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Abstract

We present a novel perspective on goal-
conditioned reinforcement learning by framing
it within the context of denoising diffusion mod-
els. Analogous to the diffusion process, where
Gaussian noise is used to create random trajecto-
ries that walk away from the data manifold, we
construct trajectories that move away from poten-
tial goal states. We then learn a goal-conditioned
policy to reverse these deviations, analogous to
the score function. This approach, which we call
Merlin1, can reach specified goals from arbitrary
initial states without learning a separate value
function. In contrast to recent works utilizing dif-
fusion models in offline RL, Merlin stands out as
the first method to perform diffusion in the state
space, requiring only one “denoising” iteration
per environment step. We experimentally vali-
date our approach in various offline goal-reaching
tasks, demonstrating substantial performance en-
hancements compared to state-of-the-art methods
while improving computational efficiency over
other diffusion-based RL methods by an order of
magnitude. Our results suggest that this perspec-
tive on diffusion for RL is a simple and scalable
approach for sequential decision making2.

1. Introduction
Reinforcement learning (RL) is a powerful paradigm for
agents to learn behaviors supervised by only a reward sig-
nal. However, the agent usually excels in accomplishing
a specific task, and this process requires constructing a re-
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ward function. Ideally, a generalist agent should acquire
a repertoire of skills that can be applied across a range
of tasks. Goal-conditioned RL (GCRL) (Kaelbling, 1993;
Schaul et al., 2015; Chane-Sane et al., 2021) is a paradigm
to learn general policies that can reach arbitrary target states
within an environment without requiring extensive retrain-
ing. The reward function is sparse and binary—that is a
reward of one for reaching the desired goal and zero reward
otherwise— eliminating the need for hand-engineered re-
ward functions. The sparse reward function necessitates
intensive exploration, which can be infeasible and often
unsafe in practical settings. Concurrently, offline RL has
gained attention in recent years for learning policies from
large amounts of pre-collected datasets without any envi-
ronmental interaction (Levine et al., 2020; Prudencio et al.,
2023). In recent years, the size of offline RL datasets has
steadily increased, allowing agent skills to scale with data
(Guss et al., 2019; Mathieu et al., 2021). Combining of-
fline and goal-conditioned RL can potentially enhance both
generalization and scalability in practical scenarios.

However, offline GCRL introduces new challenges. Many
existing methods rely on learning a value function (Yang
et al., 2021; Ma et al., 2022), which estimates the expected
discounted return for a given state-action pair. During train-
ing, policies often generate actions that are not present in the
offline dataset, leading to inaccuracies in the value function
estimation. These inaccuracies, compounded over time, can
cause policies to diverge (Levine et al., 2020). The value
estimation problem is further exacerbated by a sparse binary
reward signal common in goal-conditioned settings. Pre-
vious attempts to address this problem involve constraints
on policies or conservative value function updates (Kumar
et al., 2019; 2020), which compromise policy performance
(Levine et al., 2020) and make generalization challenging.

To tackle the GCRL problem of reaching specified goal
states from arbitrary initial states, this paper draws inspira-
tion from diffusion models - a powerful class of generative
models that can map random noise in high-dimensional
spaces to target data samples through iterative denoising
(Sohl-Dickstein et al., 2015; Ho et al., 2020). Building
upon the idea of introducing controlled noise to destroy the
structure of the target data distribution, we employ a similar
strategy for GCRL by constructing trajectories that move
away from desired goals during the learning process. A goal-
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Figure 1: Reverse diffusion policy.

conditioned policy is then trained to reverse (or effectively
“denoise”) these trajectories; see Figure 1. By navigating
away from desired goals and subsequently correcting these
deviations, the policy learns to reach any predefined goal
state from arbitrary initial states. This backward view of
diffusion gives us control over the goal distribution, so that
all the trajectories that are used to train the policy end up
in some desired goal state. In contrast, the traditional for-
ward view of RL uses some exploration policy, which may
not end up finding meaningful goals during rollouts. No-
tably, our approach, which we call Merlin, does not learn a
value function, circumventing the value estimation issues
discussed above.

Recent works have leveraged diffusion models for offline
RL by denoising Gaussian noise iteratively to generate tra-
jectory segments (Janner et al., 2022; Ajay et al., 2022) or
sample actions (Wang et al., 2022; Reuss et al., 2023). These
methods can learn expressive policies but are computation-
ally expensive due to the iterative denoising process required
for each environment step. To our knowledge, Merlin is the
first method that performs diffusion in the state space, re-
quiring only one “denoising” iteration per environment step.
This distinction makes Merlin conceptually simpler and
10-15× more efficient than prior diffusion-based methods.
Constructing the forward diffusion process to align with the
underlying Markov Decision Process (MDP) is not imme-
diately evident. This paper explores and experiments with
three potential methods for establishing such a process.

Our contributions can be summarized as follows: First, we
develop a novel goal-conditioned reinforcement learning
approach inspired by diffusion models without learning a
value function. Second, we theoretically justify viewing
the reverse trajectories in RL as a forward diffusion process
and prove that learning a score-like policy maximizes the
likelihood of reaching the specified goal states. Third, we
propose three possible choices for constructing the forward
diffusion process - I) reverse play of the offline trajecto-

ries in the dataset; II) learning a reverse dynamics model,
and; III) a novel latent-space trajectory stitching technique
grounded in nearest-neighbor search, which enables the
generation of state-goal pairs across trajectories. In Sec-
tion 5, we demonstrate the effectiveness of our approach in
various offline goal-reaching tasks with significant perfor-
mance enhancements compared to state-of-the-art methods,
while improving computational efficiency by an order of
magnitude compared to other diffusion-based RL methods.

2. Preliminaries
2.1. Diffusion Probabilistic Models

Diffusion probabilistic models (Sohl-Dickstein et al., 2015;
Ho et al., 2020) are generative models that can be used to
model a data distribution. These latent variable models are
characterized by a probability distribution that evolves over
time, following a forward diffusion process. The forward
diffusion process is generally fixed to add Gaussian noise at
each timestep according to a variance schedule β1, . . . , βT .
Let x0 ∼ q(x0) denote the data and x1, . . . ,xT denote the
corresponding latent variables. The approximate posterior
q(x1:T | x0) is given by,

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (2)

Diffusion probabilistic models then learn a denoising func-
tion that reverses the forward diffusion process. Starting at
p(xT ) = N (xT ; 0, I), the joint distribution of the reverse
process is given by,

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), (3)

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)

where µθ and Σθ can be neural networks. The reverse pro-
cess can produce samples matching the data distribution
after a finite number of transition steps. Note that tradition-
ally, t = 0 corresponds to the data and higher timesteps
correspond to noisy latent variables. In our discussion, we
reverse this notation to be consistent with RL notation – that
is we use the maximum timestep T for data (goal in GCRL),
and decrease the timestep during forward diffusion.

2.2. Goal-conditioned Reinforcement Learning

The RL problem can be described using a Markov Decision
Process (MDP), denoted by a tuple (S,A,P, r, µ, γ), where
S and A are the state and action spaces; P describes the
transition probability as S×A×S → [0, 1], r : S×A → R
is the reward function, µ(s) is the initial state distribution,
and γ ∈ (0, 1] is the discount factor.
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Figure 2: Forward and reverse diffusion process for GCRL using 2D navigation as an example. Star represents the goal state, the red
dotted arrows denote the forward process transitions q(st|st+1), and the green arrows denote the reverse process transitions Pπθ (st+1|st).

Goal-conditioned RL additionally considers a goal space
G := {ϕ(s) | s ∈ S}, where ϕ : S → G is a known state-to-
goal mapping (Andrychowicz et al., 2017). For example, in
the FetchPush task, a robotic arm is tasked with pushing a
block to a goal position specified by (x, y, z) coordinates of
the block, but the state represents the positions and velocities
of the various effectors and components of the robotic arm
as well as the block. The reward function now depends on
the goal, r : S×A×G → R. Generally, the reward function
is sparse and binary, defined as r(s, a, g) = I[∥ϕ(s)−g∥22 ≤
δ], where δ is some threshold distance.

A goal-conditioned policy is denoted by π : S × G → A,
and given a distribution over desired goals p(g), an optimal
policy π∗ aims to maximize the expected return,

J(π) = E g∼p(g),s0∼µ(s0)
at∼π(·|st,g),st+1∼P(·|st,at)

[ ∞∑
t=0

γtr(st, at, g)

]
,

For offline RL problems, the agent cannot interact with the
environment during training and only has access to a static
dataset D = {(st, at, g, rt)}, which can be collected by
some unknown policy.

3. Reaching Goals via Diffusion
Consider the generative modeling problem of generating
samples from some distribution pdata(x) given a set of sam-
ples {xi}Ni=1,xi ∈ Rd. Diffusion modeling entails con-
structing a Markov chain which iteratively adds Gaussian
noise to these samples. The perturbed data effectively cov-
ers the space surrounding the data manifold. The learned
reverse diffusion process can then map any point drawn
from a Gaussian distribution in Rd to the data manifold.

Now consider a goal-augmented MDP (S,A,G,P, r, µ, γ)
with goals g ∈ G sampled from some unknown goal dis-
tribution g ∼ p(g). Goal-conditioned RL aims to learn a
policy that can learn an optimal path from any state s ∈ S to
the desired goal g. This can be viewed as similar to learning
to map random noise in Rd to some target data manifold,
except that the underlying space is now restricted to the state

space of the MDP.

3.1. Forward and Reverse Process

For a fixed policy, the state transitions in an MDP are
given by P(st+1|st, at), where at ∼ π(·|st). This is a
Markov chain, and we denote the Markov transition ker-
nel by Pπ(st+1|st). Moreover, if we could assume the
existence of a unique stationary distribution, running this
Markov chain backwards corresponds to another Markov
chain Pπ(st|st+1); where the relation between the two
is given by the detailed balance condition (e.g., Chung &
Walsh, 1969). We consider this reverse Markov chain to be
a forward diffusion process over the state space of the MDP.

The question is now if we can assume a stationary distri-
bution in different settings. Fortunately, the answer is yes!
While assuming a stationary distribution for the policy is
common with infinite horizons, Bojun (2020) prove the ex-
istence and uniqueness of the steady state in the episodic
setting. The assumptions for their result are that (1) all
policies have finite average episode length and (2) all ter-
minal states have action-independent transitions. The latter
assumption can be interpreted as resurrecting the agent ac-
cording to some initial state distribution once it reaches
some goal state.

The upshot is that we can safely consider the reverse process
in RL as a forward diffusion process. The following table
summarizes the analogy between diffusion models and goal-
conditioned RL:

diffusion model GCRL (Merlin)
target dataset goal states
score function policy

forward process q(st|st+1)
reverse process Pπ(st+1|st)

Reaching goals using diffusion requires constructing a for-
ward diffusion process and learning the corresponding re-
verse process. In the context of RL, the forward diffusion
process involves moving backward from the goal states. It is
not immediately clear how to construct this process, which
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we denote by q(st|st+1), and we discuss several possibili-
ties in Section 4. Note that, as mentioned in Section 2.1, we
set s1 as the initial state and sT as the final state for consis-
tency with RL notation – that is the time index is reversed
in comparison to the convention for diffusion models.

3.2. Optimization Objective

Consider the offline setting where we have a fixed dataset of
trajectories D generated by some unknown behavior policy
πβ , and a trajectory τ ∼ D, where τ = {s1, a1, . . . , sT }.
We can view this trajectory in reverse – starting from
the final state sT , we apply the forward diffusion trans-
formation q(st|st+1) to each state st+1 to obtain state st.
We train a policy denoted by πθ to reverse this diffusion.
The corresponding reverse diffusion process is given by
P(st+1|st, πθ(·|st, g)), where g = ϕ(sT ) is the goal. Our
objective is to maximize the log-likelihood of the goal states
under the reverse diffusion process. The following theo-
rem shows that this objective can be achieved by behavior
cloning, which is analogous to the process used for approxi-
mating the score in denoising diffusion models.

Theorem 3.1. Consider a dataset D(g) collected by an
unknown behavior policy πβ , consisting of trajectories
ending in states ST := {sT | g = ϕ(sT )} with
q(sT |g) denoting the distribution of final states corre-
sponding to g. Then, behavior cloning given by θ∗ =
argmaxθ E(s,a)∼D(g) [log πθ(a|s)] is equivalent to max-
imizing a lower bound on the log-likelihood of the fi-
nal states under the reverse diffusion process L =
EsT∼q(sT |g) [log pθ(sT )].

The proof is provided in Appendix A. Generalizing the
above statement to a distribution over goals is given by the
following corollary. Suppose we sample different datasets
D(g) for different goals g ∼ p(g), where D(g) is produced
from dataset D using hindsight relabeling – that is we are
considering all partial trajectories that pass through specified
goal states. Additionally, we condition the policy on the goal
g. Repeated application of the theorem above for g ∼ p(g)
results in the following corollary.

Corollary 3.2. Given a dataset D and target goal distribu-
tion p(g), behavior cloning using a goal-conditioned pol-
icy θ∗ = argmaxθ Eg∼p(g),(s,a)∼D(g) [log πθ(a|s, g)] max-
imizes a lower bound on the log-likelihood of the goal states
L = Eg∼p(g),sT∼q(sT |g) [log pθ(sT )].

Similar to denoising diffusion models, we additionally con-
dition the policy on the time horizon h separating the current
state and the goal state. In our experiments, the policy is
parameterized as a diagonal Gaussian distribution,

πθ(·|st, g, h) = N (·|µθ(st, g, h), σ2
θ(st, g, h)I)

Note that most prior works that employ behavior cloning do
not learn the variance term and minimize the mean squared
error between observed and predicted actions. As shown
in Section 3.3, predicting the variance allows the policy to
incorporate uncertainty in their action predictions. This is
important in learning from a trajectory far from the goal
state. Following Theorem 3.1, the policy is trained using
behavior cloning to maximize the log probability of actions
given by these transitions,

θ∗ = argmax
θ

E(st,at,g,h)∼Dnew [log πθ(at|st, g, h)] (5)

3.3. An Illustrative Example

We illustrate this concept using a simple 2D navigation envi-
ronment consisting of an agent tasked with reaching a target
goal state. The states are the agent’s (x, y) coordinates, and
actions represent the displacement in the x and y directions,
normalized to be unit length. For these experiments, the
goal state during training is fixed to g = (0, 0), and the
initial agent state is sampled uniformly at random. The
forward diffusion process is constructed by taking random
actions starting from the goal state. For this simple environ-
ment, the forward process transitions q(st|st+1) are simply
displacement vectors based on the random action at.

Figure 3a visualizes the trajectories representing the for-
ward diffusion process, obtained by taking random actions
starting from the goal for T = 50 steps. We set sT = g

(a)
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Figure 3: (a) Visualization of trajectories starting from the goal X generated during the forward process, (b) Predicted actions from
policy trained via diffusion, (c) Predicted actions from policy trained using GCSL.
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and the random state reached at the end of the diffusion
is s1. The policy is parameterized as a diagonal Gaussian
distribution and is trained to reverse these trajectories by
conditioning on the final goal or some future state in the
trajectory. For any state st in the trajectory, we maximize
the likelihood of the observed action at, conditioned on
any future (goal) state g′, given the time horizon h sep-
arating the two states in the observed trajectory. More
formally, the policy parameters are trained by optimiz-
ing θ∗ = argmaxθ E(st,at,g′)∼τ log πθ(at|st, g′, h) where
g′ = ϕ(si) and h = i− t for t < i ≤ T .

Figure 3b visualizes the actions sampled from the trained
policy for different states when conditioned on the goal g =
(0, 0) using an input time horizon of one. For comparison,
Figure 3c visualizes the trained policy using GCSL (Ghosh
et al., 2020), which uses hindsight relabeling to train policies
on data collected by the agent itself. Both methods were
trained for 100k policy updates. The policy learned via
diffusion learns the optimal path, which takes the shortest
time to reach the goal. We extend this example to more
complex settings, including multiple goals and a walled
environment, in Appendix B. Note that the trained policy is
analogous to the score function for diffusion models, and
the action is analogous to the predicted noise, which serves
to “denoise” the states towards the goal.
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(c) h=10
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(d) h=20

Figure 4: Actions sampled from the trained policy, showcasing
the effect of time horizon during evaluation.

For policy evaluation, the choice of time horizon h to be
used is not immediately obvious. We investigate the effect
of changing the time horizon, shown in Figure 4. For h = 1,
the policy always takes the most direct path to the goal
regardless of the input state. For larger values of the time
horizon, the policy has a high variance close to the goal
and a low variance for the optimal action further away. In
Section 5.2, we perform ablations to further investigate its
effect on performance.

We then test the generalization capabilities of our approach
by evaluating the policy on out-of-distribution goals. Dur-
ing training, the goal is fixed to be at the center but during
evaluation, we condition the policy on random goals. Fig-
ure 5 shows that the policy can effectively generalize to
different goals due to hindsight relabeling. Note that GCSL
also uses hindsight relabeling, but unlike Merlin, it often
takes sub-optimal paths to reach the goal.
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Figure 5: Evaluating the trained policy on out-of-distribution
goals. Red X denotes the goal during training, and green X denotes
the goal used for evaluation. Top: Merlin; Bottom: GCSL.

4. Generating Reverse Trajectories
In this section, we discuss the application of Merlin to offline
datasets. A straightforward application of Merlin to offline
data involves I) loading the dataset to a replay buffer and
sampling trajectories in reverse. To create more varied
diffusion trajectories beyond the dataset, we propose two
potential ways to construct the forward process: II) using
a reverse model to simulate diffusion trajectories and; III)
a novel non-parametric method that stitches trajectories to
create diverse diffusion paths.

4.1. Reverse Parametric Model

One method to simulate the forward (diffusion) process
q(st|st+1) is to train a reverse (RL) model that takes states
as inputs and produces candidate previous actions and previ-
ous states. We can break this into two parts: (a) the reverse
policy that given st+1 produces the previous action at; (b)
the reverse dynamics model produces the previous state st
given st+1 and at.

Reverse policy To generate diverse candidate actions for
reverse rollouts, we follow the procedure described in Wang
et al. (2021). The reverse policy is parameterized as a con-
ditional variational autoencoder (CVAE), consisting of an
action encoder Eω that outputs a latent vector z, and an ac-
tion decoder Dξ which reconstructs the action given latent
vector z. The reverse policy is trained by maximizing the
variational lower bound,

L(ω, ξ) = E(st,at,st+1)∼D [DKL (Eω(st+1, at)||N (0, I))]

+ Ez∼Eω(st+1,at)

[
(at −Dξ(st+1, z))

2
]
, (6)

Reverse Dynamics Model We parameterize the dynamics
model, denoted as fψ , using a Gated Recurrent Unit (GRU)
(Cho et al., 2014) and optimize the model parameters by
minimizing the mean squared error,

L(ψ) = Eτ∼D∥st − fψ(at, st+1, . . . , sT )∥22, (7)
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Using such a dynamics model moves beyond the Marko-
vian assumption, as mentioned in Section 3.1. In our im-
plementation, the reverse dynamics model fψ predicts the
state difference s∆ = s′ − s instead of the absolute state s.
For image inputs, we use a Convolutional Neural Network
(CNN) to produce latent representations of the images, and
predict the state difference in the latent space. Full details
of the model architecture and hyperparameters are provided
in Appendix D.

4.2. Reverse Non-Parametric Model

As an alternative to the model-based approach, we introduce
a trajectory stitching operation to generate state-goal pairs
across trajectories. The basic idea behind this operation is
that if two states from different trajectories are very close to
each other, then the sub-trajectory leading up to one of these
states is also a reasonably good path to reach the other state;
see Figure 6. One caveat with this method is that nearby
states may not necessarily be connected (think of nearby
positions on two sides of a barrier.) To address this issue,
we learn representations based on state connectivity using
contrastive learning (Oord et al., 2018). The positive pairs
are consecutive state pairs and negative pairs are randomly
sampled state pairs from the dataset. The loss function to
train the contrastive encoder hϕ is given by,

L(ϕ) = E(s,s′)∼D

[
− log

exp(hϕ(s)
⊤hϕ(s

′))∑
s′neg∈D exp(hϕ(s)⊤hϕ(s′neg))

]
(8)

We then perform the trajectory stitching in the latent space,
since nearby states in this space are more likely to be con-
nected.

Figure 6: Trajectory stitching, where nearest-neighbors are com-
puted in learned latent space such that connected states are nearby.

Next, we have to choose a metric and corresponding thresh-
old, so as to identify which states can be stitched across
trajectories. Since nearest-neighbors are computed based on
contrastive representations, we choose cosine similarity as
the metric and a threshold of 0.9999. We map all states in
the dataset to the latent space and construct a ball tree for
all the state representations to allow quick nearest-neighbor
search. For a d-dimensional latent space with N samples,

the ball-tree can be efficiently queried with the time com-
plexity O(d logN). We sample random goal states from the
dataset and iteratively add the previous state-action to the
new trajectories. At each step, we query the ball tree for the
nearest neighbor and if the cosine similarity is greater than
the threshold, we switch to the trajectory corresponding to
the neighbor state, otherwise, we stick to the same trajectory.
Appendix D.4 provides implementation details as well as a
discussion on the time complexity of tree search and choice
of threshold.

4.3. Theoretical Implications

Our theoretical justification given in Theorem 3.1 relates
likelihood maximization under the reverse diffusion process
to behavior cloning for a given dataset. Using the methods
above to generate additional forward diffusion trajectories
results in a different augmented dataset. Our theorem still
applies in the sense that for the augmented dataset, likeli-
hood maximization is still related to behavior cloning. The
only difference is that the augmented dataset has potentially
more diverse and informative diffusion paths to train the
policy.

Algorithm 1 Merlin algorithm. Red and blue statements
apply only for Merlin-P and Merlin-NP, respectively. Purple
statements apply to both.

Input: Dataset D, hindsight ratio p, number of training
steps N , number of new trajectories to collect M .
Output: Policy πθ
Train fψ , Eω , Dξ on D by minimizing Equation (6,7)
Train hϕ on D by minimizing Equation (8)
Construct ball tree T for all states encoded using hϕ
# Simulate forward diffusion process
Collect M trajectories in Dnew using fψ , Eω , Dξ.
Collect M trajectories in Dnew using tree T
D ← Dnew ∪ D
# Train policy via reverse diffusion
for n← 1 to N do

Sample batch (s, a, g) from D
Relabel fraction p of batch
Update policy πθ as per Equation (5)

end for
Return: πθ

5. Experiments
Tasks. We evaluate Merlin on several goal-conditioned
control tasks using the benchmark introduced in Yang et al.
(2021). The benchmark consists of 10 different tasks of
varying difficulty, with the maximum trajectory length fixed
to be T = 50 for all tasks. The tasks include the relatively
easier PointReach, PointRooms, Reacher, SawyerReach,
SawyerDoor, and FetchReach tasks with 2000 trajectories
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Table 1: Discounted returns for state-space input, averaged over 10 seeds.

Task Name Ours Offline GCRL Diffusion-based
Merlin Merlin-P Merlin-NP GoFAR WGCSL GCSL AM DD g-DQL BESO

E
xp

er
t

PointReach 29.26±0.04 29.34±0.15 29.34±0.05 27.18±0.65 25.91±0.87 22.85±1.26 26.14±1.11 15.03±0.88 28.65±0.44 29.10±0.28

PointRooms 25.38±0.37 25.25±0.27 25.63±0.32 20.40±1.00 19.90±0.99 18.28±2.29 23.24±1.58 10.84±2.67 27.53±0.57 24.13±0.46

Reacher 22.75±0.59 24.25±0.47 24.97±0.54 22.51±0.82 23.35±0.64 20.05±1.37 22.36±1.03 14.39±1.08 22.54±1.42 22.78±1.02

SawyerReach 26.89±0.07 26.92±0.09 27.35±0.06 22.82±1.15 22.07±1.46 19.20±1.79 23.56±0.33 13.39±0.75 24.17±0.01 26.44±0.31

SawyerDoor 26.18±2.19 25.85±0.97 26.15±2.08 23.62±0.35 23.92±1.10 20.12±1.33 26.39±0.42 12.85±0.77 24.81±0.38 23.14±0.56

FetchReach 30.29±0.03 30.34±0.02 30.42±0.04 29.21±0.26 28.17±0.38 23.68±1.07 29.08±0.12 11.55±0.68 28.71±0.15 29.18±0.25

FetchPush 19.91±1.20 22.13±1.41 21.58±1.63 22.41±1.69 22.22±1.51 17.58±1.47 19.86±3.16 9.49±2.85 17.82±0.55 14.52±0.95

FetchPick 19.66±0.78 21.78±1.01 20.41±0.92 19.79±1.12 18.32±1.56 12.95±1.90 17.04±3.81 8.76±0.64 14.45±0.61 18.56±0.82

FetchSlide 4.19±1.89 4.98±1.46 5.19±2.02 3.34±1.01 5.17±3.17 1.67±1.41 3.31±1.46 1.21±0.59 0.98±0.58 3.40±0.80

HandReach 22.11±0.55 23.44±0.62 24.93±0.49 15.39±6.37 18.05±5.12 0.15±0.11 0.00±0.00 0.00±0.00 0.00±0.00 15.44±0.24

Average Rank 3.5 2.4 1.7 5.4 5.5 8.6 6.2 9.7 6.2 5.4

R
an

do
m

PointReach 29.26±0.04 29.36±0.08 29.31±0.04 23.96±0.93 25.76±0.96 17.74±1.84 25.55±0.57 11.12±0.72 22.65±1.57 26.12±1.04

PointRooms 24.80±0.36 25.17±0.19 25.16±0.59 18.09±4.13 19.41±1.01 14.69±2.51 19.10±1.39 9.76±2.99 20.88±0.96 22.80±1.12

Reacher 21.09±0.65 24.49±0.48 22.24±0.54 25.20±0.48 22.98±0.91 10.62±2.30 23.70±0.62 4.74±0.36 6.06±0.84 18.16±1.08

SawyerReach 26.70±0.14 26.78±0.12 27.07±0.07 19.48±1.39 21.32±1.40 8.78±2.59 25.29±0.35 3.46±0.86 2.84±0.05 21.16±0.95

SawyerDoor 19.05±0.66 20.37±1.18 21.69±2.36 20.69±2.14 19.58±3.55 12.47±3.08 18.82±1.67 7.92±0.86 14.77±0.51 16.56±0.92

FetchReach 30.42±0.04 30.44±0.02 30.42±0.04 28.34±0.98 27.94±0.30 18.96±1.77 27.11±0.22 1.71±0.77 1.21±0.46 23.02±1.64

FetchPush 5.21±0.43 6.83±0.32 7.22±0.35 6.99±1.27 5.35±3.36 4.22±2.19 4.53±1.94 4.49±1.34 5.35±0.23 5.10±0.62

FetchPick 3.75±0.18 4.22±0.16 4.36±0.19 3.81±3.71 1.87±1.59 0.81±0.82 3.08±1.35 2.16±0.75 2.17±0.18 3.21±0.32

FetchSlide 2.67±0.35 2.98±0.21 3.15±0.14 1.32±1.22 1.04±0.98 0.24±0.27 1.12±0.39 1.31±0.52 0.00±0.00 0.54±0.12

HandReach 14.89±2.54 18.24±2.18 20.06±3.06 0.08±0.07 2.54±1.42 1.41±0.51 0.00±0.00 0.00±0.00 0.00±0.00 8.36±0.18

Average Rank 3.8 1.9 1.7 4.5 5.5 8.6 6.0 8.8 7.9 5.9

Merlin

Merlin
-P

Merlin
-NP

GoFAR
WGCSL

GCSL AM DD
g-DQL

BESO

104

Tr
ai

ni
ng

 ti
m

e 
(s

) -
 lo

g 
sc

al
e

Merlin

Merlin
-P

Merlin
-NP

GoFAR
WGCSL

GCSL AM DD
g-DQL

BESO

10 1

100

In
fe

re
nc

e 
tim

e 
(s

) -
 lo

g 
sc

al
e

Figure 7: Mean (a) training and (b)
inference times for state-space input.

each (1×105 transitions); and the harder tasks include Fetch-
Push, FetchPick, FetchSlide, and HandReach with 40000
trajectories (2× 106 transitions). The benchmark consists
of two settings ‘expert’ and ‘random’. The ‘expert’ dataset
consists of trajectories collected by a policy trained using
online DDPG+HER with added Gaussian noise (σ = 0.2) to
increase diversity, while the ‘random’ dataset consists of tra-
jectories collected by sampling random actions. The dataset
includes the desired goal for each trajectory in addition to
the state-action pairs. The reward for each task is sparse
and binary, +1 for reaching the goal, and 0 everywhere else.
Further details on these tasks are provided in Appendix F.

Algorithms. We compare with state-of-the-art offline
GCRL methods, as well as diffusion-based RL methods.
The GCRL methods are: (1) GCSL (Ghosh et al., 2020)
which uses behavior cloning with hindsight relabeling, (2)
WGCSL (Yang et al., 2021) that improves upon GCSL by
incorporating advantage function weighting, (3) Actionable-
Model (AM) (Chebotar et al., 2021) which uses an actor-
critic method with conservative Q-learning and goal chain-
ing, and (4) GoFAR (Ma et al., 2022) which uses advantage-
weighted regression with f -divergence regularization based
on state-occupancy matching. The diffusion-based methods
are: (1) Decision Diffuser (DD) (Ajay et al., 2022) which
generates full trajectories from random Gaussian noise us-
ing classifier-free guidance, (2) Diffusion-QL (DQL) (Wang
et al., 2022) that represents the policy as a diffusion model
guided by a learned value function, modified by additionally
conditioning the policy on goals (g-DQL), and (3) BESO
(Reuss et al., 2023) that uses a goal-conditioned score-based
diffusion model as its policy. Appendix E provides imple-
mentation details of the baselines.

We implement three variations of Merlin, all of which use
behavior cloning and hindsight relabeling,

• Merlin uses the offline data loaded to a replay buffer,

and samples trajectories for reverse play.
• Merlin-P uses a learned parametric reverse dynamics

model and reverse policy as described in Section 4.1 to
generate additional diffusion trajectories starting from
goal states, in addition to the offline data.

• Merlin-NP uses the non-parametric trajectory stitching
method introduced in Section 4.2 to generate diverse
diffusion trajectories, in addition to the offline data.
Note that while the nearest-neighbors are computed
based on the contrastive representations, the diffusion
policy is trained on the original states.

We train each method for 500k policy updates using a batch
size of 512, and the results are averaged over 10 seeds. Full
implementation details for the three variants of Merlin are
provided in Appendix D. We tune two hyperparameters -
the hindsight relabeling ratio and the time horizon on each
individual task; see Section 5.2 for an ablation study. For the
baselines, we use the best-reported hyperparameter values.

5.1. Results

State-space. Table 1 presents the discounted returns us-
ing the sparse binary task reward. The discounted return
takes into account how fast the agent reaches the goal and
whether it stays in the goal region thereafter. We also re-
port the final success rate in Appendix I. The results show
that the basic implementation of Merlin outperforms the
baselines on most tasks. Merlin-P and Merlin-NP improve
the performance further, achieving the highest discounted
returns on most tasks, and are overall the best-performing
methods. Since Merlin does not perform multiple denois-
ing steps for each environment step, training and inference
are roughly an order of magnitude faster than the other
diffusion-based methods (DD, g-DQL and BESO), which
is shown in Figure 7. A more detailed discussion on the
training and inference times for all methods is provided in
Appendix D.5.
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Table 2: Discounted returns for pixel-space input, averaged over 10 seeds.

Task Name Ours Offline GCRL Diffusion-based
Merlin Merlin-P Merlin-NP GoFAR WGCSL GCSL AM DD g-DQL BESO

E
xp

er
t PointReach 27.69±0.06 28.54±0.08 28.95±0.05 25.14±0.52 24.25±0.60 21.06±1.06 25.16±1.22 8.20±0.75 26.48±0.76 27.92±0.55

PointRooms 23.76±0.19 25.16±0.26 25.28±0.22 20.06±0.34 19.72±0.86 18.15±1.59 22.47±1.25 5.54±1.88 26.28±0.64 23.80±0.62

SawyerReach 26.87±0.04 26.98±0.08 27.15±0.06 22.16±0.84 21.59±1.02 19.04±1.14 23.10±1.12 6.89±0.88 23.92±0.15 25.96±0.44

SawyerDoor 25.42±0.08 25.15±0.18 26.08±0.08 23.17±0.32 23.24±0.75 19.76±1.36 25.89±0.48 6.06±1.12 24.44±0.85 22.78±1.28

Average Rank 3.75 2.75 1.25 7.0 7.5 9.0 5.0 10.0 4.0 4.75

R
an

do
m PointReach 27.52±0.05 28.80±0.08 28.76±0.06 23.51±0.68 25.10±0.88 17.34±1.20 24.89±0.72 6.36±1.04 22.15±1.32 25.85±0.98

PointRooms 22.40±0.07 24.05±0.22 24.02±0.09 17.82±1.89 19.02±1.20 14.12±1.92 18.82±1.72 4.67±2.15 20.16±0.98 22.24±1.08

SawyerReach 26.14±0.04 26.46±0.10 26.78±0.05 19.22±1.08 21.04±1.18 8.64±2.44 25.01±0.42 2.02±2.59 2.32±1.01 20.89±0.98

SawyerDoor 18.99±0.08 20.10±1.78 21.12±0.09 20.43±1.89 19.38±1.68 12.04±2.81 17.72±0.84 4.12±1.32 14.18±0.65 16.24±1.14

Average Rank 3.5 1.75 1.5 6.0 5.0 8.75 5.75 10.0 7.5 5.25

Figure 8: Goal-conditioned tasks from left to right: PointReach, PointRooms, Reacher, Sawyer-
Reach, SawyerDoor, FetchReach, FetchPush, FetchPick, FetchSlide, and HandReach.
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Figure 9: Mean (a) training and (b)
inference times for pixel-space input.

Pixel-space. We also perform experiments with pixel-
space observations for the tasks that support image observa-
tions. The results show a similar trend as the state-space in-
puts and are provided in Table 2. In terms of computational
efficiency, the improvement of Merlin over the diffusion-
based methods is even more pronounced (Figure 9), since
the pixel-space observations are much higher dimension
than the state observations.

Comparison to GCSL. Both Merlin and GCSL employ
behavior cloning with hindsight relabeling, with two key
differences: (1) Merlin learns the variance of the policy in
addition to the mean, which provides additional flexibility
during optimization, and (2) Merlin conditions the policy
on the time horizon similar to the denoising function in
diffusion models. GCSL also allows for this conditioning,
however, it does not learn the variance, resulting in simi-
lar performance with and without conditioning on the time
horizon. The significance of this difference between proper
conditioning on the horizon is comparable to the difference
between denoising diffusion model and earlier score based

methods for generative modelling. Figure 4 illustrates the
effect of time horizon on the learned variance, and Sec-
tion 5.2 further demonstrates its effect on the performance
of Merlin. Beyond the vanilla setting of reverse play from
the buffer, the forward view of GCSL and the backward
view of Merlin, which is inspired by diffusion, can result
in very different outcomes. Consider the model-based ap-
proach: a forward dynamics model generates trajectories
without guarantees on the distribution over the goal state.
In contrast, in a reverse dynamics model, one has control
over this distribution. We apply a modified version of the
nearest-neighbor trajectory stitching operation to GCSL by
constructing forward-looking trajectories and report the per-
formance in Appendix H. Here again, we see that GCSL’s
performance remains inferior to Merlin-NP. We also com-
pare Merlin-P and Merlin-NP with their corresponding for-
ward view variants in Appendix G demonstrating that the
backward view is superior on most tasks.
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Figure 10: Discounted returns for each dataset with different values of (a) hindsight ratio and (b) time horizon during evaluation. Values
are normalized with respect to the maximum value in each row.
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5.2. Ablation Studies

Hindsight Relabeling. During training, we employ hind-
sight relabeling to replace the desired goals with a future
state further along the trajectory. A hyperparameter, which
we call the hindsight ratio, specifies the fraction of each
sampled batch of transitions that are subjected to this rela-
beling operation. As shown in Figure 10a, this ratio can
significantly affect performance depending on the dataset.
In general, a low-to-moderate value for the expert datasets
and a high value for the random datasets seem to result
in good performance. This observation can be explained
by the fact that a large number of the expert trajectories
reach the desired goals hence the original state-goal pairs
provide good quality data for training the policy. On the
other hand, the random trajectories benefit more from hind-
sight relabeling since state-goal pairs in the original dataset
are sub-optimal, and relabeling provides realistic state-goal
pairs to the policy. For the baselines that use hindsight re-
labeling, we use the optimal hindsight ratio as reported in
their works.

Time Horizon. During training, the time horizon indicates
the time difference between the current and desired goal
states. During evaluation, the optimal value of the time
horizon depends on the environment, as shown in Figure 10b.
The last column, labeled ‘None’ shows the performance
without conditioning on the time horizon, and for all tasks
conditioning on the time horizon performs much better than
without. For the easier tasks, a time horizon of h = 1 or
h = 5 seems to work best, whereas for the more complex
tasks, a higher value seems optimal. This can be attributed
to the fact that for the more difficult tasks, the policy is
expected to require more time steps to successfully reach
the goal. In particular, the HandReach task seems especially
sensitive to the time horizon, as using h = 1 performs
significantly better than other values or without using time
horizon conditioning. The optimal values for the hindsight
ratio and the time horizon are provided in Appendix D.2.

6. Related Works
Offline Goal-Conditioned Reinforcement Learning. Of-
fline GCRL methods generally aim to address the sparse
nature of the rewards and the limited state-goal pairs
present in the dataset. One widely used technique for
goal-reaching problems is hindsight experience relabeling
(HER) (Andrychowicz et al., 2017), which replaces the de-
sired goals with the achieved goals that appear later along
the same trajectory. Closely related to our work is Goal-
Conditioned Supervised Learning (GCSL) (Ghosh et al.,
2020) which uses HER to train the policy on data col-
lected by the agent itself. In the offline setting, this takes
the form of behavior cloning combined with HER. Sev-

eral other works employ goal-conditioned behavior cloning
(Ding et al., 2019; Lynch et al., 2020) to learn performant
policies. Yang et al. (2021); Chebotar et al. (2021) incorpo-
rate value learning methods and adapt them to the offline
goal-conditioned setting. A different line of work in offline
RL is based on distribution matching of the state-action
visitation distribution of the learned policy and the expert
policy (Ghasemipour et al., 2020; Ni et al., 2021). Ma et al.
(2022) apply this state-occupancy matching perspective to
the offline goal-conditioned setting.

Diffusion-based Reinforcement Learning. Recent
works have leveraged diffusion models for offline RL by
generating trajectory segments from random Gaussian noise.
Diffuser (Janner et al., 2022) employs classifier-based
guidance using a learned value function to guide the
diffusion process to generate high-return trajectories. In
contrast, Decision Diffuser (DD) (Ajay et al., 2022) uses
classifier-free guidance by learning a denoising function
conditioned on returns, goals, or constraints. These
methods operate similarly to model predictive control
(Garcia et al., 1989), where only the first action of the
generated trajectory is performed. A different line of
work, including Diffusion-QL (DQL) (Wang et al., 2022),
represents the policy as a diffusion model where actions are
sampled by denoising random Gaussian noise, conditioned
on the states and guided by a learned value function. BESO
(Reuss et al., 2023) uses a goal-conditioned score-based
diffusion model as its policy while decoupling the score
function learning and inference sampling process.

7. Conclusion
We introduce Merlin, a goal-conditioned RL method that
draws inspiration from generative diffusion models. Its main
appeal is simplicity and potential for scalability, as proven
by denoising diffusion models. Distinct from other works
that use diffusion for RL, we construct trajectories that “dif-
fuse away” from potential goals and train a policy to reverse
them, analogous to the score function. We discuss several
choices to construct the forward diffusion process and intro-
duce a novel latent space trajectory stitching method that can
be applied to most offline RL algorithms. We demonstrate
that Merlin is performant and efficient on various offline
goal-conditioned control tasks.
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Impact Statement
This paper contributes to the advancement of both reinforce-
ment learning and the broader field of machine learning.
In particular, we foresee it to have a positive impact on
the scale of problems addressed by reinforcement learning.
Although the scalability of such applications in real-world
domains from robotics and recommendation systems, to au-
tonomous driving may have significant societal impacts, we
find that our proposed method is agnostic to the positivity of
this impact, and similar to many other methodologies can be
deployed in applications with positive or negative societal
impacts.
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Learning to Reach Goals via Diffusion

A. Proof of Theorem 3.1
Setting. Consider a dataset D(g) where each trajectory is of the form τ = {s1, a1, . . . , sT } generated by some unknown
behavior policy πβ . The final states are such that g = ϕ(sT ). We view these trajectories in reverse - starting from the final
state sT , we apply some unknown transformation to state st+1 to obtain state st. The corresponding forward diffusion
process is denoted by q(st|st+1).

Outline. The basic steps involved in the proof are:

1. Define the forward and reverse diffusion processes.
2. Obtain the distribution of final states achieved by the reverse diffusion process.
3. Define the log-likelihood of final states under the reverse diffusion process. Lower bound the log-likelihood using

Jensen’s inequality and simplify the resulting expression.
4. Obtain the optimal policy parameters by maximizing the lower bound for (a) deterministic and (b) stochastic MDPs.

Proof.

1. Let q(sT |g) denote the target distribution of final states corresponding to the goal g. For brevity, we denote it simply as
q(sT ), since in this setting the goal g is fixed. The forward diffusion trajectory, starting at sT and performing T steps
of diffusion is thus,

q(s1, . . . , sT ) = q(sT )

T−1∏
t=1

q(st|st+1),

We train a policy denoted by πθ(·|st) to reverse this diffusion. The corresponding reverse diffusion process is given by,

pθ(st+1|st) = P(st+1|st, πθ(·|st)),

The generative process corresponding to this reverse diffusion is,

pθ(s1, . . . , sT ) = p(s1)

T−1∏
t=1

pθ(st+1|st),

where p(s1) is the distribution of initial states.

2. The distribution of final states achieved by the reverse diffusion process,

pθ(sT ) =

∫
ds1 . . . dsT−1 pθ(s1, . . . , sT )

=

∫
ds1 . . . dsT−1 q(s1, . . . , sT−1|sT )

pθ(s1, . . . , sT )

q(s1, . . . , sT−1|sT )

=

∫
ds1 . . . dsT−1 q(s1, . . . , sT−1|sT )p(s1)

T−1∏
t=1

pθ(st+1|st)
q(st|st+1)

3. During training, the objective is to maximize the log-likelihood of final states given by the reverse diffusion process,
with final states sampled from the target state distribution q(sT |g),

L(θ) = EsT∼q(sT ) [log pθ(sT )] =

∫
dsT q(sT ) log pθ(sT )

=

∫
dsT q(sT ) log

[∫
ds1 . . . dsT−1 q(s1, . . . , sT−1|sT )p(s1)

T−1∏
t=1

pθ(st+1|st)
q(st|st+1)

]

≥
∫
ds1 . . . dsT q(s1, . . . , sT ) log

[
p(s1)

T−1∏
t=1

pθ(st+1|st)
q(st|st+1)

]

12
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where the lower bound is provided by Jensen’s inequality.
We separate the term corresponding to the initial state s1,

L(θ) ≥
∫
ds1 . . . dsT q(s1, . . . , sT )

T−1∑
t=1

log

[
pθ(st+1|st)
q(st|st+1)

]
+

∫
ds1 q(s1) log p(s1)

=

T−1∑
t=1

∫
dstdst+1 q(st, st+1) log

[
pθ(st+1|st)
q(st|st+1)

]
+

∫
ds1 q(s1) log p(s1)

We apply Bayes’ rule to rewrite in terms of posterior of the forward diffusion,

L(θ) ≥
T−1∑
t=1

∫
dstdst+1 q(st, st+1) log

[
pθ(st+1|st)
q(st+1|st)

q(st+1)

q(st)

]
+

∫
ds1 q(s1) log p(s1)

=

T−1∑
t=1

∫
dstdst+1 q(st, st+1) log

[
pθ(st+1|st)
q(st+1|st)

]

+

T−1∑
t=1

[Hq(St)−Hq(St+1)] +

∫
ds1 q(s1) log p(s1)

+Hq(S1)−Hq(ST ) +

∫
ds1 q(s1) log p(s1)

= −
T−1∑
t=1

∫
dstdst+1 q(st)q(st+1|st) log

[
q(st+1|st)
pθ(st+1|st)

]
+Hq(S1)−Hq(ST ) +

∫
ds1 q(s1) log p(s1)

= −
T−1∑
t=1

∫
dst q(st)DKL

(
q(st+1|st)∥pθ(st+1|st)

)
+Hq(S1)−Hq(ST ) +

∫
ds1 q(s1) log p(s1)

4. We maximize the log-likelihood with respect to the policy parameters θ, which is equivalent to minimizing the first
term,

θ∗ = argmax
θ

L(θ) ≡ argmin
θ

T−1∑
t=1

∫
dst q(st)DKL

(
q(st+1|st)∥pθ(st+1|st)

)
The posterior of the forward diffusion is simply the state transition using the behavior policy πβ ,

θ∗ = argmin
θ

T−1∑
t=1

∫
dst q(st)DKL

(
P(st+1|st, πβ(·))∥P(st+1|st, πθ(·|st))

)
(a) For deterministic state transitions, the next state st+1 is given by the dynamics function f of the MDP, st+1 =

f(st, at). For a given state st, this dynamics function represents a fixed parameter transformation of the policy
function. We exploit the property that KL divergence is invariant under parameter transformations. Thus for a
deterministic MDP,

θ∗ = argmin
θ

T−1∑
t=1

∫
dst q(st)DKL

(
f(st, πβ(·))∥f(st, πθ(·|st))

)
= argmin

θ

T−1∑
t=1

∫
dst q(st)DKL

(
πβ(·)∥πθ(·|st)

)
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(b) For stochastic state transitions, the next state st+1 is given by a noisy dynamics function st+1 = f(st, at, ϵ),
where ϵ ∼ ξ(ϵ) denotes random noise to account for the stochasticity. For a given state st, this dynamics function
represents a fixed parameter transformation of the joint distribution of the policy and the noise distribution.
Abusing notation, we denote this joint distribution as p(π, ξ). Since KL divergence is invariant under parameter
transformations, for a stochastic MDP,

θ∗ = argmin
θ

T−1∑
t=1

∫
dst q(st)DKL

(
f(st, πβ(·), ξ)∥f(st, πθ(·|st), ξ)

)
= argmin

θ

T−1∑
t=1

∫
dst q(st)DKL

(
p(πβ(·), ξ)∥p(πθ(·|st), ξ)

)
Since the policy and the noise distribution ξ are independent, the KL divergence decomposes,

θ∗ = argmin
θ

T−1∑
t=1

∫
dst q(st)DKL

(
πβ(·)∥πθ(·|st)

)
+

T−1∑
t=1

DKL

(
ξ∥ξ

)
= argmin

θ

T−1∑
t=1

∫
dst q(st)DKL

(
πβ(·)∥πθ(·|st)

)
Minimizing the KL divergence between the policies is equivalent to maximizing the log-likelihood of the behavior
policy action under the parameterized policy. Therefore, given state-action-goal tuples (s, a) ∼ D(g),

θ∗ = argmax
θ

E(s,a)∼D(g) [log πθ(a|s)]

Therefore, behavior cloning is equivalent to maximizing a lower bound on the log-likelihood of the target final states
achieved by the reverse diffusion process.

B. Additional Illustrative Experiments
B.1. Four Rooms Navigation

The illustrative example presented in Section 3.3 considered a simple navigation problem. In this section, we extend the
analysis to the four rooms variant, which adds walls that the agent must navigate around in order to reach the goal. We seek
to understand whether Merlin can learn policies that produce more complex behavior compared to simply heading straight
toward the goal.

(a)
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(b)
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(c)

Figure 11: (a) Visualization of trajectories starting from the goal X generated during the forward process, (b) Predicted actions from
policy trained via diffusion, (c) Predicted actions from policy trained using GCSL.

The goal state during training is fixed to g = (5,−5) in one of the quadrants. Figure 11a visualizes the trajectories during
forward diffusion by taking random actions starting from the goal. Figure 11b and Figure 11c visualize the policy learned by
Merlin and GCSL, respectively. Both methods were trained for 100k policy updates. Merlin effectively learns to navigate
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Figure 12: Evaluating the trained policy on out-of-distribution goals. Red X denotes the goal used during training, and green X denotes
the goal used for evaluation. Top: Diffusion; Bottom: GCSL.

around the walls, while still managing to reach the goal. In contrast, GCSL often navigates directly into the walls and in
some areas wanders away from the goal.

We then evaluate the trained policy on out-of-distribution goals. During training, the goal is fixed to g = (5,−5) but during
evaluation, we condition the policy on random goals. As shown in Figure 12, Merlin effectively generalizes this complex
navigation behavior to new goals, learning to avoid the walls in most cases. One interesting case is when the goal is in the
quadrant furthest away from the training goal. Here, Merlin has some difficulty navigating around the walls, particularly the
walls in the center. This is likely due to insufficient data generated by the forward diffusion process in this quadrant (see
Figure 11a).

B.2. Multiple Goal Setting
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Figure 13: The policy is conditioned on the bottom leftmost goal in all cases. Top: Diffusion; Bottom: GCSL.
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The illustrative example presented in Section 3.3 considered a single goal setting. In this section, we verify that Merlin
works as expected in the multiple goal setting. In these experiments, the forward diffusion process comprises taking random
actions starting from one of the goals, which is picked randomly. A trained agent should be able to effectively navigate
towards any one of these goals.

Figure 13 shows the predicted actions from Merlin and GCSL for navigating towards one particular goal (fixed to be the
bottom leftmost goal) among two, three, and four possible goals. Merlin successfully navigates to the specified goal taking
the most optimal path in all cases, whereas GCSL struggles to reach the specified goal.

C. Relation to Diffusion Probabilistic Models
Merlin takes inspiration from generative diffusion models, resulting in several parallels as highlighted earlier. Notably,
Figure 3 visualizes the noisy trajectories generated via the forward diffusion process and conveys the similarity of the
learned policy to the score function in generative diffusion models. However, there are several key differences:

• The noise in diffusion probabilistic models is fixed to be Gaussian, whereas in application to RL, the noise corresponds
to taking actions and reversing the dynamics, which is dependent on the properties of the MDP.

• The noisy samples for diffusion models lie outside the data manifold and hold no significance, while in this case, the
noisy samples are valid states of the MDP.

• Lastly, conditioning the policy on goals is different from class conditioning in diffusion - here, any state in the diffusion
path is a potential goal.

D. Implementation Details
D.1. Merlin Algorithm

Algorithm 2 Detailed Merlin algorithm. Red and blue statements apply only for Merlin-P and Merlin-NP, respectively.
Purple statements apply to both.

Input: Dataset D, hindsight ratio p, number of training steps N , number of new trajectories to collect M .
Output: Policy πθ
Train fψ , Eω , Dξ on D by minimizing Equation (6,7)
Train hϕ on D by minimizing Equation (8)
Construct ball tree T for all states encoded using hϕ
# Simulate forward diffusion process
for m← 1 to M do

Sample random final state sT from D
τnew ← {sT }, scurrent ← sT
for t← T to 1 do

Sample z ∼ N (0, I)
aprev ← D̂ξ(scurrent, z), sprev ← fψ(scurrent, aprev)
snbr, sim← T.query(hϕ(scurrent), k = 1)
(sprev, aprev)← [snbr]prev if sim ≥ δ else [scurrent]prev
τnew ← {sprev, aprev} ∪ τnew, scurrent ← sprev

end for
Dnew ← Dnew ∪ τnew

end for
D ← Dnew ∪ D
# Train policy via reverse diffusion
for n← 1 to N do

Sample batch (s, a, g) from D
Relabel fraction p of batch
Update policy πθ as per Equation (5)

end for
Return: πθ
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D.2. Merlin: Details of Policy Network and Hyperparameters

The policy is parameterized as a diagonal Gaussian distribution using an MLP with three hidden layers of 256 units each
with the ReLU activation function, except for the final layer. The input to the policy comprises the state, the desired
goal, and the time horizon. The time horizon is encoded using sinusoidal positional embeddings of 32 dimensions with
the maximum period set to T = 50 since that is the maximum length of the trajectory for all our tasks. The output of
the policy is the mean and the standard deviation of the action. The tanh(·) function is applied to the mean and it is
multiplied by the maximum value of the action space to ensure the mean is within the correct range. The softplus function,
softplus(x) = log(1 + exp(x)) is applied to the standard deviation to ensure non-negativity.

The policy was trained for 500k mini-batch updates using Adam optimizer with a learning rate of 5× 10−4 and a batch
size of 512. The same policy network architecture and corresponding hyperparameters are used for all variations of Merlin.
Merlin involves two main hyperparameters - the hindsight ratio and the time horizon used during evaluation. We perform
ablations in Section 5.2 and report the tuned values for each task below.

Table 3: Optimal values for the hindsight ratio and time horizon for Merlin.

Task Name Hindsight Ratio Time Horizon
Expert Random Expert Random

PointReach 0.2 1.0 1 1
PointRooms 0.2 1.0 1 1
Reacher 0.2 1.0 5 5
SawyerReach 0.2 1.0 1 1
SawyerDoor 0.2 1.0 5 5
FetchReach 0.2 1.0 1 1
FetchPush 0.0 0.2 20 20
FetchPick 0.0 0.5 10 50
FetchSlide 0.2 0.8 10 10
HandReach 1.0 1.0 1 1

D.3. Merlin-P: Details of Reverse Dynamics model and Reverse Policy

Merlin-P uses a learned parametric reverse dynamics model and a reverse policy to simulate the forward diffusion process
starting from potential goal states. We use a reverse policy as described in Wang et al. (2021) to generate previous actions
given a state, and use a non-Markovian reverse model to generate forward diffusion trajectories.

To generate diverse candidate actions for reverse rollouts, the reverse policy is parameterized as a conditional variational
autoencoder (CVAE), consisting of an action encoder Eω(st+1, at) that outputs a latent vector z, and an action decoder
Dξ(st+1, z) which reconstructs the action given latent vector z. The reverse policy is trained by maximizing the variational
lower bound,

L(ω, ξ) = E(st,at,st+1)∼D,z∼Eω(st+1,at)

[
(at −Dξ(st+1, z))

2
+DKL (Eω(st+1, at)||N (0, I))

]
.

The encoder is an MLP with two hidden layers of 256 units each using the ReLU activation function. The latent space
dimension is twice the action space dimension. The encoder outputs the mean and log standard deviation, the latter is
clamped to [−4, 15] for numerical stability. The decoder is also an MLP with two hidden layers of 256 units each using the
ReLU activation function. The tanh(·) function is applied to the action output of the decoder and it is multiplied by the
maximum value of the action space to ensure it is within the correct range. The CVAE is trained for 20 epochs using Adam
optimizer with a learning rate of 3× 10−4 and a batch size of 256.

The reverse dynamics model Pψ(·) produces the previous state given the future states and actions in a trajectory. The model
parameters are optimized by minimizing the negative log-likelihood, which is equivalent to the mean squared error for
deterministic environments,

L(ψ) = Eτ∼D [− logPψ(s|s′, a)] = Eτ∼D∥st − fψ(at, st+1, . . . , sT )∥22 ,
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where fψ(·, ·) denotes the deterministic reverse dynamics function. In our implementation, the reverse dynamics model fψ
predicts the state difference s∆ = s′ − s instead of the absolute state s. The network architecture uses GRU (Cho et al.,
2014) with one hidden layer of 256 units with the ReLU activation function. The dynamics model is trained for 20 epochs
using Adam optimizer with a learning rate of 3× 10−4 and a batch size of 256.

In order to generate a rollout starting from state st+1, a latent vector is drawn from the standard Gaussian distribution,
z ∼ N (0, I). The action decoder is used to obtain a candidate action at = Dξ(st+1, z), and finally the reverse dynamics
model produces the previous state st = fψ(at, st+1, . . . , sT ).

For both the reverse policy and the reverse dynamics model with image inputs, we use a Convolutional Neural Network
(CNN) to produce latent representations of the images, and use the latent states as inputs or outputs to the CVAE or the GRU
network. The CNN architecture is given in Table 4.

D.4. Merlin-NP: Details of nearest-neighbor trajectory stitching

We propose a novel trajectory stitching method in Section 4.2 which is used for Merlin-NP. The method is based on finding
the nearest neighbor of states along a trajectory. However, nearby states might not necessarily be connected. For example,
consider the walled 2D navigation example where an agent must navigate in a room with walls towards a goal position.
Positions on two sides of a wall are nearby based on a distance metric (such as Euclidean distance) but are not reachable
directly. Therefore, we learn state representations using contrastive learning, such that consecutive states are positive pairs.
This encourages the representations corresponding to connected states to be nearby in the latent space. The loss function to
train the contrastive encoder hϕ is given by,

L(ϕ) = E(s,s′)∼D

[
− log

exp(hϕ(s)
⊤hϕ(s

′))∑
s′neg∈D exp(hϕ(s)⊤hϕ(s′neg))

]
.

The encoder is an MLP with three hidden layers of 256 units each with the ReLU activation function. For image states,
we use a CNN encoder with the architecture described in Table 4. We train the encoder for 20 epochs and the parameters
are optimized using the Adam optimizer with a learning rate of 5 × 10−4. We can then apply the method described in
Section 4.2 in the latent space. Since contrastive representations lie on a d-dimensional hypersphere, where d is the latent
space dimension, we choose cosine similarity to identify nearest neighbors. The use of distance metrics in high dimensions
can be unreliable, however, note that all methods implicitly assume a metric. The policy and the value function assume a
metric to determine which states are similar, and therefore, should yield similar actions or values respectively.

In order to search for nearest neighbors as efficiently as possible, we construct a ball tree from all the states in the dataset,
instead of a KD tree. The ball tree partitions the space using a series of hyperspheres instead of partitioning along the
Cartesian axes, which leads to more efficient queries in higher dimensions. The query time for the ball tree grows as
approximately O(d logN) for N samples of d-dimensional data. For a KD tree, the query time is the same as a ball tree for
lower dimensions (< 20), however, it quickly becomes comparable to a brute force search for higher dimensions.

Table 4: CNN Architecture.

Parameter Value

Channels 32, 64, 64
Filter size 8, 4, 3
Stride 4, 2, 1
Non-linearity ReLU
Linear layer 256

For the trajectory stitching method, we also choose a similarity threshold δ which determines which states are considered
similar enough to allow stitching. If the cosine similarity between two states is greater than δ, we consider those states as
candidates for stitching. Very small values of δ would result in constant switching between trajectories even when the states
are considerably dissimilar, leading to mismatched state-action pairs at the stitching point. Empirically, we observed that
setting δ = 0.9999 seemed to be appropriate, where this value was chosen such that there would be 2-3 stitching operations
per trajectory.
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We collect 2000 stitched trajectories for the simpler tasks (PointReach, PointRooms, Reacher, SawyerReach, SawyerDoor
and FetchReach), which effectively doubles the amount of offline data. For the harder tasks (FetchPush, FetchPick,
FetchSlide and HandReach), we collect 10000 stitched trajectories to augment the 40000 trajectories in the original dataset.

D.5. Compute
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Figure 14: Mean training and inference times over different tasks for each method. Training times are reported for 500k policy updates
and inference times are reported for one episode comprising of 50 time steps.

Figure 14 shows the training and inference times averaged over all tasks for each method in Section 5. The diffusion-based
baselines (DD, g-DQL and BESO) have significantly higher training and inference times since each environment step
requires denoising the entire reverse diffusion chain. In contrast, Merlin has comparable training and inference times to
non-diffusion-based offline GCRL methods, which is roughly an order of magnitude lower. Merlin-P suffers from an
overhead compared to Merlin due to training the reverse dynamics model and the reverse policy. The training time overhead
for Merlin-NP is during the trajectory stitching phase for nearest-neighbors search. The large variation in training time for
Merlin-NP is because trajectory stitching for the harder tasks (FetchPush, FetchPick, FetchSlide and HandReach) takes
more time owing to the higher state-space dimension and a larger number of collected trajectories.
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Figure 15: Mean training and inference times over different tasks for each method, using image observations. Training times are reported
for 500k policy updates and inference times are reported for one episode comprising of 50 time steps.

Figure 15 shows the training and inference times averaged over all tasks for image observations. We observe a similar
trend as before, except that the efficiency improvement of Merlin over the baseline diffusion-based methods is even more
pronounced.

E. Baseline Implementation Details
E.1. Offline GCRL methods

For all the methods described in this section, the policy architecture is identical to the one used for Merlin, described
in Appendix D. Wherever applicable, the critic architecture is an MLP with three hidden layers of 256 units each with
the ReLU activation. All of these methods were fine-tuned in Ma et al. (2022), and we used their implementation
(https://github.com/JasonMa2016/GoFAR/tree/main) to produce the baseline results in Section 5.
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GCSL. GCSL uses hindsight relabeling by setting the goal to be a future state within the same trajectory, where future
states are sampled uniformly from possible choices. The policy is learned using behavior cloning,

max
π

E(s,a,g)∼Drelabel [log π(a|s, g)]

WGCSL. This method builds upon GCSL and learns a Q-function with standard TD learning, where the dataset D uses
hindsight relabeling and Q̄ denotes the stop-gradient operation,

min
Q

E(st,at,st+1,g)∼D

[(
r(st, g) + γQ̄(st+1, π(st+1, g), g)−Q(st, at, g)

)2]
The advantage function is defined as A(st, at, g) = r(st, g) + γQ(st+1, π(st+1, g), g)−Q(st, π(st, g), g), and is used to
weight the regression loss for policy updates,

maxπE(st,at,ϕ(si))∼D
[
γi−t expclip(A(st, at, ϕ(si))) log π(at|st, ϕ(si))

]
Actionable Model. AM employs an actor-critic framework similar to DDPG (Lillicrap et al., 2015), but uses conservative
critic updates by adding a regularization term to the regular TD updates,

min
Q

E(st,at,st+1,g)∼D

[(
r(st, g) + γQ̄(st+1, π(st+1, g), g)−Q(st, at, g)

)2
+ Ea∼exp(Q̄)[Q(s, a, g)]

]
The policy updates are similar to DDPG, where gradients are backpropagated through the critic,

max
π

E(st,at,st+1,g)∼D [Q(st, π(st, g), g)]

In addition to hindsight relabeling, AM uses a goal-chaining technique where for half of the relabeled transitions in each
minibatch, the relabelled goals are randomly sampled from the offline dataset.

GoFAR. GoFAR takes a state-occupancy matching perspective by training a discriminator to define a reward function that
encourages visiting states that occur more often in conjunction with the desired goal,

min
c

Eg∼p(g)
[
Ep(s,g) [log c(s, g)] + E(s,g)∼D [log(1− c(s, g))]

]
where p(s, g) = exp(r(s, g))/Z and Z =

∫
exp(r(s, g)). The reward function used for learning the critic is R(s, g) =

− log (1/c(s, g)− 1). GoFAR also uses f -divergence regularization to learn a value function,

min
V (s,g)≥0

(1− γ)Es∼µ(s),g∼p(g)[V (s, g)] + E(s,a,g)∼D[f⋆(R(s, g) + γEs′∼P(·|s,a)[V (s′, g)]− V (s, g))]

where f⋆ denotes the convex conjugate of f . The policy is updated using regression weights that are first-order derivatives
of f⋆ evaluated at the optimal advantage,

max
π

Eg∼p(g)E(s,a)∼D
[
f ′⋆(R(s, g) + γEs′∼P(·|s,a)[V

∗(s′, g)]− V ∗(s, g)) log π(a|s, g)
]

where V ∗ denotes the optimal value function obtained after training. GoFAR does not use hindsight relabeling.

E.2. Diffusion-based methods

Decision Diffuser. Decision diffuser models sequential decision-making as a conditional generative modeling problem,

max
θ
Eτ∼D[log pθ(x0(τ)|y(τ))]

where y(τ) denotes the conditioning variable representing returns, goals, or other constraints that are desirable in the
generated trajectory. The forward and reverse diffusion process are q(xk+1(τ)|xk(τ)) and pθ(xk−1(τ)|xk(τ),y(τ)). The
diffusion is performed on state sequences, and actions are obtained using an inverse dynamics model at = fψ(st, st+1).
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The reverse diffusion process learns a conditional denoising function by sampling noise ϵ ∼ N (0, I) and a timestep
k ∼ U{1, . . . ,K},

min
θ,ψ

Ek,τ∈D,β∼Bern(p)

[
∥ϵ− ϵθ (xk(τ), (1− β)y(τ) + β∅, k)∥22

]
+ E(s,a,s′)∈D

[
∥a− fψ(s, s′)∥

2

2

]
Classifier-free guidance is employed during planning to generate trajectories respecting the conditioning variable y(τ) by
starting with Gaussian noise xK(τ) and refining xk(τ) into xk−1(τ) at each intermediate timestep with the perturbed noise,

ϵ = ϵθ (xk(τ),∅, k) + ω (ϵθ (xk(τ),y(τ), k)− ϵθ (xk(τ),∅, k))

The denoising function is a temporal U-Net model with residual blocks. We used the official implementation provided here:
https://github.com/anuragajay/decision-diffuser/tree/main.

Diffusion QL. The policy is represented via the reverse process of a conditional diffusion model, where the end sample of
the reverse chain, a0, is the action used for RL evaluation,

πθ(a|s) = pθ(a
0:N |s) = N (aN ;0, I)

N∏
i=1

pθ(a
i−1|ai, s)

The reverse process is modeled as a noise prediction model with fixed variance Σi = βiI. The mean is reparameterized in
terms of a learned denoising function ϵθ, which is trained using the simplified objective proposed in Ho et al. (2020),

min
θ

Ei∼U{1,...,N},ϵ∼N (0,I),(s,a)∼D

[∥∥ϵ− ϵθ (√ᾱia+√1− ᾱiϵ, s, i)∥∥22]
To sample actions from the policy, first sample aN ∼ N (0, I) and denoise using the denoising model for N steps,

ai−1 | ai = ai
√
αi
− βi√

αi(1− ᾱi)
ϵθ(a

i, s, i) +
√
βiϵ, ϵ ∼ N (0, I), for i = N, . . . , 1.

Similar to DDPG, Diffusion-QL also uses a learned critic function trained using the standard TD error and backpropagates
through the critic during training to prefer actions with high Q-values. In order to apply this method to goal-conditioned
tasks, we additionally condition the policy on the goal. The architecture of the policy is a three-layer MLP with 256 hidden
units each and the Mish activation function. The critic similarly has three layers of 256 units each and Mish activations. We
used the official implementation provided here: https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL.

BESO. Given a dataset D, BESO proposes to model the distribution of actions conditioned on the states and goals,
p(a|s, g) using a continuous time stochastic differential equation (SDE),

da = (βtσt − σ̇t)σt∇a log pt(a|s, g) dt+
√

2βtσt dωt,

where∇a log pt(a|s, g) refers to the score function, ωt is the Standard Wiener process, σt is the noise scheduler, and β(t)
describes the relative rate at which the current noise is replaced by new noise. The corresponding probability flow ODE is,

da = −σ̇tσt∇a log pt(a|s, g) dt .

The score function is parameterized using a neural network Dθ(a, s, g, σt), which matches the score function,

∇a log pt(a|s, g) = (Dθ(a, s, g, σt)− a)/σt .

The network is trained using the denoising score matching objective, where Gaussian noise ϵ ∼ N (0, σtI) is added to the
actions and the mean squared error with the original actions is minimized,

L(θ) = Eσt,a,ϵ

[
α(σt)∥Dθ(a+ ϵ, s, g, σt)− a∥2

]
During the action prediction, a random Gaussian sample is iteratively denoised N-discrete noise levels using the
DDIM solver (Song et al., 2020) for fast, deterministic sampling. We used the official implementation provided here:
https://github.com/intuitive-robots/beso.
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F. Task Descriptions
We consider 10 different goal-conditioned tasks with sparse and binary rewards. The state, action, and goal spaces are
continuous, and the maximum length of each episode is set as 50. We use the offline benchmark introduced in Yang et al.
(2021). The relatively easier tasks (PointReach, PointRooms, Reacher, SawyerReach, SawyerDoor, and FetchReach) have
2000 trajectories each (1× 105 transitions); and the harder tasks (FetchPush, FetchPick, FetchSlide, and HandReach) have
40000 trajectories (2× 106 transitions).

The benchmark consists of two settings ‘expert’ and ‘random’. The ‘expert’ dataset consists of trajectories collected by a
policy trained using online DDQPG+HER with added Gaussian noise (σ = 0.2) to increase diversity, while the ‘random’
dataset consists of trajectories collected by sampling random actions.

Figure 16: Goal-conditioned tasks from left to right, top to bottom: PointReach, PointRooms, Reacher, SawyerReach, SawyerDoor,
FetchReach, FetchPush, FetchPick, FetchSlide, and HandReach.

PointReach. The environment is adapted from multiworld3. The blue point represents the agent which is tasked with
reaching the green circle representing the goal. The state space is two dimensional representing the (x, y) coordinates of the
blue point, where (x, y) ∈ [−5, 5]× [−5, 5]. The actions space is also two dimensional representing the displacement in x
and y directions, a ∈ [−1, 1]× [−1, 1]. The goal space is the same as the state space, ϕ(s) = s. The initial position of the
agent and the goal are randomly initialized. Success is defined if the agent reaches within a certain radium of the goal. The
reward function is defined as,

r(sXY , a, gXY ) = I[∥sXY − gXY ∥22 ≤ ϵ]

where the tolerance is ϵ = 1.

PointRooms. The environment is a variation of PointReach environment. The task is again for the blue dot representing the
agent to reach the green circle, however, there are vertical and horizontal walls forming four rooms, which make navigation
more challenging. The reward function, and the state, action, and goal spaces are the same as in PointReach.

Reacher. The environment is included in Gymnasium4. Reacher is a two-jointed robot arm tasked with moving the
robot’s end effector close to a target that is spawned at a random position. The state space is 11-dimensional representing
the angles, positions and velocities of the joints. The goals are (x, y) coordinates of the target, and ϕ(s) = s[4 : 6]. The
two-dimensional actions represent the torque applied at each joint. The reward function is defined as,

r(sXY , a, gXY ) = I[∥sXY − gXY ∥22 ≤ ϵ]

where the tolerance is ϵ = 0.05.
3https://github.com/vitchyr/multiworld
4https://github.com/Farama-Foundation/Gymnasium
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SawyerReach. The environment is adapted from multiworld. The Sawyer robot is tasked with reaching a target position
using its end effector. The state space is 3-dimensional representing the (x, y, z) coordinates of the end effector, and the
goal space is also 3-dimensional representing the (x, y, z) coordinates of the target position, ϕ(s) = s. The 3-dimensional
actions describe the coordinates of the next position of the end effector. The reward function is defined as,

r(sXY Z , a, gXY Z) = I[∥sXY Z − gXY Z∥22 ≤ ϵ]

where the tolerance is ϵ = 0.06.

SawyerDoor. The environment is adapted from multiworld. The Sawyer robot is tasked with opening a door to a specified
angle. The 4-dimensional state space represents the coordinates of the end effector of the robot and the angle of the door. The
action space is the 3-dimensional next position of the end effector. The goal is the desired angle of the door, ϕ(s) = s[−1],
which is between [0, 0.83] radians. The reward function is defined as,

r(s, a, g) = I[|ϕ(s)− g| ≤ ϵ]

where the tolerance is ϵ = 0.06.

FetchReach. The environment is included in Gymnasium-Robotics5. It consists of a 7-DoF robotic arm, with a two-
fingered parallel gripper attached to it. The task is to reach a target location which is specified as a 3-dimensional
goal representing the (x, y, z) coordinates of the target location. The states are 10-dimensional represent the kinematic
information of the end effector, including the positions and velocities of the end effector and the gripper joint displacement.
The actions are 4-dimensional which describes the displacement of the end effector, and the last dimension which represents
the gripper opening/closing is not used for this task. The state-to-goal mapping is ϕ(s) = s[0 : 3]. The reward function is
defined as,

r(s, a, gXY Z) = I[∥ϕ(s)− gXY Z∥22 ≤ ϵ]

where the tolerance is ϵ = 0.05.

FetchPush. The environment is included in Gymnasium-Robotics. The 7-DoF robotic arm from FetchReach is tasked with
pushing a block to a target location. The state space is 25- dimensional, including the gripper’s position, linear velocities,
and the box’s position, rotation, linear and angular velocities. The 4-dimensional state space describes the displacement of
the end effector and the gripper opening/closing. The goal is defined as the target (x, y, z) position of the block, and the
mapping is ϕ(s) = s[3 : 6]. In this task, the block is always on top of the table, hence the block z coordinate is always fixed.
The reward function is defined as,

r(s, a, gXY Z) = I[∥ϕ(s)− gXY Z∥22 ≤ ϵ]

where the tolerance is ϵ = 0.05.

FetchPick. The environment is included in Gymnasium-Robotics. The 7-DoF robotic arm from FetchReach is tasked with
picking up a block and taking it to a target location specified as (x, y, z) coordinates. The target z coordinate of the block is
not fixed and may be in the air above the table, requiring the robotic arm to pick up the block using the gripper. The state
space, action space, goal space, state-to-goal mapping, and reward function are the same as FetchPush.

FetchSlide. The environment is included in Gymnasium-Robotics. The 7-DoF robotic arm from FetchReach is tasked
with moving a block to a target position specified as (x, y, z) coordinates. The block is always on top of the table, hence
the z coordinate of the block is always fixed. However, the (x, y) coordinates of the target position are out of reach of the
robotic arm, hence it must hit the block with the appropriate amount of force for it to slide and then stop at the goal position.
The state space, action space, goal space, state-to-goal mapping, and reward function are the same as FetchPush.

5https://github.com/Farama-Foundation/Gymnasium-Robotics
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HandReach. The environment is included in Gymnasium-Robotics. A 24-DoF anthropomorphic hand is tasked with
manipulating its fingers to reach a target configuration. The state space is 63-dimensional comprising two 24-dimensional
vectors describing the positions and velocities of the joints, and five 3-dimensional vectors describing the (x, y, z) positions
of each fingertip. The 20-dimensional actions describe the absolute angular positions of the actuated joints. The goals are
specified as 15-dimensional vectors, describing the (x, y, z) coordinates of the fingertips with ϕ(s) = s[−15 :]. The reward
function is defined as,

r(s, a, g) = I[∥ϕ(s)− g∥22 ≤ ϵ]

where the tolerance is ϵ = 0.01.

G. Forward vs. Backward view
We implement forward-view variants of Merlin-P and Merlin-NP to explicitly compare the benefits of the backward view
proposed in our work. We compare two variants:

• MB (model-based) samples an initial state and performs model-based rollout to provide additional trajectories to
train the policy. The network architecture and hyperparameters are the same as Merlin-P, except for the forward view
rollouts.

• TS (trajectory stitching) samples an initial state and performs trajectory stitching by sequentially searching for
nearest-neighbors in the latent state space, forward in time.

We post experimental results on all tasks for the expert and random settings in Table 5. The results show that the diffusion-
inspired backward view of Merlin-P and Merlin-NP, where we have control over the goal state distribution, performs better
on a majority of tasks.

Table 5: Discounted returns for state-space input, averaged over 10 seeds.

Task Name Merlin Merlin-P Merlin-MB Merlin-NP Merlin-TS

E
xp

er
t

PointReach 29.26±0.04 29.34±0.15 29.30±0.14 29.34±0.05 29.24±0.10

PointRooms 25.38±0.37 25.25±0.27 25.22±0.28 25.63±0.32 25.28±0.30

Reacher 22.75±0.59 24.25±0.47 23.89±0.58 24.97±0.54 24.08±0.51

SawyerReach 26.89±0.07 26.92±0.09 26.67±0.09 27.35±0.06 26.69±0.05

SawyerDoor 26.18±2.19 25.85±0.97 25.89±1.26 26.15±2.08 26.06±1.58

FetchReach 30.29±0.03 30.34±0.02 30.32±0.03 30.42±0.04 30.29±0.03

FetchPush 19.91±1.20 22.13±1.41 21.08±1.34 21.58±1.63 20.99±1.58

FetchPick 19.66±0.78 21.78±1.01 21.14±1.05 20.41±0.92 20.50±1.09

FetchSlide 4.19±1.89 4.98±1.46 4.11±1.52 5.19±2.02 4.55±1.84

HandReach 22.11±0.55 23.44±0.62 21.97±0.46 24.93±0.49 22.81±0.55

R
an

do
m

PointReach 29.26±0.04 29.36±0.08 29.29±0.12 29.31±0.04 29.26±0.11

PointRooms 24.80±0.36 25.17±0.19 25.01±0.18 25.16±0.59 25.03±0.41

Reacher 21.09±0.65 24.49±0.48 23.72±0.44 22.24±0.54 21.38±0.36

SawyerReach 26.70±0.14 26.78±0.12 26.78±0.10 27.07±0.07 26.89±0.06

SawyerDoor 19.05±0.66 20.37±1.18 20.04±0.93 21.69±2.36 21.04±1.84

FetchReach 30.42±0.04 30.44±0.02 30.30±0.03 30.42±0.04 30.27±0.03

FetchPush 5.21±0.43 6.83±0.32 6.02±1.28 7.22±0.35 6.94±0.56

FetchPick 3.75±0.18 4.22±0.16 3.89±0.15 4.36±0.19 4.01±0.17

FetchSlide 2.67±0.35 2.98±0.21 2.59±0.18 3.15±0.14 2.85±0.15

HandReach 14.89±2.54 18.24±2.18 15.37±1.66 20.06±3.06 18.28±1.29
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H. GCSL with Trajectory Stitching
We apply a modified version of the nearest-neighbor trajectory stitching operation to GCSL and report the performance
in Table 6 and Table 7, averaged over 10 seeds. The technique described in Section 4.2 applies to reverse trajectories, for
GCSL we construct forward trajectories by adding the state-action pair succeeding the nearest neighbors. We observe that
this technique improves performance for most tasks, demonstrating it as a general-purpose data augmentation technique for
offline GCRL.

Table 6: Discounted returns.

Task Name Merlin Merlin-NP GCSL GCSL+TS

E
xp

er
t

PointReach 29.26±0.04 29.34±0.05 22.85±1.26 23.22±1.71

PointRooms 25.38±0.37 25.63±0.32 18.28±2.29 19.87±1.55

Reacher 22.75±0.59 24.97±0.54 20.05±1.37 22.12±1.16

SawyerReach 26.89±0.07 27.35±0.06 19.20±1.79 20.88±1.60

SawyerDoor 26.18±2.19 26.15±2.08 20.12±1.33 20.61±1.26

FetchReach 30.29±0.03 30.42±0.04 23.68±1.07 23.59±1.32

FetchPush 19.91±1.20 21.58±1.63 17.58±1.47 19.15±1.29

FetchPick 19.66±0.78 20.41±0.92 12.95±1.90 13.85±1.66

FetchSlide 4.19±1.89 5.19±2.02 1.67±1.41 2.11±1.46

HandReach 22.11±0.55 24.93±0.49 0.15±0.11 0.16±0.13

R
an

do
m

PointReach 29.26±0.04 29.31±0.04 17.74±1.84 20.01±1.63

PointRooms 24.80±0.36 25.16±0.59 14.69±2.51 16.05±1.97

Reacher 21.09±0.65 22.24±0.54 10.62±2.30 12.89±2.34

SawyerReach 26.70±0.14 27.07±0.07 8.78±2.59 9.12±2.26

SawyerDoor 19.05±0.66 21.69±2.36 12.47±3.08 13.64±2.68

FetchReach 30.42±0.04 30.42±0.04 18.96±1.77 19.58±1.72

FetchPush 5.21±0.43 7.22±0.35 4.22±2.19 5.21±1.98

FetchPick 3.75±0.18 4.36±0.19 0.81±0.82 0.95±0.90

FetchSlide 2.67±0.35 3.15±0.14 0.24±0.27 0.31±0.36

HandReach 14.89±2.54 20.06±3.06 1.41±0.51 2.06±0.76

Table 7: Success rates.

Task Name Merlin Merlin-NP GCSL GCSL+TS

E
xp

er
t

PointReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

PointRooms 0.91±0.16 0.94±0.01 0.79±0.60 0.80±0.62

Reacher 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

SawyerReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

SawyerDoor 0.95±0.08 0.94±0.11 0.84±0.16 0.85±0.14

FetchReach 1.00±0.00 1.00±0.00 0.98±0.00 1.00±0.00

FetchPush 0.92±0.05 0.96±0.04 0.88±0.09 0.89±0.10

FetchPick 0.92±0.03 0.96±0.06 0.64±0.09 0.67±0.09

FetchSlide 0.32±0.04 0.45±0.07 0.22±0.14 0.24±0.12

HandReach 0.78±0.04 0.85±0.02 0.03±0.05 0.04±0.05

R
an

do
m

PointReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

PointRooms 0.89±0.02 0.92±0.02 0.77±0.11 0.79±0.12

Reacher 0.98±0.02 1.00±0.00 0.80±0.06 0.84±0.07

SawyerReach 1.00±0.00 1.00±0.00 0.91±0.09 0.93±0.11

SawyerDoor 0.57±0.03 0.59±0.05 0.44±0.16 0.45±0.14

FetchReach 1.00±0.00 1.00±0.00 0.96±0.05 0.98±0.03

FetchPush 0.20±0.06 0.24±0.09 0.20±0.11 0.22±0.10

FetchPick 0.12±0.01 0.18±0.01 0.06±0.08 0.07±0.06

FetchSlide 0.11±0.02 0.20±0.04 0.06±0.08 0.06±0.07

HandReach 0.49±0.05 0.62±0.07 0.04±0.04 0.04±0.04

I. Full Experimental Results

Table 8: Discounted returns for state-space input, averaged over 10 seeds.

Task Name Ours Offline GCRL Diffusion-based
Merlin Merlin-P Merlin-NP GoFAR WGCSL GCSL AM DD g-DQL BESO

E
xp

er
t

PointReach 29.26±0.04 29.34±0.15 29.34±0.05 27.18±0.65 25.91±0.87 22.85±1.26 26.14±1.11 15.03±0.88 28.65±0.44 29.10±0.28

PointRooms 25.38±0.37 25.25±0.27 25.63±0.32 20.40±1.00 19.90±0.99 18.28±2.29 23.24±1.58 10.84±2.67 27.53±0.57 24.13±0.46

Reacher 22.75±0.59 24.25±0.47 24.97±0.54 22.51±0.82 23.35±0.64 20.05±1.37 22.36±1.03 14.39±1.08 22.54±1.42 22.78±1.02

SawyerReach 26.89±0.07 26.92±0.09 27.35±0.06 22.82±1.15 22.07±1.46 19.20±1.79 23.56±0.33 13.39±0.75 24.17±0.01 26.44±0.31

SawyerDoor 26.18±2.19 25.85±0.97 26.15±2.08 23.62±0.35 23.92±1.10 20.12±1.33 26.39±0.42 12.85±0.77 24.81±0.38 23.14±0.56

FetchReach 30.29±0.03 30.34±0.02 30.42±0.04 29.21±0.26 28.17±0.38 23.68±1.07 29.08±0.12 11.55±0.68 28.71±0.15 29.18±0.25

FetchPush 19.91±1.20 22.13±1.41 21.58±1.63 22.41±1.69 22.22±1.51 17.58±1.47 19.86±3.16 9.49±2.85 17.82±0.55 14.52±0.95

FetchPick 19.66±0.78 21.78±1.01 20.41±0.92 19.79±1.12 18.32±1.56 12.95±1.90 17.04±3.81 8.76±0.64 14.45±0.61 18.56±0.82

FetchSlide 4.19±1.89 4.98±1.46 5.19±2.02 3.34±1.01 5.17±3.17 1.67±1.41 3.31±1.46 1.21±0.59 0.98±0.58 3.40±0.80

HandReach 22.11±0.55 23.44±0.62 24.93±0.49 15.39±6.37 18.05±5.12 0.15±0.11 0.00±0.00 0.00±0.00 0.00±0.00 15.44±0.24

Average Rank 3.5 2.4 1.7 5.4 5.5 8.6 6.2 9.7 6.2 5.4

R
an

do
m

PointReach 29.26±0.04 29.36±0.08 29.31±0.04 23.96±0.93 25.76±0.96 17.74±1.84 25.55±0.57 11.12±0.72 22.65±1.57 26.12±1.04

PointRooms 24.80±0.36 25.17±0.19 25.16±0.59 18.09±4.13 19.41±1.01 14.69±2.51 19.10±1.39 9.76±2.99 20.88±0.96 22.80±1.12

Reacher 21.09±0.65 24.49±0.48 22.24±0.54 25.20±0.48 22.98±0.91 10.62±2.30 23.70±0.62 4.74±0.36 6.06±0.84 18.16±1.08

SawyerReach 26.70±0.14 26.78±0.12 27.07±0.07 19.48±1.39 21.32±1.40 8.78±2.59 25.29±0.35 3.46±0.86 2.84±0.05 21.16±0.95

SawyerDoor 19.05±0.66 20.37±1.18 21.69±2.36 20.69±2.14 19.58±3.55 12.47±3.08 18.82±1.67 7.92±0.86 14.77±0.51 16.56±0.92

FetchReach 30.42±0.04 30.44±0.02 30.42±0.04 28.34±0.98 27.94±0.30 18.96±1.77 27.11±0.22 1.71±0.77 1.21±0.46 23.02±1.64

FetchPush 5.21±0.43 6.83±0.32 7.22±0.35 6.99±1.27 5.35±3.36 4.22±2.19 4.53±1.94 4.49±1.34 5.35±0.23 5.10±0.62

FetchPick 3.75±0.18 4.22±0.16 4.36±0.19 3.81±3.71 1.87±1.59 0.81±0.82 3.08±1.35 2.16±0.75 2.17±0.18 3.21±0.32

FetchSlide 2.67±0.35 2.98±0.21 3.15±0.14 1.32±1.22 1.04±0.98 0.24±0.27 1.12±0.39 1.31±0.52 0.00±0.00 0.54±0.12

HandReach 14.89±2.54 18.24±2.18 20.06±3.06 0.08±0.07 2.54±1.42 1.41±0.51 0.00±0.00 0.00±0.00 0.00±0.00 8.36±0.18

Average Rank 3.8 1.9 1.7 4.5 5.5 8.6 6.0 8.8 7.9 5.9
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Learning to Reach Goals via Diffusion

Table 9: Success rates for state-space input,, averaged over 10 seeds.

Task Name Ours Offline GCRL Diffusion-based
Merlin Merlin-P Merlin-NP GoFAR WGCSL GCSL AM DD g-DQL BESO

E
xp

er
t

PointReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.40±0.00 1.00±0.00 1.00±0.00

PointRooms 0.91±0.16 0.90±0.04 0.94±0.01 0.82±0.04 0.82±0.04 0.79±0.6 0.87±0.05 0.27±0.17 1.00±0.00 0.89±0.04

Reacher 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.20±0.00 1.00±0.00 1.00±0.00

SawyerReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.13±0.05 1.00±0.00 1.00±0.00

SawyerDoor 0.95±0.08 0.92±0.08 0.94±0.11 0.82±0.12 0.86±0.15 0.84±0.16 0.92±0.12 0.20±0.00 0.94±0.12 0.79±0.08

FetchReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.98±0.00 1.00±0.00 0.07±0.04 1.00±0.00 1.00±0.00

FetchPush 0.92±0.05 0.94±0.03 0.96±0.04 0.96±0.04 0.95±0.04 0.88±0.09 0.90±0.08 0.17±0.09 0.89±0.11 0.85±0.10

FetchPick 0.92±0.03 0.96±0.03 0.96±0.06 0.78±0.04 0.76±0.07 0.64±0.09 0.69±0.16 0.07±0.07 0.78±0.07 0.84±0.11

FetchSlide 0.32±0.04 0.40±0.06 0.45±0.07 0.28±0.09 0.42±0.14 0.22±0.14 0.32±0.12 0.10±0.08 0.05±0.04 0.30±0.08

HandReach 0.78±0.04 0.82±0.07 0.85±0.02 0.54±0.23 0.68±0.19 0.03±0.05 0.00±0.00 0.00±0.00 0.00±0.00 0.48±0.12

Average Rank 2.3 2.2 1.2 3.7 3.3 6.0 4.0 8.8 3.7 4.2

R
an

do
m

PointReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.40±0.00 0.95±0.06 1.00±0.00

PointRooms 0.89±0.02 0.92±0.03 0.92±0.02 0.78±0.11 0.83±0.08 0.77±0.11 0.70±0.16 0.27±0.17 0.82±0.08 0.86±0.08

Reacher 0.98±0.02 1.00±0.00 1.00±0.00 0.98±0.03 1.00±0.00 0.80±0.06 1.00±0.00 0.23±0.05 0.15±0.05 0.92±0.06

SawyerReach 1.00±0.00 1.00±0.00 1.00±0.00 0.92±0.07 1.00±0.00 0.91±0.09 1.00±0.00 0.13±0.05 0.10±0.03 1.00±0.00

SawyerDoor 0.57±0.03 0.59±0.08 0.59±0.05 0.46±0.19 0.48±0.17 0.26±0.09 0.44±0.16 0.20±0.00 0.35±0.09 0.38±0.11

FetchReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.96±0.05 1.00±0.00 0.07±0.04 0.00±0.00 0.95±0.05

FetchPush 0.20±0.06 0.22±0.01 0.24±0.09 0.22±0.04 0.14±0.10 0.20±0.11 0.13±0.09 0.13±0.05 0.17±0.04 0.18±0.04

FetchPick 0.12±0.01 0.17±0.02 0.18±0.01 0.12±0.11 0.08±0.07 0.06±0.08 0.10±0.02 0.07±0.05 0.09±0.02 0.12±0.02

FetchSlide 0.11±0.02 0.18±0.04 0.20±0.04 0.10±0.06 0.04±0.08 0.06±0.08 0.07±0.04 0.07±0.05 0.00±0.00 0.08±0.02

HandReach 0.49±0.05 0.56±0.12 0.62±0.07 0.00±0.00 0.12±0.07 0.04±0.04 0.00±0.00 0.00±0.00 0.00±0.00 0.26±0.06

Average Rank 2.7 1.4 1.0 4.2 4.3 6.9 4.7 8.8 8.4 4.6

Table 10: Discounted returns for pixel-space input, averaged over 10 seeds.

Task Name Ours Offline GCRL Diffusion-based
Merlin Merlin-P Merlin-NP GoFAR WGCSL GCSL AM DD g-DQL BESO

E
xp

er
t PointReach 27.69±0.06 28.54±0.08 28.95±0.05 25.14±0.52 24.25±0.60 21.06±1.06 25.16±1.22 8.20±0.75 26.48±0.76 27.92±0.55

PointRooms 23.76±0.19 25.16±0.26 25.28±0.22 20.06±0.34 19.72±0.86 18.15±1.59 22.47±1.25 5.54±1.88 26.28±0.64 23.80±0.62

SawyerReach 26.87±0.04 26.98±0.08 27.15±0.06 22.16±0.84 21.59±1.02 19.04±1.14 23.10±1.12 6.89±0.88 23.92±0.15 25.96±0.44

SawyerDoor 25.42±0.08 25.15±0.18 26.08±0.08 23.17±0.32 23.24±0.75 19.76±1.36 25.89±0.48 6.06±1.12 24.44±0.85 22.78±1.28

Average Rank 3.75 2.75 1.25 7.0 7.5 9.0 5.0 10.0 4.0 4.75

R
an

do
m PointReach 27.52±0.05 28.80±0.08 28.76±0.06 23.51±0.68 25.10±0.88 17.34±1.20 24.89±0.72 6.36±1.04 22.15±1.32 25.85±0.98

PointRooms 22.40±0.07 24.05±0.22 24.02±0.09 17.82±1.89 19.02±1.20 14.12±1.92 18.82±1.72 4.67±2.15 20.16±0.98 22.24±1.08

SawyerReach 26.14±0.04 26.46±0.10 26.78±0.05 19.22±1.08 21.04±1.18 8.64±2.44 25.01±0.42 2.02±2.59 2.32±1.01 20.89±0.98

SawyerDoor 18.99±0.08 20.10±1.78 21.12±0.09 20.43±1.89 19.38±1.68 12.04±2.81 17.72±0.84 4.12±1.32 14.18±0.65 16.24±1.14

Average Rank 3.5 1.75 1.5 6.0 5.0 8.75 5.75 10.0 7.5 5.25

Table 11: Success rates for pixel-space input, averaged over 10 seeds.

Task Name Ours Offline GCRL Diffusion-based
Merlin Merlin-P Merlin-NP GoFAR WGCSL GCSL AM DD g-DQL BESO

E
xp

er
t PointReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.44±0.12 1.00±0.00 1.00±0.00

PointRooms 0.86±0.09 0.90±0.06 0.90±0.08 0.80±0.04 0.78±0.06 0.78±0.09 0.81±0.05 0.42±0.08 0.92±0.07 0.87±0.08

SawyerReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.08±0.02 1.00±0.00 1.00±0.00

SawyerDoor 0.90±0.08 0.90±0.10 0.92±0.08 0.88±0.04 0.88±0.07 0.82±0.06 0.92±0.08 0.16±0.02 0.80±0.05 0.78±0.08

Average Rank 2.5 1.75 1.25 3.5 3.75 4.25 2.25 10.0 2.75 3.75

R
an

do
m PointReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.34±0.08 0.93±0.04 1.00±0.00

PointRooms 0.78±0.06 0.83±0.05 0.82±0.09 0.70±0.09 0.79±0.06 0.69±0.04 0.72±0.07 0.20±0.05 0.80±0.09 0.84±0.07

SawyerReach 1.00±0.00 1.00±0.00 1.00±0.00 0.89±0.08 1.00±0.00 0.89±0.04 1.00±0.00 0.08±0.02 0.09±0.01 1.00±0.00

SawyerDoor 0.55±0.08 0.56±0.06 0.57±0.08 0.57±0.09 0.48±0.06 0.28±0.04 0.39±0.04 0.14±0.03 0.32±0.08 0.33±0.04

Average Rank 3.0 1.75 1.5 4.25 3.0 6.5 3.75 10.0 7.5 2.5
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