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Abstract

Large Language Models (LLMs) have attained human-level fluency in text gen-
eration, which complicates the distinguishing between human-written and LLM-
generated texts. This increases the risk of misuse and highlights the need for reliable
detectors. Yet, existing detectors exhibit poor robustness on out-of-distribution
(OOD) data and attacked data, which is critical for real-world scenarios. Also, they
struggle to provide interpretable evidence to support their decisions, thus under-
mining the reliability. In light of these challenges, we propose IPAD (Inverse
Prompt for AI Detection), a novel framework consisting of a Prompt Inverter
that identifies predicted prompts that could have generated the input text, and two
Distinguishers that examine the probability that the input texts align with the
predicted prompts. Empirical evaluations demonstrate that IPAD outperforms the
strongest baselines by 9.05% (Average Recall) on in-distribution data, 12.93% (AU-
ROC) on out-of-distribution data, and 5.48% (AUROC) on attacked data. IPAD
also performs robustly on structured datasets. Furthermore, an interpretability
assessment is conducted to illustrate that IPAD enhances the AI detection trustwor-
thiness by allowing users to directly examine the decision-making evidence, which
provides interpretable support for its state-of-the-art detection results.

1 Introduction

Large Language Models (LLMs), characterized by their massive scale and extensive training data
[Chen et al., 2024, Feng et al., 2025a, Cheng et al., 2025], have achieved significant advances
in natural language processing (NLP) [Ouyang et al., 2022, Veselovsky et al., 2023, Wu et al.,
2025]. However, with the advanced capabilities of LLMs, they are subject to frequent misused in
various domains, including academic fraud, the creation of deceptive material, and the generation
of fabricated information [Ji et al., 2023, Pagnoni et al., 2022, Mirsky et al., 2023, Chen et al.,
2025], which underscores the critical need to distinguish between human-written text (HWT) and
LLM-generated text (LGT) [Pagnoni et al., 2022, Yu et al., 2025, Kirchenbauer et al., 2023].
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Figure 1: The overall workflow of our proposed IPAD framework

However, due to their sophisticated functionality, LLMs pose significant challenges in the robust-
ness of current AI detection systems [Wu et al., 2025]. The existing detection systems, including
commercial ones, frequently misclassify texts as HWT [Price and Sakellarios, 2023, Walters, 2023]
and generate inconsistent results when analyzing the same text using different detectors [Chaka,
2023, Weber-Wulff et al., 2023]. Studies show false positive rates reaching up to 50% and false
negative rates as high as 100% in different tools [Weber-Wulff et al., 2023] when dealing with
out-of-distribution (OOD) datasets.

Another critical issue with the existing AI detection systems is their lack of verifiable evidence [Ha-
laweh and Refae, 2024, Feng et al., 2025b], as these tools typically provide only simple outputs
like "likely written by AI" or percentage-based predictions [Weber-Wulff et al., 2023]. The lack of
evidence prevents users from defending themselves against false accusations [Chaka, 2023] and hin-
ders organizations from making judgments based solely on the detection results without convincing
evidences [Weber-Wulff et al., 2023]. This problem is particularly troublesome not only because the
low accuracy of such systems as mentioned before, but also due to the consequent inadequate response
to LLM misuse, which can lead to significant societal harm [Stokel-Walker and Van Noorden, 2023,
Porsdam Mann et al., 2023, Shevlane et al., 2023, Wu et al., 2025]. These limitations highlight the
pressing need for more reliable, explainable and robust detectors.

In this paper, we propose IPAD (Inverse Prompt for AI Detection), a novel and interpretable
framework for detecting AI-generated text. As illustrated in Figure 1, IPAD consists of two main
components: a Prompt Inverter, which reconstructs the underlying prompts from input texts,
and two Distinguishers—the Prompt-Text Consistency Verifier (PTCV), which measures the
alignment between the predicted prompt and input text, and the Regeneration Comparator (RC),
which compares the input with the corresponding regenerated text for consistency. By explicitly
modeling the reasoning path from prompt inversion to final classification, IPAD introduces a paradigm
shift in AI-generated content detection, significantly enhancing both detection robustness and user
interpretability.

Empirical results show that IPAD outperforms state-of-the-art baselines by 9.05% in Average Recall
on in-distribution datasets, 12.93% in AUROC on out-of-distribution (OOD) datasets, and 5.48%
in AUROC under adversarial attacks. IPAD also generalizes well to structured data. A user study
further reveals that IPAD improves trust and usability in detection tasks by presenting concrete
decision evidence, including predicted prompts and regenerated texts. Code is available at https:
//github.com/Bellafc/IPAD-Inver-Prompt-for-AI-Detection.

Our contributions can be summarized as follows:

• We introduce a novel fine-tuned inverse-prompt-based detection framework that integrates
prompt reconstruction and dual consistency evaluation.
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• We achieve superior detection performance on in-distribution, OOD, adversarially attacked,
and prompt-structured datasets.

• We demonstrate through an interpretability assessment that IPAD improves human trust and
interpretability in AI text detection.

2 Methodology
2.1 Preliminaries

Modules. Our method comprises a Prompt Inverter finv, and two Distinguishers, namely the
Prompt-Text Consistency Verifier (PTCV) fPTCV and the Regeneration Comparator (RC) fRC.
Given an input text T , the task is to determine whether it is human-written (HWT) or generated
by an LLM (LGT). We denote by DPI the training set for finv, consisting of pairs (T, P ) where T
is an LLM-generated text and P is its original prompt. The two distinguishers are trained using
disjoint datasets: DLGT contains LLM-generated samples andDHWT contains human-written ones. All
components are fine-tuned using Microsoft’s Phi3-medium-128k-instruct modelAbdin et al. [2024].

Softmax-Based probability for Binary Classification in LLM. To estimate the fine-tuned model’s
binary classification probability (i.e., the probability of predicting “yes” or “no”), we follow the
logit-based estimation approach [Yoshikawa and Okazaki, 2023]. Given the model input x, and the
output logits z, the model’s probability assigned to ŷ is computed through the softmax function σ :

Confidenceyes = P (ŷ = “yes” | x) = σ(z)yes, Confidenceno = P (ŷ = “no” | x) = σ(z)no

Since the fine-tuned model will only output“yes” or “no”, we further calculate the probability for this
binary classification as:

Probabilityyes =
Confidenceyes

Confidenceyes + Confidenceno
, Probabilityno = 1− Probabilityyes

2.2 Workflow
Our framework follows a multi-stage fine-tuning pipeline with the following four steps, as illustrated
in Figure 1. The details of the datasets for fine-tuning is illustrated in Appendix A.

Step 1: Training Prompt Inverter. We first fine-tune a model finv on dataset DPI, with the data
structure shown in Figure 1. For any input text T , finv predicts the most likely prompt P that could
have generated it, i.e. P = finv(T ). The resulting Prompt Inverter is then frozen and reused in the
following downstream steps.

Step 2: Training the Prompt-Text Consistency Verifier (PTCV). Given the predicted prompt P
in step 1, and the input text T ∈ {HWT,LGT}, the verifier fPTCV is trained to predict whether the
text T could plausibly be generated by an LLM using the prompt P . The fine-tuning datasets DLGT
and DHWT share the same structure, with output labels "yes" for DLGT and "no" for DHWT, as shown
in the Figure 1.

After fine-tuning this module, we applied it to the validation set and computed the probability score
pPTCV = fPTCV(T, P ), where the confidence value was estimated using the softmax-based method
described in Section 2.1.

Step 3: Training the Regeneration Comparator (RC). With the same predicted prompt P in step
1, we use an LLM to generate a regenerated text T ′ ← LLM(P ). By default, the LLM we use is
gpt-3.5-turbo. Then, the comparator fRC is trained to assess whether T and T ′ can be generated
by LLM with a similar prompt. This step uses the same dataset as in Step 2, but applies a different
structural formatting, as shown in Figure 1.

After fine-tuning this module, we also applied it to the validation set and computed the probability
score pRC = fRC(T, P ).

Step 4: Distinguisher Merge. To determine the final classification, we combine the two probability
scores, pPTCV and pRC, obtained from Step 2 and Step 3 on the validation set. Specifically, we
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compute a weighted ensemble as p̂ = w · pPTCV + (1−w) · pRC, and assign the prediction Ŷ = LGT
if p̂ > τ , or Ŷ = HWT otherwise. The weight w ∈ [0, 1] and the threshold τ ∈ [0, 1] are treated
as hyperparameters and selected via grid search on the validation set. The selected values were
w = 0.45 and τ = 0.54.

Inference. We perform inference on unseen input texts T by sequentially applying the trained
modules. Given an input text T , we first use the prompt inverter finv to recover the most plausible
prompt P . The prompt is then used to regenerate a candidate text T ′ via the an LLM. Next, we
compute two probability scores: pPTCV, indicating whether T is consistent with P , and pRC, assessing
the likelihood that T and T ′ originate from the same prompt. These scores are fused into a final
decision score p̂ using the gird-searched weight w, and the predicted label is determined by comparing
p̂ against the threshold τ . The complete inference pipeline is summarized in Algorithm 1.

Algorithm 1 IPAD Detection Procedure

Require: Input text T ; trained modules
finv, fPTCV, fRC; LLM fLLM; fusion weight
w ∈ [0, 1]; threshold τ ∈ [0, 1]

1: P ← finv(T ) ▷ Inverse-prompt prediction
2: T ′ ← fLLM(P ) ▷ Regenerate text using P
3: zPTCV ← fPTCV(P, T )

4: pPTCV ←
σ(zPTCV

yes )

σ(zPTCV
yes )+σ(zPTCV

no )

5: zRC ← fRC(T
′, T )

6: pRC ←
σ(zRC

yes)

σ(zRC
yes)+σ(zRC

no )

7: p̂← w · pPTCV + (1− w) · pRC
8: if p̂ > τ then
9: Ŷ ← LGT

10: else
11: Ŷ ← HWT
12: end if
13: E ← (P, pPTCV, pRC, p̂)

14: return (Ŷ , E)

2.3 Computational Complexity and
Deployment Considerations

The inference procedure of the IPAD framework
consists of three calls through a light-weight open-
sourced LLM phi-3-medium-128k-instruct.
Phi-3 is a decoder-only Transformer, whithin
which, the self-attention complexity per layer is
O(n2 · d), where n is the sequence length and d
is the hidden dimension [Vaswani et al., 2017].
The additional api call to gpt-3.5-turbo for re-
generating texts introduces fixed latency but no
local computation cost. Therefore, the overall com-
putational cost is bounded by O(3 · L · n2 · d +
OpenAIapi), where L = 32 is the number of layers
in phi-3 [Abdin et al., 2024], which is relatively
small. All three phi-3 calls can be deployed in an
Nvidia V100 GPU as the minimum requirement.
This demonstrates that IPAD is not computation-
ally expensive and can be deployed with relatively
modest hardware requirements.

2.4 Training

The supervised fine-tuning [Wei et al., 2022] process is performed on a Microsoft’s open model,
phi3-medium-128k-instruct, and we use low-rank adaptation (LoRA) method [Hu et al., 2022]
on the LLaMA-Factory framework [Zheng et al., 2024a]. We train it using six A800 GPUs for 20
hours for Prompt Inverter, 7 hours for PTCV, and 9 hours for RC.

3 Experiments

We investigate the following questions through our experiments:

• Assess the robustness of IPAD, which includes using various LLMs as generators, comparing
IPAD with other detectors, and evaluating on out-of-distribution (OOD), attacked datasets,
and prompt-structured datasets.

• Independently analyze the necessity and effectiveness of the Prompt Inverter, the PTCV,
and the RC.

• Explore the user-friendliness of IPAD through an interpretability assessment.
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Table 1: Detection Accuracy (HumanRec, MachineRec, AvgRec, and AUROC %) of IPAD across
Various LLMs on In-Distribution Data

Original Generator Re-Generator HumanRec MachineRec AvgRec AUROC
gpt-3.5-turbo gpt-3.5-turbo 98.50 100 99.25 100
gpt-4 gpt-4 98.70 100 99.35 100

gpt-3.5-turbo 96.10 100 98.05 99.96
Qwen-turbo Qwen-turbo 98.60 99.80 99.20 99.96

gpt-3.5-turbo 98.40 99.50 98.95 99.86
LLaMA-3-70B LLaMA-3-70B 98.70 100 99.35 100

gpt-3.5-turbo 98.60 100 99.30 100

3.1 Robustness of IPAD

3.1.1 Evaluation Baselines and Metrics

The in-distribution experiments refer to the testing results presented in [Koike et al., 2024], where
the data aligns with the training data used for the IPAD, thereby serving as our baseline. This baseline
assesses how the RoBERTa classifiers (base and large) [Park et al., 2021], the HC3 detector [Guo
et al., 2023], and the OUTFOX detector [Koike et al., 2024] perform on standard data as well as
under DIPPER [Alkanhel et al., 2023] and OUTFOX attacks.

The OOD experiments refer to the DetectRL baseline [Wu et al., 2024], which is a comprehensive
benchmark, which includes four datasets: (1) academic abstracts from the arXiv Archive (covering
the years 2002 to 2017) , (2) news articles from the XSum dataset [Narayan et al., 2018], (3) creative
stories from Writing Prompts [Fan et al., 2018], and (4) social reviews from Yelp Reviews [Zhang
et al., 2015]. It also employs three attack methods to simulate complex real-world detection scenarios,
which include (1) the prompt attacks, (2) paraphrase attacks, and (3) perturbation attacks [Wu et al.,
2024]. DetectRL evaluates three classifiers on the OOD dataset: DetectLLM (LRR) [Su et al.,
2023], Fast-DetectGPT [Bao et al., 2024], RoBERTa Classifier (Base). We included two more strong
classifiers in our evaluation DetectLLM (NPR) [Su et al., 2023] and Binoculars [Hans et al., 2024].
All the testing sets have 1,000 samples in our experiments.

We further evaluate its performance on OOD datasets with structured prompts. The LongWriter
dataset [Bai et al., 2025], featuring an average prompt length of 1,501 tokens, reflects IPAD’s
capability to handle long-form prompts. The Code-Feedback[Zheng et al., 2024b] and Math
datasets [Hendrycks et al., 2021] contain highly structured prompts, in contrast to typical essay-like
writing. We compare IPAD with baseline detectors from DetectRL to assess its relative performance
under these challenging conditions.

The Area Under Receiver Operating Characteristic curve (AUROC) is widely used for assessing
detection method [Mitchell et al., 2023a]. Since our models predict binary labels, we follow the
Wilcoxon-Mann-Whitney statistic [Calders and Jaroszewicz, 2007], and the formula is shown in
Appendix B. The AvgRec is the average of HumanRec and MachineRec, which refers to the
recall of the Human-written texts and the LLM-generated texts [Li et al., 2024].

3.1.2 Robustness across different LLMs

As shown in Table 1, IPAD achieves consistently strong performance across all combinations of
original generators and re-generators, which shows its robustness to diverse LLM as generators. The
best results are generally observed when the original generator and the re-generator are the same,
while the gpt-3.5-turbo serves as an effective universal re-generator: it performs well even when
the original generator differs. In real-world applications where the identity of the original generator
is unknown, using gpt-3.5-turbo as a fixed re-generator provides a practical and reliable solution.

3.1.3 Comparison of IPAD with other detectors in and out of distribution

In Distribution. For the in-distribution data, as shown in Figure 2, the baseline detectors like
RoBERTa, HC3, and OUTFOX perform well on standard data but degrade significantly under
DIPPER and OUTFOX attacks. In contrast, IPAD maintains high accuracy across all scenarios,
which surpasses the strongest baseline 9.05% in AvgRec.
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Figure 2: The In-distribution data performance of IPAD and the baseline detectors. Since Koike et al.
[2024] only presents the AvgRec data for the baselines, we also calculate AvgRec data for IPAD to
compare.

Out of Distribution. Table 2 reports detection accuracy across four benchmark datasets, which
shows that IPAD significantly outperforms prior baselines. Table 3 further evaluates robustness under
three attack types, where IPAD again demonstrates superior resilience. Compared to the strongest
baseline, IPAD achieves a 12.93% relative improvement on standard datasets in AUROC and a 5.48%
improvement on attack datasets.

Table 2: Detection Accuracy (AUROC %) on four diverse OOD datasets

Method Arxiv XSum Writing Review Average
DetectLLM (LRR) 48.17 48.41 58.70 58.21 53.37
DetectLLM (NPR) 53.85 34.59 54.96 50.09 48.37
Binoculars 84.03 77.39 94.38 90.00 86.45
Fast-DetectGPT 42.00 45.72 51.13 54.55 48.35
Rob-Base 81.06 76.81 86.29 87.84 83.00
IPAD Merge 100 99.85 99.40 98.25 99.38

Table 3: Detection Accuracy (AUROC %) on three attacked OOD datasets
Method Prompt Attack Paraphrase Attack Perturbation Attack Average
DetectLLM (LRR) 54.97 49.23 53.62 52.61
DetectLLM (NPR) 77.15 56.94 6.78 46.96
Binoculars 93.45 88.34 76.89 86.23
Fast-DetectGPT 43.89 41.15 44.38 43.14
Rob-Base 92.81 90.02 92.12 91.65
IPAD 97.30 96.00 98.10 97.13

Structured Prompts. The results are shown in Table 4, while these datasets lack HWT references
and are thus only evaluated using MachineRec, the strong scores suggest that IPAD maintains
robustness even on structured diverse inputs, with an improvement of 9.87% against the strongest
baseline in MachineRec.
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Table 4: Detection Accuracy (MachineRec %) on three structured OOD datasets
Method LongWriter Code-Feedback Math Average
DetectLLM (LRR) 32.1 29.0 30.2 30.43
DetectLLM (NPR) 41.2 45.9 56.0 47.7
Binoculars 82.1 84.6 89.4 85.4
Fast-DetectGPT 12.0 11.1 15.1 12.7
Rob-Base 81.5 89.2 82.1 84.3
IPAD 97.5 92.7 95.6 95.27

Figure 3: Ablation study. Evaluating Fine-tune only on Input, Fine-tune only on Prompt, Prompt
Inverter + PTCV, Prompt Inverter + RC, and IPAD on In-distribution datasets, standard OOD
datasets, and attacked OOD datasets.

3.2 Necessity and Effectiveness of the Prompt Inverter, PTCV, and RC

3.2.1 Necessity

To prove that it is necessary to fine-tune on IPAD with IPAD with PTCV and RC, we conducted
ablation study to use the same finetune method on only input texts and only predicted prompts,
with the finetune data format shown in Appendix C. We only experimented on Prompt Inverter +
PTCV and Prompt Inverter + RC to compare with the three-moduled IPAD.

Based on the ablation study results as shown in Figure 3, fine-tuning only on input texts or only
on predicted prompts performs poorly across all datasets in AUROC scores. While using Prompt
Inverter + PTCV or Prompt Inverter + RC individually significantly improves performance, neither
approach consistently excels across both HWT-style and LGT-style generations. In contrast, the full
IPAD framework achieves consistently high performance across all settings, which demonstrates the
necessity of the Prompt Inverter, PTCV, and RC modules.

3.2.2 Effectiveness

Prompt Inverter. We use DPIC [Yu et al., 2024] and PE [Zhang et al., 2024a] as baseline methods
for prompt extraction. DPIC employs a zero-shot approach using the prompt states in Appendix D,
while PE uses adversarial attacks to recover system prompts. In our evaluation, we tested 1000 LGT
and 1000 HWT samples. We use only in-distribution data for testing since only these datasets include
original prompts. The metrics are all tested on comparing the similarity of the original prompts and
the predicted prompts. The results shown in Table 5 illustrate that IPAD consistently outperforms
both DPIC and PE across all four metrics (BartScore [Yuan et al., 2021], Sentence-Bert Cosine
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Table 5: Comparison of prompt inverters on the similarities of the original prompts and the predicted
prompts on LGT and HWT.

Metric LGT HWT
DPIC PE IPAD DPIC PE IPAD

Bart-large-cnn -2.12 -2.23 -1.84 -2.47 -2.39 -2.22
Sentence-Bert 0.46 0.58 0.69 0.42 0.53 0.57
BLEU 5.61E-05 3.21E-04 0.24 8.75E-06 2.56E-08 0.13
ROUGE-1 0.04 0.25 0.51 0.06 0.13 0.39

Table 6: Comparison of distinguishers on HumanRec, MachineRec, and AvgRec (%).
Distinguish Method HumanRec MachineRec AvgRec
Sentence-Bert (Thr. 0.67) 61.20 95.20 78.20
Bart-large-cnn (Thr. -2.52) 42.60 97.20 69.90
Prompt to ChatGPT 33.20 64.50 48.85
IPAD 98.50 100.00 99.25

Similarity [Reimers and Gurevych, 2019], BLEU [Papineni et al., 2002], and ROUGE-1 [Lin, 2004]),
which highlight the effectiveness of the IPAD Prompt Inverter.

PTCV and RC. We conducted a comparison study using the frozen Prompt Inverter but different
distinguishing methods. The first and second methods employed Sentence-Bert [Reimers and
Gurevych, 2019] and Bart-large-cnn [Yuan et al., 2021] to compute the similarity score between
the input texts and the regenerated texts. We selected thresholds that maximized AvgRec, which
were 0.67 for Sentence-Bert and -2.52 for Bart-large-cnn. The classification rule is that the texts with
scores greater than the threshold will be classified as LGT, while the texts with scores less than or
equal to the threshold will be classified as HWT. The third method is to directly prompt ChatGPT
in Appendix C, which mimic the fine-tuning process of PTCV and RC. The final results shown in
Table 6 demonstrate that the other distinguishing methods performed worse than IPAD, highlighting
the superior effectiveness of the IPAD Distinguishers.

Compare with DPIC. DPIC first uses a zero-shot prompt inverter to generate prompts, then applies
a Siamese encoder and classifier to measure similarity between the embeddings of the original and
regenerated texts. However, the classifier’s reliance on embedding similarity is ambiguous, as similar
texts may stem from different prompts. IPAD addresses this by fine-tuning directly on raw texts and
reformulating the task as a logical reasoning problem as shown in the instructions of PTCV and RC.
Our trained Prompt Inverter outperforms DPIC’s generic zero-shot method as shown in Table 5,
and IPAD also achieves better performance than DPIC overall, as results shown in Appendix E.

3.3 Interpretability Assessment of IPAD

To assess the explainability improvement of IPAD, we designed an interpretability assessment with
ten participants evaluating one HWT and one LGT article. We used IPAD version 2 due to its
superior OOD performance and attack resistance. Participants compared three online detection
platforms (i.e., Scribbr, QuillBot, GPTZero) with IPAD’s process (which displayed input texts,
predicted prompts, regenerated texts, and final judgments). After evaluation, participants rated IPAD
on four key explainability dimensions. Transparency received strong ratings (40%:5, 60%:4), with
participants appreciating the visibility of intermediate processes. Trust scores were more varied
(10%:3, 70%:4, 20%:5), but IPAD was generally considered more convincing than single-score
detectors. Satisfaction was mixed (30%:3, 30%:4, 40%:5), with participants acknowledging better
detection but raising concerns about energy efficiency since IPAD runs three LLMs. Debugging
received unanimous 5s, as participants could easily analyze the predicted prompt and regenerated text
to verify the decision-making process. If needed, users could refine the generated content by adjusting
instructions, such as specifying a word count, making IPAD a more effective and user-friendly tool
compared to black-box detectors.
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4 Related Work

4.1 AI detectors Methods and challenges

Recent studies have explored diverse strategies for detecting AI-generated text. Watermarking
embeds identifiable patterns during training Gu et al. [2022], Shevlane et al. [2023] or inference Lucas
and Havens [2023], but requires model access and is vulnerable to erasure attacks Hou et al. [2024].
Statistics-based methods treat output distributions as detection signals. DetectGPT Mitchell et al.
[2023b] and Fast-DetectGPT Bao et al. [2024] locate LGT in regions of negative curvature of log-
probability; Lastde Xu et al. [2025] and Glimpse Bao et al. [2025] exploit token-probability dynamics
and partial-distribution prediction. Other statistical approaches rely on n-gram divergence or revision
similarity Hamed and Wu [2023], Kalinichenko et al. [2003], Zhu et al. [2023], Mao et al. [2024], Yang
et al. [2024a], though robustness remains limited Wu et al. [2025]. Regeneration-based methods
compare model rewrites with originals: RAIDAR Mao et al. [2024] and MAGRET Huang et al.
[2025] observe stronger edits on human text; DNA-GPT Yang et al. [2024a] and TOCSIN Veselovsky
et al. [2023] measure continuation or deletion-based differences. Neural approaches fine-tune
large encoders (e.g., RoBERTa Liu et al. [2019], BERT Devlin et al. [2019], XLNet Yang et al.
[2019]) with adversarial or contrastive objectives Pagnoni et al. [2022], Yang et al. [2024b], while
human-in-the-loop methods provides complementary semantic judgment and explainability Chaka
[2023], Dugan et al. [2023], Uchendu et al. [2023].

4.2 Prompt Inverter techniques and applications

Prompt extraction techniques aim to reverse-engineer the prompts that generate specific outputs from
LLMs. Approaches include black-box methods like output2prompt Zhang et al. [2024b], which
extracts prompts based on model outputs without access to internal data, and logit-based methods
like logit2prompt Mitka [2024], which rely on next-token probabilities but are constrained by access
to logits. Adversarial methods can bypass some defenses but are model-specific and fragile Zhang
et al. [2024c]. Despite the success of some zero-shot LLM-inversion based methods Li and Klabjan
[2024], Yu et al. [2024], they are mostly naive usage of prompting LLMs, which makes them poor in
prompt extraction accuracy and robustness.

5 Conclusion
This paper introduces IPAD (Inverse Prompt for AI Detection), a framework consisting of a
Prompt Inverter that identifies predicted prompts that could have generated the input text, and two
Distinguishers that examines how well the input texts align with the predicted prompts. One is the
Prompt-Text Consistency Verifier (PTCV) which evaluates direct alignment between predicted prompts
and input text, and the other is Regeneration Comparator (RC) that examines content similarity by
comparing input texts with the corresponding regenerated texts. Empirical evaluations demonstrate
that IPAD outperforms the strongest baselines by 9.05% (Average Recall) on in-distribution data,
12.93% (AUROC) on out-of-distribution (OOD) data, and 5.48% (AUROC) on attacked data. IPAD
also performs robustly on structured datasets. While the local alignment in RC approach provides
explicit interpretability, it is more sensitive to adversarial attacks. In contrast, the global distribution
in PTCV matching approach implicitly learns generative LLM’s distributional properties, which
offers more robustness while maintaining explainability. The combination of the two modules
suggests that combining self-consistency checks of generative models with multi-step reasoning
for evidential explainability holds promise for future AI detection systems in real-world scenarios.
An interpretability assessment reveals that IPAD enhances trust and transparency by allowing users
to examine decision-making evidence. Overall, IPAD establishes a new paradigm for more robust,
reliable, and interpretable AI detection systems to combat the misuse of LLMs.

While IPAD demonstrates SOTA performance, two limitations warrant discussion: (1) The Prompt
Inverter may not fully reconstruct prompts containing explicit in-context learning examples, as it
prioritizes semantic alignment over precise syntactic replication. (2) While IPAD achieves strong
performance across diverse datasets, it relies on LLMs, making it more computationally expensive
compared to lightweight detectors such as RoBERTa or HC3. However, compared other detectors
compared with LLMs, such as DPIC, IPAD is more lightweight since it calls the open-sources
light-weight Phi-3 model.
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A Fine-tune Dataset

Prompt Inverter Dataset. We use the following four datasets, with the first three datasets enhance
the model’s generalization to recover the prompts, while the last dataset improves performance on
essay-related tasks.

• Instructions-2M Morris et al. [2024], a collection of 2 million user prompts and system
prompts, from which we used 30,000 prompts.

• ShareGPT Zhang et al. [2024d], an open platform where users share ChatGPT prompts and
responses, from which we used 500 samples.

• Unnatural Instructions Zhang et al. [2024d], a dataset of creative instructions generated
by OpenAI’s models, from which we used 500 samples.

• OUTFOX dataset Koike et al. [2024], which contains 15,400 essay problem statements,
student-written essays, and LLM-generated essays.

The first three datasets aims to enhance the general querying capability of the Prompt Inverter, and
are all released under the MIT license. All the samples we used are the same to the samples randomly
selected in Zhang et al. [2024b]. The last dataset aims to enhance the familiarity of the Prompt
Inverter with the data of the essay to detect the LLM-generated essays, and are created and examined
by Koike et al. [2024], We specifically used the LLM-generated essays and problem statements for
this supervised fine-tuning (SFT). There are 45,400 training pairs in total.

Given that essay data are diverse, we utilize only the OUTFOX dataset Koike et al. [2024]. To adapt
this dataset for training our Distinguisher, we enhance it to align with the model’s requirements.
The original dataset consists of 14,400 training triplets of essay problem statements, student-written
essays, and LLM-generated essays. To further process the data, we apply the Prompt Inverter to
both student-written and LLM-generated essays, generating corresponding Predicted Prompts. These
Predicted Prompts are then used to regenerate texts via ChatGPT, i.e. gpt-3.5-turbo. Following this
procedure, we construct a total of 28,800 training samples, with an equal distribution of positive and
negative examples (14,400 each).

The final dataset is structured as follows:
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Table 7: Instruction, input/output structure, and inference outputs of each fine-tuned module. T is the
input text, P the predicted prompt, and T ′ the regenerated text.

Field Prompt Inverter PTCV RC

Instruction "What is the prompt
P that generates the
Input Text T?"

"Can LLM generate the
input text T through
the prompt P?"

"T ′ is generated
by LLM, determine
whether T is also
generated by LLM with
a similar prompt."

Input T (P, T ) (T ′, T )
Output P "yes"/"no" "yes"/"no"

Output in
Inference

P pPTCV pRC

B AUROC formula

Since our model predicts binary labels, we follow the Wilcoxon-Mann-Whitney statistic Calders and
Jaroszewicz [2007] to calculate the Area Under Receiver Operating Characteristtic curve (AUROC):

AUC(f) =

∑
t0∈D0

∑
t1∈D1 1[f(t0) < f(t1)]

|D0| · |D1|

where 1[f(t0) < f(t1)] denotes an indicator function which returns 1 if f(t0) < f(t1) and 0
otherwise. D0 is the set of negative examples, and D1 is the set of positive examples.

C Ablation study data structures

Input-only fine-tuning data instructions. "Is this text generated by LLM?"

Prompt Only fine-tuning data instructions. "Prompt Inverter predicts prompt that
could have generated the input texts. Is this prompt predicted by an input
texts written by LLM?"

Ablation Prompt. "Text A is generated by an LLM. Determine whether Text B
is also generated by an LLM using a similar prompt. Meanwhile, determine
whether Text B could have been generated from Prompt C using an LLM. Answer
with YES or NO."

D DPIC (decouple prompt and intrinsic characteristics) Prompt Extraction
Zero-shot Prompts Yu et al. [2024]

"I want you to play the role of the questioner. I will type an answer in
English, and you will ask me a question based on the answer in the same
language. Don’t write any explanations or other text, just give me the
question. <TEXT>.".

E Comparison with DPIC

Since DPIC has not released its code, data, or models, we are unable to independently evaluate the
performance of its classifier. Consequently, we rely on the reported results in the DPIC paper and
construct a comparable dataset following their described settings to enable a fair comparison with
IPAD. However, due to these limitations, we are unable to apply DPIC to additional datasets for
broader evaluation.
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To assess the generalization of IPAD, we reconstruct the following datasets, each containing 200
randomly sampled examples: XSum, WritingPrompts, and PubMedQA. For each dataset, we
generate texts using three large language models: ChatGPT (gpt-3.5-turbo), GPT-4 (gpt-4),
and Claude 3 (claude-3-opus-20240229). Furthermore, the XSum datasets generated by these
three models are augmented using two attack methods—DIPPER and Back-Translation—resulting
in a total of 15 evaluation datasets.

Table 8: AUROC comparison across tasks (XSum, Writing, PubMed) for ChatGPT, GPT-4, and
Claude 3 using various prompt extraction methods.

Method ChatGPT GPT-4 Claude 3
XSum Writing PubMed Avg. XSum Writing PubMed Avg. XSum Writing PubMed Avg.

DPIC (ChatGPT) 1.0000 0.9821 0.9092 0.9634 0.9996 0.9768 0.9438 0.9734 1.0000 0.9950 0.9686 0.9878
DPIC (Vicuna-7B) 0.9976 0.9708 0.8990 0.9558 0.9986 0.9644 0.9394 0.9674 0.9992 0.9943 0.9690 0.9875
IPAD (Version 1) 0.9850 0.9800 0.9250 0.9633 1.0000 0.9700 0.9700 0.9800 1.0000 0.9800 0.9750 0.9850
IPAD (Version 2) 1.0000 0.9850 0.9800 0.9883 1.0000 0.9800 0.9500 0.9767 1.0000 0.9950 1.0000 1.0000

Table 9: AUROC comparison under generation perturbation settings (DIPPER, Back-translation) for
each model.

Method ChatGPT GPT-4 Claude 3
Ori. DIPPER Back-trans. Ori. DIPPER Back-trans. Ori. DIPPER Back-trans.

DPIC (ChatGPT) 1.0000 1.0000 0.9972 0.9996 0.9991 0.9931 1.0000 0.9996 0.9878
DPIC (Vicuna-7B) 0.9976 0.9980 0.9889 0.9986 0.9969 0.9903 0.9992 0.9996 0.9979
IPAD (Version 1) 0.9850 0.8900 0.9850 1.0000 0.8950 0.9900 1.0000 0.9250 0.9950
IPAD (Version 2) 1.0000 0.9750 0.9950 0.9800 0.9750 0.9950 1.0000 1.0000 1.0000

Based on the experimental results, IPAD performs well and exhibits notable resistance to adversarial
attacks.

IPAD open-sourced all the fine-tuned models, including the Prompt Inverter, and the two versions of
distinguishers. Therefore, all the experiment results can be validated and reproduced.

F IPAD and DPIC prompt inverter examples
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Table 10: IPAD and DPIC prompt inverter examples

Input IPAD DPIC
The IPC opened proceedings against the National Paralympic Committee
of Russia after a report claimed the country had operated a widespread
doping programme.A decision on any ban will come in the week com-
mencing 1 August.The International Olympic Committee (IOC) has
opted against a blanket ban."I can assure you that our board will take the
right decision in the interest of sport and the interest of the Paralympic
movement moving forward," said Craven.On Sunday, the IOC said it
would leave it up to the governing bodies of individual sports to decide
if Russian competitors are clean and should be allowed to take part.But
Craven, himself a member of the IOC, was critical of that decision and
said the IPC would not necessarily follow suit."I am disappointed in their
decision, but that is a personal view," he added."We have to acknowledge
their right to take such a decision. This is ultra-serious. I don’t think
there has been a situation in the past where you have had institutional
doping on such a scale."We believe the Russian NPC is either unwilling
or unable to uphold the IPC anti-doping code, which is in line with the
World Anti-Doping Agency code, so that is what they have to respond
to."Canadian law professor Richard McLaren’s report, published last
week, claimed Russia operated a state-sponsored doping programme
from 2011 to 2015.The IPC said it acted after McLaren provided the
names of the athletes associated with the 35 "disappearing positive sam-
ples" from the Moscow laboratory highlighted in the report.Nineteen
samples potentially doctored as part of the sample-swapping regime
during the 2014 Sochi Paralympic Winter Games have been sent for
further analysis.Russia will have up to 21 days to appeal against any IPC
decision, with the Rio Paralympics due to begin on 7 September.

Explain the actions
taken by the Inter-
national Paralympic
Committee against the
Russian Paralympic
Committee and the
reasons behind these
actions.

What were the key
findings of Richard
McLaren’s report
regarding Russia’s
doping programme?

The world came crashing down in minutes. Many of us were asleep when
it happened, and did n’ t find out about it until later. When we awoke,
we saw the carnage spread through the land, and we wept. There were n’
t many of us left, but what few there were managed to find each other
over the Internet. We gathered together in what remained of a major
city on the East Coast of what was once the United States. It took us
time, but we eventually began to rebuild. The brightest among those who
survived thought to ask " Why, " while most of us were content with just
surviving. Years passed, and no link was found between us. Eventually,
those who had the question resigned themselves to the fact that they
would never know. They went to their new homes, and tried to integrate
themselves as best they could into the new society. It was n’ t until 14
years after the event happened that the connection was discovered, quite
by accident. One of the former questioners had taken a job as a mover,
and was helping a fellow survivor move into a newly cleaned house.
Sticking out of one of the boxes was the missing link. " Oh, you used to
shop at Bad Dragon too? " Moments later, the realization struck him.

Write an essay about
a time when you and
your friends were the
only survivors of a
catastrophic event that
wiped out most of the
world’s population. De-
scribe how you and your
friends coped with the
aftermath and the chal-
lenges you faced in re-
building society.

What was the event
that caused the world to
come crashing down?
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Input IPAD DPIC
In an alternate timeline, a second sentient race evolved in parallel with
humans. These beings, known as the Avralians, possessed extraordinary
abilities and resided in the hidden corners of the Earth. For centuries,
unaware of each other’s existence, humans and Avralians progressed in-
dependently. However, fate intervened one fateful day when an Avralian
girl named Elara stumbled upon a group of human explorers deep in
the forest. With wide-eyed wonder, she approached them cautiously.
The humans, initially startled, soon recognized Elara’s unique nature.
They befriended her, and through her, the two races began to unravel the
secrets of their intertwined existence. As time passed, harmony emerged
between the two races, and mutual respect solidified their bond. The
Avralians shared their ancient knowledge and wisdom, while humans
brought innovation and technology. Together, they worked towards a
world where unity triumphed over differences. However, not all were
convinced of this newfound alliance. A faction within the human popu-
lation, fueled by fear and mistrust, sought to exploit Avralian abilities
for personal gain. Conflict brewed, threatening the fragile equilibrium.
Elara, fueled by her pure heart and belief in unity, emerged as a beacon
of hope. With a small band of supporters, she embarked on a journey
to bridge the gap and foster understanding. Battles were fought, sac-
rifices made, but ultimately, Elara’s message prevailed. Humans and
Avralians learned to cherish their diversity and forge a future marked
by collaboration and empathy. The world transformed into a tapestry of
coexistence, where magnificent cities stood as testaments to unity and
cultural exchange. Humans and Avralians moved freely through bustling
markets, sharing knowledge, stories, and laughter. Together, they faced
global challenges, from climate crises to epidemics, with unwavering
determination.

Write an essay describ-
ing an alternate time-
line in which a second
sentient race evolved in
parallel with humans,
exploring the potential
interactions and con-
flicts between the two
species.

How did Elara manage
to convince both races
to embrace unity despite
the conflict?

Both times I had the banana pepper appetizer, which is great and goes
really well with the FRESH and delicious bread and cheese they give
you at the start of your meal. nnFor entrees, me and my girlfriend have
had mixed experience. I’ve had the fish sandwich (very good) and the
eggplant parm sandwich (okay). My girlfriend got the salad with bread
and basil on it, but the basil was over powering and the bread was soggy
with the dressing. nnThe service is also a mixed bag. The first time our
server went out of her way to take care of us and even MADE me cocktail
sauce for my fish sandwich. The second time, the server was lackluster,
didn’t know anything about the menu and wasn’t able to take proper
care of us. nnI would return to Papa J’s, but I my terrible experience last
time isn’t enough to say it would be my first pick of places to eat around
Carnegie/Robinson.

This was a great place to
stop for a quick lunch.
The lines were not too
long for the sandwiches
they had and they had a
wide selection of bagels
if you wanted a bagel
sandwich. With a great
front patio for enjoying
your food, it was a relax-
ing place to stop. Write
a review for it.

What made the banana
pepper appetizer stand
out to you compared to
other starters?
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Input IPAD DPIC
Abstract: This article explores the longstanding debate between Ein-
stein’s theory of general relativity and Maxwell’s theory of electro-
magnetism regarding the nature of gravitation. The central question
addressed is whether gravitation is best understood as a curvature of
space, a field in flat space, or perhaps a combination of both concepts.
Drawing upon a comprehensive analysis of the theoretical framework
and empirical evidence, the article presents a nuanced examination of
the arguments put forth by Einstein and Maxwell.The article begins by
discussing Einstein’s general theory of relativity, which proposes that
gravitation arises from the curvature of spacetime caused by mass and
energy. It outlines the mathematical formalism used to describe this
curvature and highlights the key predictions and experimental confirma-
tions of the theory. Conversely, the article delves into Maxwell’s elec-
tromagnetic theory, which suggests that gravitation may be explained
as a fundamental force mediated by a field propagating through flat
space, similar to electromagnetic fields.Further, the article explores the
distinctive features and limitations of each theory. It scrutinizes the
conceptual foundations, mathematical rigor, and empirical support for
both approaches, highlighting their respective strengths and weaknesses.
Moreover, the article examines attempts to reconcile the two theories into
a unified framework, such as the development of theories of quantum
gravity.By critically evaluating the arguments and evidence from both
camps, this article aims to offer a comprehensive assessment of the ques-
tion regarding the nature of gravitation. Based on the analysis presented,
it becomes evident that both Einstein’s theory of general relativity and
Maxwell’s theory of electromagnetism provide valuable insights into the
phenomenon of gravitation.

Write a paper abstract
to explain the debate
between Einstein’s the-
ory of general relativ-
ity and Maxwell’s the-
ory of electromagnetism
regarding the nature of
gravitation, and argue
for which theory is
more likely to be correct
based on the evidence
presented in the essay
statement.

What are the main chal-
lenges in reconciling
Einstein’s theory of
general relativity with
Maxwell’s theory of
electromagnetism in
explaining gravitation?
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We explained the contributions listed in the abstract and introduction in Section
2-4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We present the limitation in the section Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There is no theorem or lemma in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The codes are presented in the anonymous github, and the results can be
reproduced by following the readme.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The codes are presented in the anonymous github, and the results can be
reproduced by following the readme. The dataset for this paper are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental details are presented.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We set the temperature parameter of the large language models to 0, so the
results are deterministic.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use one A800-80GB gpu and one Nvidia v100 to conduct our experiments.

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper has no ethics problem.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential societal impacts mainly in section 3.2.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There are no such risks in our paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: : We have cited the original papers and included proper license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We have no crowdsourcing experiments and human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We have no crowdsourcing experiments and human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [Yes]
Justification: Pretrained LLMs are used as backbones in our method, which is clearly stated
in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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