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ABSTRACT

Drawing inspiration from the hierarchical processing of the human auditory
system, which transforms sound from low-level acoustic features to high-level
semantic understanding, we introduce a novel coarse-to-fine audio reconstruc-
tion method. Leveraging non-invasive functional Magnetic Resonance Imaging
(fMRI) data, our approach mimics the inverse pathway of auditory processing.
Initially, we utilize CLAP to decode fMRI data coarsely into a low-dimensional
semantic space, followed by a fine-grained decoding into the high-dimensional
AudioMAE latent space guided by semantic features. These fine-grained neu-
ral features serve as conditions for audio reconstruction through a Latent Dif-
fusion Model (LDM). Validation on three public fMRI datasets—Brain2Sound,
Brain2Music, and Brain2Speech—underscores the superiority of our coarse-to-
fine decoding method over stand-alone fine-grained approaches, showcasing state-
of-the-art performance in metrics like FD, FAD, and KL. Moreover, by employing
semantic prompts during decoding, we enhance the quality of reconstructed au-
dio when semantic features are suboptimal. The demonstrated versatility of our
model across diverse stimuli highlights its potential as a universal brain-to-audio
framework. This research contributes to the comprehension of the human auditory
system, pushing boundaries in neural decoding and audio reconstruction method-
ologies.

1 INTRODUCTION

Hearing is one of the most important senses for humans, responsible for receiving external auditory
stimuli and transmitting the information to the brain for processing and understanding. Researchers
aim to explore the auditory perception mechanisms of the human brain from the fields of both
neuroscience and computer science (Kell et al., 2018; Millet et al., 2022; Tuckute et al., 2023;
Giordano et al., 2023; Caucheteux et al., 2023). A key goal is to decode neural information from
the human brain and reconstruct the original stimuli. This can be applied to auditory attention
decoding (Van Eyndhoven et al., 2016; O’Sullivan et al., 2017), with practical uses in enhancing
hearing aids and assisting communication in noisy environments. Additionally, by generalizing from
perception tasks to imagination tasks (Horikawa & Kamitani, 2017; Tang et al., 2023), it serves as a
foundation for future research on reconstructing imagined audio.

The common brain-to-audio reconstruction tasks can be categorized into brain-to-sound task (San-
toro et al., 2017; Park et al., 2023) for reconstructing all natural sounds in the environment, brain-
to-music task (Bellier et al., 2023; Daly, 2023; Denk et al., 2023) for the music, and brain-to-speech
task (Pasley et al., 2012; Yang et al., 2015; Hassan et al., 2018; Shigemi et al., 2023; Kim et al.,
2023; Chen et al., 2024) for the human voice, based on the different stimulus audios.

Some researchers first attempted to map brain signals to the spectrograms or mel-spectrograms of
the stimulus audios using linear regression (Pasley et al., 2012; Yang et al., 2015; Hassan et al., 2018;
Bellier et al., 2023). Others introduce non-linear units and use simple networks such as MLP (Yang
et al., 2015; Hassan et al., 2018; Bellier et al., 2023), BiLSTM (Shigemi et al., 2023; Daly, 2023),
Transformer (Shigemi et al., 2023), etc. This approach can restore the overall temporal and fre-
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Figure 1: (a) The hierarchical auditory processing pathway of humans. The stimulus audio is gradually decom-
posed into time-frequency representation, low-level acoustic features, and high-level semantic characteristics.
(b) The pipeline for our coarse-to-fine reconstruction from fMRI. Brain activity is decoded progressively into
semantic, acoustic, and spectrogram levels, ultimately resulting in reconstructed audio.

quency information of the spectrogram, but the reconstructed audio lacks semantic and detailed
information, especially for non-invasive brain signals.

As research progresses, researchers have found that Deep Neural Network (DNN) features are closer
to neural responses in the human brain compared to artificial acoustic representations like spectro-
grams (Kell et al., 2018; Li et al., 2023; Tuckute et al., 2023; Giordano et al., 2023). Therefore,
researchers (Park et al., 2023; Kim et al., 2023; Chen et al., 2024) first decode neural signals into
DNN features as an intermediate representation and then use generative models to reconstruct the
spectrogram. The intermediate representation is typically chosen from the intermediate layers of
DNN (Iashin & Rahtu, 2021; Baevski et al., 2020), serving as fine-grained features that contain both
semantic and acoustic information of sound. However, decoding the fine-grained features directly is
often challenging due to the high dimensionality, yielding limited outcomes in reconstruction.

There are also works that decode neural signals coarsely into the low-dimensional semantic space.
For example, Denk et al. (2023) decodes fMRI data into 128-dimensional MuLan (Huang et al.,
2022b) embeddings, which are aligned with simple music descriptions in natural language, and then
generates music using MusicLM (Agostinelli et al., 2023). Hence, Denk et al. (2023) primarily
focuses on decoding the semantic features within the music, while the acoustic details are largely
inferred from the MusicLM’s priors, resulting in limited reconstruction similarity. In addition, this
model struggles to reconstruct audio beyond music and exhibits poor generalization capabilities.

To enhance the fine-grained decoding, we refocus our attention on neuroscience. As shown in Fig-
ure 1(a), research has indicated that in the cochlea and subcortical structures of the human ear,
sound is decomposed into frequency-specific temporal patterns similar to spectrograms (Pickles,
1988; Shamma & Micheyl, 2010; Schnupp, 2011; Moore, 2012). Further into the cerebral cor-
tex, the human auditory system has two information processing pathways from low-level to high-
level (Rauschecker & Tian, 2000; Kaas & Hackett, 2000; Scott & Johnsrude, 2003; Hickok & Poep-
pel, 2007; Rauschecker & Scott, 2009). In recent years, an increasing amount of research has found
that this cortical processing hierarchy aligns with the functional hierarchy of auditory DNN (Güçlü
et al., 2016; Kell et al., 2018; Vaidya et al., 2022; Millet et al., 2022; Li et al., 2023; Tuckute et al.,
2023; Giordano et al., 2023). The primary auditory cortex is more sensitive to shallow or intermedi-
ate DNN features, which represent low-level acoustic features, while the nonprimary auditory cortex
is more sensitive to deep DNN features, which represent high-level semantic features.

Inspired by the acoustic-to-semantic stream, we model each physiological structure of the auditory
processing pathway and propose an opposite coarse-to-fine audio reconstruction method, as shown
in Figure 1(b). We use non-invasive fMRI as the neural signal. To ensure generalizability across di-
verse audio stimuli, we choose pretrained models designed for broad applications: CLAP (Wu et al.,
2023), a contrastive audio-language model that maps audio to a semantic space; AudioMAE (Huang
et al., 2022a), a self-supervised audio model for learning rich acoustic representations; and a La-
tent Diffusion Model (LDM)(Rombach et al., 2022), which enables high-quality generation. First,
we conduct a coarse-to-fine brain decoding process, decoding fMRI data into the low-dimensional
CLAP space for coarse-grained semantic features and further into the high-dimensional AudioMAE
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latent space for fine-grained acoustic features. Next, the fine-grained features guide mel-spectrogram
reconstruction via LDM, with the final waveform restored by a Vocoder(Kong et al., 2020a).

We validate our approach on three publicly available fMRI datasets with different types
of audio stimuli: Brain2Sound (Park et al., 2023), Brain2Music (Nakai et al., 2022), and
Brain2Speech (LeBel et al., 2023) datasets. Our model achieves state-of-the-art levels in metrics
such as FD, FAD, and KL. Experimental results show that our coarse-to-fine framework signifi-
cantly enhances the decoding of fine-grained audio embeddings and performs well across various
datasets, showcasing the potential as a general framework.

Analyzing the coarse-to-fine decoding process, we find that poor semantic decoding can weaken
the semantic information in fine-grained embeddings. Given the complexity of sound signals and
the low resolution of neural data (Park et al., 2023), brain-to-audio decoding, especially semantic
decoding, is highly challenging. To address this, we provide simple semantic prompts (e.g., music
genres or speaker genders) during decoding. Experiments show that prompts enhance the semantic
quality of reconstructed audio when decoded features are insufficient.

Our contributions are as follows: (1) We propose a coarse-to-fine neural decoding model and recon-
struct high-quality waveforms with both semantic and detailed information. We also confirm that
coarse-to-fine decoding is superior to solely fine-grained decoding. (2) Our model achieves good
results on datasets with three different kinds of stimuli, demonstrating its strong transferability. It
can serve as a universal brain-to-audio framework. (3) We attempt to provide semantic prompts and
prove that they can enhance the reconstruction quality when semantic decoding is challenging. The
code is anonymously released at https://anonymous.4open.science/r/C2F-LDM.

2 METHOD

Let y ∈ RL represent an audio stimulus and x ∈ RV represent the corresponding fMRI signal,
where L is the length of the audio samples and V is the number of voxels in x. The brain-to-
audio reconstruction process can be formulated as R : x 7→ y. Our approach is to first decode an
intermediate representation c from x, and then generate y using a generative model G conditioned
on c. To obtain the condition c, we follow a coarse-to-fine process. First, we perform a coarse-
grained decoding by a Semantic Decoder DSem : x 7→ s to extract the semantic embedding s from
fMRI. Then, we use a semantically-guided Acoustic Decoder DAco : (s, x) 7→ c to jointly decode
the condition c with both semantics and acoustic details. After decoding, we use an LDM as the
generative model G : c 7→ y to reconstruct the stimulus audio conditioned on c. We will introduce
the coarse-grained decoding process of DSem in Section 2.1.1, discuss the design of DAco and the
fine-grained decoding process in Section 2.1.2, and describe the training of G in Section 2.2.

2.1 COARSE-TO-FINE BRAIN DECODING

2.1.1 COARSE-GRAINED SEMANTIC DECODING

We use the CLAP feature as the coarse-grained semantic embedding of audio. CLAP, or contrastive
language-audio pretraining (Wu et al., 2023), is a pretrained multi-modal model that aligns represen-
tations of audio with natural language descriptions. Pretrained on LAION-Audio-630K dataset (Wu
et al., 2023) containing audios of human speech and song, natural sounds, and audio effects music,
CLAP features are semantically aligned with various categories of audios, providing rich semantic
information.

We model the Semantic Decoder DSem : x 7→ s as a ridge regression model. As shown in Figure
2, we firstly use the final-layer feature of CLAP’s Audio Encoder as the ground truth semantic
feature of the stimulus audio y, denoted as sgt ∈ R512. Then, we perform the L2-regularized linear
regression from x to sgt using PyFastL2LiR1 toolkit, which provides fast ridge regression and voxel
selection functionalities. For each dimension of sgt, we only select 500 voxels for regression based
on the correlation coefficient. Thus, we obtain a sparse mapping matrix W ∈ RV×512 and a bias
b ∈ R512. The semantic embedding s of fMRI can be inferred by s = xW + b and s ∈ R512.

1https://github.com/KamitaniLab/PyFastL2LiR
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Figure 2: (a) Coarse-to-fine brain decoding. In the coarse-grained decoding, fMRI is decoded into the
semantic space of CLAP. In the fine-grained decoding, fMRI is decoded into the acoustic space of AudioMAE.
(b) Detailed structure of Acoustic Decoder.

2.1.2 FINE-GRAINED ACOUSTIC DECODING

We use the AudioMAE latent feature as the fine-grained acoustic embedding of audio. AudioMAE,
or audio mask autoencoder (Huang et al., 2022a), is a self-supervised pretrained model, which con-
sists of an encoder EA and a decoder DA and focuses on the reconstruction of the masked patches.

The reason we choose the AudioMAE latent embedding as the acoustic feature instead of other DNN
features is threefold: (1) AudioMAE is trained on a generative task, which retains more low-level
acoustic details compared to the discriminative models like VGGish-ish (Iashin & Rahtu, 2021)
used in Park et al. (2023). (2) Compared to the normal autoencoder used in Chen et al. (2024), Au-
dioMAE performs a masked patch prediction task, which models the whole patches of the spectro-
gram. The empirical evidence (Liu et al., 2023b) shows that this makes the AudioMAE feature space
more inclined to cluster audio of the same category together compared to VAE, indicating that Au-
dioMAE better preserves high-level semantic information. (3) Pretrained on AudioSet (Gemmeke
et al., 2017) which consists of natural sounds, human and animal sounds, and music, AudioMAE
can work well in the general audio domain. In comparison, the MuLan (Huang et al., 2022b) used
in Denk et al. (2023) and Wav2Vec 2.0 (Baevski et al., 2020) used in Kim et al. (2023) can solely
be utilized for music or speech. Considering all the points mentioned above, AudioMAE features
are highly suitable for fine-grained features in our method, containing rich semantic and acoustic
details.

As shown in Figure 2, we first transform the stimulus waveform y into 128 Kaldi (Povey et al.,
2011)-compatible Mel-frequency bands with a 25ms Hanning window that shifts every 10 ms fol-
lowing AudioMAE (Huang et al., 2022a), obtaining the mel-spectrogram m. Then we divide m
into 16×16 patches mp ∈ RNpatch×256 and encode the patches into cgt = EA(mp) ∈ RNpatch×768

with no mask, where Npatch represents the number of patches. cgt is then decoded into the recon-
structed patches mp

upp = DA(cgt) and unpatchified into the mel-spectrogram mupp. We consider
cgt as the ground truth acoustic feature of the stimulus audio y and mupp as an upper bound for the
reconstructed mel-spectrogram.

We model the Acoustic Decoder DAco : (s, x) 7→ c as a Transformer-based model, which captures
the dependencies between s and x, and decodes fMRI into the latent space of AudioMAE through
a Seq2Seq generation. First, we project s and x into the 768-dimensional representation space of
the Transformer. For s, we use a linear layer to project it to a semantic token s′. For x, we select
768 voxels with the highest responses based on the mapping matrix W , forming the fMRI token x′.
Then we concat the tokens and encode them with a Transformer Encoder ET , obtaining the neural
embedding n = ET ([s′, x′]). We create a learnable embedding q as the query to a Transformer
Decoder DT along with n as key and value, obtaining the decoded acoustic feature c = DT (q, n).

Losses. We train DAco from scratch with three different loss functions that measure the distance
between c and cgt. The first one is Lcond, which directly calculates the L2 distance in the la-
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Figure 3: Brain-to-audio reconstruction. The LDM generates mel-spectrograms under the condition of fine-
grained acoustic features, followed by the Vocoder to generate reconstructed audios.

tent space. Then, we use the AudioMAE Decoder DA to decode c into the reconstructed patches
mp

recon = DA(c) and unpatchify them into the mel-spectrogram mrecon. During the decoding pro-
cess, we calculate the L2 distance between each intermediate layer representation of DA and the
ground truth, which is the perceptual loss Lperceptual. Finally, we calculate the L2 distance between
mupp and mrecon with the original mel-spectrogram m as the reconstruction loss Lmel. The overall
loss is given by:

L =

Lcond︷ ︸︸ ︷
∥c− cgt∥22 +

Lperceptual︷ ︸︸ ︷∑
i∈layer

∥DA
i (c)−DA

i (cgt)∥22 +

Lmel︷ ︸︸ ︷
∥mupp −m∥22 + ∥mrecon −m∥22 . (1)

The pretrained AudioMAE is accustomed to handling masked patches, whereas our method lever-
ages all patches to retain essential acoustic information for reconstruction. Therefore, we freeze EA

and fine-tune the parameters of DA to optimize the reconstruction performance.

Furthermore, we follow Liu et al. (2023b) by setting a Pgt = 0.25 during training, which means
that DAco has a 0.25 probability of receiving the ground truth semantic feature sgt as input and a
0.75 probability of receiving the decoded semantic feature s from DSem. This trick helps reduce the
impact of decoding noise and improve the stability of the reconstruction by bringing the decoded
space closer to the original audio feature space. We will discuss it in Section 3.4.

2.2 BRAIN-TO-AUDIO RECONSTRUCTION

In this section, we use a generative model G : c 7→ y to reconstruct the stimulus audio conditioned on
c. When performing fine-grained decoding, although we use the AudioMAE Decoder to reconstruct
the mel-spectrogram, it is not suitable to serve as the generative model for our method. We will
discuss this in detail in Section A.4. Instead, we model the process with a Latent Diffusion Model
(LDM) (Rombach et al., 2022). LDM is a powerful generative model that can model complex data
distributions in the latent space. It has been extensively used in the audio generation task, such as
AudioLDM (Liu et al., 2023a), AudioLDM2 (Liu et al., 2023b) and DiffVoice (Liu et al., 2023c).

We follow the formulation in AudioLDM2 (Liu et al., 2023b) to implement the LDM. As shown
in Figure 3, we first use a Hanning window with 64 frequency bins, a window size of 1024, and
a hop size of 160 to convert the stimulus audio into the mel-spectrogram. Then compress it to a
latent representation z using a VAE. The forward diffusion process is a T steps Markov chain that
gradually adds Gaussian noise as

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI) (2)

where βt is a variance schedule. Then the distribution of zt given z0 can be formulated as

q(zt|z0) =
t∏

s=1

q(zs|zs−1) = N (zt;
√
αtz0, (1− αt)I) (3)

where αt =
∏t

s=1(1 − βs). The distribution of zT at the final step will be a standard Gaussian
distribution (Ho et al., 2020). The LDM learns a reverse denoising process from the prior distribution

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

N (0, I) to the data distribution z conditioned on c. The loss function (Ho et al., 2020; Rombach
et al., 2022) in our method can be given as

L = Ezt,ϵ∼N (0,I),t∼{1,...,T}[∥ϵθ(zt, t, c)− ϵ∥22 + ∥ϵθ(zt, t, cgt)− ϵ∥22] (4)

where ϵθ is the denoising network, for which we utilize a Transformer-UNet (T-UNet) following
AudioLDM2 (Liu et al., 2023b). After the LDM reconstructs the mel-spectrogram, it will be con-
verted to the waveform using a pretrained HiFiGAN (Kong et al., 2020a) vocoder. We initialize
the LDM with pretrained weights from AudioLDM2 and fine-tune DAco and the T-UNet during
training, while keeping other weights frozen.

2.3 CONDITIONAL RECONSTRUCTION

In practical applications, brain-to-audio reconstruction is not always unconditional. Firstly, com-
pared to images, audios exhibit strong temporal correlations. If a subject listens to a long segment of
stimulus audio but only a portion needs to be reconstructed using brain signals, considering that other
audio segments and the target segments may be semantically similar, they can serve as conditions
to provide additional semantic information. Secondly, we may know in advance the coarse-grained
category (e.g., human speech or animal sound) of the audio to be reconstructed. Given the challenge
of semantic decoding from fMRI (see Section 3.3 for details), we can use the coarse-grained cate-
gory as the semantic prior to guide the reconstruction process. Thus, we attempt to provide semantic
prompts in the form of audio or text to our model for conditional reconstruction, to assess whether
it can enhance the quality of the reconstructed audio.

The conditional reconstruction process is straightforward. We utilize CLAP’s Text Encoder and
Audio Encoder to extract the semantic embedding sprompt of the text prompt and audio prompt.
Then we replace s with sprompt as input to DAco : (sprompt, x) 7→ c, to obtain the fine-grained
acoustic embedding c. Finally, we use G : c 7→ y to reconstruct the stimulus audio conditioned on c.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Datasets. We use three publicly available fMRI datasets to validate our method’s performance
across different kinds of stimuli: Brain2Sound (Park et al., 2023), Brain2Music (Nakai et al., 2022),
and Brain2Speech (LeBel et al., 2023) datasets. Brain2Sound Dataset comprises fMRI signals from
five subjects listening to 4-second natural sounds, including human speech, animal, musical instru-
ment, and environmental sounds. The dataset consists of 14,400 training samples and 150 test sam-
ples. Brain2Music Dataset comprises fMRI signals from five subjects listening to 1.5-second music
clips, consisting of 4,800 training samples and 600 test samples. Brain2Speech Dataset comprises
fMRI signals from seven subjects listening to 2-second voice segments, consisting of 9,137 training
samples and 595 test samples. For detailed information about the datasets and the preprocessing
methods, please refer to section A.1.

Metrics. We use PCC (Pearson Correlation Coefficient) and PSNR (Peak Signal-to-Noise Ratio)
to measure the similarity between the mel-spectrograms of reconstructed audio and stimulus audio,
evaluating the low-level fidelity quality. In addition, we use FD, FAD, KL, and CLAP score, which
are commonly employed in audio generation tasks, to evaluate the high-level perceptual quality of
the reconstructed audio. FD (Fréchet Distance) calculates the distance in features between gener-
ated samples and target samples, extracted from an audio classifier PANNs (Kong et al., 2020b).
KL (Kullback–Leibler divergence) calculates the KL divergence of classification logits based on
PANNs. FAD (Fréchet Audio Distance) is similar to FD, but it uses VGGish (Kilgour et al., 2018).
CLAP score calculates the cosine similarity of CLAP (Wu et al., 2023) embeddings. In our experi-
ments, each subject is trained and tested individually, and the metrics are averaged across subjects.

Comparison Models. We compare the reconstruction results of three methods: (1) The direct
decoding methods, which map fMRI signals to mel-spectrograms, including a linear regression
model (Pasley et al., 2012; Yang et al., 2015; Hassan et al., 2018; Bellier et al., 2023) implemented
through Ridge in sklearn, a three-layer MLP (Yang et al., 2015; Hassan et al., 2018; Bellier et al.,
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Figure 4: Reconstruction results of S1, sub-001 and UTS01 on the three datasets.

2023) implemented through MLPRegressor in sklearn following Bellier et al. (2023), a Bidirec-
tional LSTM (Shigemi et al., 2023; Daly, 2023) and a Transformer Encoder (Shigemi et al., 2023),
both with the same configuration as our Transformer. (2) The fine-grained decoding methods, which
map fMRI signals to high-dimensional intermediate features directly (Park et al., 2023; Kim et al.,
2023; Chen et al., 2024). We remove the coarse-grained decoding process of our method and de-
code fMRI into the latent space of AudioMAE using the Acoustic Decoder DAco : x 7→ c. Then we
used the LDM G : c 7→ y to reconstruct the audio. This method is called Fine-LDM. In addition,
for the Brain2Sound Dataset, we use the code and checkpoints open-sourced by Park et al. (2023)
to reproduce their experimental results. (3) The coarse-to-fine decoding methods proposed by us,
including C2F-Decoder, which utilizes the AudioMAE Decoder as the generative model (see details
in Section A.4) and C2F-LDM using the LDM (ours). Please refer to section A.2 for specific details
on the experimental setup.

3.2 RECONSTRUCTION RESULTS

Table 1: Reconstruction results on the Brain2Sound Dataset.
Bold indicates the best, and underlined indicates that our
method outperforms the fine-grained decoding methods.

Brain2Sound Dataset (Park et al., 2023)
Model PCC↑ PSNR↑ FD↓ FAD↓ KL↓ CLAP↑

LiR 0.607 17.506 105.113 40.877 4.027 0.175
MLP 0.566 17.310 98.358 38.045 4.020 0.164

BiLSTM 0.580 17.381 112.031 39.895 3.948 0.180
Transformer 0.581 17.676 104.118 39.484 3.764 0.177

Park et al. 0.394 15.406 88.456 12.694 2.251 0.268
Fine-LDM 0.376 14.624 49.827 10.803 2.895 0.265

C2F-Decoder 0.595 17.385 95.565 35.775 3.748 0.179
C2F-LDM (ours) 0.418 15.103 44.003 9.324 2.697 0.275

All reconstruction results are presented in
Table 1 and 2, which are divided into
three sections: direct decoding methods,
fine-grained decoding methods, and our
coarse-to-fine decoding methods. We se-
lect one representative from each section,
Linear Regression (LiR), Fine-LDM and
C2F-LDM to display the reconstructed
mel-spectrograms2 in Figure 4.

We find that direct decoding methods,
which are optimized based on mean
squared error, can achieve higher PCC and
PSNR. However, as shown in Figure 4,
the reconstruction results are often overly
smooth and lack high-frequency details,
leading to poor perceptual quality. In contrast, the fine-grained decoding methods exhibit a sig-
nificant improvement in FD, FAD, KL, and CLAP score. The reconstructed spectrograms contain
more time-frequency details, leading to more realistic reconstructed audios and a preliminary re-
construction of semantics. On the other hand, the fine-grained decoding methods fall short in terms
of PCC and PSNR. In signal generation and reconstruction, a theoretical trade-off exists between
perceptual quality and distortion metrics (such as PSNR) (Blau & Michaeli, 2018). Improving
perceptual quality often leads to lower PSNR values, and this trade-off is evident in our reconstruc-
tion tasks. The use of generative models aims to achieve reasonable reconstruction accuracy while
preserving high perceptual quality. Experimental results show that a PCC of approximately 0.4 is
acceptable, considering the balance between perceptual quality and signal fidelity.

2Reconstructed spectrograms and audios for all subjects can be found in the supplementary material.
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Table 2: Reconstruction results on the Brain2Music and Brain2Speech datasets. Bold indicates the best, and
underlined indicates that our method outperforms the fine-grained decoding methods.

Brain2Music Dataset (Nakai et al., 2022) Brain2Speech Dataset (LeBel et al., 2023)

Model PCC↑ PSNR↑ FD↓ FAD↓ KL↓ CLAP↑ PCC↑ PSNR↑ FD↓ FAD↓ KL↓ CLAP↑
LiR 0.637 19.353 47.710 18.247 0.997 0.223 0.511 17.500 68.146 24.988 3.483 0.112
MLP 0.591 18.886 48.980 19.895 0.732 0.200 0.409 16.389 75.174 27.983 4.153 0.094

BiLSTM 0.628 19.078 57.030 22.673 1.008 0.209 0.526 17.688 92.172 33.442 4.187 0.074
Transformer 0.646 19.379 60.969 22.195 1.079 0.198 0.526 17.690 74.048 27.526 3.817 0.041

Fine-LDM 0.419 15.526 6.412 1.273 0.548 0.512 0.357 14.385 12.706 4.820 0.885 0.420

C2F-Decoder 0.643 19.478 63.039 26.053 1.191 0.195 0.518 17.495 96.032 26.917 4.278 0.077
C2F-LDM (ours) 0.454 15.883 6.102 1.504 0.520 0.530 0.393 15.260 9.726 4.623 0.616 0.471

In comparison to the fine-grained decoding methods, our coarse-to-fine approach excels in both low-
level and high-level metrics. The spectrogram details are closer to the stimulus audio. Our method
achieves state-of-the-art performance in FD, FAD, KL, and CLAP score, while also enhancing PCC
and PSNR, although it falls short of direct decoding methods. It demonstrates that coarse-to-fine
decoding can effectively enhance the quality of reconstruction. Compared to Park et al. (2023),
our method significantly improves on PCC, FD, FAD, and CLAP score. The comparison of recon-
structed samples can be found in Section A.3. The comparison with C2F-Decoder can be found in
Section A.4.

We further analyze the impact of our coarse-to-fine method on decoding the fine-grained acoustic
features. We compute the PCC between the ground truth and decoded acoustic features for 17 sub-
jects across the three datasets. Then we compare the experimental results between the coarse-to-fine
decoding and the directly fine-grained decoding, with a baseline established by directly mapping
fMRI to the acoustic features using L2-regularized Linear Regression. As shown in Section A.5,
the consistent decoding performance of the PCC across different methods reflects the varying signal
quality of the subjects. Across almost all participants, our coarse-to-fine method consistently out-
performs the fine-grained method. It suggests that coarse-to-fine decoding can effectively enhance
the fine-grained acoustic features widely across the participants.

3.3 SEMANTIC ANALYSIS OF ACOUSTIC FEATURES

An intuitive idea is that the introduction of coarse-grained semantic decoding enhances the semantic
information in the acoustic features, thereby improving the fine-grained decoding. Is this really the
case? We will discuss this issue in this section.

It is generally believed that a representation space with strong semantic information typically clus-
ters samples of the same category while separating those of different categories. Therefore, we
conduct a classification experiment using two datasets with clear category labels, the Brain2Music
Dataset with the labels of music genres (10 classes) and the Brain2Speech Dataset with the labels
of speakers’ genders (2 classes). Gender is chosen as the semantic label for human speech primarily
because it is the most intuitive and easily annotated attribute within speech semantics. Addition-
ally, we reference the LAION-Audio-630K dataset (Wu et al., 2023) used by CLAP, where gender
information serves as a key element in the text captions for human speech. We perform 5-fold
cross-validation on the test set, using SVM to classify acoustic features obtained through coarse-to-
fine decoding or directly fine-grained decoding. The average classification accuracy measures the
semantic information in the acoustic features, with identical experimental conditions ensuring an
unbiased comparison.

As shown in Figure 5, the chance levels are 0.1 and 0.5 for the two datasets, while the upper
bounds are the classification accuracy on the ground truth acoustic features, which are 0.33 and
0.95. After introducing the coarse-grained decoding, the classification accuracy for each subject
in the Brain2Music Dataset either increases or remains essentially unchanged. However, in the
Brain2Speech Dataset, the classification accuracy for some subjects decreases. It suggests that the
semantic information in the acoustic features is diminishing, while the coarse-grained decoding pri-
marily enhances the low-level acoustic information.
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(a) (b)

***

***
**

*

*
***

Figure 5: Semantic decoding accuracy in the (a) Brain2Music and (b) Brain2Speech Dataset. The gray dashed
lines represent the upper bound of accuracy and the chance level. Significance test is performed (paired t-test,
p < 0.001(***), p < 0.01(**), p < 0.05(*)).

To explain this phenomenon, we further analyze the coarse-grained semantic features of guidance.
The same SVM classification task is performed. As shown in Figure 5, the classification accuracy
of the semantic features in the Brain2Music Dataset is relatively high, whereas the classification
accuracy in the Brain2Speech Dataset is poor, approaching the chance level. It indicates that there is
little semantic content in the semantic features, making it nearly impossible to differentiate speakers’
genders. We visualize the distribution of the semantic features using t-SNE for the two datasets. As
shown in Section A.6, some categories in the Brain2Music Dataset cluster well, while samples from
the two categories in the Brain2Speech Dataset are mixed and almost indistinguishable, which is
consistent with our experimental results. This could be attributed to participants being more focused
on the content of the stories during fMRI signal collection, potentially disregarding the speaking
style of the speaker. The lack of semantic richness in the guided semantic features leads to a decrease
in the semantic content of the acoustic features.

In summary, although introducing the coarse-grained semantic decoding can enhance the decoding
of the fine-grained acoustic features, the semantic content of the acoustic features may not be en-
hanced if the semantic features of guidance are poor. In such cases, the coarse-grained decoding
mainly enhances the low-level acoustic information.

3.4 CONDITIONAL RECONSTRUCTION RESULTS

In the previous section, we note that poor semantic decoding can degrade the semantic content of
acoustic features during guided decoding. Therefore, in the conditional reconstruction task men-
tioned in Section 2.3, it is preferable to use prompt-based semantic features as coarse-grained fea-
tures instead of decoded ones. We define two types of prompts: (1) Text prompts, which specify
the stimulus audio category. For the Brain2Music Dataset, these include 10 music genres (e.g., pop
music, rock music), while for the Brain2Speech Dataset, they indicate the speaker’s gender (man
speaking or woman speaking). (2) Audio prompts, where the last 10 stimulus audio clips from two
test set stories in the Brain2Speech Dataset are used as prompts, with results averaged.

To evaluate conditional brain-to-audio reconstruction, we test the hyperparameter Pgt mentioned
in Section 2.1.2 under three conditions: Pgt = 0.0, 0.25 and 0.5. The results are shown in Table
3. We observe that incorporating ground truth semantic features during training improves brain-
to-audio reconstruction, but higher Pgt values do not always yield better results. For instance, in
the Brain2Music Dataset, Pgt = 0.5 performs worse than Pgt = 0.25. Since fMRI data is used
exclusively during testing, excessively high Pgt creates a mismatch between training and testing,
reducing reconstruction accuracy. Balancing decoding from fMRI and ground truth, we select Pgt =
0.25 as the optimal value based on metrics from both datasets.

For the Brain2Music Dataset, the high-level metrics decrease after incorporating the text prompts.
It suggests that the text prompts of music genres we provide may not effectively represent the se-
mantic content of the stimulus audio. After adding the text prompts, samples of the same music
genre have identical coarse-grained features. Considering the relatively strong semantic decoding
in the Brain2Music Dataset as mentioned in Section 3.3, the loss of the individual specificity across
samples leads to a decrease in the reconstruction quality, particularly in semantics. In contrast, the
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Table 3: Conditional reconstruction results with text prompts and audio prompts.
Brain2Music Dataset (Nakai et al., 2022) Brain2Speech Dataset (LeBel et al., 2023)

Pgt Prompt PCC↑ PSNR↑ FD↓ FAD↓ KL↓ CLAP↑ PCC↑ PSNR↑ FD↓ FAD↓ KL↓ CLAP↑

0.0
no prompt 0.442 15.827 6.121 1.606 0.520 0.527 0.379 14.898 11.636 4.866 0.758 0.438
text prompt 0.421 15.600 8.283 2.169 0.641 0.460 0.331 14.531 10.772 5.265 0.513 0.444

audio prompt - - - - - - 0.315 14.543 7.160 4.148 0.430 0.481

0.25
no prompt 0.454 15.883 6.102 1.504 0.520 0.530 0.393 15.260 9.726 4.623 0.616 0.471
text prompt 0.405 16.059 7.358 2.219 0.584 0.470 0.340 14.680 9.265 4.712 0.449 0.476

audio prompt - - - - - - 0.300 14.434 7.722 4.383 0.416 0.491

0.5
no prompt 0.422 15.466 6.587 1.341 0.536 0.513 0.374 15.299 7.957 4.013 0.493 0.502
text prompt 0.393 15.827 10.304 2.624 0.559 0.465 0.350 14.912 6.698 5.102 0.348 0.487

audio prompt - - - - - - 0.303 14.401 7.129 3.930 0.398 0.486

semantic decoding performs poorly in the Brain2Speech Dataset, so the introduction of both text
prompts and audio prompts can significantly enhance the semantics of the reconstructed audio. In
summary, when coarse-grained semantic features are suboptimal, conditional reconstruction with
prompts can effectively enhance the quality of the reconstructed audio.

4 LIMITATIONS AND FUTURE WORK

Temporal resolution. Given the advantages of high spatial resolution and high signal-to-noise
ratio in non-invasive neural signals, fMRI has been commonly employed in the field of neural en-
coding and decoding. Research (Santoro et al., 2017) has confirmed that the reconstruction from the
BOLD response (TR=2.6s) can exhibit a temporal specificity of about 200 ms, which is adequate
for capturing certain semantics and details of the audio. Since then, numerous works (Santoro et al.,
2017; Park et al., 2023; Denk et al., 2023) and datasets (Nastase et al., 2021; Li et al., 2021; Nakai
et al., 2022; Park et al., 2023; LeBel et al., 2023) have emerged to support research on fMRI-to-audio
tasks. However, the limited temporal resolution of fMRI consistently hampers the temporal decod-
ing of audio. The aim of this article is to enhance the reconstruction performance further from a
neuroscience perspective. To make a breakthrough in temporal decoding, it is imperative to leverage
other neural signals with high temporal resolution, such as EEG and MEG.

Model and voxel selection. The main purpose of this article is to illustrate the superiority of hi-
erarchical decoding over direct decoding. Therefore, we build a generic brain-to-audio framework,
selecting the most suitable models, CLAP and AudioMAE, without comparing them to other repre-
sentation models. In the future, we will switch to different models within our framework to attempt
further improvement of reconstruction results. Furthermore, we utilize all the voxels of the auditory
cortex (AC) in our work. However, there are gradients in the voxels of different brain regions within
the AC (Kell et al., 2018; Tuckute et al., 2023; Giordano et al., 2023). In the future, we plan to
consider the gradients of voxels to further enhance the hierarchy of information processing.

5 CONCLUSION

In this paper, we propose a novel coarse-to-fine audio reconstruction method inspired by the hier-
archical processing of the human auditory system. Our method begins by decoding fMRI into the
CLAP space to extract coarse-grained semantic features. Subsequently, leveraging these semantic
features, we decode fMRI into the AudioMAE latent space to capture fine-grained acoustic features.
Next, we use the acoustic features as conditions to reconstruct the stimulus audio using a Latent
Diffusion Model. By validating on three diverse fMRI datasets, our method has shown superior
performance in brain-to-audio reconstruction compared to previous fine-grained methods. We have
illustrated its state-of-the-art capabilities, achieving remarkable results in FD, FAD, KL, and CLAP
score. The integration of semantic prompts during decoding further enhances the semantics of re-
constructed audio, particularly when dealing with suboptimal semantic decoding. We will discuss
the broader impacts of our paper in Section A.7.
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A APPENDIX

A.1 DATASETS

Table 4: ROIs and voxels of the datasets.
Dataset ROIs Subjects Voxels Training samples Test samples

Brain2Sound
(Park et al., 2023)

AC (A1, LBelt,
A4, A5, etc.)

S1 6,662 13,872

150
S2 6,624 13,944
S3 6,713 13,944
S4 6,157 13,944
S5 7,143 13,944

Brain2Music
(Nakai et al., 2022) N/A

sub-001 60,784

4,800 600
sub-002 53,927
sub-003 64,700
sub-004 61,899
sub-005 53,421

Brain2Speech
(LeBel et al., 2023)

AC, FFA, OFA,
PPA, etc.

UTS01 836

9,137 595

UTS02 2,093
UTS03 1,303
UTS05 920
UTS06 980
UTS07 1,584
UTS08 1,109

Brain2Sound Dataset As proposed by Park et al. (2023), this dataset3 records the fMRI signals
of five subjects (one female) while they are listening to natural sounds, including human speech,
animal, musical instrument, and environmental sounds. fMRI data are acquired using a 3.0-Tesla
Siemens MAGNETOM Verio scanner at the Kyoto University Institute for the Future of Human
Society. Functional images that cover the entire brain are obtained with TR = 2,000 ms, TE = 44.8
ms, flip angle = 70 deg, FOV = 192 × 192 mm, voxel size=2 × 2 × 2 mm, number of slices = 76 and
multi-band factor = 4. We utilize fMRI data preprocessed by Park et al. (2023), primarily involving
motion correction, slice time correction, co-registration, BOLD time-series resampling, etc.

The stimuli consist of 1,250 8-s natural sound segments, with 1,200 for the training set and 50 for the
test set, selected from the VGGSound dataset (Chen et al., 2020). All the sounds are extracted from
the videos uploaded to YouTube. To increase the sample number, we preprocess the audio segments
in the same way as Park et al. (2023): 4-s sliding windows are utilized with a 2-s stride to extract 3
4-s segments. All audio clips are resampled to 16kHz. During the collection of fMRI signals, each
stimulus is repeated four times, resulting in 14,400 samples4 for the training set (1,200 stimuli × 4
repetitions × 3 samples = 14,400 samples). For the test set, we average the multiple fMRI samples,
resulting in 150 samples (50 stimuli × 3 samples = 150 samples).

Brain2Music Dataset Following Denk et al. (2023), we use the music genre neuroimaging
dataset5 from Nakai et al. (2022), which records the fMRI signals of five subjects (two female)
while they are listening to music clips. fMRI data are acquired using a 3.0T MRI scanner (TIM
Trio; Siemens, Erlangen, Germany) at the Center for Information and Neural Networks (CiNet),
National Institute of Information and Communications Technology (NICT), Osaka, Japan. Func-
tional scanning is performed with TR = 1,500 ms, TE = 30 ms, flip angle = 62 deg, FOV = 192 ×
192 mm, voxel size = 2 × 2 × 2 mm and multi-band factor = 4. We utilize fMRI data preprocessed
by Denk et al. (2023), encompassing essential steps such as motion correction, template alignment,
low-frequency drift removal, response normalization, etc.

3https://github.com/KamitaniLab/SoundReconstruction
4When downloading, we discovered that some audios in the training set were no longer available on

YouTube, hence, the amount of training samples is slightly less than 14,400. See Table 4 for details.
5https://openneuro.org/datasets/ds003720
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The dataset contains music stimuli from 10 genres (blues, classical, country, disco, hip-hop, jazz,
metal, pop, reggae, and rock) which are sampled from the GTZAN dataset (Tzanetakis & Cook,
2002). A total of 54 15-s music pieces are selected from each genre, with 48 for the training set
and 6 for the test set. All music pieces are resampled to 16kHz and segmented into 10 clips of
1.5 seconds each to match the TR of functional scanning. As a result, the dataset consists of 4,800
samples (48 stimuli × 10 genres × 10 samples = 4,800 samples) for training and 600 (6 stimuli × 10
genres × 10 samples = 600 samples) for testing.

Brain2Speech Dataset We use the dataset6 proposed by LeBel et al. (2023). The dataset contains
fMRI responses recorded while 7 participants7 (three female) are listening to 27 complete, natural,
narrative stories. fMRI data are collected on a 3T Siemens Skyra scanner at the UT Austin Biomed-
ical Imaging Center. Functional scans are collected with TR = 2.00 s, TE = 30.8 ms, flip angle =
71 deg, multi-band factor = 2, voxel size = 2.6 × 2.6 × 2.6 mm and FOV = 220 mm. We utilize
fMRI data preprocessed by LeBel et al. (2023), primarily incorporating motion correction, template
creation and alignment, low-frequency drift removal, response normalization, etc.

The stimulus set consists of 27 10–15 minute stories from The Moth podcast. We select two stories
(Hang time by a male speaker and Where there’s Smoke by a female speaker) as the test set, and the
remaining 25 stories are used as the training set. All stories are resampled to 16kHz and segmented
into 2-s clips to match the TR of functional scanning. To account for the hemodynamic response,
we form a sample pair by combining the fMRI signal of each TR with the stimulus audio clip from 4
seconds ago. We use the last 10 stimulus audio clips from two stories in the test set as audio prompts.
These prompts are not used for testing, ensuring that the participants could not have possibly heard
the audio prompts in the preceding trials. As a result, the dataset consists of 9,137 samples for
training and 595 samples for testing per subject.

A.2 EXPERIMENTAL SETUP

In the stage of coarse-grained decoding, for the Brain2Sound and Brain2Speech datasets, we only
utilize voxels from the auditory cortex (AC) area, whereas for the Brain2Music Dataset, we use
voxels from the entire brain. The specific brain regions and voxels can be found in Table 4.

In the stage of fine-grained decoding, we utilize a 4-layer Transformer Encoder and Decoder in DAco

and use the default configuration of AudioMAE (Huang et al., 2022a), initialized with the pretrained
weights.8 The AudioMAE Encoder is a vanilla 12-layer ViT-B, while the AudioMAE Decoder is
a 16-layer Transformer with shifted local attention. Since AudioMAE requires 10-second audios
(128×1024 mel-spectrograms) as inputs, we duplicate the stimulus waveforms to 10 seconds. After
encoding with the AudioMAE Encoder EA, we select the embeddings of the first Npatch patches as
cgt, corresponding to the length of the stimulus audio. We set Npatch = 208 for the Brain2Sound
Dataset, Npatch = 80 for the Brain2Music Dataset, and Npatch = 112 for the Brain2Speech Dataset.

In the stage of brain-to-audio reconstruction, we follow the formulation in AudioLDM2 (Liu
et al., 2023b) to implement the LDM G and utilize two checkpoints9 as the initialization weights:
audioldm2-full for the Brain2Sound and Brain2Music datasets, and audioldm2-speech-gigaspeech
for the Brain2Speech dataset.

We use the AdamW (Loshchilov & Hutter, 2017) optimizer to train DAco and DA with a learning
rate of 1e-6, and train G with a learning rate of 1e-4. We train on the Brain2Sound, Brain2Music, and
Brain2Speech datasets with a batch size of 8 for 30, 40, and 30 epoches. All training is completed
on a single NVIDIA A100 80GB GPU.

A.3 COMPARISON WITH PARK ET AL. (2023)

We reproduce the experimental results of Park et al. (2023) using the features from the conv5 3
layer of VGGish-ish (Iashin & Rahtu, 2021) and voxels from the entire AC region. The results and
the comparison with our method are shown in Figure 6.

6https://openneuro.org/datasets/ds003020/versions/1.1.1
7Subject UTS04 lacks a story, hence it will not be utilized.
8https://github.com/facebookresearch/AudioMAE
9https://github.com/haoheliu/AudioLDM2
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C2F-LDM

(ours)

Park et al.

stimulus

Figure 6: Comparison with the reconstruction results of Park et al. (2023).

A.4 COMPARISON WITH C2F-Decoder

When performing fine-grained decoding, although we use the AudioMAE Decoder to reconstruct
the mel-spectrogram, it is not suitable to serve as the generative model for our method. There
are two main reasons for this: (1) The mel bins and window parameters of the mel-spectrograms
in AudioMAE do not align with those of commonly used pretrained Vocoders. This mismatch
prevents the generated mel-spectrograms from being directly converted into audio. Moreover, the
cost of training a compatible Vocoder from scratch is prohibitively high. (2) The primary task
of the AudioMAE Decoder is to predict masked patches, with a focus on low-level details of the
spectrogram. This limitation leads to insufficient reconstruction quality in terms of semantic content.
In contrast, the mel-spectrograms generated by LDM can be directly restored to audio using the
pretrained HiFiGAN (Kong et al., 2020a) vocoder, and the generated audio has richer semantic and
acoustic details.

To investigate the reconstruction performance of C2F-Decoder, we need to transform the mel-
spectrograms generated by the AudioMAE Decoder, denoted as mA, into mel-spectrograms that
the Vocoder can accept, denoted as mV . We assume that mA and mV have a linear relationship, so
we use an L2-regularized linear regression model trained on mA and mV of the stimulus audio in
the training set. The results in the test set are as follows: PCC = 0.938 in the Brain2Sound Dataset,
PCC = 0.967 in the Brain2Music and Brain2Speech datasets. Based on the results, we believe that
this transformation is almost lossless. As shown in Figure 7, Table 1 and Table 2, C2F-Decoder is
similar to the direct decoding methods in that they both focus on modeling the overall spectrograms
but lack details and semantic information compared to C2F-LDM. It demonstrates the superiority of
LDM over employing the AudioMAE Decoder directly.

C2F-Decoder

C2F-LDM

(ours)

Brain2Sound Dataset Brain2Music Dataset Brain2Speech Dataset

stimulus

Figure 7: Comparison of the reconstruction results between C2F-Decoder and C2F-LDM.

A.5 COMPARISON OF ACOUSTIC DECODING METHODS

We compare the decoding accuracy of acoustic features among three methods: linear regression,
fine-grained decoding, and coarse-to-fine decoding. The PCC results for 17 subjects across the three
datasets are displayed in Figure 8. Our coarse-to-fine method achieves the highest PCC on two of the
datasets and consistently outperforms the fine-grained method across almost all subjects. It indicates
that coarse-to-fine decoding can effectively enhance the fine-grained acoustic features widely across
the participants.
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Figure 8: PCC between the ground truth and decoded acoustic features for 17 subjects in the Brain2Sound,
Brain2Music and Brain2Speech datasets. Our coarse-to-fine method consistently outperforms the directly fine-
grained method.

A.6 VISUALIZATION OF SEMANTIC SPACE

We perform t-SNE visualization on the space of ground truth and decoded semantic features on the
Brain2Music and Brain2Speech datasets. We choose the decoding spaces of sub-003 and UTS05,
which show significant effects after incorporating the semantic features based on Figure 5. For
the Brain2Music Dataset, some genres like classical and jazz exhibit good decoding performance,
while others like rock show poor decoding performance, as shown in Figure 9. For the Brain2Speech
Dataset, the semantic decoding performance is poor, and it cannot differentiate between male and
female speakers, as shown in Figure 10.

Figure 9: Visualization on the space of ground truth (left) and decoded (right) semantic features on the
Brain2Music Dataset.

Figure 10: Visualization on the space of ground truth (left) and decoded (right) semantic features on the
Brain2Speech Dataset. The cross markers represent samples used as audio prompts, providing coarse-grained
semantic features in the conditional reconstruction.
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A.7 BROADER IMPACTS

This research contributes to enhancing our understanding of brain function and cognitive processes,
playing a crucial role in further exploring the mechanisms of the human auditory system and pro-
moting the development of related technologies. In contrast to audio tasks like audio generation,
speech synthesis, and sound editing, our neural decoding task focuses on reconstructing the audio
heard by the subjects. The primary application scenario is a brain-computer interface system de-
signed to aid individuals with voice disorders. This task does not pose potential ethical challenges
such as forging or tampering with someone’s voice. In addition, the experiments are conducted in a
controlled laboratory setting with the participants’ consent and cooperation. It is not applicable in
real-world scenarios, thereby posing a minimal risk of privacy leakage.
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