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Abstract

This work investigates the problem of best arm
identification for multi-agent multi-armed bandits.
We consider N agents grouped into M clusters,
where each cluster solves a stochastic bandit
problem. The mapping between agents and
bandits is a priori unknown. Each bandit is
associated with K arms, and the goal is to identify
the best arm for each agent under a δ-probably
correct (δ-PC) framework, while minimizing
sample complexity and communication overhead.
We propose two novel algorithms: Clustering
then Best Arm Identification (Cl-BAI) and Best
Arm Identification then Clustering (BAI-Cl).
Cl-BAI employs a two-phase approach that
first clusters agents based on the bandit problems
they are learning, followed by identifying the
best arm for each cluster. BAI-Cl reverses the
sequence by identifying the best arms first and then
clustering agents accordingly. Both algorithms
exploit the successive elimination framework to
ensure computational efficiency and high accuracy.
Theoretical analysis establishes δ-PC guarantees
for both methods, derives bounds on their sample
complexity, and provides a lower bound for the
problem class. Moreover, when M is small (a
constant), we show that the sample complexity of
(a variant of) BAI-Cl is (order-wise) minimax
optimal. Experiments on synthetic and real-world
(Movie Lens, Yelp) data demonstrates the superior
performance of the proposed algorithms in
terms of sample and communication efficiency,
particularly in settings where M≪N .
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1. Introduction
Multi armed bandits (MAB) (1) has become a classical
framework for modeling sequential learning as it carefully
captures the exploration-exploitation dilemma. It has
shown great success in applications like advertisement (Ad)
placement, clinical trials, and recommendation system (see
(1; 2)). In the past decade, there has been an enormous
increase in the amount of processed data to the extent that
it has become pivotal to distribute the learning process and
leverage collaboration among multiple agents.

In lieu of this, (3) introduced Federated Multi Armed Bandit
(F-MAB), where we have N agents and a central learner;
the agents can only talk to one another through the central
learner. This framework is particularly interesting when the
(sequential) data is observed in a distributed fashion and
the action is also taken by the agents individually. This is
a highly decentralized paradigm with lots of challenges (see
(4; 5; 6)). In this paper, we propose and analyze learning
algorithms that aim to address one of the major challenges
in F-MAB–heterogeneity across agents.

In F-MAB, the problem of heterogeneity naturally arises
since the preferences of different agents may not be identical.
In the movie recommendation example, different agents
prefer different genres of movies like comedy, drama, action
etc. Hence, the recommendation platform needs to identify
agents based on their preferences and suggest movies
accordingly. A similar situation pops up in Ad placement,
where the type of Ads shown to different people might be
based on their taste. Moreover, in social recommendation
platforms like Yelp, this heterogeneity effect needs to be
addressed for better restaurant recommendation.

In this work, we model the heterogeneity of the agents
through clustering. Note that clustering is a canonical way
to group similar agents for better collaboration. We consider
a multi-agent multi-armed bandit problem with N agents,
grouped into M clusters (which are a priori unknown). All
the agents have access to a common collection of K arms,
i.e., the set of arms is common for all N agents across the M
clusters. Each cluster m∈ [M ]1 is trying to learn a stochastic
bandit problem with best arm k∗m. Hence, all the agents
belonging to cluster m share the (unique) best arm k∗m, and

1For a positive r, we denote [r]={1,2,...,r}
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agents belonging to different clusters will have different best
arms, i.e., if agents i1 and i2 belong in clusters m1 and m2

(with m1 ̸=m2), we have k∗m1
̸=k∗m2

.

Federated Bandits (F-MAB) has received a lot of interest
in the past few years. In (7; 8; 9), the authors consider
distributed pure exploration with N agents learning the same
bandit problem, with some communication allowed amongst
them and study the tradeoff between the number of arm pulls
needed per agent and the number of rounds of communica-
tion. Moreover, in (3; 10; 11) the federated pure exploration
setting is studied where multiple agents are learning different
bandit problems (i.e., each agent has its own associated mean
reward vector for the arms) and need to communicate with a
central server to learn the arm with the highest sum of mean
rewards across the agents. The setting of (12) is similar to
above works (i.e., unstructured with no clustering), where
the goal is to find not just the global best arm, but also the
local best arms for each agent in a communication efficient
manner. Furthermore, (3; 13) consider the federated bandits
setup within a regret minimization framework.

In this paper, we address the problem of best arm identifi-
cation (BAI) for all N agents in F-MAB in a heterogeneous
(clustered) setup. We propose and analyze Successive Elimi-
nation based learning algorithms for this task. Our algorithms
are efficient in terms of sample complexity (the number of
pulls) as well as communication cost between the agents and
the central leaner (which is desirable in F-MAB, see (12)).

Clustering in F-MAB also has a rich literature. In
(14; 15; 16; 17; 18; 19) the authors study regret minimization
in a clustered linear bandits framework. Also (20) studies
regret minimization where agents are divided into clusters
and agents in the same cluster have the same mean rewards
vector. The paper employs techniques from online matrix
completion under an incoherence condition. Another line of
works (see (21; 22; 23)) assumes that each arm pull generates
a vector feedback and arms in the same cluster have the same
mean reward vector.

Perhaps the work closest to us is (24). Here, agents are
grouped into roughly equal sized clusters and all agents in one
cluster are solving the same bandit, with the goal being to min-
imize an appropriately defined cumulative group regret. It is
assumed that agents form a graph and can talk to one another
through a gossip style protocol. Although the cluster struc-
ture here is similar to ours, (24) studies group regret whereas
we focus on the sample complexity for best arm identification.
Moreover, (24) allows gossip style communication protocol
which is prohibited in our F-MAB setup. Finally, (25) uses a
similar setting and identifies the best arm for a single bandit
instance by several agents, each of which can only access a
subset of the arms, thus necessitating communication.

1.1. Our Contributions

Algorithm Design: We propose and analyze two novel
algorithms; (i) Clustering then Best Arm Identification
(Cl-BAI) and (ii) Best Arm Identification then Clustering
(BAI-Cl). We use successive elimination for clustering
and BAI primarily because of its simplicity and easy-tuning
ability. We remark that other algorithms may also be used
for these in our framework. Both the algorithms judiciously
pull arms so that both clustering and BAI can be done in a
sample efficient manner. Our algorithms are also efficient in
terms of communication cost (to be defined shortly) between
the agents and the central learner.

Theoretical Guarantees: For a fixed confidence δ ∈ (0,1),
we obtain the sample complexity for CL-BAI and BAI-CL
for identifying the best arm for all N agents. Leveraging
a separability condition (for identifiability) across clusters,
we analyze CL-BAI. On the other hand, for BAI-CL, using
a probabilistic argument, similar to the classical coupon
collector problem, we first identify representatives from each
cluster, and then judiciously construct a subset of candidate
best arms to reduce the number of arm-pulls. We characterize
the benefits of BAI-CL over CL-BAI rigorously. We also
study a variation of BAI-CL, namely BAI-CL++.

Lower Bound and Optimality: Considering a large class
of problem instances and using change-of-measure style
arguments, we obtain a minimax lower bound over the class
of all learning algorithms. An interesting feature of our
lower bound is that it is the maximum of two terms, each
corresponding to a different sub-task which any feasible
scheme should be able to complete; one being identifying the
set of best arms across the M bandits and the second being
identifying for each agent the index of the bandit problem
that it is learning. Finally, we show that if the number of
clusters, M , is small (constant), the algorithm BAI-CL++ is
order-wise minimax optimal in terms of sample complexity.

Experiments: We validate the theoretical findings through
extensive experiments, both on synthetic and real-world
datasets. We find that our proposed schemes are able to
efficiently cluster and significantly reduce the overall sample
complexity. For example, in a movie recommendation
application with 100 users, clustered into 6 different age
groups, each with different preferences derived from the
MovieLens-1M dataset, BAI-Cl++ is able to provide a
72% improvement in the sample complexity over a naive
cluster-oblivious scheme. A 65% improvement is observed
in a similar experiment conducted with the Yelp dataset.

2. Problem Setup
We have N agents, each of which is trying to learn one out
of M stochastic bandit problems. LetM : [N ]→ [M ] denote
the mapping from the set of agents to the set of bandits
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which is not known apriori. Each of the M bandit problems
is associated with a common collection of K arms. For
each m ∈ [M ], k ∈ [K], arm k in bandit m is associated
with a reward distribution Πm,k, which we will assume to
be 1-subGaussian2 with a priori unknown mean µm,k ∈R.
Each pull of an arm results in a random reward, drawn
independently from the corresponding reward distribution.
Furthermore, we define the best arm k∗m for bandit m as the
arm with the largest mean amongst the arms of bandit m, i.e.,
k∗m :=argmax

k
µm,k; we assume that k∗m is unique for each

m. Finally, for each bandit m, we will denote the gap be-
tween the mean rewards of the best arm k∗m and another arm j
as ∆m,j=µm,k∗

m
−µm,j ; and let ∆m,k∗

m
=minj ̸=k∗

m
∆m,j .

We will make the following assumption throughout regarding
the underlying reward distributions of the M bandits.

Assumption 2.1. ∃ η > 0 such that for any two different
bandits a,b, the best arm k∗a for bandit a performs at least η
worse under bandit b than the corresponding best arm k∗b , i.e,
µb,k∗

b
−µb,k∗

a
≥η,∀a,b∈ [M ],a ̸=b.

The assumption above is natural for several settings and
encodes a certain form of ‘separability’ amongst the different
bandit problems; in particular, the above assumption implies
that each of the M bandit instances have a different best arm
and hence K ≥M . As we will see later, this assumption
enables us to efficiently match agents with the bandit
problem they are solving.

Thus, an instance of the our problem is defined by I =
([N ],[M ],[K],M,Π), where Π=(Πm,k,m∈ [M ],k∈ [K]).
There is a learner whose goal is to identify the best arm
k∗M(i) for each agent i. To accomplish this, the learner can
use an online algorithm, say A, which at each time can
either choose an agent and an arm to sample based on past
observations; or decide to stop and output an estimated
collection of best arms given by (O1,O2, ... ,ON ). Given
an error threshold δ ∈ (0,1), we say that the algorithm A
is δ-probably correct (δ-PC) if, for any underlying problem
instance I, the probability that algorithm output is incorrect
is at most δ. More formally, denoting the total number of
pulls (random) before stopping time of algorithm A on
instance I by T I

δ (A),A is δ-PC if, for any instance I,

P
(
T I
δ (A)<∞, ∃ i∈ [N ] s.t. Oi ̸=k∗M(i)

)
≤δ.

We will measure the performance of a δ-PC algorithm A
by its sample complexity T I

δ (A). Our goal in this paper
is to design δ-PC schemes for our problem whose sample
complexity T I

δ (A) is as small as possible. Note that T I
δ (A)

is itself a random quantity, and our results will be in terms
of expectation or high probability bounds.

2A random variable X is σ-subGaussian if, for any t > 0,
P(|X−E[X]|>t)≤2exp

(
−t2/2σ2

)
.

Note that any online algorithm involves communication
from the (central) learner to the different agents, as well as
vice-versa. In addition to the sample complexity, we also
measure the communication complexity of the schemes
we propose3. To do so, we will assume a cost of cr units
for communicating a real number and cb units for each bit
corresponding to a discrete quantity (i.e., to communicate
x ∈X incurs a total cost of cb.⌈log|X |⌉ units). In general,
one would expect cr to be significantly larger than cb. For
example, if in a system each real number is represented using
32 bits, then we will have cr=32cb.

3. Related Work
Best arm identification: In MAB literature, finding the best
arm with probability at least 1− δ (for a δ ∈ (0,1)), also
known as the pure exploration problem is well studied; for ex-
ample see (26; 27; 28; 29; 30; 31) and the references therein.
Moreover (32; 33; 34; 35; 36; 37) study various variants of
pure exploration, such as identifying k out of top m arms;
identifying arms with mean rewards above a threshold etc.

Federated Bandits (F-MAB): More recently, distributed
learning in MAB, also known as Federated Bandits has
received a lot of attention as alluded in Section 1. In (7; 8; 9),
the authors study the distributed pure exploration problems
with some allowed communication among them. On the
other hand, (3; 10; 11; 38; 39; 40; 12) study the federated
pure exploration problem with heterogeneous reward
structure across agents. Moreover, (3; 13; 41) address the
F-MAB problem in a regret minimization framework.

Clustered Federated bandits: In F-MAB, one of the
major challenges is heterogeneity across agents and hence
Clustered F-MAB is a popular area of research. In the (simple
parametric) linear bandit setup, the clustering problem is
studied by (14; 16; 17; 18; 42). Moreover (24; 25; 20; 21; 22)
study clustered F-MAB without linear structure, and a
detailed discussion as well as comparison of these works
with our work are presented in Section 1.

4. Algorithm I: Cl-BAI
Throughout the algorithm, we will often calculate the average
of the reward samples observed from the arm thus far. For
a generic arm k, we will refer to it by µ̂k. When considering
the k-th arm of agent i, we will refer to it by µ̂i

k. Note that
the true mean reward for this arm is given by µM(i),k.

Our first algorithm, Clustering then Best Arm Identification
(Cl-BAI), is presented in Algorithm 1 and it consists of two
phases. The goal of the first phase is to ‘cluster’ the agents
based on the bandit problem that they are learning, so that for

3This is important in F-MAB since it may be directly related
to internet bandwidth of the agents which is resource constraint.
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Algorithm 1 Cl-BAI

1: Input: δ, η; Initialize: Best Arm←0N
2: First phase:
3: for i∈ [N ] do
4: Agent i runs Successive Elimination:

Si,µ̂
i=SE([K],γ=( δ

12NK )4/3,R=log(17/η))
5: Agent i communicates Si,µ̂

i to learner
6: if |Si|=1 then
7: Best Arm[i]=Si,[N ]→ [N ]\i
8: end if
9: end for

10: Learner constructs graph G with [N ] as set of vertices.
11: for i,j∈ [N ] do
12: Create edge between vertices i,j if |µ̂i

k− µ̂j
k| ≤ η/2,

∀ k∈Si∪Sj

13: end for
14: Label connected components as C1,C2,...,Cm

15: Second phase:
16: for i∈ [m] do
17: Learner selects one agent ai from Ci and instructs ai

to run Successive Elimination
18: end for
19: for i∈ [M ] do
20: Agent ai runs Successive Elimination:
21: Bi,µ̂

ai =SE(Sai
,γ=δ/(2M),R=∞)

22: Agent ai communicates Bi to learner
23: end for
24: for i∈ [M ] do
25: for j∈Ci do
26: Learner sets Best Arm[j]=Bi

27: end for
28: end for
29: Return Best Arm

each bandit problem j∈ [M ], there is one cluster consisting
of all the agents learning bandit j. In the second phase, the
learner chooses one representative agent from each cluster,
finds the best arm for that agent, and then declares that arm
as the best arm for all the agents in the corresponding cluster.

Lines 3-15 describe the first phase where agents sample arms
so that at the end of the phase, the learner can accurately
map each agent to the bandit problem it is learning. To do
this efficiently, each agent uses the successive elimination
procedure SE (43; 44) described in Algorithm 2.

For agent i, we will use Si and µ̂i = (µ̂i
1, µ̂

i
2, ... , µ̂

i
K) to

denote the set of surviving active arms and the vector of
updated empirical mean rewards as returned by the SE
procedure, respectively. We will prove in Appendix 10.2 that
the SE procedure in the first phase, when run with suitable
choices for γ and R, guarantees the following with high
probability: (i) For any two agents i, j learning the same
bandit, ∀ k ∈ Si ∪ Sj , we have |µ̂i

k − µ̂j
k| ≤ η/2; (ii) For

Algorithm 2 SE (A,γ,R)

1: Input: A,γ,R; Initialize: A0←A,r←0,µ̂←0K
2: while |Ar|>1 and r<R do
3: r←r+1,ϵr=2−r

4: Pull each arm inAr−1 for 8log(4|A|r2/γ)
ϵ2r

times
5: Estimate µ̂k for all k∈Ar−1 from these samples
6: SetAr←{i∈Ar−1 : µ̂i≥ max

j∈Ar−1

µ̂j−ϵr}

7: end while
8: returnAR, µ̂

any two agents i,j learning different bandits, ∃ k∈Si∪Sj

s.t. |µ̂i
k − µ̂j

k| > η/2. Next, each agent i communicates
the quantities Si, µ̂

i to the learner (line 6), who uses this
information to cluster the agents as described in lines 11-15.
We will show that the above properties of the SE procedure
ensure that with high probability, for each identified cluster,
all its member agents are associated with the same bandit.

Lines 16 − 30 describe the second phase of our scheme
Cl-BAI. The learner selects one representative agent ai
from every cluster i, and then instructs it to again call the
successive elimination procedure SE, with input parameters
A=Si, γ=δ/(2M), and R=∞. This implies that for each
representative agent, the SE procedure is run till there is only
one arm left in the active set, which is then declared as the
best arm estimate for the representative arm as well as all
the other agents in the same cluster.
Remark 4.1 (Successive Elimination). We use successive
elimination for its simplicity and easy-to-tune capability.
We comment that in general other BAI (like track and stop
(45)) and clustering ((20)) algorithms may also be used in
this framework.
Remark 4.2 (Knowledge of separation η). We emphasize that
the (exact) knowledge of separation η may not be required.
Any lower bound on η is sufficient for theoretical results.

The following results demonstrate the correctness and
sample complexity of Cl-BAI.

Theorem 4.3. Suppose Assumption 2.1 holds. Given any
δ∈(0,1), the Cl-BAI scheme (see Algorithm 1) is δ-PC.
Theorem 4.4. With probability at least 1− δ, the sample
complexity of Cl-BAI for an instance I, denoted by
T I
δ (Cl-BAI) satisfies T I

δ (CL-BAI)≤T1+T2, where4

T1≲
∑
j∈[N ]

K∑
i=1

max{∆M(j),i,η}−2(logK+logN

+loglog
(
max{∆M(j),i,η}−1)+log(1/δ)

)
,

T2≲
∑

j∈[M ]

K∑
i=1

∆−2
j,i

(
logK+logM+loglog

(
∆−1

j,i

)
+log(1/δ)

)
.

4We use a≲b to denote a≤Cb, where C is a positive constant.
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Note that T1 and T2 represent upper bounds on the total
number of arm pulls in the first and second phases, respec-
tively. In particular, recall that the second phase involves
solving the standard best arm identification problem for
M bandits at one representative agent each and with target
error probability of δ/(2M); this problem has been studied
extensively and the expression directly follows from the
literature, see for example (44).
Remark 4.5 (Comparison with a naive algorithm). We can
compare the sample complexity of Cl-BAI with a naive
single-phase scheme where the learner instructs each agent
to independently identify their best arm using successive
elimination, and then communicate the result back to the
agent. Note that this scheme completely ignores the under-
lying mapping of agents to bandits. It follows immediately
from (26) that for any agent learning bandit j, the sample
complexity for the naive scheme is of the order of

∑K
i=1∆

−2
j,i .

Let us also assume balanced clusters, i.e., the cluster sizes
are5 Θ(N/M). Thus the overall average (normalized)
sample complexity of the naive scheme across all agents is
given by NK. 1

MK
·
∑

j∈[M ]

∑K
i=1∆

−2
j,i :=NK · ∆̄−2 , where

∆̄ can be thought of as representing the average problem
complexity across the M bandits.

On the other hand, from Theorem 4.4, the dominant terms
in the (normalized) sample complexity of Cl-BAI are given
by NK · 1

MK
·
∑

j∈[M ]

∑K
i=1max{∆j,i, η}−2 +MK · ∆̄−2 .

Comparing, we can see that the first term may be smaller
than that of the naive algorithm since it involves terms of the
form max{∆j,i,η}−2, which is at most ∆−2

j,i that appears in
the naive scheme. In fact, it can be much smaller depending
on the value of the ‘separability’ parameter η from Assump-
tion 2.1 vis-a-vis the bandit gaps; in particular when η≫∆̄.
The second term in the above expression of the sample
complexity of Cl-BAI will be much smaller whenever
M≪N , i.e., the number of bandits M is much smaller than
the number of agents N . We anticipate these conditions to
be true in many scenarios of interest and thus expect our pro-
posed schemeCl-BAI to outperform the naive strategy. Our
numerical experiments in Section 8 validate this intuition.
Remark 4.6 (Communication Cost). Next, we consider
the communication complexity of Cl-BAI. Starting with
communication from the agents to the central learner, it
happens once in the first phase (line 6) where every agent
communicates the active set and the empirical reward
vector to the learner, thus resulting in a total cost of at most
O(N.(cb.K + cr.K)) units; and then once in the second
phase (line 23) where the selected representative from
each cluster communicates the identity of its best arm to
the learner, requiring a total cost of O(cb.M. logK) units.
Communication from the learner to agents happens only
once in the second phase (line 18) when the learner selects a

5We say x=Θ(y) if there exists positive constants C1 and C2

such that C1y≤x≤C2y.

representative agent from each cluster and instructs it to run
Successive Elimination. This incurs a cost of O(cb.M) units.

Summing up and using M ≤N , cb ≤ cr, the total commu-
nication cost required by Cl-BAI is at most O(N.K.cr)
units. In comparison, the communication cost of a naive
scheme, where each agent independently identifies their
best arm and then communicates the result to the learner, is
at most O(N.logK.cb) units. Thus, Cl-BAI helps reduce
the sample complexity by introducing interaction between
the learner and the agents, which naturally induces a higher
communication cost.

5. Algorithm II: BAI-Cl
Our second algorithm, Best Arm Identification then
Clustering (BAI-Cl) is presented in Algorithm 3 and it
also consists of two phases. In the first phase, the goal is
to identify the set of best arms, i.e., {k∗m :m∈ [M ]}. This
is done by sampling agents randomly and finding their best
arm, till we have identified M different best arms. In the
second phase, we aim to ‘cluster’ the remaining agents
which were not sampled in the first phase and find the best
arm corresponding to each of them. For each such agent, we
do so by applying successive elimination only on the set of
best arms identified in the first phase.

In the first phase (described in lines 3-17) the learner samples
an agent i uniformly at random from the set A, and then com-
municates the current set of best arms S to agent i. The agent
then proceeds to apply successive elimination (as prescribed
in Algorithm 2) on the set of arms [K] so that at the end of
the SE procedure, we are confident that a) the returned set Si

contains the best arm for agent i; and b) it does not contain the
best arm corresponding to any of the other bandit instances.

The agent considers the intersectionS∩Si. If it is non-empty,
then it implies that another agent with the same best arm as
agent i had been sampled previously. In fact, the intersection
will then have exactly one arm with high probability,
corresponding to the best arm for agent i, and hence its
index is communicated to the learner. On the other hand,
if S ∩Si = ϕ it means that the bandit that current agent is
learning hasn’t been explored yet. Hence, agent i continues
to run successive elimination on the set of arms Si (line 12)
till only one arm remains, which is guaranteed to be the best
arm for the agent with high probability and hence its index
is communicated to the learner. The sets A and S, as well
as the array Best Arm are updated appropriately.

At the end of the first phase, the set S contains the indices
of the M best arms corresponding to the different bandit
instances. What remains is to identify for each remaining
agent in A, its corresponding best arm from within the set S.

Lines 18−25 describe the second phase of our algorithm,
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Algorithm 3 BAI-Cl

1: Input: η,δ
2: Initialize: A← [N ],S←ϕ,Best Arm←0N
3: First Phase:
4: while |S|<M do
5: Learner samples agent i from A uniformly at random;

communicates set S to i
6: Agent i runs Successive Elimination:

7: Si,µ̂
i=SE([K],γ=

δ.log( M
M−1 )

log( 3.M
δ )

,R=log(1/η)+1)

8: if S∩Si ̸=ϕ then
9: Agent i sends arm a∗i ∈S∩Si to learner

10: else
11: Agent i further runs Successive Elimination:

12: a∗i ,µ̂
i=SE(Si,γ=

δ.log( M
M−1 )

log( 3.M
δ )

,R=∞)

13: Agent i sends arm a∗i to the learner
14: end if
15: Update at learner:
16: A=A\{i}, Best Arm[i] = a∗i , S=S∪a∗i
17: end while
18: Second Phase:
19: for i∈A do
20: Learner communicates the set S with agent i
21: a∗i ,µ̂

i=SE(S,δ/3N,R=∞)
22: Agent i communicates arm a∗i to the learner
23: Learner sets Best Arm[i]=a∗i
24: end for
25: Return Best Arm

where the learner communicates the set S to the remaining
agents in the set A. Each such agent applies successive elim-
ination on the set S with target error probability γ=δ/3N ,
till the best arm is identified; and then communicates the arm
index to the learner.

Remark 5.1 (Coupon Collector). The first phase ends when
we see at least one agent from all M bandits. This is related
to the classical coupon collector problem, and we use those
results to ensure that O(M logM) agents will be sampled
in this phase woth high probability.

The following result demonstrates the correctness of our
proposed scheme BAI-Cl. The proof can be found in
Appendix 10.

Theorem 5.2. Given any δ∈(0,1), the BAI-Cl scheme (see
Algorithm 3) is δ-PC.

Theorem 5.3. Suppose each agent belongs to one of the
M clusters uniformly at random. Then, with probability
at least 1− δ, the sample complexity T I

δ (BAI-Cl) satisfies

T I
δ (BAI-Cl)≤T1+T2, where,

T1≲ [logK+logγ+loglog∆−1
m,i]{

M∑
m=1

K∑
i=1

∆−2
m,i

+M.log(
3.M

δ
). max

m∈[M ]

{ K∑
i=1

max(η,∆m,i)
−2}

T2≲N.M.η−2(logM+logδ−1+logN+loglogη−1)

T1 and T2 denote the no. of pulls in first phase and second
phase respectively. T1 involves the pulls assigned for
finding the best M arms which is given by (ignoring log

factors),
M∑

m=1

K∑
i=1

∆−2
m,i along with that we will have at-most

M. log(3M/δ) agents, learning a bandit already been
explored earlier. T2 includes the pulls from applying SE on
the set S for at-most N agents with δ/3N error probability.
Remark 5.4 (Comparison between BAI-Cl and Cl-BAI).
We saw previously in Remark 4.5 that the dominant
terms in the sample complexity of Cl-BAI are given by∑

j∈[N ]

∑K
i=1max{∆M(j),i,η}−2+M.K.∆̄−2. On the other

hand, from Theorem 5.3, we have that the dominant terms in
the sample complexity of BAI-Cl are given by M.K.∆̄−2+

M.maxm∈[M ]

{ K∑
i=1

max(η,∆m,i)
−2

}
+N.M.η−2. If the under-

lying instance is such that η is large enough; in particular
say that in each bandit there is at least a sizeable fraction of
the arms whose mean reward is within η of the correspond-
ing best arm. Then we have,

∑K
i=1max{∆M(j),i,η}−2 ∼

Θ(Kη−2), so that the respective complexities of Cl-BAI
and BAI-Cl become N.K.η−2 + M.K.∆̄−2 and
N.M.η−2+MKη−2+M.K.∆̄−2 respectively. Clearly, the
main difference is between N.K.η−2 for Cl-BAI and (N+
K).M.η−2 for BAI-Cl. Thus, BAI-Clwill perform much
better whenever M ≪N,K, i.e., the number of bandits is
much smaller than the number of agents and arms, which is a
natural scenario. Another point to note is that while we expect
BAI-Cl to perform better than Cl-BAI in most cases, the
latter has the advantage that the agent pulls in the first phase
happen in parallel which can sometimes be advantageous.
Remark 5.5 (Communication Cost). Communication from
the learner to the agents happen in the first phase (line 5)
where learner sequentially samples an agent and communi-
cates the current set S⊂ [K] (of size at most M ) to the agent;
and then in the second phase where the learner communicates
the final setS (of sizeM ) to all the remaining agents resulting
a total cost of O(cb.N.log(

∑M
i=0

(
K
i

)
))=O(cb.N.M.logK)

units. The communication from agents to the learner
happens in the first phase (line 9 or 13) where each sampled
agent incurs a cost of cb.⌈logK⌉. Since O(M logM) agents
are sampled in the first phase with high probability, the
total cost incurred is O(cb.M logM.logK). In the second
phase (line 24), each remaining agent indicates one amongst
the M arms in S as their best arm, requiring a total cost of

6
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O(cb.N.logM). Using M≤N,K, the total communication
cost is at most O(N.M.logK.cb) units. Comparing this with
Cl-BAIwhich incurs a communication cost of O(N.K.cr)
units (see Remark 4.6), we note that BAI-Cl is more
communication-efficient (in addition to being better in terms
of sample complexity) whenever M logK≤K.
Remark 5.6 (Non-uniform Clusters). We assume that the
each agent belongs to one of M clusters uniformly. This can
be easily generalized as this is equivalent to solving a coupon
collector problem with unequal probabilities (see (46)).

6. Improved BAI-Cl: BAI-Cl++
Recall Assumption 2.1 that requires any admissible instance
to satisfy a ‘separability’ constraint. In this section, we
present a variant of BAI-Cl which requires an additional
assumption other than Assumption 2.1, but can provide
significant savings in terms of sample complexity.

Assumption 6.1. ∃ η1 ≥ 0 such that for any two
bandits i, j, the performance of the best arm k∗i of
bandit i, differs by at least η1 under bandit j, i.e,
|µi,k∗

i
−µj,k∗

i
|≥η1,∀i,j∈ [M ],i ̸=j.

BAI-Cl++ is identical to BAI-Cl except that (i) in the
first phase, after running SE procedure(line 12) agent i
will pull arm a∗i , 32log(12M/δ)

η2
1

times and communicates
to the learner the estimated mean reward associated with
a∗i ; and (ii) in the second phase (line 21 of Algorithm 3),
it uses ŜE (Algorithm 4) instead of the SE procedure. We
will assume that at the end of the first phase, the learner
stores the identified M best arms and their estimated mean
rewards in S and µS respectively. The ŜE procedure uses
Assumption 6.1 to provide a more efficient scheme for
identifying the best arm amongst the set S for each agent.

We defer the formal guarantees of BAI-Cl++ to Ap-
pendix 10.1. Similar to BAI-Cl, BAI-Cl++ is δ-PC.
Regarding sample complexity, in the first phase, both
BAI-Cl++ and BAI-Cl require similar pulls (in fact
BAI-Cl++ requires Mη−2

1 more pulls than BAI-Cl).
However, in the second phase, instead of, N.M.∆−2(logM+

log δ−1 + log N + log log ∆−1) in BAI-Cl we have,
N.M.∆−2(logM + log log∆−1) + N.η−2

1 (log δ−1 + logN) .
Hence, we will gain in no. of pulls using BAI-Cl++ over
BAI-Cl as long as N.M.∆−2≥(N+M)η−2

1 .

7. Lower Bound
In this section, consider the class of problem instances
I which in addition to Assumption 2.1, also satisfy the
following condition on the mean reward gaps for each
bandit m ∈ [M ]: µm,k∗

m
≥ µm,k +∆,∀k ̸= k∗m. Also, we

will restrict attention to unit variance Gaussian rewards for
simplicity, although this can be readily generalized.

Algorithm 4 ŜE(S,µS ,γ,η,η1)

1: Input: S,µS ,γ,η,η1; Initialize: k←1
2: while True do
3: δk=10−k, â,µ̂ = SE(S,δk,R=log(1/η)+1)

4: Pull â for 32 log(4.k2/γ)
η2
1

times
5: if |µ̂a−µa

S |<η1/2 then
6: return â as the best arm
7: else
8: k←k+1
9: end if

10: end while

We have the following lower bound on the expected sample
complexity of any δ-PC scheme over the class of instances I .

Theorem 7.1. For any δ-PC algorithm A, there exists
a problem instance ν ∈ I such that the expected sample
complexity E[T ν

δ (A)] satisfies

E[T ν
δ (A)]≳max{M ·(K−M),N} log(1/δ)

∆2
. (1)

Proof Sketch: Let ν ∈ I be an instance for which the
mean reward vector corresponding to bandit i satisfies,
µi,i=µ+∆,µi,j=µ∀j ̸= i. Note that the best arm for bandit
i is arm i under instance ν. With a perturbed instance and
change of measure (30, Lemma 1) argument we conclude
the proof (details in Appendix 10.9).

Remark 7.2 (Orderwise Optimaity of BAI-Cl++).
The above described class of Instance I satisfies As-
sumptions 2.1 and 6.1 with parameter ∆ for both.
For BAI-Cl++, the order-wise sample complexity is
M.K.∆−2 + (M + 1)N∆−2. We compare it with Equa-
tion 1. Suppose N≫K,M and moreover M is a constant
(i.e., M = Θ(1)). In that setup, the dominating term in
the sample complexity of BAI-Cl++ is N∆−2 which
matches the lower bound (Equation 1). Hence BAI-Cl++
is order-wise optimal in this setting.

Remark 7.3 (Instance Dependent Lower Bound). The lower
bound proposed in Theorem 7.1 is a worst-case bound. Using
similar ideas, we can also derive an instance-dependent
lower bound which is more general but requires additional
notation. Details can be found in Appendix 10.10.

8. Numerical Results
We conduct an empirical evaluation of our proposed
algorithms using both synthetic and real-world datasets. We
set the error probability δ=10−10 for our experiments and
present sample complexity results which are averaged over
multiple independent runs of the corresponding algorithms.

7
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(a) (b) (c) (d) (e) (f)

Figure 1. (a)(b)(c) Performance with varying number of agents N for synthetic datasets 1, 2, 3 (d) Varying clustering parameter η for dataset
3 (e) Skewed cluster sizes for dataset 3 (f) Performance with varying number of agents N for MovieLens dataset

8.1. Synthetic Datasets
We take the reward distribution for each arm to be unit-
variance Gaussian. We consider three problem instances.

First: We consider a small instance with M = 3
bandits/clusters and K = 10 arms, with mean
arm rewards for the three bandits given by
µ1µ1µ1 = [.09, .26, .49, .91, .56, .16, .31, .75, .76, .77];
µ2µ2µ2 = [.02, .27, .36, .42, .47, .92, .32, .62, .82, .9]; and
µ3µ3µ3=[.14,.46,.64,.44,.7,.03,.96,.72,.79,.95]. The best arms
for the bandits are arms 4, 6, and 7 respectively, and both
Assumptions 2.1 and 6.1 hold with parameter η=η1=0.3.

Second: Next, we consider a larger instance with M =20
bandits/clusters and K =100 arms. There is a unique best
arm for each of the M bandit problems. For each bandit,
the mean reward for the assigned best arm is sampled from
a uniform distribution U(1−η,1). Next, the means of the
M−1 arms that are best for other bandits are sampled from
U(0,1−2η). For the remaining K−M arms, their mean
rewards are sampled uniformly between 0 and the mean
reward of the best arm. It can be verified that Assumptions 2.1
and 6.1 are satisfied with parameter η. We set η=0.15.

Third: We again set M =20, K=100, with a unique best
arm for each bandit having mean reward 1, while all other
arms have mean 1−η. Again, both Assumptions 2.1 and 6.1
hold with parameter η. We set η=0.15.

Finally, there are N agents, divided into N/M sized clusters.

Variation with number of agents (N ): For the three
datasets constructed above, we vary N and plot the average
number of pulls for the various schemes in Figures 1(a)(b)(c).
We observe that BAI-Cl and BAI-Cl++ perform the best
for all the datasets. For datasets 1 and 2, Cl-BAI also pro-
vides a significant improvement over the naive single-phase
scheme (with no clustering). This is in line with Remarks 4.5
and 5.4 which suggest that Cl-BAI performs better than
the naive scheme when the clustering parameter η is large
as compared to the individual bandit arm reward gaps. For
example, for dataset 1, η is .3, while the minimum arm mean
reward gaps for the three bandits are .14,.02,.01 respectively.
On the other hand, for dataset 3 both the naive scheme and
Cl-BAI have poor performance. Again, this is consistent

with Remark 4.5 since both the clustering parameter and the
individual bandit arm reward gaps are η in this case.

Variation in clustering parameter (η): For dataset 3, we
varied η over the set [0.05,0.1,0.2,0.5], while keeping other
parameters constant as follows: K = 100, M = 20, and
N=100. From Figure 1(d), we see that the sample complex-
ity decays rapidly as the clustering parameter η increases
and thus the underlying problem instance becomes easier.

Variation in cluster sizes: While the previous experiments
assume that all clusters are of the same size, here we study the
impact of non-uniformity of cluster sizes on the performance
of the various algorithms. We consider dataset 3 with
N = 500 agents and M = 100 clusters, where the cluster
sizes follow a power-law distribution. In particular, each
agent is mapped to cluster i with probability proportional to
iα, where α governs the skewness of the cluster sizes. As α
increases, the cluster sizes become more skewed. Figure 1(e)
presents the average number of pulls for the various schemes
as α is varied. While the sample complexity of the naive
scheme and Cl-BAI is invariant to α, the performance of
BAI-Cl and BAI-Cl++ worsens as α increases. This is
because these algorithms are required to identify all the best
arms in the first phase by randomly sampling agents; and this
task becomes significantly harder when there are clusters
with much fewer agents as compared to others.

8.2. MovieLens Dataset
We perform experiments using the MovieLens-1M dataset,
which contains movie ratings from a large number of users.
We group the users into six age categories: 18–24, 25–34,
35–44, 45–49, 50–55, and 56+. The 0–18 age group is
excluded due to insufficient ratings for many movies. We
restrict our study to movies that received at least 30 ratings
in each of the six age groups, leaving 316 movies.

We haveM=6 bandits, one corresponding to each age group.
Each of the K = 316 movies represents an arm. For each
bandit and arm pair, the reward distribution is taken to be
the empirical average score distribution calculated from the
reviews for the corresponding movie given by users in that
age group, suitably normalized to make it 1-subGaussian.

We find that each of the 6 bandits (user age groups) has
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a distinct best arm (movie with highest average rating).
For example, the highest rated movie for the 18–24 group
is “The Usual Suspects (1995)”, while it is “To Kill a
Mockingbird (1962)” for the 56+ age group. The dataset
satisfies Assumptions 2.1 and 6.1 with clustering parameters
η=0.0027 and η1=0.026 respectively.

As before, we assume that there are N agents divided into M
equal-sized clusters. The goal of the learner is to identify the
best arm (movie with highest expected score) for each agent.

Figure 1(f) plots the average sample complexity for the
various schemes as we vary N . Our results demonstrate
that clustering-based methods, especially BAI-Cl++,
significantly reduce the sample complexity compared to
the naive scheme. BAI-Cl also achieves competitive
performance but is less efficient than BAI-Cl++.

8.3. Yelp Dataset
We conducted a similar experiment using the Yelp dataset as
well. Those results along with some additional numerics can
be found in Appendix 10.11.

9. Conclusions and Future Work
In this paper, we propose and analyze algorithms for best arm
identification in a multi-agent multi-armed bandit setting,
with agents grouped into (a priori unknown) clusters. Out of
these, the algorithm BAI-Cl (actually, its improved version
BAI-Cl++) obtains near optimal sample complexity, which
is validated by lower bounds. One drawback of BAI-Cl
is that it requires the knowledge of the cluster separation
η. One immediate future work is to propose and analyze
algorithms which do not require knowledge of η.

Towards this, we ran additional experiments with the
Movie-lens and Yelp datasets, and observed that in practice,
BAI-Cl is indeed robust to η. Theoretically we believe a
successive estimation based algorithm may work, and here
we sketch the rough idea. We can propose a multi-phase
algorithm where we start with a large enough value of η, and
at the beginning of each phase, we reduce η by a factor of
2. So, for the first few phases, the algorithm will not perform
well, since η is still large enough. However, after some
phases, the value of η falls below the actual gap and the algo-
rithms start learning the best arm. If we select exponentially
increasing phase lengths, we can show that these multi-phase
algorithm will succeed in finding the best arms of all the
agents. Of course, the sample complexity of this algorithm
will be worse compared to the current ones; however, we
believe the orderwise sample complexity will remain the
same (with worse constants) if the initial phase-length and
the exponential increase factor are properly chosen.

However, we need to come-up with a stopping criteria for
halving η, which may be crucial. Currently, we do not know

how to do this appropriately and hence this is deferred as a
future work.

Also, in this work we use Successive elimination for easy
tunability. There are other best arm identification algorithms,
such as Track And Stop (45), which are asymptotically
optimal. An interesting future direction is to use such
algorithms in the clustered multi-agent bandits framework.
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10. Appendix
10.1. Guarantees for BAI-Cl++

We have the following results.

Theorem 10.1. Given any δ∈(0,1), the BAI-Cl++ scheme is δ-PC.

Theorem 10.2. Suppose each agent belongs to one of the M clusters uniformly at random. With probability at least 1−δ,
the sample complexity T I

δ (BAI-Cl++) of BAI-Cl++ for an instance I satisfies

T I
δ (BAI-Cl++)≤T1+T2, where γ=δ.

log( M
M−1 )

log( 3.Mδ )
and

T1≲
M∑

m=1

K∑
i=1

∆−2
m,i(logK+logγ+loglog∆−1

m,i)

+M.log(
3.M

δ
). max
m∈[M ]

{ K∑
i=1

max(η,∆m,i)
−2(logK+logγ

+loglogmax(η,∆m,i)
−1)
}
+M

(
log(δ−1)+log(M)

η21

)
T2≲N.M.η−2(logM+loglogη−1)

+N.η−2
1 (logδ−1+logN)

Remark 10.3. Comparing the sample complexity of BAI-Cl++ to BAI-Cl. In the first phase we have an additional
M
(

log(δ−1)+log(M)
η2
1

)
pulls since we want estimated mean of the best arm to be within η1 of the true mean to get correct result

from ŜE procedure. In the second phase instead of,

N.M.η−2(logM+logδ−1+logN+loglogη−1)

we have,
N.M.η−2(logM+loglogη−1)+N.η−2

1 (logδ−1+logN)

Hence, we will gain in no. of pulls using BAI-Cl++ over BAI-Cl as long as N.M.η−2≥(N+M)η−2
1

Remark 10.4 (Communication Cost). Note that the modifications made to BAI-Cl to get BAI-Cl++ introduce additional
communication in the first phase of the scheme. Each sampled agent, in addition to the identity of its identified best arm,
also communicates an estimate of its mean reward to the learner. This incurs a total additional cost of at most O(M.cr) units.
Thus, the overall communication cost for BAI-Cl++ is at most O(N.M.logK.cb+M.cr) units.

10.2. Proof of Successive Elimination

Assume there are n arms {1,2,···,n} inAwith corresponding means µ1≥µ2≥···≥µn, and are 1 sub-Gaussian. Also, let
∆i=µ1−µi for i∈{2,3,···,n} and ∆1=∆2. Consider the successive elimination procedure SE applied to the setA. The
following result is well known (43; 44) and we include a proof here for completeness.

Theorem 10.5. With probability at least 1−γ, SE(A,γ,R=∞) satisfies the following properties:

• It returns the best arm inA, i.e., arm 1.

• The total number of arm pulls needed is at most

O

 n∑
i=1

log
(

nlog∆−1
i

γ

)
∆2

i


Proof. After r rounds of Successive Elimination, the total no. of pulls for any surviving arm in the active setAr is at least
8.log(4nr2/γ)/ϵ2r . Then using Hoeffding’s inequality for sub-gaussian , we have the following bound on the difference

12
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between the true mean µi of any arm i and its empirical estimate µ̂i at the end of any round r.

P
(
|µi−µ̂i|≥

ϵr
2

)
≤ γ

2nr2
. (2)

For each r≥0, define the event Er={1∈Ar and j /∈Ar ∀ j∈A s.t. µj <µ1−2ϵr}. Clearly event E0 holds true since the
active setA0 is initialized to include all arms in the setA. Furthermore, note that the event E=∩∞r=1Er refers to the event
that only the best arm, i.e. arm 1, remains in the active set and is thus returned by the SE procedure.

We have

P[Er|∩r−1
k=1Ek]≥P[|µi−µ̂i|≤

ϵr
2
∀i∈Ar−1|∩r−1

k=1Ek]

≥1−n. γ

2nr2
=1− γ

2r2

where the last inequality follows from (2). Next,

P(E)=

∞∏
r=1

P[Er|∩r−1
k=1Ek]

≥
∞∏
r=1

(
1− γ

2r2

)
≥1−

∞∑
r=1

γ

2r2

≥1−γ

Thus we have that with probability at least 1−γ, SE(A,γ,R=∞) returns the best arm inA, i.e., arm 1. Next, we will now
prove the upper bound on the number of pulls required by the SE procedure. Note that with probability at least 1−γ, each
arm i≥ 2 is removed from the active set by at most round ⌈1+log2

1
∆i
⌉. Also, the number of pulls of arm 1 is at most the

number of pulls of any other arm. Thus, the total number of pulls for the SE procedure is at most

n∑
i=1

⌈
log2

1
∆i

⌉∑
r=1

8.log( 4nr
2

γ )

2−2r

≤O

 n∑
i=1

log
(

nlog∆−1
i

γ

)
∆2

i

. (3)

10.3. Proof of Theorem 1

Proposition 10.6. Let µ̂i
k,r denote the estimated mean of kth arm of ith agent at rth round. Consider the bad event

e0, which occurs if in the first phase for any round t of Successive Elimination for any agent i and for any arm k,
|(µM(i),k)−(µ̂i

k,r)|≥ϵr/2 happens. Using union bound and theorem 10.5 we have

P (e0)≤N.γ

We will assume that e0 does not occur with probability 1−Nγ and proceed with our proof.
Proposition 10.7. Consider the bad event e1 to be when there exist two agents learning the same bandit and are clustered
in different clusters. Then

P (e1∩ē0)≤N.K(2
√
2.

γ0.75

K0.75
+

γ

K
) (4)

Proof. Two agents, i and j, learning the same bandit will not be assigned to the same cluster if D(µ̂i,µ̂j)≥ η
2 , i.e., there exists

an arm in the union of the active sets of these two agents, whose estimated means for agents i and j differ by more than η
2 .

13
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Proof sketch: We want to prove that the probability that there exist agents i and j, and an arm k in Si ∪ Sj such that

|µ̂j
k−µ̂i

k|≥η/2, is less than NK
(
2
√
2· γ

0.75

K0.75 +
γ
K

)
. We first prove the following claims.

Claim 1 states that, given ē0, for any agent i, all the arms in Si will be ”good” arms. We define the set of ”good” arms for
agent i, denoted as Gi, as the set of arms whose true mean is within 2ϵR of the mean of the best arm for agent i.

From Claim 2, we conclude that e1∩ ē0 implies there must exist an agent i and an arm k∈Gi such that the estimate of the
kth arm for the ith agent is at least η/2−ϵR/2 less than its true mean.

Claim 3 puts an upper bound on the probability that a “good” arm gets eliminated after r rounds of successive elimination.

Finally, we combine Claims 1, 2, and 3 to obtain the upper bound on the event e1.
Claim 1. For all i∈ [N ] and k∈Si, we have µM(i),k≥µM(i),k∗

M(i)
−2ϵR.

Proof. All arms with a true mean at least 2ϵR less than the mean of the best arm will be eliminated after round R, i.e., all
the arms in the set

E={k |µM(i),k≤µM(i),k∗
M(i)
−2ϵR} (5)

From Proposition 10.6, for k∈E, we have:

|µM(i),k−µ̂i
k,R|≤ϵR/2,

|µ̂i
k∗
M(i)

,R−µM(i),k∗
M(i)
|≤ϵR/2,

Hence, |µ̂i
k∗
M(i)

,R−µ̂i
k,R|≥2ϵR−ϵR/2−ϵR/2≥ϵR.

Claim 2. e1∩ē0−→ There exists a pair of agents i,j withM(i)=M(j) and an arm k∈Si∪Sj , such that

µ̂i
k≤µM(i),k−

(η
2
− ϵR

2

)
,

or

µ̂j
k≤µM(j),k−

(η
2
− ϵR

2

)
.

Proof. e1 implies that there exists a pair of agents i,j such thatM(i) =M(j) and some arm k ∈ Si ∪Sj for which the
difference in estimated means of that arm between the two agents i,j is more than η/2, i.e.,

|µ̂i
k−µ̂

j
k|≥η/2.

Since k must belong to either Si or Sj , let’s assume k∈Sj . Then, from Claim 1, we have k∈Gi=Gj . Also, from Proposition
10.6, we have

|µM(j),k−µ̂j
k|≤ϵR/2,

and hence
|µM(i),k−µ̂i

k|≥
η

2
− ϵR

2
.

This implies:

⇒ µ̂i
k−µM(i),k≤−

(η
2
− ϵR

2

)
, (6)

or

⇒ µ̂i
k−µM(i),k≥

(η
2
− ϵR

2

)
. (7)

But Equation (7) isn’t possible under the good event ē0, because arm k must get eliminated from agent i in some round
r∈ [1,R]. If arm k is in both Si and Sj , then

|µ̂i
k−µ̂

j
k|≤ϵR,

14
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and hence, an error cannot occur due to this arm. Arm k gets eliminated in round r only if there exists some arm k′ whose
estimated mean is greater than µ̂i

k+ϵr (see line 7 of Algorithm 2). This implies:

µ̂i
k′≥ µ̂i

k+ϵr,

µM(i),k′+
ϵr
2
≥µM(i),k+

η

2
− ϵR

2
+ϵr,

≥µM(i),k+
17ϵR
2
− ϵR

2
+
ϵr
2
,

>µM(i),k+2ϵR. (8)

Equation (8) violates Claim 1, hence (7) isn’t possible. Therefore, Equation (6) proves our claim.

Claim 3. For any arm k of agent i satisfying µM(i),k>µM(i),k∗
M(i)
−2ϵR, the probability that this arm gets eliminated after

r rounds, assuming ē0 holds, is less than

e
−4

log

(
3Kr2

γ

)
( ϵr

2
−2ϵR)

2

ϵ2r .

Proof. Arm k can be removed from agent i after r rounds only if

µ̂i
k,r<µ̂i

k′,r−ϵr for some arm k′.

From Proposition 10.6, we know that
|µ̂i

k′,r−µM(i),k′ |≤ ϵr
2
.

Therefore, we can deduce:
µ̂i
k,r≤µM(i),k−

ϵr
2
+2ϵR. (9)

After r rounds, the total number of pulls for any arm is greater than 8 · log
(

4Kr2

γ

)
/ϵ2r . Using Hoeffding’s inequality, we

can bound the probability of the event in equation (9) by:

≤e
−4

log

(
4Kr2

γ

)
( ϵr

2
−2ϵR)

2

ϵ2r .

This concludes the proof for Claim 3.

From Claim 3, we have the probability of an arm getting eliminated in round r. Also, after round r, the total number of pulls
of any arm is at least 8·log

(
3Kr2

γ

)
/ϵ2r . Hence, from Hoeffding’s inequality, we can derive the following:

P
(
µ̂i
k,r≤µM(i),k−

(η
2
− ϵR

2

))
≤exp

(
−4log

(
4Kr2

γ

)(η
2−

ϵR
2

)2
ϵ2r

)

To bound the probability of e1∩ ē0, using Claim 2, we can say that it is upper-bounded by the probability that there exists
an arm k of agent i and an agent j satisfying k∈Si∪Sj such that µ̂i

k,r≤µM(i),k−
(
η
2−

ϵR
2

)
. We assume that arm k gets

eliminated after some round r∈ [1,R], since if it doesn’t get eliminated after round R, its estimated mean will be within ϵR
2 ,

and thus µ̂i
k,r≤µM(i),k−

(
η
2−

ϵR
2

)
won’t hold, as ϵR=2−log(17/η)=η/17.

The number of pulls for an arm that gets eliminated after round r will be at least 8·log
(

4Kr2

γ

)
/ϵ2r . Hence, the probability

that after r rounds arm k gets eliminated and has an estimated mean η
2−

ϵR
2 less than its true mean is bounded by

min

e
−4log

(
4Kr2

γ

) ( ϵr
2

−2ϵR)
2

ϵ2r ,e
−4log

(
4Kr2

γ

) ( η
2
− ϵR

2 )
2

ϵ2r
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Taking the union bound over all such arms k and corresponding agent i, we obtain the following equation:

P (e1∩ē0)≤N ·K
R∑

r=1

min

e
−4log

(
4Kr2

γ

) ( ϵr
2

−2ϵR)
2

ϵ2r ,e
−4log

(
4Kr2

γ

) ( η
2
− ϵR

2 )
2

ϵ2r



≤N ·K
R∑

r=1

e
min

(
−4log

(
4Kr2

γ

) ( ϵr
2

−2ϵR)
2

ϵ2r
,−4log

(
4Kr2

γ

) ( η
2
− ϵR

2 )
2

ϵ2r

)

≤N ·K
R∑

r=1

( γ

4Kr2

)max

(
1−8

ϵR
ϵr

,4
( η

2
− ϵR

2 )
2

ϵ2r

)
.

ϵR=2−log(17/η)=η/17,

1−8ϵR
ϵr
≥0.75 for r≤R−5

4

(
η
2−

ϵR
2

)2
ϵ2r

≥1 for r≥R−4

Hence,

≤N.K(

R−5∑
r=1

(
γ

4Kr2
)0.75+

R∑
r=R−4

(
γ

4Kr2
))

≤N.K(2
√
2.

γ0.75

K0.75
+

γ

K
)

Proposition 10.8. Consider the event e2 as the event where two agents learning different bandits get clustered into the same
cluster, i.e., if D(µ̂i,µ̂j)≤ η

2 , then

P (e2∩ē0)≤(M−1)N
( γ

K

)
. (10)

Proof. Proof sketch: We want to bound the probability that any two agents who are learning different bandits get clustered
in the same cluster. Throughout this proof, we consider the possibilities only under the event ē0, and the probabilities are
bounded as intersections with ē0.

We first claim (Claim 4) that if there exist two agents i,j who get clustered into the same cluster, then the estimated mean
of arm k∗M(j) for the ith user must satisfy

µ̂i
k∗
M(j)
≥µM(j),k∗

M(j)
− η

2
− ϵR

2
.

Next, in Claim 5, we state that if k∗M(j) from Claim 4 gets eliminated for user i after r rounds of successive elimination, then
there must exist an arm k′∈ [K]\{k∗M(j)} such that

µ̂i
k′≥ µ̂i

k∗
M(j)

+ϵr.

We bound the probabilities of the events from Claims 4 and 5 using Hoeffding’s inequality for sub-Gaussian random variables.
Since the events from Claims 4 and 5 are independent, we can take the product of their probabilities to obtain an upper bound
on the probability of their intersection.
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Define ei,j2 as the event that agents i and j, with different best arms k∗M(i) and k∗M(j), where µM(j),k∗
M(j)
≥ µM(i),k∗

M(i)
,

are clustered into the same cluster.
Claim 4. The event e2 implies that there exists an agent i and an arm k∗M(j) ∈ {k

∗
1 , k

∗
2 , ... , k

∗
M} \ k∗M(i) where

µM(j),k∗
M(j)
≥µM(i),k∗

M(i)
, such that

µ̂i
k∗
M(j)
≥µM(j),k∗

M(j)
− η

2
− ϵR

2
.

Proof. The event e2 implies that there exist two agents i,j such that ei,j2 holds. From the definition of ei,j2 and our condition
for clustering we have,

ei,j2 =⇒
(
|µ̂i

k∗
M(i)
−µ̂j

k∗
M(i)
|< η

2

)
∧
(
|µ̂j

k∗
M(j)
−µ̂i

k∗
M(j)
|< η

2

)
∧
(
µM(j),k∗

M(j)
≥µM(i),k∗

M(i)

)
. (11)

From Assumption 2.1, we have
(µi,k∗

M(i)
−µi,k∗

M(j)
)≥η.

Also, since µj,k∗
M(j)
≥µi,k∗

M(i)
, it follows that

(µj,k∗
M(j)
−µi,k∗

M(j)
)≥η.

From the equation above, we have
|µ̂j

k∗
M(j)
−µ̂i

k∗
M(j)
|< η

2
.

Thus,

µ̂i
k∗
M(j)
−µi,k∗

M(j)
≥(µj,k∗

M(j)
−µi,k∗

M(j)
)− η

2
− ϵR

2
or |µ̂j

k∗
M(j)
−µj,k∗

M(j)
|≥ ϵR

2
.

Using Proposition 10.6, we can exclude the second term in the equation above. Therefore,

ei,j2 =⇒
(
µ̂i
k∗
M(j)
−µi,k∗

M(j)
≥(µj,k∗

M(j)
−µi,k∗

M(j)
)− η

2
− ϵR

2

)
.

Hence, we conclude that
e2 =⇒ µ̂i

k∗
M(j)
≥µM(j),k∗

M(j)
− η

2
− ϵR

2
.

Claim 5. Assume that arm k∗M(j) gets eliminated after round r for user i. Then, there must exist an arm k′ ∈ [K]\k∗M(j)

such that
µ̂i
k′−µM(i),k′≥ϵr−

η

2
− ϵR

2

at the end of round r.

Proof. The arm k∗M(j) is eliminated after round r only if there exists an arm k′∈ [K]\k∗M(j) such that

µ̂i
k′≥ µ̂i

k∗
M(j)

+ϵr.

From Claim 4, we have
µ̂i
k∗
M(j)
≥µM(j),k∗

M(j)
− η

2
− ϵR

2
.

Substituting this into the previous inequality:

µ̂i
k′≥µM(j),k∗

M(j)
+ϵr−

η

2
− ϵR

2
.
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Since µM(j),k∗
M(j)
≥µM(i),k∗

M(i)
, we obtain:

µ̂i
k′≥µM(i),k∗

M(i)
+ϵr−

η

2
− ϵR

2
.

Thus,
µ̂i
k′−µM(i),k′≥ϵr−

η

2
− ϵR

2
.

This completes the proof of Claim 5.

From claim 4 and 5, we conclude that e2 can only occur if:

• There exists an agent i and an arm k∗M(j)∈{k
∗
1 ,k

∗
2 ,...,k

∗
M}\k∗M(i) where µM(j),k∗

M(j)
≥µM(i),k∗

M(i)
, such that,

µ̂i
k∗
M(j)
≥µM(j),k∗

M(j)
− η

2
− ϵR

2
(12)

• If k∗M(j) is eliminated after round r from user i, then for some arm k′,

µ̂i
k′−µM(i),k∗

M(i)
≥ϵr−

η

2
− ϵR

2
(13)

Given ē0, for Eq. 12 to hold, k∗M(j) must get eliminated after some round r ∈ [1,R], as η
2 −

ϵR
2 > ϵR

2 . After r rounds

of successive elimination, any arm in the active set will have
8log

(
4K2

i
γ

)
ϵ2r

pulls. Hence, from Hoeffding’s inequality, the

probability that after the rth round,

P
(
µ̂i
k∗
M(j)
≥µM(j),k∗

M(j)
− η

2
− ϵR

2

)
=P

(
µ̂i
k∗
M(j)
≥µM(i),k∗

M(j)
+
(
µM(j),k∗

M(j)
−µM(i),k∗

M(j)

)
− η

2
− ϵR

2

)
≤P

(
µ̂i
k∗
M(j)
≥µM(i),k∗

M(j)
+
(
µM(i),k∗

M(i)
−µM(i),k∗

M(j)

)
− η

2
− ϵR

2

)
≤P

(
µ̂i
k∗
M(j)
≥µM(i),k∗

M(j)
+η− η

2
− ϵR

2

)

≤e
−

4log

(
3K2

i
γ

)
( η

2
− ϵR

2 )
2

ϵ2r . (14)

Also, the probability that there exists an arm k′∈ [K]\k∗M(j) such that

µ̂i
k′−µM(i),k∗

M(i)
≥ϵr−

η

2
− ϵR

2
(15)

is less than

(K−1)·e−
4log

(
3K2

i
γ

)
(ϵr− ϵR

2
− η

2 )
2

ϵ2r .

The events in equations 14 and 15 are independent; hence, we can multiply their corresponding probabilities to obtain the
upper bound on e2∩ē0 as follows:

=⇒ P (e2∩ē0)≤(M−1).N.(K−1)
R∑

r=1

e
−(

4log( 3Ki2

γ
)(ϵr− ϵR

2
− η

2
)2

ϵ2r
+

4log( 3Ki2

γ
)(η/2− ϵR

2
)2

ϵ2r
)

≤(M−1).N.K.

R∑
r=1

(
γ

3Ki2
)
4

(ϵr− ϵR
2

− η
2
)2+(η/2− ϵR

2
)2

ϵ2r
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ϵR=η/17 Hence,

≤(M−1)·N ·K ·
R∑

r=1

( γ

3Ki2

) (2ϵr− 18η
17

)2+( 16η
17 )

2

ϵ2r

≤(M−1)·N ·K ·
R∑

r=1

( γ

3Ki2

)
≤(M−1)·N ·K ·

( γ

K

)
Proposition 10.9. From Proposition 1, 2, and 3, the total probability of error until clustering is bounded by:

P(eclustering)=P(e0∪e1∪e2)=P(e0∪(e1∩ē0)∪(e2∩ē0))

≤N ·K
(
2
√
2· γ

0.75

K0.75
+

γ

K

)
+Nγ+(M−1)·N ·γ

≤6NKγ0.75≤ δ

2

Proposition 10.10. From Theorem 10.5 and the union bound, the probability of error in the second phase is bounded by:

P (esecond phase)≤M ·
(

δ

2M

)
=

δ

2
(16)

From proposition 10.9 and 10.10 we can get to the statement of theorem 4.3.

10.4. Proof of Theorem 2

Assuming our algorithm doesn’t enter the error event e0, using equation 3 of Theorem 10.5, for the first phase, we can bound
the sample complexity for any arm i∈ [K] of any agent by:

≤

⌈
log2

1
max(∆i,η)

⌉∑
r=1

8·log
(

4nr2

γ

)
2−2r

≲max(∆i,η)
−2

(
logn+log

1

γ
+loglog(max(∆i,η)

−1)

)
≤max(∆i,η)

−2
(
logK+logδ+logN+loglog(max(∆i,η)

−1)
)

Hence, we can bound the total sample complexity in the first phase as:

T1≲
∑
j∈[N ]

K∑
i=1

max{∆M(j),i,η}−2 ·
(
logK+loglog

(
max{∆M(j),i,η}−1

)
+logN+log

(
1

δ

))

Similarly, we can bound the total number of pulls in the second phase as:

T2≤
∑
j∈[C]

K∑
i=2

∆−2
M(j),i ·

(
logK+loglog

(
1

∆M(j),i

)
+logM+log

(
1

δ

))

10.5. proof of Theorem 5.2

Proposition 10.11. With probability at least 1−2δ/3, at the end of first phase we will correctly detect

• The best arm for all the agents not in set A
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• The best arm for all the M bandits

Proof.

Claim 6. Assuming each agent is assigned to one of the bandit randomly with equal probability, then the number of agents
picked in first phase is less than or equal to log( 3.M

δ )

log( M
M−1 )

with probability at least 1−δ/3.

Proof. The probability by which an agent gets picked from a given bandit will be 1/M . Hence, the probability that after

picking log( 3.M
δ )

log( M
M−1 )

agents, no agent gets picked learning bandit m, is (1− 1
M )

log( 3.M
δ

)

log( M
M−1

) . Putting union bound for all M bandits

we arrive at eqn. 17.

P(|[N ]\A|>
log( 3.Mδ )

log( M
M−1 )

)≤M.(1− 1

M
)

log( 3.M
δ

)

log( M
M−1

) (17)

P(|[N ]\A|>
log( 3.Mδ )

log( M
M−1 )

)≤δ/3 (18)

If successive elimination doesn’t enter an error event, then it is clear that the statements of this proposition will be true. Hence,
we bound the probability of successive elimination entering an error event for any agent in the first phase.

From the union bound,P(e)≤ (Number of agents picked in the first round) · (Probability of error for each agent). Hence,

P (e)≤
∑

i∈[N ]\A

p(SE giving error for one agent)

≤
∑

i∈[N ]\A

δ ·log
(

M
M−1

)
3log

(
3·M
δ

)
≤|[N ]\A|·

δ ·log
(

M
M−1

)
3log

(
3·M
δ

) +P

|[N ]\A|>
log
(
3·M
δ

)
log
(

M
M−1

)
·1

≤
log
(
3·M
δ

)
log
(

M
M−1

) · δ ·log
(

M
M−1

)
3log

(
3·M
δ

) +
δ

3

≤ δ

3
+
δ

3
≤ 2δ

3

From above equations and theorem 10.5 we can come directly to the first two statements of the theorem,

Proposition 10.12. In the second phase, with probability 1− δ
3 , we will correctly detect the best arm for all the agents

remaining in the set A.

Proof. Using the union bound, the probability of error is≤N · δ
3N ≤

δ
3 . Hence, from theorem 10.5, we will detect the best

arm with probability at least 1− δ
3 .

From propositions 10.11 and 10.12, the total probability of error for the BAI−Cl algorithm is less than δ.
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10.6. Proof of theorem 5.3

Proposition 10.13. From equation 3, we can say that with probability at least 1− 2δ
3 , the total number of pulls for the

algorithm in the first phase will be less than:

T1≲
M∑

m=1

n∑
i=2

∆−2
m,i ·

(
logK+logγ+loglog∆−1

m,i

)
+M ·log

(
3M

δ

)
· M
max
m=1

(
n∑

i=2

max(η,∆m,i)
−2
(
logK+logγ+loglog

(
max(η,∆m,i)

−1
)))

,

γ=δ ·
log
(

M
M−1

)
log
(
3M
δ

) (19)

Proposition 10.14. Similarly with probability at least 1−δ/3 total Number of pulls for the algorithm in the second phase
will be less than:

≤N.(M.η−2(logM+logδ−1+logN+loglogη−1)) (20)

10.7. Proof of theorem 10.1

Proposition 10.15. Given an instance ν=([N ],[M ],[K],M,Π) satisfying assumptions 6.1 and 2.1 with parameters η and
η1, and given that |µ̄j−µM(j),k∗

M(j)
|≤ η1

4 ,∀j∈S from the first phase, the procedure ŜE identifies the best arm with at least
1−γ probability.

Proof. Denote â as our potential candidate for the best arm and a∗ as the true best arm for the current agent. µ̄â is the estimated
mean of arm â=a∗, which we calculated in the first phase. Therefore, after the kth round, an error can occur if:

â=a∗ and |µ̂â−µ̄â|≥
η1
4
, or â ̸=a∗ and |µ̂â−µ̄â|≤

η1
4
.

Hence:

P (e)≤
∞∑
k=1

P
[(
{|µ̂â−µ̄â|≥

η1
2
}∩{â=a∗}

)
∪
(
{|µ̂â−µ̄â|≤

η1
2
}∩{â ̸=a∗}

)]
If â=a∗, then |µ̄â−µâ|≤ η1

4 , otherwise |µ̄â−µâ|≥ 3η1

4 , hence:

P (e)≤
∞∑
k=1

P
[(
{|µ̂â−µâ|≥

η1
4
}∩{â=a∗}

)
∪
(
{|µ̂â−µâ|≥

η1
4
}∩{â ̸=a∗}

)]

Using Hoeffding’s inequality for 1-sub-Gaussian random variables, we have:

P (e)≤ 2γ

4

∞∑
k=1

k−2≤γ

Proposition 10.16. With probability at least 1−2δ/3, at the end of first phase we will correctly detect

• The best arm for all the agents not in set A

• The best arm for all the M bandits

Proof. Proof will be same as in 10.11 as we don’t change anything in BAI-Cl++ in first phase except calculating additional
estimates of the means of the best arms.
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Proposition 10.17. After the first phase, following will hold true.

P(|µ̄j−µj |≤η1/4,∀j∈S)≥1−δ/6

Proof. We will pull each arm is the set S at-least 32log(12M/δ)
η2
1

times. Hence using union bound over all the arms in the set
S(|S|=M) and Hoeffding’s inequality for 1-SubGaussian random variable we have,

P(|µ̄j−µj |≤η1/4,∀j∈S)≥1−δ/6

Proposition 10.18. In second phase, with probability 1−δ/6 we will correctly detect the best arm for all the agents remaining
in the set A

Proof. Using union bound probability of error is≤N. δ
6N ≤

δ
6 , Hence from theorem 10.5 we will detect the best arm with

probability at-least 1−δ/6.

From proposition 10.15 ,10.16, 10.17,10.18 total probability of error for the BAI−Cl++ algorithm is less than δ.

10.8. Proof of Theorem 10.2

Proposition 10.19. In phase k, the probability that the SE(S,δk,R= log(1/η)+1) subroutine returns the true best arm
is at least 1−δk.

Proof. Since the minimum arm gap is at least η, under the good event—which occurs with probability at least 1−δk—the
algorithm returns the best arm while taking at most log(1/η)+1 rounds.

Proposition 10.20. Given an instance ν=([N ],[M ],[K],M,Π) satisfying Assumptions 6.1 and 2.1 with parameters η and
η1, and given that

|µ̄j−µM(j),k∗
M(j)
|≤ η1

4
, ∀j∈S,

from the first phase, the procedure ŜE will take at most

O
(
M ·η−2(logM+loglogη−1)+η−2

1 logγ
)

pulls.

Proof. Using eqn. 3 we bound the number of pulls in phase k by:

O

|S|· log
(

|S|logη−1

2−k

)
η2

+O

(
log(4k2/γ)

η21

)
.

Denote Ek as the event that the algorithm has not terminated in stage k. If the algorithm has not terminated in stage k, then
it is not the case that âk=a∗ and |µ̂a−µa

S |<η1/2.

By a union bound, the probability that these two events do not occur is at most

1−δk−
2γ

4k2
≤1−

(
δk+

2γ

4

)
≤ 1

2
.

Finally, we obtain:

E
ν,ŜE

[T ]≤
∞∑
k=1

P(Ek−1)·
{
32

η2
log

(
4k2

γ

)
+E

ν,ŜEδk
[T ]

}
, (21)

Eν,Alg[T ]≲
∞∑
k=1

21−k ·

32

η2
log

(
4k2

γ

)
+M ·

log
(

M logη−1

2−k

)
η2

, (22)

Eν,Alg[T ]≲M ·η−2(logM+loglogη−1)+η−2
1 logγ−1. (23)
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Proposition 10.21. No. of pulls in the first phase of the BAI-Cl++ Algorithm will be less than

T1≲
M∑

m=1

K∑
i=1

∆−2
m,i(logK+logγ+loglog∆−1

m,i)+M.log(
3.M

δ
). max
m∈[M ]

{ K∑
i=1

max(η,∆m,i)
−2(logK+logγ

+loglogmax(η,∆m,i)
−1)
}
+M

(
log(δ−1)+log(M)

η21

)
, where γ=δ.

log( M
M−1 )

log( 3.Mδ )

Proof. In the first phase of BAI-Cl++ we only require an additional M ·
(

log(δ−1)+log(M)
η2
1

)
pulls compared to BAI-Cl,

Hence from eqn. 19 we can conclude the proposition.

Proposition 10.22. The number of pulls in the second phase of the BAI-Cl++ algorithm will be at most

T2≲N ·M ·η−2(logM+loglogη−1)+N ·η−2
1 (logδ−1+logN). (24)

Proof. From Proposition 10.20 and setting γ=δ/6N , we directly obtain the given claim.

Adding the number of pulls from Propositions 10.21 and 10.22 completes our proof.

10.9. Proof of Theorem 7.1

We start with the first bound. Consider an alternate instance ν′∈I which is identical to ν, except that for some m∈ [M ] and
k>M , the mean reward for arm k in bandit m is changed to µ+2η. Note that the set of best arms under ν and ν′ are distinct;
in particular, they are [M ] and ([M ]\{m})∪{k} respectively. Hence, any feasible algorithm should be able to reliably infer if
the underlying instance is ν or ν′. Then from (30, Lemma 1) based on a ‘change of measure’ technique, we have the following
lower bound on the expected number of total pulls of arm k by agents learning bandit m under instance ν:

E[T ν
m,k(A)]≥

log(1/2.4δ)

D(µ,µ+2η)
=

log(1/2.4δ)

4η2

where D(a,b) denotes the Kullback-Leibler divergence between two Gaussian distributions with means a and b respectively,
and is equal to (a−b)2. Summing over all possible alternate best arms k and bandits m, we get the first lower bound

E[T ν
δ (A)]≥M ·(K−M)· log(1/4δ)

4η2
. (25)

We now demonstrate the second lower bound in the expression of the theorem. Again, consider the instance ν∈I as defined
before. Here, for each agent i, we lower bound the total number of samples required from that agent to reliably infer which
of the M bandits it is learning. Assume that agent i is learning bandit m (with best arm m) under the instance ν; and consider
an alternate instance ν′ where it is mapped to a different bandit m′ (which by definition has a different best arm m′). Note that
under either mapping, the mean rewards of all the arms remains the same except arms m and m′ for which the mean reward
is switched from µ+η to µ and vice-versa. Clearly, any feasible algorithm should be able to reliably distinguish between
the original and alternate problem instances.

Again, using (30, Lemma 1), we have the following lower bound on the expected number of pulls of arms m and m′ by agent
i under instance ν:

E[T ν
i,m(A)+T ν

i,m′(A)]≥
log(1/2.4δ)

D(µ,µ+η)
=

log(1/2.4δ)

η2

which also serves as a lower bound on the expected number of pulls by agent i. Since each agent is independently mapped
to a bandit, the total number of pulls across all agents has to satisfy the following lower bound:

E[T ν
δ (A)]≥N · log(1/2.4δ)

η2
. (26)

Combining (25) and (26) completes the proof.
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10.10. Instance Dependent Lower Bound

We can write the following bound on the total expected no. of pulls for any δ−PAC algorithm for any instance ν satisfying
assumption 1.

E[T ν ]≥max

∑
m∈M

∑
k∈Sm,η

log(1/2.4δ)

D(µM(i),k,µM(j),k)
,
∑
i∈[N ]

min
k∈[K]

max
j∈{j|M(j)̸=M(i)}

log(1/2.4δ)

D(µM(i),k,µM(j),k)


Similar to the proof in theorem 7.1, we will show two lower bounds one for each sub-task, first we show lower bound on
identifying for each agent the index of bandit problem that it is learning. Consider an instance ν=([N ],[M ],[K],M,Π) in
the set of feasible instances(satisfying assumption 1). Now, assume agent i is learning bandit m in the instance ν; consider
an alternate instance where it gets mapped to bandit m′ ̸=m, any correct algorithm should be able to distinguish that for
all m′ ̸=m. using (? )Lemma 1]kaufmann2016complexity, we can write eq. 27∑

k∈[K]

E[T ν
i,k].D(µM(i),k,µM(j),k)≥ log(1/2.4δ)

∀j∈{j|M(j) ̸=M(i)} (27)

We can further modify eq.27 to bound total no. of pulls for an agent i as in the following eqn.

E[T ν
i ]≥ min

k∈[K]
max

j∈{j|M(j)̸=M(i)}

log(1/2.4δ)

D(µM(i),k,µM(j),k)

hence, total no. of pulls for a problem instance can be bounded as follows.

E[T ν ]≥
∑
i∈[N ]

E[T ν
i ] (28)

Next, we show a lower bound on the no. of pulls for identifying the best arm of each bandit. Consider the instance
ν=([N ],[M ],[K],M,Π) with clustering parameter equal to η. now for a bandit m consider the set of arms Sm,η which are
at-least η worse than the best arm in all the other bandits i.e

Sm,η={k|µm′,k≤µm′,k∗
m′−η,∀m

′∈ [M ]\m}

We can bound the no. of pulls for a bandit m by change of measure technique, as we for all m in [M ] for all arm k in Sm,η

we can consider an alternate instance ν′ where we alter the mean of kth arm to µm,k∗
m
+ϵ where ϵ can be arbitrarily small.

The instance ν′ will be an alternate instance as it has different arm for bandit m and it will satisfy the assumption 6.1. Hence,
the expected no. of pulls for an arm k of a bandit m is bounded by,

E[T ν
m,k].D(µM(i),k,µM(j),k)≥ log(1/2.4δ),∀m∈ [M ]∀k∈Sm,η

Further, total no. of pulls can be bounded by,

E[T ν ]≥
∑
m∈M

∑
k∈Sm,η

log(1/2.4δ)

D(µM(i),k,µM(j),k)
(29)

10.11. Additional numerical results

10.11.1. YELP DATASET

We perform experiments using the Yelp6 dataset, which contains ratings for various businesses given by users across different
states of the US. We considerM=4 states with the highest number of ratings as our bandits, namely Louisiana, Tennessee, Mis-
souri, and Indiana. We identify K=211 businesses which are present in all the selected states, and these constitute the bandit

6https://www.yelp.com/dataset
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(a) (b)

(c)

Figure 2. (a) Performance with varying number of agents N for Yelp dataset
(b)(c) Communication cost with varying number of agents N for datasets 2, 3

arms. For each bandit and arm pair (state-business pair), we assign its expected reward to be the average review score the corre-
sponding business got from users in that state. We assume all reward distributions to be 1-Gaussian with the appropriate means.

We find that each of the 4 bandits (states) has a distinct best arm (business with highest average rating). For example, the
highest rated business in Louisiana is ‘Painting with a Twist’, while it is ‘Nothing Bundt Cakes’ in Indiana. In fact, the dataset
satisfies Assumptions 2.1 and 6.1 with clustering parameters η=0.375 and η1=0.166 respectively.

As before, we assume that there are N agents divided into M clusters, each of size N/M , and mapped to one of the M bandits.
The goal of the learner is to identify the best arm (highest rated business) for each agent.

Figure 2(a) plots the average sample complexity for the various schemes as we vary N . Our results demonstrate that
clustering-based methods, especially BAI-Cl++, significantly reduce the sample complexity compared to the naive scheme.
BAI-Cl also achieves competitive performance but is less efficient than BAI-Cl++. Also, we see that both the naive scheme
and Cl-BAI have poor performance. Again, this is consistent with Remark 4.5 since the clustering parameter η and the
individual bandit arm reward gaps are close in this case.

10.11.2. COMMUNICATION COST

We will assume a cost of cb=1 unit for communicating each bit, and cr=32cb=32 units for communicating a real number.

Figure 2(b)(c) plots the the overall communication cost of the various algorithms for datasets 2 and 3 (synthetically generated,
as described in Section 8), while varying the number of agents N . We can see that the communication cost of Cl-BAI
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is lower than that of BAI-Cl, which is itself a little smaller than for BAI-Cl++. Note that this order is opposite of that
observed for sample complexity, thus indicating a trade-off between the two quantities. This behaviour is also consistent
with our observations in Remarks 4.6 and 5.5.
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