
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POINTRECON: ONLINE 3D POINT CLOUD RECON-
STRUCTION VIA RAY-BASED 2D-3D MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel online point-based 3D reconstruction method from a posed
monocular RGB video. Our model maintains a global point cloud scene represen-
tation but allows points to adjust their 3D locations along the camera rays they
were initially observed. When a new RGB image is inputted, the model adjusts
the location of the existing points, expands the point cloud with newly observed
points, and removes redundant points. These flexible updates are achieved through
our novel ray-based 2D-3D matching technique. Our point-based representation
does not require a pre-defined voxel size and can adapt to any resolution. A unified
global representation also ensures consistency from different views. Results on the
ScanNet dataset show that we improve over previous online methods and match
the state-of-the-art performance with other types of approaches. Project page:
https://tinyurl.com/352xnna6

1 INTRODUCTION

Input 
images

Depth 

maps

Point 
cloud

Sc
en

e-
Im

ag
e 

M
at

ch
in

g

Sc
en

e-
Im

ag
e 

M
at

ch
in

g

Sc
en

e-
Im

ag
e 

M
at

ch
in

g

Depth prediction Depth prediction Depth prediction Depth predictionMonocular 
Depth prediction

Unproject Unproject & 
Merge

Unproject & 
Merge

Unproject & 
Merge

Unproject & 
Merge

…

Figure 1: We propose an online, point-based 3D reconstruction method from posed RGB video via ray-based
2D-3D matching.

3D reconstruction is one of the fundamental problems in computer vision. The ability to reconstruct
the 3D geometry of a scene solely from a set of RGB images enables a wide range of downstream tasks
and applications: semantic scene parsing, object retrieval, robotics, computer-aided 3D art design,
etc. Free from the reliance on expensive depth sensors such as LiDARs, RGB-based reconstruction
methods allow a lower price of computer vision products and remove potential sources of calibration
error and syncing issues among multiple sensors. Among other reconstruction scenarios, online
reconstruction from a monocular video especially suits applications where a large scene and real-time
response are needed, such as autonomous driving and augmented reality.

The versatility of the deep learning architectures enabled a diverse set of reconstruction methods: the
depth prediction-based methods (Kendall et al., 2017; Chang & Chen, 2018; Wang & Shen, 2018;
Huang et al., 2018; Duzceker et al., 2021; Im et al., 2019; Sayed et al., 2022) accumulate features
from multiple source views into a 3D or 4D per-view cost volume, and then run convolutions on the
volume to regress a depth map for each target view; volumetric methods (Kar et al., 2017; Murez

1

https://tinyurl.com/352xnna6


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al., 2020; Sun et al., 2021; Stier et al., 2021; Bozic et al., 2021; Gao et al., 2023) aggregate features
in a global voxel grid instead of the per-view cost volumes, and regress voxel occupancy or TSDF
values where the zero crossing represents the surface; point cloud-based methods (Lhuillier & Quan,
2005; Chen et al., 2019) directly predict point positions on the surface.

However, methods based on depth predictions predict a depth map for every image independently
before fusing them into a unified surface. Thus, consistency between views is not guaranteed.
Volumetric methods maintain a global voxel grid, but need to predefine the voxel size and the grid
size, and bear a huge memory cost when the resolution is high; hence, the meshes they output are
usually coarse, and they can reconstruct only within a bounded area but not extend to infinite horizon,
which would have been the benefit of using cameras; even though many multi-level grid methods (Sun
et al., 2021; Bozic et al., 2021) have been proposed to save memory, the resolution of each level is
still pre-fixed.

A globally consistent 3D point cloud representation of the scene overcomes some of these drawbacks.
First of all, it is a sparse representation and is significantly less memory-consuming than volumetric
approaches. Besides, they do not need a specification of voxel size and can easily represent surface
details with an adaptive density, denser in areas requiring more details. However, to the best of our
knowledge, the existing point cloud-based methods usually involve iterative optimization (Chen et al.,
2019; Kerbl et al., 2023) and thus do not suit online algorithms.

In this paper, we propose PointRecon, a point-based online reconstruction method. We maintain
a global feature-augmented point cloud to represent the scene. When a new image comes in, we
match the image features with the existing points in the scene, adjust the locations of old points,
add new points, and remove any redundancy. We proposed a novel ray-based matching technique
which assumes each 3D point sit on a camera ray with potentially wrongly estimated depth. With this
assumption, we sample points on the camera ray of the 3D point to match with the pixels from a new
camera view to predict the offset of the depth prediction of the 3D point. Depth predictions of 2D
pixels that are newly seen are conducted in a similar manner as well by matching their camera rays
with the existing rays from existing 3D points.

Since our approach maintains a global representation, it guarantees consistency between views; since
point clouds are compact and flexible in density, we do not face the trade-off between efficiency and
accuracy like the volumetric methods; our method also does not involve iterative refinement. To
maximally utilize the flexibility of point clouds, we employ AutoFocusFormer (Ziwen et al., 2023)
as our image encoder, which renders a set of non-uniform feature maps by performing adaptive
downsampling; the key points are automatically retained and thus allow for more accurate matching
at downsampled levels. To summarize, we believe our contributions are:

• We propose to maintain an online, global 3D point cloud with a camera ray associated
to each point, during the process of 3D reconstruction from a monocular video. Unlike
volumetric methods, this approach is not limited by any pre-defined voxel resolutions.

• We propose a novel ray-based matching technique to match the global 3D point cloud with
pixels from every new incoming image.

• Results on the popular ScanNetv2 dataset show that our approach matches performance with
depth prediction and volumetric approaches, while offering more details than volumetric
approaches.

2 RELATED WORK

Here we summarize past work on 3D surface reconstruction divided into three categories roughly
based on the surface representation: depth maps, volumetric TSDF grids and point clouds.

Depth prediction by multi-view stereo matching. Given a pair of posed cameras looking at the same
object, the image patch similarity between the two photos can be used to infer depth (Newcombe et al.,
2011; Pizzoli et al., 2014). However, manually designed similarity measures can be highly unreliable.
Utilizing deep learning, (Zbontar & LeCun, 2016; Luo et al., 2016) fit a CNN to decide the similarity
between patches, but their performance is limited by the lack of global semantic context in the patches
and their reliance on hand-engineered postprocessing. GC-Net (Kendall et al., 2017) overcomes
these limitations by aggregating image features into a cost volume and performing 3D convolution to
generate global context, while PSM-Net (Chang & Chen, 2018) directly feeds multi-scale feature

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Scene adjustment Depth prediction Point cloud merging

Feature dot 
product

Geometric 
metadata

2D point 
feature Ground-truth 

surface

Posed RGB image

Multi-level 
feature maps

3D Ray project to 2D

For each 2D point along the ray…

Δ

ΔMLP & Multi-
level transformer

2D Ray project to 3D

Image encoding

Feature dot 
product

Geometric 
metadata

3D point 
feature

For each 3D point along the ray…

ΔMLP & Multi-
level transformer

3D point 
feature

2D point 
feature

Δ

Image encoder 
and feature 

pyramid

Figure 2: Overview of our method. We first obtain multi-level feature maps for the new image through the
image encoder and feature pyramid. Then, we adjust the positions of the 3D points in the current point cloud by
matching their features with the 2D feature points on the image. Next, we predict depth for the 2D points by
matching their features with potentially corresponding 3D points. Finally, we remove lower-scored redundant
points that projected to the same pixel.

maps into the cost volume . DeepMVS (Huang et al., 2018) generalizes this line of methods to
arbitrary number of source images by constructing a plane-sweep volume for every pair, while
MVDepthNet (Wang & Shen, 2018) simplifies the workflow by compressing multiple source features
into one single volume and conducting 2D convolution instead of 3D; DPSNet (Im et al., 2019) further
improves the performance by matching deeper features instead of pixel patches. The stereo methods
so far predict depth independently for each image and lack consistency if the goal is to reconstruct
the surface for the entire scene. DeepVideoMVS (Duzceker et al., 2021) mitigate the problem by
modeling the reconstruction history using a recurrent network. Recently, SimpleRecon (Sayed et al.,
2022) improves upon the independent depth prediction methods by injecting geometric metadata
such as camera angle into the cost volume and showed that the reconstructed scene can be reasonable
as long as the depth quality is good enough.

Volumetric TSDF regression. Instead of predicting a single-view depth map, one can also directly
generate global surfaces from a cost volume. LSM (Kar et al., 2017) unprojects features into a
global-coordinate voxel grid for each image, and fuses the grids before regressing the global voxel
occupancy. While LSM works on object datasets, Atlas (Murez et al., 2020) extends this approach
to scene, by accumulating features from all source images into one global voxel grid, and use 3D
convolution to regress voxel TSDF values. NeuronRecon (Sun et al., 2021) proposes an online
method, where it incrementally constructs a local grid and fuses it with the global grid using a Gated
Recurrent Unit (GRU). NeuronRecon also employs a coarse-to-fine approach, where the fine grids are
sparsified using the predictions from the coarse grids. TransformerFusion (Bozic et al., 2021) fuses
the unprojected image features with the grid using a series of transformer blocks, where each voxel
can selectively attend to the most relevant image features. VoRTX (Stier et al., 2021) similarly uses a
transformer to fuse image features with the grids; it jointly encodes ray direction and depth with the
image features, achieving view-aware attention. FineRecon (Stier et al., 2023) and CVRecon (Feng
et al., 2023) are the recent SOTA offline methods that improve results by using a more fine-grained
supervision or incorporating cost-volume information into the voxels. VisFusion (Gao et al., 2023)
improves upon NeuroRecon by explicitly inferring the visibility of a voxel from each view and
replacing the hard-threshold sparsification with a ray-based sparsification. While the volumetric
methods improve over the depth-based methods in terms of consistency and have the ability to infer
unseen surfaces, they rely on a predefined 3D grid and are limited by the resolution of this grid –
most of them use a grid size of 4cm, and thus have difficulties representing details finer than this
resolution.

Point Cloud-based Reconstruction. Early work on point cloud-based reconstruction such as (Lhuil-
lier & Quan, 2005) extract a quasi-dense set of keypoints, unproject them into 3D space to form

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

a point cloud, and optimize a surface on the point cloud. Deep learning-based approaches such
as Point-MVSNet (Chen et al., 2019) first predict a coarse depth map, unproject to a point cloud,
augment points with features from multiple image views, and then refine the point positions / depth
maps. Due to the iterative nature, these methods are not online, and have only demonstrated results
on object datasets. Recently, Gaussian splatting-based rendering (Kerbl et al., 2023) approaches have
gained popularity, where each point is equipped with a Gaussian to represent its size and direction.
However, the need for per-scene optimization makes it incompatible with local, online updates, and
thus does not fit our goal of building an online reconstruction method. However, given that our point
cloud format directly corresponds to the centers of the Gaussians in Gaussian splatting, such an
optimization can be performed on top of our representation if one wants to obtain higher rendering
quality with additional time complexity.

3 METHOD

We present an online, point-based 3D reconstruction approach from a stream of RGB images with
known camera poses in a static scene. The final output is a 3D mesh. Throughout the paper, we use
p◦ to denote a 2D position, and p for its corresponding 3D position.

The general idea is to maintain a flexible global point cloud Q = {q1,q2,q3, · · · } to represent
the entire scene, where a point qi = (pi, fi, ri, zi, ci) contains a 3D position pi ∈ R3 in the world
coordinate frame, a feature vector fi ∈ RC , a unit ray direction from the camera it was first seen
ri ∈ R3, a distance to this camera zi ∈ R+ and a confidence score ci ∈ R, which will be used in the
merging step. Points in this point cloud are allowed to move along its camera ray direction based on
the information that comes from a new image It ∈ RH×W×3 with camera pose at time t. As more
information accumulates, the location of the 3D points will be more accurate. Thus, we can work on
potentially inaccurate initial estimates of the point positions as long as we maintain the flexibility for
the points to move.

Our main novel contribution is the computation of local attention between 3D points and 2D pixels
that do not necessarily live on the same epipolar line. Traditional stereo methods mostly require
points to stay on the epipolar line to be matched. However, this does not take into account potential
camera projection errors and the information that might improve the matching from areas close to the
epipolar line. In our work, this is done in two steps: 1) for 3D points that have unclear depth along
its camera ray, we obtain its epipolar line projected on the new camera, and collect 2D neighboring
points close to the projected epipolar line (Fig. 3). This neighborhood is used to improve the depth
estimation of the 3D point, which is called a scene adjustment step (Sec. 3.2); 2) for 2D pixels with
unclear depth, we sample multiple points from its camera ray and obtain the nearest 3D rays to form
a neighborhood (Fig. 4), this neighborhood helps to predict better depth of the 2D pixels (Sec. 3.3).

After predicting depth for all 2D pixels, we merge these new 3D points with the point cloud using
softmax on the predicted confidence scores, removing redundant, non-confident points in the camera
frustum to keep the size of the point cloud manageable (Section 3.4).

3.1 BACKBONE, FEATURE PYRAMID AND MONOCULAR DEPTH PREDICTION

We first feed the image It through an image encoder to obtain a multi-level set of feature maps
{Fl}4l=1 (1 for the highest, coarsest level, 4 for the lowest, finest level). While our method the-
oretically works with any image encoder such as the ResNets (He et al., 2016), we in particular
choose AutoFocusFormer (Ziwen et al., 2023), a transformer-based image encoder, for its ability
to automatically locate key points during downsampling and hence retain more useful details in
higher-level feature maps. In particular, it outputs non-uniform feature maps in the format of 2D
point clouds Fl = {(p◦1, f1), (p◦2, f2), · · · }, with points more densely concentrated in the areas with
more details, such as small objects or object edges.

Next, we enhance the feature maps {Fl}4l=1 by constructing a feature pyramid - we propagate
information from the higher-level (more downsampled) feature maps back to the lower-levels. In
particular, for level l ∈ {2, 3, 4}, Fl is updated by attending to all Fk with k ≤ l using a transformer
block (attention + MLP), in the order of the coarsest to the finest.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

For the first image in the stream, we perform monocular depth estimation. We simply use one
fully-connected layer to predict a positive depth value from the feature vector fi of each point. The
confidence score ci is also predicted from the feature. Then, we unproject the 2D features to the 3D
space using the given camera intrinsics and camera pose, forming the initial multi-level scene point
cloud {Ql}4l=1. The confidence score ci is a logit score in R, and will be used in the point cloud
merging step (Section 3.4). Although it is well-known that monocular depth estimation suffers from
ambiguity, our algorithm can quickly correct the errors through the subsequent scene adjustment step.

3.2 SCENE ADJUSTMENT

pi

pi

sample point sj

neighbor 
pocameracamera

1
2

…

K

ri

ro
crossing p2

crossing p1

Figure 3: Illustration of the scene adjustment step. For a point pi in the point cloud, we uniformly sample K
points along its ray. We project these sample points onto the image plane, and each projected sample point finds
M nearest neighbors in the 2D feature map. For each neighbor, we calculate its feature dot product with pi and
a list of geometric metadata, including the distance from pi to the crossing of their rays, the distance between
the rays, the cosine ray angles, etc. The scene point utilizes these geometric metadata along with the feature dot
products to decide the adjustment of its position along its camera ray.

Now assume we already have a multi-level point cloud {Ql}4l=1 with potentially erroneous depth
estimations. After obtaining the multi-level feature maps {Fl

t}4l=1 for a new image It, we update the
part of the point cloud visible to the camera of It. For this, we propose a novel ray-based matching
approach for matching the 3D point with the 2D pixels from the new image. First, we project the
3D points and their rays onto the image plane of It to obtain epipolar lines, and then match the 3D
point feature with the collected 2D features around the epipolar line to predict a correction of its
position along its camera ray, as well as updating its feature and confidence score. Concretely, to
accommodate for depth errors, for each 3D scene point qi, we uniformly sample K points along its
ray within a range centered at its 3D location pi. Then these are projected onto the image plane of It,
and the nearest neighbors M are located on the 2D feature map F from each sampled point. Thus, in
total we collect KM 2D feature points along each ray.

To reduce memory cost of feature matching, we first reduce the channel size of both 2D and 3D
features from C to 32 (for all levels). Then, we calculate the dot product between neighboring 2D
and 3D features. In order for the model to decide in which direction to move the point, it is not
enough to only collect similarities with the neighbors; the model also needs to know where are the
neighbors, especially in a non-uniform data structure such as point cloud. Thus, we also append
geometric metadata to the predictor.

The general idea is that, if qi matches with a 2D image point po, then we should move it to the
crossing between ri (the ray of qi from its original camera) and the ray from the current camera
shooting through the 2D point po, which we denote as ro (Fig. 3(b)). Hence, we should collect
information about the ray crossing as metadata. We define the ray crossing as a tuple of points:
(p1(ri, r

o), p2(ri, r
o)) = (argminp∈ri minpo∈ro ∥p− po∥, argminpo∈ro minp∈ri ∥p− po∥) which

refers to the points on both rays where the rays attain the minimal distance (note that the 2 rays may
not intersect), where p1 lies on the ray ri and p2 lies on the ray ro. We also include some other
metadata such as ray angle to support the reliability of this matching. For a complete list of metadata,
please see the appendix.

We concatenate the dot product, the metadata with the reduced feature for each sample point, and
feed them through a small MLP. We then concatenate the output vectors from all sample points, along
with the reduced feature of pi, and feed them through another small MLP. The final output vector hi

represents the information pi gained from the image It (Fig. 2).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Finally, we create a U-Net to allow the hi from all scene points to communicate among themselves
by cross-attending first from each layer to its next coarser layer (as an encoding process), then after
self-attention, cross-attending from each layer to its next finer layer (as a decoding process). We
then append the updated {hi} to the original scene point features {fi}, and feed them through a
fully-connected layer to obtain the final updated features for the scene.

3.3 DEPTH PREDICTION WITH IMAGE-SCENE MATCHING

camera camera
pi pio

crossing p2

neighbor 
point pj

scene points sample point sio

riopi’

crossing p1

rj

Figure 4: Illustration of depth prediction with image-scene feature matching. For a 2D feature point pi on the
image plane, we uniformly sample K points along the ray shooting through it from the camera. Each sample
point finds M neighbors in the point cloud by looking for the nearest rays. For each neighboring scene point, we
calculate its feature dot product with pi and a list of geometric metadata, including the depth of the ray crossing
to the camera, the distance between the rays, the cosine ray angles, etc. The 2D point utilizes these geometric
metadata along with the feature dot products to predict its depth value from the camera.

Next, we predict depth values for the 2D points. The feature matching process here is almost a
symmetric version of the one in scene adjustment. For each 2D point poi , let roi be the ray shooting
through it from the current camera view. We first predict a rough depth value for pi using the
monocular depth prediction module. Then, we uniformly sample K points along roi within a range
centered at the predicted 3D position p′i. Each sample point then finds M nearest rays in the scene.
In total, we collect KM 3D neighbors along the ray roi .

Each sample point finds the closest rays instead of closest 3D points because the point positions are
predicted and may not be accurate. We choose to first sample points along roi , but not directly find
rays closest to roi , because rays from two neighboring cameras tend to be much denser at shallow
depth, hence the latter approach tends to collect rays concentrated at shallow depth.

We again compute the dot product between the reduced 2D and 3D features. Similar to the scene
adjustment step, we also append geometric metadata to the dot products. The general idea is that, if
the 2D point poi matches with a 3D ray, then the depth of the crossing between roi and the 3D ray is
likely the correct depth for poi . For a complete list of metadata, please see the appendix.

Similar to the scene adjustment, we concatenate the metadata with the reduced feature and the dot
product and feed them through a small MLP. Again, we append the outputs from all sampled points
together, along with the reduced feature of the 2D point, and feed the resulting vector through a
second small MLP to obtain a vector ho

i representing the information poi gained from the scene point
cloud (Fig. 2).

Finally, we create a U-Net to allow the ho
i from all 2D feature points to communicate to each other.

Similar to the previous steps, we perform cross-attention first from each layer to its next coarser
layer (as an encoding process), then after self-attention, cross-attending from each layer to its next
finer layer (as a decoding process). We then append the updated {ho

i } to the original 2D point
features {fi}, and feed them through a fully-connected layer to obtain the final updated features.
From there we directly predict the depth values {dj} and the standard deviation {sj} using another
fully-connected layer. Finally, we backproject the 2D points into the 3D space, and add this new set
of points {(pj , fj , rj , zj , sj , cj)} to the current scene point cloud.

3.4 POINT CLOUD MERGING

For stereo matching, we rely on the overlapping parts in the images. But these overlaps also cause
redundancy in the points. When a 2D point successfully matches with a 3D point, it is likely that they
represent the same area on the same surface. Ideally, we would like to keep only one of them.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Thus, when performing point merging, we find all the cameras in the past that can see at least part of
the points in the current camera frustum. Then, we project this subset of point cloud onto the image
planes of these cameras. For each pixel, we perform softmax on the confidence scores ci of all the
points projected on to this pixel, and the depth value of each pixel is predicted as:

di =
∑

P (qj ,It)=pi

softmax(cj)dj (1)

where P (qj , It) projects qj to the image plane of It.

Such a mechanism allows us to learn confidence values such that for a 3D point to “win” the pixel pi,
it needs to have the highest confidence cj among all the points that project to the same pixel. This
mechanism handles occlusions in limited number of viewpoints, in the manner that points that are
visible in some camera views but occluded in others could have moderate cj such that they will “win”
the pixels in the visible views, but in the viewpoints they are occluded, their projections will “lose” to
other points that have much higher cj and not have much effect on the depth prediction.

After training for this proper confidence cj , we discard all points that never “won” on any pixel,
i.e. they never attained the highest confidence on any pixel from any camera view. Empirically we
observed that this deletion does not significantly affecting the depth prediction on any pixel.

3.5 LOSS FUNCTIONS

We train our model by supervising the depth maps produced at different stages of our model: the
monocular depth prediction, the feature matching depth prediction and the rendered depth maps at
point merging. The three types of depth maps use the same set of losses: an L1 depth loss, a gradient
loss and a normal loss following (Sayed et al., 2022).

We apply the depth loss

Ldepth =
1

HW

4∑
l=1

1

l2

∑
i

| log dli − log d
gt
i | (2)

to all four levels. We upsample the depth values from the coarse levels to full resolution using nearest
neighbor interpolation. We apply the gradient loss

Lgrad =
1

HW

3∑
r=0

∑
i

|∇d4i↓2r× −∇d
gt
i↓2r×

| (3)

to only the finest level, but both to the full resolution and to the three downsampled versions (we
downsample the resolution by half each time). ∇ represents the first-order spatial gradients, and ↓2r×
means downsampling by a rate of 2r. We also apply the normal loss

Lnormal =
1

2HW

∑
i

1−Ni ·Ngt
i (4)

to the finest level, where Ni is the normal vector calculated from predicted depth and camera intrinsics.
Additionally, to supervise the scene adjustment step, we calculate the difference between the distance
from each point to its camera and the ground-truth value:

Ladjust =
1

N

4∑
l=1

|zi − z
gt
i | (5)

where zi is the distance to the camera computed from the predicted 3D position pi and zgti is the
ground truth depth. N is the total number of points from all 4 levels. Overall, our total loss is

Ltotal = Ldepth + Lgrad + Lnormal + Ladjust (6)

Note the first three losses are applied to all three types of depth maps. During training, we use a
9-view local window. But during evaluation, as the sequence gets long, we will inevitably run into the
occlusion issue, and the number of cameras sharing a partial view with the current camera can easily
reach hundreds, causing a huge computational burden. Thus, we rely on a heuristics here: among the
collected cameras in the current step, if a camera is not among the K most recent cameras, then we
keep all the points originating from that camera and no longer allow any of the points to be deleted.
We empirically set K = 16.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We choose the AFF-Mini, the smallest variant from (Ziwen et al., 2023) containing only 6.75M
parameters, as our image encoder backbone. We train and evaluate our model on the ScanNetv2 (Dai
et al., 2017) dataset. We resize the input image resolution to 640×480. The depth maps are predicted
at the resolution 160× 120.

Model hyperparameters. For both the scene adjustment step and the depth prediction step, we set
the sample number K = 64 and number of neighbors M = 1. We set the sample range to be 1.5m.
The point adjustment range is limited to 5m. We reduce the feature vector dimension to 32. All of
the transformer blocks in the model perform local attention with neighborhood size 48 and use MLP
expansion ratio 2.0.

Training details. We first train the model on image pairs for 2 epochs, where the two images mutually
serve as source of feature matching. There is no point merging at this stage. Then, we train the model
on 9-view local image chunks for 6 epochs, where the images are fed to the model sequentially, and
point merging is performed at every time step. We use a learning rate 10−4 for the first 4 epochs,
and reduce it by a factor of 0.1 at the fifth epoch and the eighth epoch. We train with the AdamW
optimizer (Loshchilov & Hutter, 2017) with a weight decay of 10−4.

During training, we apply random color augmentation with probability 0.8 to the input RGB images
using TorchVision (Marcel & Rodriguez, 2010) with brightness=0.4, contrast=0.4, saturation=0.2,
hue=0.1. We also apply a random order-reverse. We follow the approach from (Duzceker et al., 2021)
for keyframe selection. We reduce the lambda for losses for monocular depth prediction by a factor
of 0.5 at the fifth and eighth epoch.

Evaluation details. During evaluation, we feed the keyframe images sequentially to the model
and perform point merging at every time step. After the point cloud for the entire scene has been
constructed, we render depth maps using the keyframe cameras: we project the points onto the image
planes, and each pixel renders the depth of the closest point. We use TSDF fusion (Curless & Levoy,
1996) to construct a 3D mesh from the rendered depth maps.

4.2 EXPERIMENT RESULTS

ScanNet. ScanNetv2 (Dai et al., 2017) is an indoor RGB-D video dataset, containing scans for 1613
rooms, among which 1201 are used for training, 312 for validation and 100 for testing. We compare
with previous work on both the 3D mesh quality (Table 1) and the 2D depth map quality (Table 2).
We generate two versions of meshes with TSDF fusion resolution at 2cm and 4cm, respectively. As
shown in the tables, our model obtain a high overall score (Chamfer distance and F-score), ranking
top among the online methods and on par with the best offline method. Our recall score is high, but
precision is relative low, meaning that there are noisy, redundant surfaces in the reconstructed mesh.
We note that this is partly because we never performed any post-hoc smoothing steps as an online
method. Besides, our heuristic in the merging step that kept points from old cameras may also lead to
increased noise levels in the scene. In the future we will work on better smoothing approaches.

Profiling. We profile the inference speed of the major components of our model on a single A100
GPU. Amortized over all images, the time spent by the image encoder is a negligible amount of
1.8ms; the monocular depth predictor on average takes 8ms; the scene adjustment step on average
takes 215ms; the depth prediction with feature matching takes 276ms; and the point merging on
average takes 118ms. The transformer U-net is the most expensive sub-component in the scene
adjustment and depth prediction with feature matching. The merging step tends to become slower as
the size of the point cloud grows bigger. In future work we will simplify the network to make it faster.

Ablation. We provided a more detailed analysis of our model by showing results on the ScanNet test
split keyframes generated by different components of our model. We also separately train another
model without scene adjustment to study the necessity of this step. As show in Table 3, feature
matching boosts the depth prediction accuracy by a large margin over the monocular prediction, and
the point merging further boosts the depth accuracy over the prediction from single camera. We
reason that this is because even with feature matching, some regions of the image might still be

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Recon
Type Method Non-

Volumetric
Latency

(ms/frame) Comp↓ Acc↓ Chamfer↓ Prec↑ Recall↑ F-Score↑

Offline

COLMAP (Schönberger et al., 2016) ✓ / 0.069 0.135 0.102 0.634 0.505 0.558
Atlas (Murez et al., 2020) ✗ / 0.084 0.102 0.093 0.598 0.565 0.578
VoRTX (Gao et al., 2023) ✗ / 0.082 0.062 0.072 0.688 0.607 0.644
CVRecon (Feng et al., 2023) ✗ / 0.077 0.045 0.061 0.753 0.639 0.690

Online

DeepVMVS (Duzceker et al., 2021) ✓ 37 0.076 0.117 0.097 0.451 0.558 0.496
NeuralRecon (Sun et al., 2021) ✗ 90 0.128 0.054 0.091 0.684 0.479 0.562
TF (Bozic et al., 2021) ✗ 326 0.099 0.078 0.089 0.648 0.547 0.591
SimpleRecon (Sayed et al., 2022) ✓ 72 0.078 0.065 0.072 0.641 0.581 0.608
VisFusion (Gao et al., 2023) ✗ 90 0.105 0.055 0.080 0.695 0.527 0.598

PointRecon (4cm) ✓ 618 0.059 0.078 0.068 0.576 0.645 0.607
PointRecon (2cm) ✓ 618 0.056 0.073 0.065 0.599 0.675 0.633

Table 1: Mesh Evaluation. Mesh reconstruction quality for the ScanNetv2 test split. We follow Atlas (Murez
et al., 2020)’s evaluation protocol. Volumetric methods predefine a voxel resolution for the scene representation.
Offline methods assume the availability of the entire sequence and cannot conduct local update. The number
in the brackets after our PointRecon indicates the TSDF Fusion resolution. *We present the 4cm resolution
commonly used in volumetric methods, but our point-based approach is not limited to that resolution and
represent finer details, as shown in the 2cm resolution TSDF fusion results.

Recon
Type Method Abs Diff↓ Abs Rel↓ Sq Rel↓ δ<1.05↑ δ<1.25↑ Comp↑

Offline

COLMAP 0.264 0.137 0.138 - 83.4 87.1
Atlas 0.123 0.065 0.045 - 93.6 99.9
VoRTX 0.092 0.058 0.036 - 93.8 95.0
CVRecon 0.078 0.047 0.028 - 96.3 -
FineRecon 0.069 0.042 0.026 86.6 97.1 97.2

Online

NeuralRecon 0.106 0.065 0.031 - 94.8 90.9
TF 0.099 0.065 0.042 - 93.4 90.5
SimpleRecon 0.083 0.046 0.022 - 95.4 94.4

PointRecon (4cm) 0.085 0.054 0.022 71.9 96.4 94.8
PointRecon (2cm) 0.087 0.055 0.024 72.1 96.2 94.6

Table 2: Depth Evaluation. Depth maps quality for the ScanNetv2 test split. These depth maps are rendered
from the reconstructed 3D meshes. We follow Atlas (Murez et al., 2020)’s evaluation protocol. - means the
metric is not provided by the original paper. The number in the brackets indicates the TSDF Fusion resolution.

ambiguous for a single camera. But through merging the predictions from multiple cameras using the
confidence scores, we can obtain a point cloud with overall better quality. We also see from the table
that the scene adjustment step is crucial for the point cloud quality. An adjusted point cloud provides
more accurate feature matching for the new image and better source for the merging.

Scene
Adjustment Model Component Abs Diff↓ Abs Rel↓ Sq Rel↓ δ < 1.05↑ δ < 1.25↑

Off
Monocular 0.206 0.134 0.053 29.7 82.8
Feature Matching 0.130 0.083 0.028 50.7 93.3
Merging 0.109 0.096 0.023 57.8 95.5

On
Monocular 0.206 0.134 0.053 29.7 82.8
Feature Matching 0.113 0.071 0.024 58.4 94.5
Merging 0.085 0.053 0.017 69.9 97.0

Table 3: Ablation studies. We show the depth map quality of the Scannet test split key frames produced by the
different components of our model. We see that the Feature Matching and the Merging modules consistently
improve the reconstruction quality. We also demonstrate the effectiveness of the scene adjustment component
by showing that the depth map quality consistently decreases without it (scene adjustment does not affect the
monocular depth prediction as expected).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) NeuroRecon (b) SimpleRecon (c) Ours (d) Ground truth

(e) NeuroRecon (f) SimpleRecon (g) Ours (h) Ground truth

Figure 5: Visualization of generated meshes. Our result is more accurate than NeuroRecon yet a bit less smooth
due to the lack of smoothing constraints. More reconstruction results can be viewed on our project page.

5 CONCLUSION

We propose an online, point-based reconstruction method that allows flexible local updates, requires
no pre-defined resolution and ensures consistent surface from different views. Our method is mainly
based on our novel ray-based matching approach between a 3D point with potentially incorrect depth
and 2D image pixels. Experiments show that our approach achieves state-of-the-art performance.
However, due to the lack of post-hoc smoothing and heuristics used in the evaluation pipeline, the
reconstruction is still sometimes noisy. In the future, we will continue to work on improving the
algorithm to make the surfaces cleaner.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Aljaz Bozic, Pablo Palafox, Justus Thies, Angela Dai, and Matthias Nießner. Transformerfusion:
Monocular rgb scene reconstruction using transformers. Advances in Neural Information Process-
ing Systems, 34:1403–1414, 2021.

Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 5410–5418, 2018.

Rui Chen, Songfang Han, Jing Xu, and Hao Su. Point-based multi-view stereo network. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 1538–1547, 2019.

Brian Curless and Marc Levoy. A volumetric method for building complex models from range images.
In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques,
pp. 303–312, 1996.

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 5828–5839, 2017.

Arda Duzceker, Silvano Galliani, Christoph Vogel, Pablo Speciale, Mihai Dusmanu, and Marc
Pollefeys. Deepvideomvs: Multi-view stereo on video with recurrent spatio-temporal fusion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15324–15333, 2021.

Ziyue Feng, Liang Yang, Pengsheng Guo, and Bing Li. Cvrecon: Rethinking 3d geometric feature
learning for neural reconstruction. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 17750–17760, 2023.

Huiyu Gao, Wei Mao, and Miaomiao Liu. Visfusion: Visibility-aware online 3d scene reconstruction
from videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 17317–17326, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra Ahuja, and Jia-Bin Huang. Deepmvs:
Learning multi-view stereopsis. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2821–2830, 2018.

Sunghoon Im, Hae-Gon Jeon, Stephen Lin, and In So Kweon. Dpsnet: End-to-end deep plane sweep
stereo. arXiv preprint arXiv:1905.00538, 2019.

Abhishek Kar, Christian Häne, and Jitendra Malik. Learning a multi-view stereo machine. Advances
in neural information processing systems, 30, 2017.

Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy, Abraham
Bachrach, and Adam Bry. End-to-end learning of geometry and context for deep stereo re-
gression. In Proceedings of the IEEE international conference on computer vision, pp. 66–75,
2017.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1–14, 2023.

Maxime Lhuillier and Long Quan. A quasi-dense approach to surface reconstruction from uncalibrated
images. IEEE transactions on pattern analysis and machine intelligence, 27(3):418–433, 2005.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Wenjie Luo, Alexander G Schwing, and Raquel Urtasun. Efficient deep learning for stereo matching.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5695–5703,
2016.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In
Proceedings of the 18th ACM international conference on Multimedia, pp. 1485–1488, 2010.

Zak Murez, Tarrence Van As, James Bartolozzi, Ayan Sinha, Vijay Badrinarayanan, and Andrew
Rabinovich. Atlas: End-to-end 3d scene reconstruction from posed images. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
VII 16, pp. 414–431. Springer, 2020.

Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. Dtam: Dense tracking and
mapping in real-time. In 2011 international conference on computer vision, pp. 2320–2327. IEEE,
2011.

Matia Pizzoli, Christian Forster, and Davide Scaramuzza. Remode: Probabilistic, monocular dense
reconstruction in real time. In 2014 IEEE international conference on robotics and automation
(ICRA), pp. 2609–2616. IEEE, 2014.

Mohamed Sayed, John Gibson, Jamie Watson, Victor Prisacariu, Michael Firman, and Clément
Godard. Simplerecon: 3d reconstruction without 3d convolutions. In European Conference on
Computer Vision, pp. 1–19. Springer, 2022.

Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. Pixelwise view
selection for unstructured multi-view stereo. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III 14, pp.
501–518. Springer, 2016.

Noah Stier, Alexander Rich, Pradeep Sen, and Tobias Höllerer. Vortx: Volumetric 3d reconstruction
with transformers for voxelwise view selection and fusion. In 2021 International Conference on
3D Vision (3DV), pp. 320–330. IEEE, 2021.

Noah Stier, Anurag Ranjan, Alex Colburn, Yajie Yan, Liang Yang, Fangchang Ma, and Baptiste
Angles. Finerecon: Depth-aware feed-forward network for detailed 3d reconstruction. arXiv
preprint arXiv:2304.01480, 2023.

Jiaming Sun, Yiming Xie, Linghao Chen, Xiaowei Zhou, and Hujun Bao. Neuralrecon: Real-time
coherent 3d reconstruction from monocular video. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 15598–15607, 2021.

Kaixuan Wang and Shaojie Shen. Mvdepthnet: Real-time multiview depth estimation neural network.
In 2018 International conference on 3d vision (3DV), pp. 248–257. IEEE, 2018.

Jure Zbontar and Yann LeCun. Stereo matching by training a convolutional neural network to
compare image patches. Journal of Machine Learning Research, 17, 2016.

Chen Ziwen, Kaushik Patnaik, Shuangfei Zhai, Alvin Wan, Zhile Ren, Alexander G Schwing, Alex
Colburn, and Li Fuxin. Autofocusformer: Image segmentation off the grid. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18227–18236, 2023.

A APPENDIX

A.1 SCENE ADJUSTMENT METADATA LIST

For a 3D point qi, a sample point sj on its ray ri and the 2D nearest neighbor p◦j of the projection of
sj onto the current camera, the list of metadata includes:

• the distance between pi (the 3D location of qi) and p1(ri, r
o
j );

• the distance between pi and sj
• the distance between sj and p1(ri, r

o
j )

• the distance between pi and its original camera
• the depth of p2(ri, roj ) with respect to the current camera
• ∥p1(ri, roj )− p2(ri, r

o
j )∥, the distance between the rays

• the cosine angle between ri and roj
• the distance between the projected sj and p◦j
• a binary mask indicating whether the sample point lies inside the current camera frustum

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A.2 IMAGE-SCENE MATCHING METADATA LIST

For each sample point soi and the corresponding 3D ray rj along with its point position pj , the list of
metadata includes:

• the depth of the crossing p2(rj , r
o
i ) with respect to the current camera

• the depth difference between p2(rj , r
o
i ) and the sample point soi

• the distance between p2(rj , r
o
i ) and the current camera

• the distance between p1(rj , r
o
i ) and the camera of the 3D point

• ∥p1(rj , roi )− p2(rj , r
o
i )∥, the distance between the two rays

• the distance between p1(rj , r
o
i ) and pj

• the cosine ray angle between the two rays
• a binary mask indicating whether the neighbor point lies in front of the camera

13


	Introduction
	Related Work
	Method
	Backbone, Feature Pyramid and Monocular Depth Prediction
	Scene Adjustment
	Depth Prediction with Image-Scene Matching
	Point Cloud Merging
	Loss Functions

	Experiments
	Implementation Details
	Experiment Results

	Conclusion
	Appendix
	Scene Adjustment Metadata List
	Image-Scene Matching Metadata List


