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Abstract

High-throughput materials discovery workflows require rapid and accurate relax-
ation of crystal structures to identify thermodynamically stable phases among
thousands to millions of candidate structures. Yet current machine learning inter-
atomic potential (MLIP) benchmarks focus predominantly on energy prediction
rather than structure relaxation, creating a critical evaluation gap for models de-
signed to accelerate optimization. Additionally, these benchmarks are trained on
datasets consisting mainly of known stable or near-stable materials, thus failing
to capture the challenges of unexplored chemical spaces. We address these lim-
itations by introducing a benchmark that evaluates state-of-the-art MLIPs and a
one-shot relaxation model on structure relaxation with crystals generated via a rein-
forcement learning pipeline. We compare energy lowering and average maximum
force computed via DFT, as well as relaxation runtime. We also contrast direct
force-prediction strategies against conservative energy-differentiation approaches
to determine which paradigm delivers superior relaxation performance. Our results
indicate that there is a clear disconnect between MLIP energy prediction and force
convergence in relaxation, challenging current benchmarking approaches.

1 Introduction

The discovery of new materials with desired properties presents an important challenge in modern
materials science, with applications including energy storage, catalysis, and electronics. Central
to these discovery pipelines is structure relaxation: the process of optimizing atomic positions
and structural parameters to energetically stable configurations. For crystalline materials, property
predictions are sensitive to their underlying structure, and having crystals in a stable, relaxed state
is crucial [13]. High-throughput screening of materials routinely involves relaxation of thousands
to millions of candidate structures, making the efficiency and accuracy of structure optimization a
critical bottleneck in materials discovery pipelines. Crystal structure relaxation is generally performed
with density functional theory (DFT), which provides a first-principles estimate of the energy and
forces of a system. However, DFT’s computational cost scales cubically with the system size[6],
making it difficult to massively screen the vast chemical space in short time. This trade-off between
accuracy and throughput has long restricted the acceleration of materials discovery with computers.

Machine learning interatomic potentials (MLIPs) have emerged as a promising solution to this
computational bottleneck, offering the potential to achieve near-DFT accuracy at a fraction of the
computational cost. MLIPs involve the mapping of atomic structures to the potential energy and
forces, primarily via supervised learning architectures[S]]. Recent advances in graph neural networks,
equivariant architectures, and transformer-based models have demonstrated impressive performance
on energy and force prediction tasks across diverse materials systems. MatBench Discovery [[15]
represents the most extensive benchmarking effort to date for assessing MLIPs in the prediction of
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thermodynamic stability through energy and force-based metrics. However, because the benchmark
centers on classification tasks, such as convex hull distance estimation and regression errors, it does
not systematically evaluate MLIPs on the actual structure relaxation process of inorganic crystals
based on energy minimization. Consequently, rigorous comparative evaluation of MLIP-driven
geometry relaxations in inorganic systems remains limited. Further, the established benchmarks rely
on datasets derived from already-known stable or near-stable materials, such as the Materials Project
(MPTraj) derivatives used in WBM|16]], creating an artificial selection bias toward well-explored
chemical spaces. It is therefore unclear if MLIPs can generalize to unknown chemical systems.

To address this gap, we evaluate the performance of state-of-the-art MLIPs on crystal structures
generated through a reinforcement learning (RL) pipeline using CrystalGym[10]: CrystalGym is an
open-source RL environment for crystal generation based on the Gymnasium framework for training
policies with reward signals obtained directly from DFT. We evaluate 6 diverse architectures from
MatBench Discovery including universal graph neural network potentials (M3GNet[3l], CHGNet[4],
MACE]J2]), transformer-based approaches (EquiformerV2[12], eSEN-30M[8]]), and direct structure
prediction methods (DeepRelax[17]]) on crystal structures obtained from trained CrystalGym RL
policies. For evaluation, we compare the average formation energy difference and maximum atomic
force obtained using DFT simulations. We also compare the differences in formation energies relative
to the structure relaxed entirely with DFT. In practice, our energy-based analyses offer a more reliable
measure of relaxation accuracy than metrics such as RMSD, which only quantify structural deviations
from the reference state. The dataset of RL-generated crystals and their DFT-relaxed states will be
released upon publication.

2 Background

2.1 MLIP Architectures

CHGNet[4] is a graph-based MLIP that integrates site-specific magnetic moments (as proxies for
charge information) into its pretrained universal potential to capture both atomic positions and
electronic orbital occupancy. MACE[2] enhances expressivity and efficiency using higher-body
equivariant message passing, drastically reducing the number of layers needed while maintaining
fast, accurate interatomic force predictions. M3GNet is a materials graph neural network that
incorporates explicit three-body interactions, atomic coordinates, and full lattice tensors, enabling
accurate tensorial predictions (forces and stresses) across the periodic table via auto-differentiation.
Additionally, we include an iteration-free structure relaxation approach, DeepRelax, which is not
an MLIP. DeepRelax is a generative model capable of directly predicting relaxed crystal structures
without iterative energy minimization. Using a periodicity-aware equivariant GNN, it achieves 100-
fold speed improvements over iterative models while maintaining competitive accuracy. CHGNet,
MACE, and M3GNet have been trained on ~ 1.3M structures from the MPTraj dataset, and are
conservative models: atomic forces are obtained by differentiating the system energy. DeepRelax, in
contrast, is trained on the X-MN-O dataset[11] derived from the MP database. EquiformerV2[12]
presents a significant advancement in equivariant transformers, using eSCN convolutions to scale
to higher degree representations along with attention re-normalization, separable S? activation,
and separable layer normalization. Another key feature in our study is the utilization of direct
force prediction compared to conservative force prediction. eSEN[8] is a message-passing neural
network that processes atomic structures through alternating edgewise and node-wise operations,
with atoms embedded as multi-channel spherical harmonic representations, maintaining continuous
representations throughout the network and significantly improving energy conservation.

2.2 Current Benchmarking Challenges

Evaluating ML models for materials applications presents unique challenges. Bartel et al.[1] demon-
strated that accurate formation energy prediction does not necessarily translate to reliable stability
predictions. In our work, we intend to evaluate whether the models optimized for accurate energy pre-
dictions can perform well in structural relaxation, particularly with new chemical systems. Together,
we address a broader theme: that the utility of ML models in materials discovery depends not only
on the energy estimation but also on their ability to capture the overall energy landscapes. Current
MLIP benchmarks predominantly focus on energy-centric metrics, typically evaluating performance
by comparing predicted energies to DFT reference calculations[7]. MatBench Discovery evaluates
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relaxation performance using RMSD between predicted and DFT-relaxed structures, but it does not
validate these results against energies computed with DFT.

3 Methods

3.1 Experimental Setup and Dataset

We evaluate crystal structure relaxation performance across six state-of-the-art ML models. Five
models (CHGNet, MACE, M3GNet, eSEN, and EquiformerV?2 trained on the MPTraj dataset) utilize
the Atomic Simulation Environment (ASE) library for structure optimization, while DeepRelax
employs a direct structure prediction approach without iterative optimization. For ASE-based models,
we maintained consistent use of the FIRE optimizer to ensure fair comparison. For DFT calculations,
we use Quantum Espresso v7.3 [9], an open-source software suite for atomic simulations. We
generated crystals by performing rollouts using different RL policies trained on the CrystalGym
environment[[10]. The original set of tasks of CrystalGym was to train policies to design crystal
compositions on known crystal structures (from Materials Project) and optimize properties such
as bulk modulus, band gap, and density. As structure optimization is not included as part of the
original CrystalGym pipeline, the generated crystals are not relaxed. By choosing structures with
unique compositions, we obtain around 1000 crystals. Further background is provided in Appendix [A]
The distribution of formation energies of these crystals is shown in the Appendix [3] The presence
of crystals with positive formation energies indicates that many of them are thermodynamically
unfavorable.

3.2 Evaluation

We assess model performance using three complementary metrics that capture different aspects of
relaxation quality and computational efficiency.

Formation energy reduction measures the difference in DFT-computed formation energies between
initial and model-relaxed structures. This metric evaluates whether models successfully identify
energetically favorable relaxation trajectories, with larger reductions indicating superior thermody-
namic optimization performance. Additionally, we include the formation energy difference between
relaxed structures from DFT and the MLIPs (Figure [Ib)) to highlight cases where MLIPs achieve
better formation energy lowering than DFT.

Maximum atomic force represents the largest force magnitude across all atoms in the relaxed
structure. This metric directly quantifies structural equilibrium quality, as well-relaxed crystals should
exhibit near-zero atomic forces. Lower maximum forces indicate superior convergence to local
energy minima.

Optimization runtime measures the computational time required for structure relaxation, providing
essential insights into model efficiency for high-throughput materials discovery applications. This
metric is particularly crucial for evaluating the practical deployment potential of different ML
approaches as DFT proxies.

4 Results and Discussion

Our comprehensive evaluation reveals distinct performance profiles with clear trade-offs between
computational efficiency and relaxation quality across three key metrics.

Formation Energy Reduction: While all models except for DeepRelax outperform DFT in formation
energy reduction (Figure[Ib), CHGNet and EquiformerV2 demonstrate superior thermodynamic
optimization, achieving the most significant formation energy improvements compared to DFT
(Figure|[Ta).

Force Convergence: eSEN and EquiformerV2 emerge as clear leaders, achieving force magnitudes
>0.100 eV/A, better than the next-best performer (M3GNet) and demonstrating superior ability to
locate well-converged local minima (Figure[Id). Despite achieving the best energy statistics, CHGNet

exhibits the second-worst force convergence, reinforcing that energy accuracy does not guarantee
effective structural relaxation.
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Figure 1: Evaluation of ML models for relaxation: (a) formation energy reduction achieved during
relaxation (1), (b) formation energy difference between MLIP and DFT relaxation (1), (¢) runtime of
relaxation ({), (d) maximum force magnitudes in relaxed structures ({).

Computational Efficiency: DeepRelax offers relaxation times orders of magnitude faster than
iterative approaches, but this speed comes at substantial accuracy costs in both formation energy
and force convergence (Figure[Ic). eSEN and EquiformerV2 provide superior accuracy but require
significantly longer computation times with numerous outliers.

Overall Assessment: While CHGNet achieves the best formation energy, its force convergence is
worse by a much larger margin compared to eSEN and eQV2. MACE emerges as an attractive middle
ground, offering reasonable relaxation quality with moderate computational requirements, making
it suitable for workflows requiring balanced throughput and accuracy, such as materials discovery
pre-screening steps.

5 Conclusion

This work presents the first systematic evaluation of state-of-the-art MLIPs for crystal structure
relaxation using unseen RL-generated materials, highlighting trade-offs between computational
efficiency and relaxation quality. Our analysis reveals a critical disconnect between energy accuracy
and relaxation performance: CHGNet achieves the best formation energy reduction but has the
second-worst force convergence. This challenges energy-centric benchmarking and shows that energy
prediction alone is insufficient for evaluating relaxation. Rather than identifying a single "best"
model, our multi-metric evaluation emphasizes balancing runtime, formation energy reduction, and
force convergence according to application needs. Future work should expand dataset size and model
diversity to more comprehensively assess MLIPs as DFT proxies across chemical systems.
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A CrystalGym Background

CrystalGym [10] is an open-source RL environment that allows training of online RL policies to
sequentially place atoms in a given crystal structure backbone, with the aim of designing crystals
to match a desired property value. The reward (obtained at the terminal state) is a distance function
of the property obtained from DFT with respect to the desired value. Several RL policies have
been trained in this environment with PPO, SAC, Rainbow, and DQN, optimizing for properties
such as band gap, density, and bulk modulus, and focusing on tasks of varying difficulty. For this
study, rollouts with different seeds were performed using the trained policies to generate a library of
~ 1000 crystals, which was used for evaluation and benchmarking. Around 60% of the RL-generated
compositions were novel—i.e., not found in the Materials Project.

B DEFT parameters

We performed DFT single-point SCF simulations using Quantum Espresso v7.1 [9]], which is fully
open-source. Solid-state pseudopotentials from SSSP version 1.3.0 [14] were used for the calculations.
The settings used are listed below.

1. calculation

* scf for single-point calculations
* vc-relax for relaxation

. nstep: 50 (for relaxation)
. ecutwfc: 50

. ecutrho: 400

. occupations: smearing
. degauss: 0.001

. nspin: 1

. electron_maxstep: 300

O 0 9 N L B WD

. mixing_mode: plain

—_
=

. mixing_beta: 0.7

—
—_—

. diagonalization: david

12. kpoints: Chosen automatically from Kpoint density.

B.1 Formation Energy Calculation

The formation energy per atom was calculated using the total energies of the crystals and their
constituent elements. The total energies of the isolated elements (88 in the action space) were
calculated by performing SCF calculations on the most stable elemental crystals (i.e., 0 formation
energy) present in the Materials Project. For elements that do not have a stable elemental crystal (e.g.
Lu) or those that have large number of atoms in the elemental crystal (e.g. P, Se), the total energies
were calculated for a single atom inside a primary cubic cell of length 10. For a crystal with [V atoms,
the formation energy (per atom) calculation is defined as follows.

Bt — >, X Bl
Eform = ( ot = 2 ni 7t t) (eV/atom) (D

N

Here, N; is the number of atoms of the constituent element ¢ present in the crystal, n; is the number
of atoms (sites) of ¢ in the elemental crystal, and E}, is the total energy of ¢ in the most stable
elemental crystal form.
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C Experimental Details

C.1 RL-Generated Crystals

The RL-generated crystals are generated in a dataset-independent manner using DFT-based reward
signals starting from existing structures. While they do not necessarily resemble materials in Materials
Project, some of the compositions (with unique structures) exist in the database.

C.2 Data Preprocessing and Filtering

Our evaluation dataset initially contained 1,005 crystal structures generated through reinforcement
learning using CrystalGym. However, computing DFT forces for model-relaxed structures revealed
that a subset of predicted structures failed DFT calculations across different models. To ensure robust
statistical comparison, we applied intersection filtering, retaining only structures that successfully
completed DFT force calculations for all evaluated models. This filtering process reduced our final
analysis set to 831 structures, ensuring consistent evaluation across all models and metrics.

C.3 Relaxation Parameters

For DeepRelax we used the default checkpoint and parameters on the model GitHub. For ASE-based
models, we maintained consistent optimization parameters to ensure fair comparison:

. optimizer: Fast Inertial Relaxation Engine (FIRE)

. cell filter: Unit Cell Filter

. max optimization steps: 500

. fmax: 0.01

A W N =

D Compute Resources

For all tasks we used an Nvidia Quadro RTX 8000 to ensure fair comparison of runtimes.

E Supplementary Results

E.1 Additional Plots



0.251 |Mean: 0.712 eV/atom
Std: 1.925 eV/atom

Density

2 4
Formation Energy (eV/atom)

Figure 2: Histogram of unrelaxed formation energies
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(b) Distribution of Formation Energy Differences between Unrelaxed and Relaxed Structures

Figure 3:
Formation energy reduction achieved during relaxation: (a) Percentage of successful positive to
negative formation energy changes across all structures, (b) distribution of formation energy
differences between unrelaxed and relaxed structures.
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