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ABSTRACT

We propose a novel online point-based 3D reconstruction method from a posed
monocular RGB video. Our model maintains a global point cloud scene represen-
tation but allows points to adjust their 3D locations along the camera rays they
were initially observed. When a new RGB image is inputted, the model adjusts
the location of the existing points, expands the point cloud with newly observed
points, and removes redundant points. These flexible updates are achieved through
our novel ray-based 2D-3D matching technique. Our point-based representation
does not require a pre-defined voxel size and can adapt to any resolution. A unified
global representation also ensures consistency from different views. Results on the
ScanNet dataset show that we improve over previous online methods and match
the state-of-the-art performance with other types of approaches. Project page:
https://tinyurl.com/352xnna6

1 INTRODUCTION
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Figure 1: We propose an online, point-based 3D reconstruction method from posed RGB video via ray-based
2D-3D matching.

3D reconstruction is one of the fundamental problems in computer vision. The ability to reconstruct
the 3D geometry of a scene solely from a set of RGB images enables a wide range of downstream tasks
and applications: semantic scene parsing, object retrieval, robotics, computer-aided 3D art design,
etc. Free from the reliance on expensive depth sensors such as LiDARs, RGB-based reconstruction
methods allow a lower price of computer vision products and remove potential sources of calibration
error and syncing issues among multiple sensors. Among other reconstruction scenarios, online
reconstruction from a monocular video especially suits applications where a large scene and real-time
response are needed, such as autonomous driving and augmented reality.

The versatility of the deep learning architectures enabled a diverse set of reconstruction methods: the
depth prediction-based methods (Kendall et al., 2017; Chang & Chen, 2018; Wang & Shen, 2018;
Huang et al., 2018; Duzceker et al., 2021; Im et al., 2019; Sayed et al., 2022) accumulate features
from multiple source views into a 3D or 4D per-view cost volume, and then run convolutions on the
volume to regress a depth map for each target view; volumetric methods (Kar et al., 2017; Murez
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et al., 2020; Sun et al., 2021; Stier et al., 2021; Bozic et al., 2021; Gao et al., 2023) aggregate features
in a global voxel grid instead of the per-view cost volumes, and regress voxel occupancy or TSDF
values where the zero crossing represents the surface; point cloud-based methods (Lhuillier & Quan,
2005; Chen et al., 2019) directly predict point positions on the surface.

However, methods based on depth predictions predict a depth map for every image independently
before fusing them into a unified surface. Thus, consistency between views is not guaranteed.
Volumetric methods maintain a global voxel grid, but need to predefine the voxel size and the grid
size, and bear a huge memory cost when the resolution is high; hence, the meshes they output are
usually coarse, and they can reconstruct only within a bounded area but not extend to infinite horizon,
which would have been the benefit of using cameras; even though many multi-level grid methods (Sun
et al., 2021; Bozic et al., 2021) have been proposed to save memory, the resolution of each level is
still pre-fixed.

A globally consistent 3D point cloud representation of the scene overcomes some of these drawbacks.
First of all, it is a sparse representation and is significantly less memory-consuming than volumetric
approaches. Besides, they do not need a specification of voxel size and can easily represent surface
details with an adaptive density, denser in areas requiring more details. However, to the best of our
knowledge, the existing point cloud-based methods usually involve iterative optimization (Chen et al.,
2019; Kerbl et al., 2023) and thus do not suit online algorithms.

In this paper, we propose PointRecon, a point-based online reconstruction method. We maintain
a global feature-augmented point cloud to represent the scene. When a new image comes in, we
match the image features with the existing points in the scene, adjust the locations of old points,
add new points, and remove any redundancy. We proposed a novel ray-based matching technique
which assumes each 3D point sit on a camera ray with potentially wrongly estimated depth. With this
assumption, we sample points on the camera ray of the 3D point to match with the pixels from a new
camera view to predict the offset of the depth prediction of the 3D point. Depth predictions of 2D
pixels that are newly seen are conducted in a similar manner as well by matching their camera rays
with the existing rays from existing 3D points.

Since our approach maintains a global representation, it guarantees consistency between views; since
point clouds are compact and flexible in density, we do not face the trade-off between efficiency and
accuracy like the volumetric methods; our method also does not involve iterative refinement. To
maximally utilize the flexibility of point clouds, we employ AutoFocusFormer (Ziwen et al., 2023)
as our image encoder, which renders a set of non-uniform feature maps by performing adaptive
downsampling; the key points are automatically retained and thus allow for more accurate matching
at downsampled levels. To summarize, we believe our contributions are:

• We propose to maintain an online, global 3D point cloud with a camera ray associated
to each point, during the process of 3D reconstruction from a monocular video. Unlike
volumetric methods, this approach is not limited by any pre-defined voxel resolutions.

• We propose a novel ray-based matching technique to match the global 3D point cloud with
pixels from every new incoming image.

• Results on the popular ScanNetv2 dataset show that our approach matches performance with
depth prediction and volumetric approaches, while offering more details than volumetric
approaches.

2 RELATED WORK

Here we summarize past work on 3D surface reconstruction divided into three categories roughly
based on the surface representation: depth maps, volumetric TSDF grids and point clouds.

Depth prediction by multi-view stereo matching. Given a pair of posed cameras looking at the same
object, the image patch similarity between the two photos can be used to infer depth (Newcombe et al.,
2011; Pizzoli et al., 2014). However, manually designed similarity measures can be highly unreliable.
Utilizing deep learning, (Zbontar & LeCun, 2016; Luo et al., 2016) fit a CNN to decide the similarity
between patches, but their performance is limited by the lack of global semantic context in the patches
and their reliance on hand-engineered postprocessing. GC-Net (Kendall et al., 2017) overcomes
these limitations by aggregating image features into a cost volume and performing 3D convolution to
generate global context, while PSM-Net (Chang & Chen, 2018) directly feeds multi-scale feature
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Figure 2: Overview of our method. We first obtain multi-level feature maps for the new image through the
image encoder and feature pyramid. Then, we adjust the positions of the 3D points in the current point cloud by
matching their features with the 2D feature points on the image. Next, we predict depth for the 2D points by
matching their features with potentially corresponding 3D points. Finally, we remove lower-scored redundant
points that projected to the same pixel.

maps into the cost volume . DeepMVS (Huang et al., 2018) generalizes this line of methods to
arbitrary number of source images by constructing a plane-sweep volume for every pair, while
MVDepthNet (Wang & Shen, 2018) simplifies the workflow by compressing multiple source features
into one single volume and conducting 2D convolution instead of 3D; DPSNet (Im et al., 2019) further
improves the performance by matching deeper features instead of pixel patches. The stereo methods
so far predict depth independently for each image and lack consistency if the goal is to reconstruct
the surface for the entire scene. DeepVideoMVS (Duzceker et al., 2021) mitigate the problem by
modeling the reconstruction history using a recurrent network. Recently, SimpleRecon (Sayed et al.,
2022) improves upon the independent depth prediction methods by injecting geometric metadata
such as camera angle into the cost volume and showed that the reconstructed scene can be reasonable
as long as the depth quality is good enough.

Volumetric TSDF regression. Instead of predicting a single-view depth map, one can also directly
generate global surfaces from a cost volume. LSM (Kar et al., 2017) unprojects features into a
global-coordinate voxel grid for each image, and fuses the grids before regressing the global voxel
occupancy. While LSM works on object datasets, Atlas (Murez et al., 2020) extends this approach
to scene, by accumulating features from all source images into one global voxel grid, and use 3D
convolution to regress voxel TSDF values. NeuronRecon (Sun et al., 2021) proposes an online
method, where it incrementally constructs a local grid and fuses it with the global grid using a Gated
Recurrent Unit (GRU). NeuronRecon also employs a coarse-to-fine approach, where the fine grids are
sparsified using the predictions from the coarse grids. TransformerFusion (Bozic et al., 2021) fuses
the unprojected image features with the grid using a series of transformer blocks, where each voxel
can selectively attend to the most relevant image features. VoRTX (Stier et al., 2021) similarly uses a
transformer to fuse image features with the grids; it jointly encodes ray direction and depth with the
image features, achieving view-aware attention. FineRecon (Stier et al., 2023) and CVRecon (Feng
et al., 2023) are the recent SOTA offline methods that improve results by using a more fine-grained
supervision or incorporating cost-volume information into the voxels. VisFusion (Gao et al., 2023)
improves upon NeuroRecon by explicitly inferring the visibility of a voxel from each view and
replacing the hard-threshold sparsification with a ray-based sparsification. While the volumetric
methods improve over the depth-based methods in terms of consistency and have the ability to infer
unseen surfaces, they rely on a predefined 3D grid and are limited by the resolution of this grid –
most of them use a grid size of 4cm, and thus have difficulties representing details finer than this
resolution.

Point Cloud-based Reconstruction. Early work on point cloud-based reconstruction such as (Lhuil-
lier & Quan, 2005) extract a quasi-dense set of keypoints, unproject them into 3D space to form
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a point cloud, and optimize a surface on the point cloud. Deep learning-based approaches such
as Point-MVSNet (Chen et al., 2019) first predict a coarse depth map, unproject to a point cloud,
augment points with features from multiple image views, and then refine the point positions / depth
maps. Due to the iterative nature, these methods are not online, and have only demonstrated results
on object datasets. Recently, Gaussian splatting-based rendering (Kerbl et al., 2023) approaches have
gained popularity, where each point is equipped with a Gaussian to represent its size and direction.
However, the need for per-scene optimization makes it incompatible with local, online updates, and
thus does not fit our goal of building an online reconstruction method. However, given that our point
cloud format directly corresponds to the centers of the Gaussians in Gaussian splatting, such an
optimization can be performed on top of our representation if one wants to obtain higher rendering
quality with additional time complexity.

3 METHOD

We present an online, point-based 3D reconstruction approach from a stream of RGB images with
known camera poses in a static scene. The final output is a 3D mesh. Throughout the paper, we use
p◦ to denote a 2D position, and p for its corresponding 3D position.

The general idea is to maintain a flexible global point cloud Q = {q1,q2,q3, · · · } to represent
the entire scene, where a point qi = (pi, fi, ri, zi, ci) contains a 3D position pi ∈ R3 in the world
coordinate frame, a feature vector fi ∈ RC , a unit ray direction from the camera it was first seen
ri ∈ R3, a distance to this camera zi ∈ R+ and a confidence score ci ∈ R, which will be used in the
merging step. Points in this point cloud are allowed to move along its camera ray direction based on
the information that comes from a new image It ∈ RH×W×3 with camera pose at time t. As more
information accumulates, the location of the 3D points will be more accurate. Thus, we can work on
potentially inaccurate initial estimates of the point positions as long as we maintain the flexibility for
the points to move.

Our main novel contribution is the computation of local attention between 3D points and 2D pixels
that do not necessarily live on the same epipolar line. Traditional stereo methods mostly require
points to stay on the epipolar line to be matched. However, this does not take into account potential
camera projection errors and the information that might improve the matching from areas close to the
epipolar line. In our work, this is done in two steps: 1) for 3D points that have unclear depth along
its camera ray, we obtain its epipolar line projected on the new camera, and collect 2D neighboring
points close to the projected epipolar line (Fig. 3). This neighborhood is used to improve the depth
estimation of the 3D point, which is called a scene adjustment step (Sec. 3.2); 2) for 2D pixels with
unclear depth, we sample multiple points from its camera ray and obtain the nearest 3D rays to form
a neighborhood (Fig. 4), this neighborhood helps to predict better depth of the 2D pixels (Sec. 3.3).

After predicting depth for all 2D pixels, we merge these new 3D points with the point cloud using
softmax on the predicted confidence scores, removing redundant, non-confident points in the camera
frustum to keep the size of the point cloud manageable (Section 3.4).

3.1 BACKBONE, FEATURE PYRAMID AND MONOCULAR DEPTH PREDICTION

We first feed the image It through an image encoder to obtain a multi-level set of feature maps
{Fl}4l=1 (1 for the highest, coarsest level, 4 for the lowest, finest level). While our method the-
oretically works with any image encoder such as the ResNets (He et al., 2016), we in particular
choose AutoFocusFormer (Ziwen et al., 2023), a transformer-based image encoder, for its ability
to automatically locate key points during downsampling and hence retain more useful details in
higher-level feature maps. In particular, it outputs non-uniform feature maps in the format of 2D
point clouds Fl = {(p◦1, f1), (p◦2, f2), · · · }, with points more densely concentrated in the areas with
more details, such as small objects or object edges.

Next, we enhance the feature maps {Fl}4l=1 by constructing a feature pyramid - we propagate
information from the higher-level (more downsampled) feature maps back to the lower-levels. In
particular, for level l ∈ {2, 3, 4}, Fl is updated by attending to all Fk with k ≤ l using a transformer
block (attention + MLP), in the order of the coarsest to the finest.
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For the first image in the stream, we perform monocular depth estimation. We simply use one
fully-connected layer to predict a positive depth value from the feature vector fi of each point. The
confidence score ci is also predicted from the feature. Then, we unproject the 2D features to the 3D
space using the given camera intrinsics and camera pose, forming the initial multi-level scene point
cloud {Ql}4l=1. The confidence score ci is a logit score in R, and will be used in the point cloud
merging step (Section 3.4). Although it is well-known that monocular depth estimation suffers from
ambiguity, our algorithm can quickly correct the errors through the subsequent scene adjustment step.

3.2 SCENE ADJUSTMENT

pi

pi

sample point sj

neighbor 
pocameracamera

1
2

…

K

ri

ro
crossing p2

crossing p1

Figure 3: Illustration of the scene adjustment step. For a point pi in the point cloud, we uniformly sample K
points along its ray. We project these sample points onto the image plane, and each projected sample point finds
M nearest neighbors in the 2D feature map. For each neighbor, we calculate its feature dot product with pi and
a list of geometric metadata, including the distance from pi to the crossing of their rays, the distance between
the rays, the cosine ray angles, etc. The scene point utilizes these geometric metadata along with the feature dot
products to decide the adjustment of its position along its camera ray.

Now assume we already have a multi-level point cloud {Ql}4l=1 with potentially erroneous depth
estimations. After obtaining the multi-level feature maps {Fl

t}4l=1 for a new image It, we update the
part of the point cloud visible to the camera of It. For this, we propose a novel ray-based matching
approach for matching the 3D point with the 2D pixels from the new image. First, we project the
3D points and their rays onto the image plane of It to obtain epipolar lines, and then match the 3D
point feature with the collected 2D features around the epipolar line to predict a correction of its
position along its camera ray, as well as updating its feature and confidence score. Concretely, to
accommodate for depth errors, for each 3D scene point qi, we uniformly sample K points along its
ray within a range centered at its 3D location pi. Then these are projected onto the image plane of It,
and the nearest neighbors M are located on the 2D feature map F from each sampled point. Thus, in
total we collect KM 2D feature points along each ray.

To reduce memory cost of feature matching, we first reduce the channel size of both 2D and 3D
features from C to 32 (for all levels). Then, we calculate the dot product between neighboring 2D
and 3D features. In order for the model to decide in which direction to move the point, it is not
enough to only collect similarities with the neighbors; the model also needs to know where are the
neighbors, especially in a non-uniform data structure such as point cloud. Thus, we also append
geometric metadata to the predictor.

The general idea is that, if qi matches with a 2D image point po, then we should move it to the
crossing between ri (the ray of qi from its original camera) and the ray from the current camera
shooting through the 2D point po, which we denote as ro (Fig. 3(b)). Hence, we should collect
information about the ray crossing as metadata. We define the ray crossing as a tuple of points:
(p1(ri, r

o), p2(ri, r
o)) = (argminp∈ri minpo∈ro ∥p− po∥, argminpo∈ro minp∈ri ∥p− po∥) which

refers to the points on both rays where the rays attain the minimal distance (note that the 2 rays may
not intersect), where p1 lies on the ray ri and p2 lies on the ray ro. We also include some other
metadata such as ray angle to support the reliability of this matching. For a complete list of metadata,
please see the appendix.

We concatenate the dot product, the metadata with the reduced feature for each sample point, and
feed them through a small MLP. We then concatenate the output vectors from all sample points, along
with the reduced feature of pi, and feed them through another small MLP. The final output vector hi

represents the information pi gained from the image It (Fig. 2).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Finally, we create a U-Net to allow the hi from all scene points to communicate among themselves
by cross-attending first from each layer to its next coarser layer (as an encoding process), then after
self-attention, cross-attending from each layer to its next finer layer (as a decoding process). We
then append the updated {hi} to the original scene point features {fi}, and feed them through a
fully-connected layer to obtain the final updated features for the scene.

3.3 DEPTH PREDICTION WITH IMAGE-SCENE MATCHING

camera camera
pi pio

crossing p2

neighbor 
point pj

scene points sample point sio

riopi’

crossing p1

rj

Figure 4: Illustration of depth prediction with image-scene feature matching. For a 2D feature point pi on the
image plane, we uniformly sample K points along the ray shooting through it from the camera. Each sample
point finds M neighbors in the point cloud by looking for the nearest rays. For each neighboring scene point, we
calculate its feature dot product with pi and a list of geometric metadata, including the depth of the ray crossing
to the camera, the distance between the rays, the cosine ray angles, etc. The 2D point utilizes these geometric
metadata along with the feature dot products to predict its depth value from the camera.

Next, we predict depth values for the 2D points. The feature matching process here is almost a
symmetric version of the one in scene adjustment. For each 2D point poi , let roi be the ray shooting
through it from the current camera view. We first predict a rough depth value for pi using the
monocular depth prediction module. Then, we uniformly sample K points along roi within a range
centered at the predicted 3D position p′i. Each sample point then finds M nearest rays in the scene.
In total, we collect KM 3D neighbors along the ray roi .

Each sample point finds the closest rays instead of closest 3D points because the point positions are
predicted and may not be accurate. We choose to first sample points along roi , but not directly find
rays closest to roi , because rays from two neighboring cameras tend to be much denser at shallow
depth, hence the latter approach tends to collect rays concentrated at shallow depth.

We again compute the dot product between the reduced 2D and 3D features. Similar to the scene
adjustment step, we also append geometric metadata to the dot products. The general idea is that, if
the 2D point poi matches with a 3D ray, then the depth of the crossing between roi and the 3D ray is
likely the correct depth for poi . For a complete list of metadata, please see the appendix.

Similar to the scene adjustment, we concatenate the metadata with the reduced feature and the dot
product and feed them through a small MLP. Again, we append the outputs from all sampled points
together, along with the reduced feature of the 2D point, and feed the resulting vector through a
second small MLP to obtain a vector ho

i representing the information poi gained from the scene point
cloud (Fig. 2).

Finally, we create a U-Net to allow the ho
i from all 2D feature points to communicate to each other.

Similar to the previous steps, we perform cross-attention first from each layer to its next coarser
layer (as an encoding process), then after self-attention, cross-attending from each layer to its next
finer layer (as a decoding process). We then append the updated {ho

i } to the original 2D point
features {fi}, and feed them through a fully-connected layer to obtain the final updated features.
From there we directly predict the depth values {dj} and the standard deviation {sj} using another
fully-connected layer. Finally, we backproject the 2D points into the 3D space, and add this new set
of points {(pj , fj , rj , zj , sj , cj)} to the current scene point cloud.

3.4 POINT CLOUD MERGING

For stereo matching, we rely on the overlapping parts in the images. But these overlaps also cause
redundancy in the points. When a 2D point successfully matches with a 3D point, it is likely that they
represent the same area on the same surface. Ideally, we would like to keep only one of them.
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Thus, when performing point merging, we find all the cameras in the past that can see at least part of
the points in the current camera frustum. Then, we project this subset of point cloud onto the image
planes of these cameras. For each pixel, we perform softmax on the confidence scores ci of all the
points projected on to this pixel, and the depth value of each pixel is predicted as:

di =
∑

P (qj ,It)=pi

softmax(cj)dj (1)

where P (qj , It) projects qj to the image plane of It.

Such a mechanism allows us to learn confidence values such that for a 3D point to “win” the pixel pi,
it needs to have the highest confidence cj among all the points that project to the same pixel. This
mechanism handles occlusions in limited number of viewpoints, in the manner that points that are
visible in some camera views but occluded in others could have moderate cj such that they will “win”
the pixels in the visible views, but in the viewpoints they are occluded, their projections will “lose” to
other points that have much higher cj and not have much effect on the depth prediction.

After training for this proper confidence cj , we discard all points that never “won” on any pixel,
i.e. they never attained the highest confidence on any pixel from any camera view. Empirically we
observed that this deletion does not significantly affecting the depth prediction on any pixel.

3.5 LOSS FUNCTIONS

We train our model by supervising the depth maps produced at different stages of our model: the
monocular depth prediction, the feature matching depth prediction and the rendered depth maps at
point merging. The three types of depth maps use the same set of losses: an L1 depth loss, a gradient
loss and a normal loss following (Sayed et al., 2022).

We apply the depth loss

Ldepth =
1

HW

4∑
l=1

1

l2

∑
i

| log dli − log d
gt
i | (2)

to all four levels. We upsample the depth values from the coarse levels to full resolution using nearest
neighbor interpolation. We apply the gradient loss

Lgrad =
1

HW

3∑
r=0

∑
i

|∇d4i↓2r× −∇d
gt
i↓2r×

| (3)

to only the finest level, but both to the full resolution and to the three downsampled versions (we
downsample the resolution by half each time). ∇ represents the first-order spatial gradients, and ↓2r×
means downsampling by a rate of 2r. We also apply the normal loss

Lnormal =
1

2HW

∑
i

1−Ni ·Ngt
i (4)

to the finest level, where Ni is the normal vector calculated from predicted depth and camera intrinsics.
Additionally, to supervise the scene adjustment step, we calculate the difference between the distance
from each point to its camera and the ground-truth value:

Ladjust =
1

N

4∑
l=1

|zi − z
gt
i | (5)

where zi is the distance to the camera computed from the predicted 3D position pi and zgti is the
ground truth depth. N is the total number of points from all 4 levels. Overall, our total loss is

Ltotal = Ldepth + Lgrad + Lnormal + Ladjust (6)

Note the first three losses are applied to all three types of depth maps. During training, we use a
9-view local window. But during evaluation, as the sequence gets long, we will inevitably run into the
occlusion issue, and the number of cameras sharing a partial view with the current camera can easily
reach hundreds, causing a huge computational burden. Thus, we rely on a heuristics here: among the
collected cameras in the current step, if a camera is not among the K most recent cameras, then we
keep all the points originating from that camera and no longer allow any of the points to be deleted.
We empirically set K = 16.
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4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We choose the AFF-Mini, the smallest variant from (Ziwen et al., 2023) containing only 6.75M
parameters, as our image encoder backbone. We train and evaluate our model on the ScanNetv2 (Dai
et al., 2017) dataset. We resize the input image resolution to 640×480. The depth maps are predicted
at the resolution 160× 120.

Model hyperparameters. For both the scene adjustment step and the depth prediction step, we set
the sample number K = 64 and number of neighbors M = 1. We set the sample range to be 1.5m.
The point adjustment range is limited to 5m. We reduce the feature vector dimension to 32. All of
the transformer blocks in the model perform local attention with neighborhood size 48 and use MLP
expansion ratio 2.0.

Training details. We first train the model on image pairs for 2 epochs, where the two images mutually
serve as source of feature matching. There is no point merging at this stage. Then, we train the model
on 9-view local image chunks for 6 epochs, where the images are fed to the model sequentially, and
point merging is performed at every time step. We use a learning rate 10−4 for the first 4 epochs,
and reduce it by a factor of 0.1 at the fifth epoch and the eighth epoch. We train with the AdamW
optimizer (Loshchilov & Hutter, 2017) with a weight decay of 10−4.

During training, we apply random color augmentation with probability 0.8 to the input RGB images
using TorchVision (Marcel & Rodriguez, 2010) with brightness=0.4, contrast=0.4, saturation=0.2,
hue=0.1. We also apply a random order-reverse. We follow the approach from (Duzceker et al., 2021)
for keyframe selection. We reduce the lambda for losses for monocular depth prediction by a factor
of 0.5 at the fifth and eighth epoch.

Evaluation details. During evaluation, we feed the keyframe images sequentially to the model
and perform point merging at every time step. After the point cloud for the entire scene has been
constructed, we render depth maps using the keyframe cameras: we project the points onto the image
planes, and each pixel renders the depth of the closest point. We use TSDF fusion (Curless & Levoy,
1996) to construct a 3D mesh from the rendered depth maps.

4.2 EXPERIMENT RESULTS

ScanNet. ScanNetv2 (Dai et al., 2017) is an indoor RGB-D video dataset, containing scans for 1613
rooms, among which 1201 are used for training, 312 for validation and 100 for testing. We compare
with previous work on both the 3D mesh quality (Table 1) and the 2D depth map quality (Table 2).
We generate two versions of meshes with TSDF fusion resolution at 2cm and 4cm, respectively. As
shown in the tables, our model obtain a high overall score (Chamfer distance and F-score), ranking
top among the online methods and on par with the best offline method. Our recall score is high, but
precision is relative low, meaning that there are noisy, redundant surfaces in the reconstructed mesh.
We note that this is partly because we never performed any post-hoc smoothing steps as an online
method. Besides, our heuristic in the merging step that kept points from old cameras may also lead to
increased noise levels in the scene. In the future we will work on better smoothing approaches.

Profiling. We profile the inference speed of the major components of our model on a single A100
GPU. Amortized over all images, the time spent by the image encoder is a negligible amount of
1.8ms; the monocular depth predictor on average takes 8ms; the scene adjustment step on average
takes 215ms; the depth prediction with feature matching takes 276ms; and the point merging on
average takes 118ms. The transformer U-net is the most expensive sub-component in the scene
adjustment and depth prediction with feature matching. The merging step tends to become slower as
the size of the point cloud grows bigger. In future work we will simplify the network to make it faster.

Ablation. We provided a more detailed analysis of our model by showing results on the ScanNet test
split keyframes generated by different components of our model. We also separately train another
model without scene adjustment to study the necessity of this step. As show in Table 3, feature
matching boosts the depth prediction accuracy by a large margin over the monocular prediction, and
the point merging further boosts the depth accuracy over the prediction from single camera. We
reason that this is because even with feature matching, some regions of the image might still be
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Recon
Type Method Non-

Volumetric
Latency

(ms/frame) Comp↓ Acc↓ Chamfer↓ Prec↑ Recall↑ F-Score↑

Offline

COLMAP (Schönberger et al., 2016) ✓ / 0.069 0.135 0.102 0.634 0.505 0.558
Atlas (Murez et al., 2020) ✗ / 0.084 0.102 0.093 0.598 0.565 0.578
VoRTX (Gao et al., 2023) ✗ / 0.082 0.062 0.072 0.688 0.607 0.644
CVRecon (Feng et al., 2023) ✗ / 0.077 0.045 0.061 0.753 0.639 0.690

Online

DeepVMVS (Duzceker et al., 2021) ✓ 37 0.076 0.117 0.097 0.451 0.558 0.496
NeuralRecon (Sun et al., 2021) ✗ 90 0.128 0.054 0.091 0.684 0.479 0.562
TF (Bozic et al., 2021) ✗ 326 0.099 0.078 0.089 0.648 0.547 0.591
SimpleRecon (Sayed et al., 2022) ✓ 72 0.078 0.065 0.072 0.641 0.581 0.608
VisFusion (Gao et al., 2023) ✗ 90 0.105 0.055 0.080 0.695 0.527 0.598

PointRecon (4cm) ✓ 618 0.059 0.078 0.068 0.576 0.645 0.607
PointRecon (2cm) ✓ 618 0.056 0.073 0.065 0.599 0.675 0.633

Table 1: Mesh Evaluation. Mesh reconstruction quality for the ScanNetv2 test split. We follow Atlas (Murez
et al., 2020)’s evaluation protocol. Volumetric methods predefine a voxel resolution for the scene representation.
Offline methods assume the availability of the entire sequence and cannot conduct local update. The number
in the brackets after our PointRecon indicates the TSDF Fusion resolution. *We present the 4cm resolution
commonly used in volumetric methods, but our point-based approach is not limited to that resolution and
represent finer details, as shown in the 2cm resolution TSDF fusion results.

Recon
Type Method Abs Diff↓ Abs Rel↓ Sq Rel↓ δ<1.05↑ δ<1.25↑ Comp↑

Offline

COLMAP 0.264 0.137 0.138 - 83.4 87.1
Atlas 0.123 0.065 0.045 - 93.6 99.9
VoRTX 0.092 0.058 0.036 - 93.8 95.0
CVRecon 0.078 0.047 0.028 - 96.3 -
FineRecon 0.069 0.042 0.026 86.6 97.1 97.2

Online

NeuralRecon 0.106 0.065 0.031 - 94.8 90.9
TF 0.099 0.065 0.042 - 93.4 90.5
SimpleRecon 0.083 0.046 0.022 - 95.4 94.4

PointRecon (4cm) 0.085 0.054 0.022 71.9 96.4 94.8
PointRecon (2cm) 0.087 0.055 0.024 72.1 96.2 94.6

Table 2: Depth Evaluation. Depth maps quality for the ScanNetv2 test split. These depth maps are rendered
from the reconstructed 3D meshes. We follow Atlas (Murez et al., 2020)’s evaluation protocol. - means the
metric is not provided by the original paper. The number in the brackets indicates the TSDF Fusion resolution.

ambiguous for a single camera. But through merging the predictions from multiple cameras using the
confidence scores, we can obtain a point cloud with overall better quality. We also see from the table
that the scene adjustment step is crucial for the point cloud quality. An adjusted point cloud provides
more accurate feature matching for the new image and better source for the merging.

Scene
Adjustment Model Component Abs Diff↓ Abs Rel↓ Sq Rel↓ δ < 1.05↑ δ < 1.25↑

Off
Monocular 0.206 0.134 0.053 29.7 82.8
Feature Matching 0.130 0.083 0.028 50.7 93.3
Merging 0.109 0.096 0.023 57.8 95.5

On
Monocular 0.206 0.134 0.053 29.7 82.8
Feature Matching 0.113 0.071 0.024 58.4 94.5
Merging 0.085 0.053 0.017 69.9 97.0

Table 3: Ablation studies. We show the depth map quality of the Scannet test split key frames produced by the
different components of our model. We see that the Feature Matching and the Merging modules consistently
improve the reconstruction quality. We also demonstrate the effectiveness of the scene adjustment component
by showing that the depth map quality consistently decreases without it (scene adjustment does not affect the
monocular depth prediction as expected).
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(a) NeuroRecon (b) SimpleRecon (c) Ours (d) Ground truth

(e) NeuroRecon (f) SimpleRecon (g) Ours (h) Ground truth

Figure 5: Visualization of generated meshes. Our result is more accurate than NeuroRecon yet a bit less smooth
due to the lack of smoothing constraints. More reconstruction results can be viewed on our project page.

5 CONCLUSION

We propose an online, point-based reconstruction method that allows flexible local updates, requires
no pre-defined resolution and ensures consistent surface from different views. Our method is mainly
based on our novel ray-based matching approach between a 3D point with potentially incorrect depth
and 2D image pixels. Experiments show that our approach achieves state-of-the-art performance.
However, due to the lack of post-hoc smoothing and heuristics used in the evaluation pipeline, the
reconstruction is still sometimes noisy. In the future, we will continue to work on improving the
algorithm to make the surfaces cleaner.
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A APPENDIX

A.1 SCENE ADJUSTMENT METADATA LIST

For a 3D point qi, a sample point sj on its ray ri and the 2D nearest neighbor p◦j of the projection of
sj onto the current camera, the list of metadata includes:

• the distance between pi (the 3D location of qi) and p1(ri, r
o
j );

• the distance between pi and sj
• the distance between sj and p1(ri, r

o
j )

• the distance between pi and its original camera
• the depth of p2(ri, roj ) with respect to the current camera
• ∥p1(ri, roj )− p2(ri, r

o
j )∥, the distance between the rays

• the cosine angle between ri and roj
• the distance between the projected sj and p◦j
• a binary mask indicating whether the sample point lies inside the current camera frustum
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A.2 IMAGE-SCENE MATCHING METADATA LIST

For each sample point soi and the corresponding 3D ray rj along with its point position pj , the list of
metadata includes:

• the depth of the crossing p2(rj , r
o
i ) with respect to the current camera

• the depth difference between p2(rj , r
o
i ) and the sample point soi

• the distance between p2(rj , r
o
i ) and the current camera

• the distance between p1(rj , r
o
i ) and the camera of the 3D point

• ∥p1(rj , roi )− p2(rj , r
o
i )∥, the distance between the two rays

• the distance between p1(rj , r
o
i ) and pj

• the cosine ray angle between the two rays
• a binary mask indicating whether the neighbor point lies in front of the camera
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