodel. This change explores how the choice of activation function
affects the model’s ability to capture non‐linear patterns in human behavior
[10].

(c) This ablation aims to assess whether the Leaky ReLu activation function en‐
hances the model’s capability to represent complex and non‐linear features
in the data, potentially improving its performance in modeling human navi‐
gation behaviors. 

5. Removal of Max Entropy (replaced with mean squared):

(a) Maximum entropy reinforcement learning encourages exploration by maxi‐
mizing the entropy of the policy. It promotes diversity in the model’s actions
and adaptability to different scenarios. [11]

(b) The removal of themax entropy component assesses the impact on themodel’s
exploration‐exploitation trade‐off. Without it, themodel may become less ex‐
ploratory and may exhibit more deterministic behavior.
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(c) This ablation will provide insights into the role of entropy in shaping the
model’s navigation decisions and whether reducing exploration influences
its performance in diverse situations.

Each of these ablation studies plays a critical role in understanding the individual con‐
tributions and significance of specific components within theMEDIRL framework. The
results from these detailed investigations will not only provide valuable insights into the
model’s performance but also guide further refinements and enhancements to create a
more robust and adaptable model for socially intelligent navigation in human‐robot in‐
teraction scenarios.

The analysis stemming from these ablation studies will not only provide deeper insights
into the model’s performance dynamics but also enable a refined understanding of the
intricatemechanisms at play within theMEDIRL framework. [12] Ultimately, thismetic‐
ulous approach to dissection and analysis will pave the way for an enhanced and forti‐
fied MEDIRL model, offering unparalleled advancements in socially intelligent naviga‐
tion within the domain of human‐robot interaction [13].

Our goal is to delineate the critical components significantly contributing to themodel’s
effectiveness in replicating human navigation behaviors and fostering a deeper under‐
standing of the intricate mechanisms at play. Through the meticulously conducted
re‐experimentation, our ambition is to unveil deeper insights and refined conclusions
about the reliability and efficacy of MEDIRL within the realm of social affinity and its
implications on navigationwithin the ambit of HRI [14]. This re‐experimentation stands
as a testament to the relentless pursuit of knowledge, aiming not just to replicate but to
redefine and fortify the pathways to socially intelligent navigation within human‐robot
interaction.

3 Scope of reproducibility

The MEDIRL paper provides a series of information regarding the algorithm they de‐
veloped, a Maximum Inverse Reinforcement Learning Model integrated with a Deep
Learning Neural Network with differing levels of detail.
The original paper begins by outlining the Markov Decision Making Process elements.
Given MDP Elements:

• States S: The original paper uses states to represent all possible positions or sit‐
uations the mobile robot could find itself it. It was denoted as the following set
S = {s1...sn}, where ’n’ is the total number of such possible states.

• Actions A: The original paper uses actions to represent all the possible decisions
themobile robot couldmake. This was denoted by the following setA = {a1...ap},
where ’p’ denotes the total number of possible actions.

• Discount Factor, γ: This was denoted by the original paper as a number between
0 and 1 that outlined the impact a reward would have on the mobile robot based
on its distance from the mobile robot.

• Reward Function R(si): This was outlined as the function that the mobile robot
would come up with on how it should operate within a state action space.

In regards to the Deep Learning Neural Network Backbone, we are told that it consists
of one input layer, two hidden layers, and one output layer. The two hidden layers re‐
spectively have 4096 and 2048 nodes. Equation 1 displays the reward function formula
the original paper gives us and Equation 2 represents the Bayesian inference that the
original paper uses.
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R∗ = g(ϕ, θ1, θ2, θ3, . . . , θj), = g1(g2(. . . (gj(ϕ, θj), . . .), θ2), θ1). (1)

L(θ) = logP (D, θ|R∗) = logP (D|R∗) + logP (θ) (2)

The original paper also outlines equation 3 to represent the gradient descent taking place
for the neural network optimization with respect to the network parameters θ and equa‐
tion 4 outlines the gradient descent with respect to the reward function.

∂L

∂θ
=

∂LD

∂θ
+

∂Lθ

∂θ
. (3)

∂LD

∂θ
=

∂LD

∂R∗ ·
∂R∗

∂θ
. (4)

No further information is provided about theMaximumEntropy Inverse Reinforcement
Learning Model embedded into the Deep Learning Network beyond its formulas shown
in Equations 5 and 6, where µD − E[µm] is the state visitation matching feature.

LmD = log(πm) · µa (5)

∂LD

∂R∗
m

= µD − E[µm] (6)

The MEDIRL paper captures the pedestrian behavior and evaluates it as such:

• Accuracy of 96.6%

• Average Displacement Error of 0.40 meters

• Final Displacement Error of 0.81 meters

• Average Non‐Linear Displacement Error of 0.41 meters

It also compares it to another state‐of‐the‐art algorithm to indicate that its model should
be the new state of the art.
Given the missing information, we had the make the following assumptions about the
model:

• Used our own discount factor of 0.01.

• Epoch number of 3.

• Used a standard number of nodes for the input and output layers given out data
set.

• Used a standard maximum entropy inverse reinforcement optimization method
for the deep learning network.

It is also important to note that from the data set provided by the original paper, we
subseted 100 lines for training and 40 lines for testing. We did this to adjust the dataset
to be suited for the lack of computational power we had available to us for this study.
As we had 6 ablation studies with no access to an intel core Macbook, we subseted the
data. The original paper claims that given a 1080ti with dual Xeon processors, it would
take 20 hours to run the code.

From the provided metrics of the original paper, we intend to focus on the Average
displacement error of the model, as it is the most consistent metric considering the dif‐
ference in training data size (due to computational restrictions).
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4 Methodology

We began this study by re‐creating the algorithm shown in the original paper as dis‐
played in the Algorithm 1.

Algorithm 1Maximum Entropy Deep Inverse Reinforcement Learning (MEDIRL)
Require:

num_trajectories: Number of human‐like trajectories
trajectory_length: Length of each trajectory
state_dim: State‐space dimension
lr: Learning rate
epochs: Training epochs

Ensure:
irlModel: Trained IRL model

1: functionMAXENTIRL(state_dim)
2: irl← Initialize MaxEntIRL model
3: return irl
4: end function
5: functionTRAıNMAXENTIRL(num_trajectories, trajectory_length, file_path, lr, epochs)
6: irl←MAXENTIRL(state_dim)
7: data← LoadDataset(file_path)
8: irl.train_irl(data, use_dataset = True, lr, epochs)
9: model_path← ’/path/to/save/model.pkl’
10: irl.save_model(model_path)
11: returnmodel_path
12: end function
13: function TRAıNIRLWıTHDATAſET(data, lr, epochs)
14: optimizer ← Initialize Adam optimizer with lr
15: for epoch← 1 to epochs do
16: totalLoss← 0
17: state_frequencies← Calculate state frequencies from data
18: for idx← 1 to len(data) do
19: state, velocity ← data[idx]
20: Using GradientTape:
21: preferences← irl.model(state)
22: prob_human← Softmax(preferences)
23: maxent_irl_objective← Calculate MaxEnt IRL objective
24: grads← Compute gradients
25: Apply gradients using optimizer
26: totalLoss← totalLoss+

∑
(maxent_irl_objective)

27: end for
28: avg_loss← totalLoss/len(data)
29: Log loss metric in MLflow
30: Print ”Epoch epoch/epochs, MaxEnt IRL Loss: avg_loss”
31: end for
32: end function

We then proceeded with creating the code for our ablation studies. We:

• removed a Hidden Layer consisting of 2048 nodes, keeping the bigger one of 4028
nodes as the sole hidden layer. We hypothesize this will lead to a far more inaccu‐
rate model due to the reduction of neurons.

• removed a State Dimension making the state space 2 instead of 3. We hypothesize
this will lead to an increase in model accuracy, as removing the height dimension
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for traversing space will reduce the dimensionality of the issue making it easier
for the model to understand.

• removed the Discount Factor entirely such that the distance of the reward would
have no effect on the model. We hypothesize this will lead to the model prioritiz‐
ing farther but larger rewards than closer and easier to achieve ones leading to it
operating worse than before.

• removed the RelU activation and replaced it with the Leaky ReLU shown in equa‐
tion 7. We hypothesize this will lead to the activation function being more ro‐
bust changing the overall decisions of the model and its consideration of negative
weights.

f(x) =

{
x, if x > 0,

αx, if x ≤ 0.
(7)

• removed themaximumentropy loss calculation and replaced itwithmean squared
shown in equation 8. We hypothesize this will lead to less exploration within the
model and make it more imitative of the behaviors of the demonstrators which
would change the mobile robots decisions.

MSE(θ) =
1

N

N∑
i=1

(yi − f(xi, θ))
2 (8)

We then save these models as a pickle file locally so that we can run it against test
data. The run time of all these models is O(N) and the space complexity is also
O(N).The keymetric we aim to take note of is the difference between the trajectory
the model would take and the trajectory the human actually takes.
In conducting these ablation studieswe aim to identifywhich features of theMEDIRL
model are necessary and the impact it has on the overall performance of themodel.
We do this by cross‐referencing the data against the ”standard” that we establish
with the MEDIRL model’s performance.

5 Results

After conducting our reproducibility study as per the method outlined above we noted
the following results.
The model’s Epoch Training Loss and Average Displacement were as follows:

• Original, Epoch Training Loss shown in figure 1. Average Displacement: 1.12 m
shown in Figure 2.

Figure 1. Figure displays the epochs of the original model.
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Figure 2. Figure displays the displacement of the predictions made of the original model from the actual
decisions made by the pedestrians.

• Removed a Hidden Layer, Epoch Training Loss shown in Figure 3. Average Dis‐
placement: 1.14 m as shown in Figure 4.

Figure 3. Figure displays the epochs of the original model without a hidden layer.

Figure 4. Figure displays the displacement of the predictions made of the model without a hidden layer
from the actual decisions made by the pedestrians.

• Removed the vertical State Dimension, Epoch Training Loss shown in Figure 5.
Average Displacement: 0.91 m Figure 6.

Figure 5. Figure displays the epochs of the original model without a vertical state dimension.
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Figure 6. Figure displays the displacement of the predictions made of the model without a vertical state
dimension from the actual decisions made by the pedestrians.

• Removed the Discount Factor, Epoch Training Loss shown in Figure 7, Average
Displacement: 1.13 m as shown in Figure 8.

Figure 7. Figure displays the epochs of the original model without a discount factor.

Figure 8. Figure displays the displacement of the predictions made of the model without a discount factor
from the actual decisions made by the pedestrians.

• Removed the ReLU activation in favor of Leaky ReLU, Epoch Training Loss shown
in Figure 9, Average Displacement: 1.15 m as shown in Figure 10.

Figure 9. Figure displays the epochs of the original model without a discount factor.
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Figure 10. Figure displays the displacement of the predictions made of the model with a leaky ReLU activa-
tion instead of a ReLU activation from the actual decisions made by the pedestrians.

• Removed the maximum entropy loss in favor of Mean Squared Loss Calculation,
Epoch Training Loss shown in Figure 11, Average Displacement: 1.15 m as shown
in Figure 12.

Figure 11. Figure displays the epochs of the original model without a discount factor.

Figure 12. Figure displays the displacement of the predictionsmade of themodelwithmean squared instead
of maximum entropy from the actual decisions made by the pedestrians.

A full comparison of the Epochs between the models can be displayed in Figure 13.

Figure 13. Figure displays the displacement of the predictionsmade of themodelwithmean squared instead
of maximum entropy from the actual decisions made by the pedestrians.
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The ranking from lowest displacement to highest displacement is as follows: Removed
State Dimension, Original, RemovedDiscount Factor, RemovedHidden Layer, Removed
Max Entropy, Leaky ReLU.

6 Results reproducing original paper

Our replication of the original model netted us an average displacement of 1.12 m in
comparison to the .5m that the original paper’s model was able to get. This difference is
likely becausewe trained our data setwith a significantly smaller subset of the data given
our lack of computational power. It is also important to note that while amajority of the
ablation studies didworse than the original study replication, removing the vertical state
dimension seems have increased its accuracy. This is likely because the humans within
the environment are not vertically moving and this additional dimension just leads to
excess unnecessary error.

7 Discussion

Based on our reproducibility attempt alongside our ablation studies we can clearly see
how each component of the machine learning model had an effect on its capabilities
to replicate human behavior in social navigation settings. The ablation study indicates
that future research within the human social navigation context should establish their
Markov Decision Making Framework within the two‐dimensional space if no vertical
movement is present, to mitigate any error that could occur based on the height of the
individual in question. By doing this within our ablation study we were able to reduce
the average displacement of themodel. Another thing to note from our ablation study is
the importance of theMaximumEntropy Component that was presented in the Original
Paper. Once that component was removed from the model the average displacement in‐
creased significantly making the model substantially worse when using Mean Squared
Error loss calculation instead. It is also important to note that swapping the ReLU activa‐
tion with Leakly ReLU is the ablation study that did the worst and likely not something
that should be done for future research in human social navigation settings. Something
else to consider is that given the discount factor that we usedwas so small 0.01 is it likely
that removing it all together in the ablation study had minimal effects hence its results
being similar to the original study. And as one would expect removing a hidden layer
made it model worse and increased its displacement.

The key takeaways fromour ablation study are as follows for future human social naviga‐
tion research: The importance of utilizing a two‐dimensional Markov decision‐making
framework when no vertical movement is involved, using a ReLU activation function
over a Leaky ReLU activation function and proper documentation through the present‐
ing of a model as to make it for future researchers to replicate.

Editorials, letters and special issues — ReScience C remains dedicated to the publication of
computational replications but we (i.e., the editorial team) would like to have the oppor‐
tunity to publish editorials when deemed necessary and to give anyone the opportunity
to write letters to the community on a specific topic related to reproducibility. Both edito‐
rials and letters are expected to be 1 or 2 pages long (but no hard limit will be enforced),
will be (quickly) peer reviewed, and will be assigned a DOI. Furthermore, with the ad‐
vent of reproducibility hackatonsworldwide, wewill host special issueswith guest editors
(such as, for example, the organizers of a hackaton) in order to publish the results and
to enhance their discoverability. Each entry will have to go through the regular open
peer‐reviewed pipeline.
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We hope that most readers will agree on the proposed changes such that we can commit
to them in the next few weeks. The review for this editorial is open (as usual) and any‐
one can comment on and/or oppose any of the proposed changes. New ideas are also
welcome.
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