
LLM4DV: Using Large Language Models for
Hardware Test Stimuli Generation

Zixi Zhang
University of Cambridge
zz458@cam.ac.uk

Greg Chadwick
lowRISC

gac@lowrisc.org

Hugo McNally
lowRISC

hugom@lowrisc.org

Yiren Zhao
Imperial College London
a.zhao@imperial.ac.uk

Robert Mullins
University of Cambridge

robert.mullins@cl.cam.ac.uk

Abstract

Test stimuli generation has been a crucial but labour-intensive task in hardware
design verification. In this paper, we revolutionize this process by harnessing the
power of large language models (LLMs) and present a novel benchmarking frame-
work, LLM4DV. This framework introduces a prompt template for interactively
eliciting test stimuli from the LLM, along with four innovative prompting improve-
ments to support the pipeline execution and further enhance its performance. We
compare LLM4DV to traditional constrained-random testing (CRT), using three
self-designed design-under-test (DUT) modules. Experiments demonstrate that
LLM4DV excels in efficiently handling straightforward DUT scenarios, leveraging
its ability to employ basic mathematical reasoning and pre-trained knowledge.
While it exhibits reduced efficiency in complex task settings, it still outperforms
CRT in relative terms. The proposed framework and the DUT modules used in our
experiments are open-sourced.

1 Introduction and Background

Design verification (DV) checks the correctness of hardware designs. The verification process takes
in inputs, or test stimuli, passes them into the hardware design-under-test (DUT), and compares the
result to expected outputs from a software golden model [1].

A coverage plan in DV is defined to specify a list of coverage points to be tested, which are particular
outputs and machine states that the verification process needs to cover. Each cover point is associated
with a coverage bin that counts how many times the cover point has been exercised. The goal of
the verification process is to achieve 100% functional coverage rate based on the coverage plan.
Figure 1a illustrates an example coverage plan.

Effective test stimuli generation has been a major challenge in meeting 100% coverage [1]. Tradi-
tionally, constrained-random testing (CRT) has been used for generating vast random but valid test
stimuli and attempting to “hit” the bins. However, CRT is inefficient in hitting bins with complicated
conditions. Often, this necessitates extensive human engineering for the test stimuli design process.

Recent large language models (LLMs), trained on immense amounts of text and human feedback
data, are capable of solving tasks of distinct form that require multi-step reasoning and generating
high-quality samples [2, 3, 4]. This brings up an important question: can LLMs effectively minimise
the amount of human effort involved in hardware Design Verification (DV)? This study specifically
focuses on one arguably most labour-intensive aspect of the DV process - generating test stimuli - and
explores the potential of using LLMs to assist with this task. More related work on LLMs and DV

Machine Learning for Systems Workshops at 37th NeurIPS 2023.

0 0 1
4 4

10

0 0
2

6
3

0 0

4 3

1

0
3

26

8

18
13

11

15

10

20 ADD

XOR

SLT

register
ports

reg #1
read

port A

reg #1
read

port B

reg #1
write
port

reg #2
read

port A

reg #2
read

port B

reg #2
write
port

op
er

at
io

ns

(a) Example coverage plan

 Testbench

Device-Under-Test

internal
state

input

Coverage
Monitor

 Stimulus generation agent

Stimulus
Extractor

stimulus

current
coverage

LLM

coverage plan
description

Prompting
Template

Golden Model

output

expected
output

DUT
Correctness

Checking

prompt

text response

Prompting
Improvements

(b) LLM4DV framework

Figure 1: Design verification flow. Figure 1a is an example coverage plan: two types of basic
coverage bins (orange and green) and also their cross coverage bins (cyan) are shown. Figure 1b
shows an overview of the LLM4DV framework where the prompted LLM takes output coverage
results as inputs and outputs stimulus in an iterative fashion.

can be found in Appendix A. In this work, we establish a benchmarking framework named LLM4DV
(Large Language Model for Design Verification). This is a benchmark framework that utilizes LLMs
for test stimuli generation. In this paper, we make the following contributions:

• We design and construct three DUT modules: a Primitive Data Prefetcher Core, an Ibex
Instruction Decoder, and an Ibex CPU.

• We propose and develop a framework that uses prompted LLMs to generate test stimuli
for hardware designs. Also, we propose four improvements to the prompting strategies to
improve the effectiveness of the generated stimuli.

• We evaluate the framework with the three DUT modules. We show that our framework
with optimal improvement measures achieves 98.94%, 86.19%, and 5.61% coverage rates
on these modules respectively in a realistic experimental setup. We open-source our
framework with these three modules to allow both the machine learning and hardware
design communities to experiment with their ideas. Our project is publicly available at
https://github.com/ZixiBenZhang/ml4dv.

2 Method

Our experiments use an LLM in the test stimuli generation process, together with a testbench
with a DUT to form the whole LLM4DV framework, as shown in Figure 1b. The following
subsections describe the basic DV framework, the prompt templates for the LLM, and four prompting
improvements. Figure 2 gives a general picture of the prompt templates and prompting improvements.

2.1 Basic framework

The testbench has three major components: a stimulus generation agent (the prompted LLM), a
design-under-test (DUT), and a coverage monitor. In each timestep, the stimulus generation agent
provides a test stimulus and inputs it to the DUT.

Our basic framework introduces a prompt generator and an LLM as the stimulus generation agent. In
each generation cycle, the prompt generator generates a prompt based on a template (see Appendix B)
and the current coverage feedback from the coverage monitor. In every timestep when the stimulus
generation agent is requested for a test stimulus, it takes out the oldest value in its stimulus buffer; if
the buffer is empty, the LLM takes in a new request and a list of new stimuli will be added to the
buffer.

The pipeline, or a trial, stops either when all cover points have been reached or if the stimulus
generation agent is “exhausted” i.e. becoming ineffective or inefficient to cover any new bins. See
Algorithm 1 in the Appendix for details of the pipeline.

We provide a Coverage-Feedback Template to generate prompts for the LLM. Examples of prompts
and responses are shown in Appendix H, and detail of our prompting template is in Appendix B.

2

2.2 Four prompting improvements

We develop two improvements necessary for making the framework executable and two improvements
to further improve its performance. We also evaluate different design choices for these improvements.
A full ablation study with all these improvements and their design choices are in Appendix I and
Appendix D, in this section, we mainly discuss the best attempts.

Missed-bin sampling In most generation cycles in a trial, there would be hundreds to thousands of
bins uncovered. The iterative queries can’t include all of them because the prompt’s length would
exceed the LLM’s input token number limit.

We propose missed-bin sampling, which samples a number of bins from all uncovered bins to be
included in the differences part of iterative queries. Our experiment finds that more random sampling
methods encourage the agent to cover bins with stricter hitting conditions, and more stable sampling
methods make the agent more efficient in hitting the easier bins. We present two most effective
sampling methods: Coverpoint Type-based Sampling, which samples from “easier bins” and “harder
bins” respectively; Mixed Coverpoint Type-based and Pure Random Sampling, which switches
between the previous two strategies whenever the agent becomes inefficient with the current strategy.

Best-iterative-message sampling The LLM needs previous messages in the dialogue to learn about
what has happened. However, as the dialogue grows, the length of input may exceed the LLM’s
input limit. We hence sample from previous messages, which acceptably loses some generality and
meanwhile preserves key details, including the bin description and positive examples (i.e. responses
that successfully hit many bins) useful for covering edge cover points.

We propose four sampling methods: Successful Responses, where we keep random three iterative
queries that hit the most number of bins; Successful Difficult Responses, which is similar to Successful
Responses but each “harder bin” counts as 2.5 bins.

Dialogue restarting LLM sometimes behaves stubbornly, repeating mistakes it made previously. We
introduce a dialogue restarting mechanism to resolve this problem. When the LLM hits less than
three new bins within t responses, we clear the dialogue record and restart from the system message
and initial query.

We present three most effective restarting plans: Normal Tolerance, where t = 7; Low Tolerance,
where t = 4; Coverage Rate-based Tolerance, where t = 4 in the beginning and t = 7 after reaching
certain coverage rate threshold.

Best-iterative-message buffer resetting When the dialogue record is reset, the buffer for best iterative
messages in Best-iterative-message sampling can also be cleared or kept. These two strategies display
a trade-off between “effectively forgetting past mistakes” and “learning about the task faster after
restart”. We present two most effective resetting plans for the best-iterative-message buffer: Keeping
best-messages; Stable-restart Keeping best-messages, which keeps the buffer on restarts, but doesn’t
use it for the first four responses after restarts.

3 Evaluation

We evaluate our LLM4DV framework on three DUT modules: Primitive Data Prefetcher Core, Ibex
Instruction Decoder, and Ibex CPU. These modules and their testbenches are constructed by ourselves.
With Verilator and cocotb, we could efficiently simulate and test the modules in Python. We use
OpenAI’s GPT-3.5-turbo-0613 model [5] in our “fixed-budget” experiments. See Appendix F for
DUT details, and Appendix E for experimental setup details.

Primitive Data Prefetcher Core The Primitive Data Prefetcher Core module requires test stimuli in
specific stride patterns. We run the CRT baseline and the fixed-budget experiments with GPT 3.5
and three prominent configurations. Table 1 shows the results of the experiments. We see that the
best configuration, which uses Coverpoint Type-based Sampling, Successful Difficult Responses,
Normal Tolerance, and Stable-restart Keeping best-messages, achieved 98.94% coverage rate. This
demonstrates that with our prompting template and improvement methods, the stimulus generation
agent is capable of making simple mathematical reasoning to hit the bins efficiently.

Ibex Instruction Decoder The Ibex Instruction Decoder module takes in RISC-V instruction codes.
Table 1 shows the results of the experiments. We see that the best configuration, which uses Mixed

3

Table 1: Results of fixed-budget experiments: A1, A2, A3 contrast Successful Responses (II) +
Stable-restart Keeping best-messages (iii) vs. Successful Difficult Responses (IV) + Stable-restart
Keeping best-messages (iii) vs. Successful Difficult Responses (IV) + Keeping best-messages (ii). B1,
B2 contrast Normal Tolerance (a) vs. Coverage Rate-based Tolerance (d). C1, C2 contrast Normal
Tolerance (a) vs. Low Tolerance (b). For details of the configurations, see Table 2 in Appendix.

Config Max coverage Max coverage rate Avg msg/trial Stdev msg/trial
Primitive Data Prefetcher Core

Random 4 0.39% - -
A1 987 95.45% 641 104.24
A2 1023 98.94% 617.5 165.06
A3 1007 97.39% 459.33 287.21

Ibex CPU Instruction Decoder

Random 1136 53.92% - -
B1 1695 80.45% 864 147.92
B2 1816 86.19% 844.25 127.94

Ibex CPU

Random 3 1.53% - -
C1 10 5.10% 42.49 11.74
C2 11 5.61% 45.72 16.17

Coverpoint Type-based and Pure Random Sampling, Successful Difficult Responses, Coverage Rate-
based Tolerance, and Stable-restart Keeping best-messages, achieved 86.19% coverage rate. This
demonstrates that the stimulus generation agent can make use of its pre-trained knowledge to hit the
bins efficiently.

Ibex CPU The Ibex CPU module takes in a list of updates to its instruction memory in each cycle,
and executes the instruction memory accordingly. This module is more complex than the previous
two modules. Table 1 shows the results of the experiments. We see that the best configuration, which
uses Coverpoint Type-based Sampling, Successful Responses, Fast Tolerance, and Stable-restart
Keeping best-messages, only achieved 5.61% coverage rate. Although it’s better than the CRT, this
shows that in complex task settings, the framework is deficient in producing effective updates and
may require further prompt engineering and prompting improvements to enhance its performance.

4 Conclusion and Discussion

This study proposes LLM4DV, a benchmarking framework for test stimuli generation in design
verification. We build three DUT modules and construct a stimulus generation agent, together with a
prompt template and four prompting improvements. Through experimentation on the modules, we
show that LLM-assisted test stimuli generation could achieve impressive coverage rates on several
design units, and its performance is significantly better than CRT for relatively complex coverage
plans. However, when the task setting becomes more complex, for instance, a full CPU design, LLM
fails to achieve a fairly good coverage rate.

To our understanding, our study represents the first systematic exploration of utilizing LLMs to
assist in the area of hardware design verification. More specifically, we focus on the generation of
test stimuli, which is a task known for its high reliance on human intervention. Our designs and
findings are open-sourced. Our framework is designed to accommodate arbitrary hardware designs
and offers users the flexibility to switch between different LLMs or customize their prompting
strategy. We also provided three high-quality hardware designs with different difficulties for the users
to experiment with their new LLMs or prompts. We anticipate that our developed framework will
provide researchers with a user-friendly interface to further explore the potential of LLMs in aiding
hardware design verification.

4

References
[1] Hasini Witharana, Yangdi Lyu, Subodha Charles, and Prabhat Mishra. A survey on assertion-

based hardware verification. ACM Computing Surveys (CSUR), 54:1 – 33, 2022. URL https:
//api.semanticscholar.org/CorpusID:246362628.

[2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[3] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023.

[4] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

[5] OpenAI. OpenAI: Introducing ChatGPT, 2022. URL https://openai.com/blog/chatgpt.

[6] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. CodeT: Code generation with generated tests, 2022.

[7] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using large
language models for automated unit test generation, 2023.

[8] Stephan Lukasczyk and Gordon Fraser. Pynguin: Automated unit test generation for Python.
In 2022 IEEE/ACM 44th International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pages 168–172, 2022. doi: 10.1145/3510454.3516829.

[9] Luca Ferro, Laurence Pierre, Yves Ledru, and Lydie du Bousquet. Generation of test programs
for the assertion-based verification of tlm models. In 2008 3rd International Design and Test
Workshop, pages 237–242, 2008. doi: 10.1109/IDT.2008.4802505.

[10] Jason G. Tong, Marc Boule, and Zeljko Zilic. Airwolf-tg: A test generator for assertion-based
dynamic verification. In 2009 IEEE International High Level Design Validation and Test
Workshop, pages 106–113, 2009. doi: 10.1109/HLDVT.2009.5340166.

[11] Yangdi Lyu and Prabhat Mishra. Automated test generation for activation of assertions in rtl
models. In 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), pages
223–228, 2020. doi: 10.1109/ASP-DAC47756.2020.9045731.

A Related work

While the application of LLMs on hardware design verification has been brought to focus only
recently, test code generation for software engineering with LLMs has been well-studied and made
remarkable performance [6, 7, 8]. Chen et al. [6] utilized LLM to generate potential implementations
and test cases for a function by providing the LLM with the signature and a description of the function.
Schäfer et al. [7] proposed a pipeline to generate unit tests for existing code, which iteratively refined

5

https://api.semanticscholar.org/CorpusID:246362628
https://api.semanticscholar.org/CorpusID:246362628
https://openai.com/blog/chatgpt

Trial

Dialogue 1

Best-Iterative-Message Sampling

(I) Recent Responses

(II) Successful Responses

(III) Mixed Recent and Successful
Responses

(IV) Successful Difficult Responses

Dialogue 2

Best-Iterative-Message Buffer
Resetting Plans

(i) Clearing best-messages

(ii) Keeping best-messages

(iii) Stable-restart Keeping best-
messages

Dialogue Restarting Plans

(a) Normal Tolerance

(b) Low Tolerance

(c) High Tolerance

(d) Coverage Rate-based
Tolerance

Initial Query

Task Introduction

Coverage Plan Summary

Initial Question

Iterative Query 1

Result Summary

Differences

Iterative Question

System Message

Missed-Bin Sampling

(1) Pure Random Sampling

(2) Coverpoint Type-based
Samplings

(3) Mixed Coverpoint Type-based
and Pure Random Sampling

Coverage feedback

Figure 2: Coverage-feedback prompt template and four prompting improvements. This framework
corresponds to the stimulus generation agent component in Figure 1b. We highlight the different
design options possible for the four prompting improvements (Best-iterative-message sampling,
Dialogue Restarting Plans, Missed-Bin Sampling and Best-Iterative-Message Buffer Resetting Plan).

the prompt to generate better tests. These studies show promising results on software code, while
we shift focus to using LLM on Hardware Description Language (HDL) and hardware design
specification, which involves a different setting and more sophisticated procedure.

In hardware design verification, assertion-based verification (ABV) is widely adopted together
with code coverage, functional coverage, and validation using generated test patterns [1]. ABV
uses assertions in HDL to detect violations of predefined properties. However, ABV requires test
patterns (i.e. input test stimuli) to activate given assertions and therefore reveal vulnerabilities. For
simulation-based ABV approaches, traditional test generation using random or constrained-random
tests cannot guarantee to activate assertions with complex conditions in a reasonable time. To speed
up assertion coverage, Ferro et al. [9] used combinatorial testing, which provides a set of combinations
of user-selected values, to select test stimuli most suitable to cover corner cases. Tong et al. [10]
proposed a method that searches the compact assertion-based automata for failure and acceptance
nodes before test generation. Simulation-based test generation has also been incorporated with formal
method-based test generation. Lyu and Mishra [11] utilized concolic testing to activate assertions,
which regards assertions as branches, searches through the branch statement tree with heuristics
to efficiently obtain a path, and generates test stimuli to cover the obtained branch targets. These
methods, however, are subjected to complexity explosion problems [1] and fail to effectively make
use of the user’s knowledge about the design. We overcome this issue by utilizing LLM’s pre-trained
knowledge to reason about the given coverage plan and guide the test stimuli generation.

B A graphical illustration of the prompting template

Coverage-Feedback Template The Coverage-feedback prompt template contains templates for
the system message, initial query, and iterative queries.

• The system message clarifies the expected response format and specifies other requirements.
• The initial query is the first user message in a dialogue. It contains three parts:

1. Task introduction: a description of what is included in this prompt and what the LLM
will be asked to do.

2. Coverage plan summary: a description of cover points of the coverage plan.
3. Initial question: a one-line instruction.

6

• The iterative queries are the user messages following the first assistant (LLM) response.
Each contains three parts:

1. Result summary: a general feedback which:
– if the previous assistant response was gibberish (i.e. contains mostly nonsense

words) or didn’t follow the output format, the result summary repeats the output
format requirement; otherwise,

– if the previous assistant response failed to hit any new bins, the result summary
points that out and asks for a new list of stimuli;

– if the previous assistant responses hit some bins, the result summary points that out
and asks for a new list of stimuli.

2. Differences: a list of uncovered bins.
3. Iterative question: a one-line instruction, repeating the output format requirement if the

previous response was gibberish or didn’t follow the output format.

C Basic framework algorithm

Algorithm 1 Basic DV pipeline
stimulus← 0
coverage← {}
while coverage rate < 100% and not (∆ coverage in 25 messages < 3 or ∆ coverage in 40 messages
= 0) do

while stimulus_buffer not empty and coverage rate < 100% do
stimulus← stimulus_buffer.pop()
testbench.input(stimulus)
coverage← coverage_monitor.compute_coverage(testbench)

end while
prompt← prompt_generator.generate(coverage)
response← LLM.generate(prompt)
stimuli← extractor.extract(response)
stimulus_buffer.extend(stimuli)
while stimulus_buffer is empty do

prompt← prompt_generator.regenerate(coverage)
response← LLM.generate(prompt)
stimuli← extractor.extract(response)
stimulus_buffer.extend(stimuli)

end while
end while

Algorithm 1 shows the workflow of the basic framework as in Section 2.1.

D Details of prompting improvements

This section describes the design choices of our four prompting improvements. We also compare
these design choices with ablation experiments, see Appendix I.

D.1 Missed-bin sampling

We define three sampling methods:

• (1) Pure Random Sampling: randomly samples seven bins from all uncovered bins.

• (2) Coverpoint Type-based Sampling: we categorize all bins into “easier bins” and “harder
bins” based on their difficulties to be covered, and order them based on their names; when
sampling, we always take the first two uncovered bins, then either randomly sample five
bins from all uncovered bins if there are no “easier bins” left, or sample three “easier bins”
and two “harder bins”.

7

• (3) Mixed Coverpoint Type-based and Pure Random Sampling: when the coverage ratio
is below 15%, it keeps using Coverpoint Type-based Sampling; when the coverage ratio is
larger than 15%, it switches between Coverpoint Type-based Sampling and Pure Random
Sampling whenever the current sampling method hits less than three new bins within four
responses. The number of 15% is obtained empirically.

D.2 Best-iterative-message sampling

We propose four sampling methods:

• (I) Recent Responses: keeps the initial query (and its response), and three most recent
iterative queries (and their responses).

• (II) Successful Responses: keeps the initial query and three iterative queries with responses
that hit the maximum number of bins; if multiple maximums exist, uniformly samples three
of them.

• (III) Mixed Recent and Successful Responses: keeps the initial query, two most successful
iterative queries, and one most recent iterative query.

• (IV) Successful Difficult Responses: similar to successful responses, but each “harder bin”
as in Appendix D.1 counts as 2.5 bins.

D.3 Dialogue restarting

We define four restarting plans:

• (a) Normal Tolerance: restarts the dialogue if the LLM hits less than three bins within 7
responses.

• (b) Low Tolerance: restarts the dialogue if the LLM hits less than three bins within 4
responses.

• (c) High Tolerance: restarts the dialogue if the LLM hits less than three bins within 10
responses.

• (d) Coverage Rate-based Tolerance: uses Low Tolerance when the coverage ratio is below
15%, and Normal Tolerance afterwards. The number of 15% is intentionally set as the same
value as in Mixed Coverpoint Type-based and Pure Random Sampling in Appendix D.1.

D.4 Best-iterative-message buffer resetting

We define three resetting plans for the best-iterative-message buffer:

• (i) Clearing best-messages: clears the buffer on dialogue restarts.
• (ii) Keeping best-messages: keeps the buffer on dialogue restarts.
• (iii) Stable-restart Keeping best-messages: keeps the buffer on dialogue restarts, but not

using it for the first four responses after restarts.

E Fixed-budget experiment setup

Large language models We use OpenAI’s GPT-3.5-turbo-0613 model [5] in our experiments. For
OpenAI’s API calls, we set parameters as temperature = 0.4, top_p = 1.0, and max_tokens =
600. These parameters are decided empirically. We also use Llama 2 7B model [4] in ablation
experiments, see Appendix I.

Experimental setup and measurement We run “fixed-budget experiments” on the three DUT
modules, each with certain configurations of the prompt template and methods of improvement
measures. The configurations are selected as the ones with the most significant results in ablation
experiments (see Appendix I).

In each fixed-budget experiment, the experiment routine would have a budget of 10,000,000 tokens
(input and output tokens are counted in the same way). Here’s how it works:

8

1. The experiment routine starts with a trial as described in Section 2.1.
2. The trial either ends as described in Section 2.1 or when it runs out of the token budget.
3. If there is budget left, the experiment routine starts a new trial, in which the stimulus

generation agent, the testbench, and the coverage record are reset.
4. The experiment routine ends when the budget is used up.

Running a fixed-budget experiment takes 6 to 20 hours, depending on the DUT module and the LLM
service status.

The fixed-budget setup reflects the realistic use case where the financial budget for DV is reflected
on the token budget. The multi-trial setup allows configurations to trade off “steady slow increase”,
where a trial takes many messages but stably achieves a high coverage, and “random fast increase”,
where a trial takes fewer messages but may either reach a high coverage by chance or end up with a
low coverage.

We measure the maximum coverage each configuration achieves in trials in an experiment routine
as its performance. We use the mean and the standard deviation of message count per trial as a
reference for the capability and stability of configurations. We don’t measure the size of the union set
of covered bins across trials because we intend to test our framework’s capacity across different DUT
modules rather than to reach 100% coverage rate on a specific DUT.

We compare our framework to a constrained-random test (CRT) generation agent baseline, which
generates 1,000,000 integers within the input range. Particularly, for the Ibex CPU module, the CRT
generates an instruction to update the current PC in each cycle.

F Details of DUTs

This section explains our three DUT modules and their coverage plans respectively.

F.1 Primitive Data Prefetcher Core

The Primitive Data Prefetcher Core takes in 32-bit integers and detects whether there’s a stride pattern
in it. This module requires relatively high mathematical reasoning capability for the LLM.

Our coverage plan contains 1034 bins of the following types:

• Single-stride bins: counts when 16 consecutive integers a0, a1, ..., a15 satisfy ai+1− ai = c
for some constant −16 ≤ c ≤ 15.

• Double-stride bins: counts when 16 consecutive integers satisfy an alternative stride width
pattern, formally a2i+2 − a2i+1 = c1 and a2i+1 − a2i = c2 for some −16 ≤ c1, c2 ≤ 15
and c1 ̸= c2.

• Misc bins: including
– Single-stride positive/negative overflow bins: a single stride pattern with c < −16

(negative overflow) or c > 15 (positive overflow).
– Double-stride pp/pn/np/nn overflow bins: a double stride pattern with c1 and c2 posi-

tively / negatively overflow respectively.
– No-stride-to-single/double: counts when 16 integers satisfying no stride pattern are

followed by 16 integers with single / double stride pattern.
– Single/double-to-double/single: counts when 16 integers satisfying single / double

stride pattern are followed by 16 integers with double / single stride pattern.

F.2 Ibex Instruction Decoder

The Ibex Instruction Decoder is an instruction decoder for 32-bit RISC-V instruction codes. This
module involves almost no mathematical reasoning but requires knowledge about RISC-V knowledge.
Through preliminary tests, we find that GPT 3.5 and Llama 2 are pre-trained with RISC-V knowledge,
and thus our bin descriptions don’t need to explain the instruction formats and operations in detail.

Our coverage plan contains 2107 bins of the following types:

9

• ALU operation bins: counts when an instruction represents one of 26 pre-defined ALU
operations such as ADD, ADDI, XOR, LW, etc.

• Register port bins: counts when an instruction uses the port of the specific register. There
are 32 registers, and each has two read ports and one write port, which are used when the
register file is taken as the first source, second source, and destination register, respectively.

• Cross coverage bins: the Cartesian product of ALU operation bins and register port bins.
Counts when an instruction satisfies both bins simultaneously (some of the products, such as
ADDI and read_port_A of any register, are invalid and not included in the coverage plan).

F.3 Ibex CPU

The Ibex CPU is a full RISC-V CPU with instruction and data memory. Different from the previous
two modules, in every cycle the agent provides a stimulus of a list of address-instruction pairs (a, i,
each presents a dynamic update that changes the instruction memory content at address a into value i.
The CPU performs an instruction in the instruction memory in each timestep and waits for another
list of updates (which can be empty). Apart from the current coverage, the testbench also returns
the current program counter (PC) and the last executed instruction to the stimulus generation agent.
Therefore, the task requires knowledge of both RISC-V and working principle of CPU and memory,
and demands managing the complicated task setting.

Our coverage plan contains 196 bins of the following types:

• Operation bins: for each of the pre-defined ten R-type operations, three S-type instructions,
and one J-type instruction (JAL), we consider the following four bins:

– seen: counts when an instruction performs the operation;
– zero_dst: if available, counts when the instruction performs the operation, with the

destination register (rd) as zero (reg #0);
– zero_src: if available, counts when the instruction performs the operation, with one of

the source registers (rs) as zero (reg #0);
– same_src: if available, counts when the instruction performs the operation, taking the

same register as source registers (rs).

• Jump bins: for the JAL operation, we consider forward and backwards jumps respectively.

• Hazard bins: for each pair of the pre-defined operations, we consider a simplified read-after-
write (RaW) hazard, which counts when the later instruction reads from a register that the
previous instruction is writing to.

G Configurations in fixed-budget experiments

Table 2 shows the details of LLM4DV configurations in our fixed-budget experiment results (Table 1),
including methods used for prompt templates and strategies of prompting improvements.

H Example prompts and responses

Figure 3 demonstrates several prompts and responses from the fixed-budget experiment on the Primi-
tive Data Prefetcher Core module. The agent (USER) introduces the task and coverage plan in the
initial message, and then provides coverage feedback in iterative messages. The LLM (ASSISTANT)
generates textual responses according to the description and feedback.

I Ablation experiments

Due to the cost of money and time for OpenAI’s API requests and experiment running, we compare
configurations of the stimulus generation agent by their performances on simpler experiment setups.

10

Table 2: Configurations of fixed-budget experiments, strategies been contrasted in each module
are marked in bold fonts.

Conf Improvement Method

Primitive Data Prefetcher Core

A1

Prompt template Original prompt template
Missed-bin sampling Coverpoint Type-based Sampling (2)

Best-iterative-message sampling Successful Responses (II)
Dialogue restarting Normal Tolerance (a)

Best-iterative-message buffer resetting Stable-restart Keeping best-messages (iii)

A2

Prompt template Original prompt template
Missed-bin sampling Coverpoint Type-based Sampling (2)

Best-iterative-message sampling Successful Difficult Responses (IV)
Dialogue restarting Normal Tolerance (a)

Best-iterative-message buffer resetting Stable-restart Keeping best-messages (iii)

A3

Prompt template Original prompt template
Missed-bin sampling Coverpoint Type-based Sampling (2)

Best-iterative-message sampling Successful Difficult Responses (IV)
Dialogue restarting Normal Tolerance (a)

Best-iterative-message buffer resetting Keeping best-messages (ii)

Ibex Instruction Decoder

B1

Prompt template Prompt template with one-line task
introduction

Missed-bin sampling Mixed Coverpoint Type-based and Pure
Random Sampling (3)

Best-iterative-message sampling Successful Difficult Responses (IV)
Dialogue restarting Normal Tolerance (a)

Best-iterative-message buffer resetting Stable-restart Keeping best-messages (iii)

B2

Prompt template Prompt template with one-line task
introduction

Missed-bin sampling Mixed Coverpoint Type-based and Pure
Random Sampling (3)

Best-iterative-message sampling Successful Difficult Responses (IV)
Dialogue restarting Coverage Rate-based Tolerance (d)

Best-iterative-message buffer resetting Stable-restart Keeping best-messages (iii)

Ibex CPU

C1

Prompt template Original prompt template
Missed-bin sampling Coverpoint Type-based Sampling (2)

Best-iterative-message sampling Successful Responses (IV)
Dialogue restarting Normal Tolerance (a)

Best-iterative-message buffer resetting Stable-restart Keeping best-messages

C2

Prompt template Original prompt template
Missed-bin sampling Coverpoint Type-based Sampling (2)

Best-iterative-message sampling Successful Responses (IV)
Dialogue restarting Low Tolerance (b)

Best-iterative-message buffer resetting Stable-restart Keeping best-messages

11

SYSTEM：
Please output a list of (positive or negative) integers only, each integer between -523 and 523.
Output format: [a, b, c, ...].

USER 1:
You will receive a description of bins (i.e. test cases) of a testbench for a hardware [...]

Now, we want to test the DUT with a list of integers as its input [...] Here's the description of the
bins that we care about:

BINS DESCRIPTION
- The list contains segments (i.e. subsequences) of int.
- Each segment is of length 18.
- A segment follows a single-stride pattern with a stride width x if: the differences between two
adjacent integers are always x.
- A segment follows a double-stride pattern with a stride width pair (x, y) if: the differences
between two adjacent integers are alternating x and y, meanwhile x and y are different.
[...]
- For each of the following bins, the list contains at least one segment that satisfies it:

 - stride_1_seen - One bin per possible stride width between the minimum and maximum
stride width, where the segment follows a single-stride pattern of the stride width.
 - stride_2_seen - One bin per pair of possible stride widths between the minimum and
maximum stride width, where the segment follows a double-stride pattern of the stride width
pair.
 [...]

Following the bins description, generate a list that contains segments of integers, which covers
the described bins as much as you can.

ASSISTANT 1:
To generate a list that covers the
described bins, we can start by [...]

Here is a possible solution:

```python
import random

def
generate_segment_single_stride(str
ide_width):
segment = []
start = random.randint(-523, 523)
segment.append(start)
for _ in range(17):
start += stride_width
segment.append(start)
return segment

[...]

USER 2:
The values you provided failed to cover all the bins.
You will see the result coverage of your previous
response(s), and then generate another list of
integers to cover the unreached bins (i.e. test cases)
Here are some of the unreached bins:
------
UNREACHED BINS
- Single-stride pattern segment of stride width 0 is
unreached.
- Single-stride pattern segment of stride width 1 is
unreached.
- Single-stride pattern segment of stride width -16 is
unreached.
- Single-stride pattern segment of stride width 10 is
unreached.
- Single-stride pattern segment of stride width 7 is
unreached.
- Double-stride pattern segment of stride width pair
(14, -1) is unreached.
- Double-stride pattern segment of stride width pair
(12, 4) is unreached.
------
Please regenerate a segment of length 18 for each
of these unreached bins according to the BINS
DESCRIPTION.

ASSISTANT 2:
Apologies for the oversight. Here are the segments to cover the unreached
bins:

Segment for single-stride pattern segment of stride width 0:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Segment for single-stride pattern segment of stride width 1:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
Segment for single-stride pattern segment of stride width -16:
[0, -16, -32, -48, -64, -80, -96, -112, -128, -144, -160, -176, -192, -208, -224,
-240, -256, -272]
Segment for single-stride pattern segment of stride width 10:
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170]
Segment for single-stride pattern segment of stride width 7:
[0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119]
Segment for double-stride pattern segment of stride width pair (14, -1):
[0, 14, 13, 27, 26, 40, 39, 53, 52, 66, 65, 79, 78, 92, 91, 105, 104, 118]
Segment for double-stride pattern segment of stride width pair (12, 4):
[0, 12, 16, 28, 32, 44, 48, 60, 64, 76, 80, 92, 96, 108, 112, 124, 128, 140]

Please note that these segments are generated based on the given bins
description and may not be unique.

Generated a Python
program rather than

test stimuli

Generated effective
test stimuli

Figure 3: Example prompts and responses of the A2 configuration (see Table 2) on the Primitive Data
Prefetcher Core module. The purple box is the system message. The green box is an initial query,
containing a coverage plan summary (in orange). The blue box is an interactive query, containing
differences i.e. coverage feedback (in red).

12



Table 3: Results of infinite-message experiments on the Primitive Data Prefetcher Core module

(a) Pure Random Sampling (1) vs. Coverpoint Type-based Sampling for stride detector bins (2), both with
Original prompt template, Recent Responses, and Normal Tolerance.

Config Max cov (/1034) Avg cov Stdev cov Avg cov/msg Stdev cov/msg
(1) 890 664.33 195.62 2.59 0.18
(2) 953 681 276.61 1.59 0.41

(b) Clearing best-messages (3) vs. Keeping best-messages (4) vs. Stable-restart Keeping best-messages (5), all
with Original prompt template, Coverpoint Type-based Sampling for stride detector bins, Successful Responses,
and Normal Tolerance.

Config Max cov (/1034) Avg cov Stdev cov Avg cov/msg Stdev cov/msg
(3) 962 829 188.09 1.86 0.69
(4) 1011 526.33 451 1.3 0.81
(5) 1005 974.67 52.54 1.73 0.45

(c) Recent Responses (2) vs. Successful Responses (5) vs. Successful Difficult Responses (6), all with Original
prompt template, Coverpoint Type-based Sampling for stride detector bins, Normal Tolerance, and Stable-restart
Keeping best-messages.

Config Max cov (/1034) Avg cov Stdev cov Avg cov/msg Stdev cov/msg
(2) 953 681 276.61 1.59 0.41
(5) 1005 974.67 52.54 1.73 0.45
(6) 1031 963.33 110.35 1.71 0.39

(d) Original prompt template (6) vs. Prompt template with negative feedback (7), both with Coverpoint Type-
based Sampling for stride detector bins, Successful Difficult Responses, Normal Tolerance, and Stable-restart
Keeping best-messages.

Config Max cov (/1034) Avg cov Stdev cov Avg cov/msg Stdev cov/msg
(6) 1031 963.33 110.35 1.71 0.39
(7) 963 865.5 137.89 1.58 0.79

I.1 Ablation experiment setups

We run “limited-message experiments” and “infinite-message experiments” on the Primitive Data
Prefetcher Core module and the Ibex Instruction Decoder module. In a limited-message experiment,
the experiment routine runs a trial with an upper bound of the number of responses that is smaller
relative to the average response number for the trial to “exhaust” (as in Section 2.1). In an infinite-
message experiment, the upper bound of the response number is much larger than the average
response number for the trial to “exhaust”, allowing the agent to fully exert its capacity.

We use two LLMs in our experiment: OpenAI’s GPT-3.5-turbo-0613 model, and Meta AI’s Llama
2 7B model. For GPT 3.5, we use OpenAI’s API calls, with parameters as temperature = 0.4,
top_p = 1.0, and max_tokens = 600. For Llama 2 7B, we put the downloaded Llama 2 directory
in the same level as our project directory. We use one A100 GPU with 80GB memory to run
the language model. We call the model with parameters as temperature = 0.4, top_p = 0.9,
max_gen_tokens = 800, max_seq_len = 10000, and max_batch_size = 4. These parameters
are decided empirically.

Other experimental setup follows Appendix E.

I.2 On Primitive Data Prefetcher Core

We run infinite-message experiments with several configurations of prompt templates and improve-
ment measures on the Primitive Data Prefetcher Core module.

13



Message number

C
ov

er
ag

e

0

200

400

600

800

1000

100 200 300 400 500

Prefetcher 1 [(1), (I), (a), - ]

Prefetcher 1 restart

Prefetcher 2 [(2), (I), (a), - ]

Prefetcher 2 restart

Prefetcher 3 [(2), (II), (a), (i)]

Prefetcher 3 restart

Prefetcher 4 [(2), (II), (a), (ii)]

Prefetcher 4 restart

Prefetcher 5 [(2), (II), (a), (iii)]

Prefetcher 5 restart

Prefetcher 6 [(2), (IV), (a), (iii)]

Prefetcher 6 restart

Prefetcher 7 [(2), (IV), (a), (iii)] + 

Prefetcher 7 restart

Figure 4: Infinite-message experiments on the Primitive Data Prefetcher Core module. Each line
represents the trial reaching the maximum coverage on a configuration, and the dots on it show
dialogue restarting points. All trials use Original prompt template except Prefetcher 7, which uses
Prompt template with negative feedback.

The results are displayed in Table 3 and Figure 4. As we can see, in this module:

• Coverpoint Type-based Sampling for stride detector bins achieves better coverage but
poorer coverage-per-message than Pure Random Sampling.

• Successful Responses and Successful Difficult Responses are generally better than Recent
Responses.

• While Keeping best-messages and Stable-restart Keeping best-messages are generally
better than Clearing best-messages, Keeping best-messages is least stable.

• Prompt template with negative feedback, which includes a one-sentence “what not to do”
for each bin in iterative queries, makes no significant improvement than Original prompt
template.

Based on these conclusions, we run fixed-budget experiments on the three most prominent combina-
tions of strategies, as in Section 3.

I.3 On Ibex Instruction Decoder

First, we run limited-message experiments (at most 300 responses per trial) with several configurations
of prompt templates (see Appendix B) and improvement measures (see Section 2.2) on the Ibex
Instruction Decoder module.

The results are displayed in Table 4. As we can see, in this module:

• Mixed Coverpoint Type-based and Pure Random Sampling for Ibex decoder bins is
better than Coverpoint Type-based Sampling for Ibex decoder bins in terms of average
coverage, coverage stability, and average coverage-per-message.

• Successful Difficult Responses is generally better than Successful Responses and Mixed
Recent and Successful Responses.

• While Low Tolerance has poorer coverage than Normal Tolerance, its coverage-per-message
is significantly better, which means it covers easier bins faster; the Coverage Rate-based
Tolerance for Ibex decoder bins that combines Low Tolerance and Normal Tolerance
generally performs the best.

• The combination of High Tolerance and Mixed Coverpoint Type-based and Pure Random
Sampling for Ibex decoder bins makes no significant improvement than Normal Tolerance

14



Table 4: Results of limited-message experiments on the Ibex Instruction Decoder module

(a) Coverpoint Type-based Sampling for Ibex decoder bins (1) vs. Mixed Coverpoint Type-based and Pure
Random Sampling for Ibex decoder bins (2), both with Original prompt template, Successful Responses, Normal
Tolerance, and Stable-restart Keeping best-messages.

Config Max cov (/2107) Avg cov Stdev cov Avg cov/msg Stdev cov/msg
(1) 1251 872.5 505.96 3.66 0.5
(2) 1163 1052 102.47 4.78 0.61

(b) Successful Responses (1) vs. Mixed Recent and Successful Responses (3) vs. Successful Difficult Responses
(4), all with Original prompt template, Coverpoint Type-based Sampling for Ibex decoder bins, Normal Tolerance,
and Stable-restart Keeping best-messages.

Config Max cov (/2107) Avg cov Stdev cov Avg cov/msg Stdev cov/msg
(1) 1251 872.5 505.96 3.66 0.5
(3) 1007 523 485.51 2.16 1.48
(4) 1625 1413 195.79 4.98 1.1

(c) Normal Tolerance (1) vs. Low Tolerance (5) vs. Coverage Rate-based Tolerance for Ibex decoder bins (6), all
with Original prompt template, Coverpoint Type-based Sampling for Ibex decoder bins, Successful Responses,
and Stable-restart Keeping best-messages.

Config Max cov (/2107) Avg cov Stdev cov Avg cov/msg Stdev cov/msg
(1) 1251 872.5 505.96 3.66 0.5
(5) 1047 678 334.11 4.39 1.27
(6) 1430 1179.67 305.68 4.5 1.59

(d) Normal Tolerance (2) vs. High Tolerance (7), both with Original prompt template, Mixed Coverpoint Type-
based and Pure Random Sampling for Ibex decoder bins, Successful Responses, and Stable-restart Keeping
best-messages.

Config Max cov (/2107) Avg cov Stdev cov Avg cov/msg Stdev cov/msg
(2) 1163 1052 102.47 4.78 0.61
(7) 1215 685.67 605.12 2.74 2.23

(e) Original prompt template (1) vs. Prompt template with one-line task introduction (8), both with Coverpoint
Type-based Sampling for Ibex decoder bins, Successful Responses, Normal Tolerance, and Stable-restart Keeping
best-messages.

Config Max cov (/2107) Avg cov Stdev cov Avg cov/msg Stdev cov/msg
(1) 1251 872.5 505.96 3.66 0.5
(8) 1462 1203.67 323.38 4.01 1.08

15



Table 5: Results of infinite-message experiments on the Ibex Instruction Decoder module:
all configurations use Prompting template with one-line task introduction and Successful Difficult
Responses. (1)-(4) use Stable-restart Keeping best-messages; (1)(2) use Coverage Rate-based
Tolerance for Ibex decoder bins, (3)(4) use Normal Tolerance; (1)(3) use Mixed Coverpoint Type-
based and Pure Random Sampling for Ibex decoder bins, (2)(4) use Coverpoint Type-based Sampling
for Ibex decoder bins. (5) uses Keeping best-messages, Coverage Rate-based Tolerance for Ibex
decoder bins, and Mixed Coverpoint Type-based and Pure Random Sampling for Ibex decoder bins.

Config Max cov (/2107) Avg cov Stdev cov Avg cov/msg Stdev cov/msg
(1) 1807 1568 338 2.55 0.62
(2) 1513 1302.5 297.69 2.83 0.41
(3) 1861 1684 250.32 3.85 0.07
(4) 1642 1322.33 472.17 2.71 0.56
(5) 721 369.5 497.1 0.85 0.18

Message number

C
ov

er
ag

e

0

500

1000

1500

2000

200 400 600 800

Ibex Decoder 1 [(3), (IV), (d), (iii)]

Ibex Decoder 1 restart

Ibex Decoder 2 [(2), (IV), (d), (iii)]

Ibex Decoder 2 restart

Ibex Decoder 3 [(3), (IV), (a), (iii)]

Ibex Decoder 3 restart

Ibex Decoder 4 [(2), (IV), (a), (iii)]

Ibex Decoder 4 restart

Ibex Decoder 5 [(3), (IV), (d), (ii)]

Ibex Decoder 5 restart

Figure 5: Infinite-message experiments on the Ibex Instruction Decoder module. Each line represents
the trial reaching the maximum coverage on a configuration, and the dots on it show dialogue
restarting points. All trials use Prompt template with one-line task introduction.

and Mixed Coverpoint Type-based and Pure Random Sampling for Ibex decoder bins,
whereas its standard deviations are both larger.

• Prompt template with one-line task introduction is generally better than Original prompt
template.

Second, we run infinite-message experiments with five configurations on this module. The results are
displayed in Table 5 and Figure 5. As we can see, in this module:

• Mixed Coverpoint Type-based and Pure Random Sampling for Ibex decoder bins
performs better than Coverpoint Type-based Sampling for Ibex decoder bins with longer
trials.

• Normal Tolerance and Coverage Rate-based Tolerance performs similarly.

• Keeping best-messages performs much worse than Stable-restart Keeping best-messages
on this module.

Based on these conclusions, we run fixed-budget experiments on the two most prominent combinations
of strategies, as in Section 3.

16



Table 6: Results of LLM comparison experiments on the Ibex Instruction Decoder module. Both
stimulus generation agents use Prompting template with one-line task introduction, Coverpoint Type-
based Sampling for Ibex decoder bins, Successful Responses, Normal Tolerance, and Stable-restart
Keeping best-messages.

Config Max cov (/2107) Avg cov Stdev cov Avg cov/msg Stdev cov/msg
Llama 2 7B 17 15.67 2.31 0.43 0.08

GPT 3.5 1462 1203.67 323.38 4.01 1.08

I.4 LLM comparison

We compare the two choices of LLM by running limited-message experiments on the Ibex Instruction
Decoder module. The results are displayed in Table 6. As we can see, GPT 3.5 is significantly better
than Llama 2 7B. In other experiments with Llama 2 7B, we also observe frequent gibbering response
that has never happened with GPT 3.5.

17


	Introduction and Background
	Method
	Basic framework
	Four prompting improvements

	Evaluation
	Conclusion and Discussion
	Related work
	A graphical illustration of the prompting template
	Basic framework algorithm
	Details of prompting improvements
	Missed-bin sampling
	Best-iterative-message sampling
	Dialogue restarting
	Best-iterative-message buffer resetting

	Fixed-budget experiment setup
	Details of DUTs
	Primitive Data Prefetcher Core
	Ibex Instruction Decoder
	Ibex CPU

	Configurations in fixed-budget experiments
	Example prompts and responses
	Ablation experiments
	Ablation experiment setups
	On Primitive Data Prefetcher Core
	On Ibex Instruction Decoder
	LLM comparison


