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Abstract

High-throughput materials discovery workflows require rapid and accurate relax-1

ation of crystal structures to identify thermodynamically stable phases among2

thousands to millions of candidate structures. Yet current machine learning inter-3

atomic potential (MLIP) benchmarks focus predominantly on energy prediction4

rather than structure relaxation, creating a critical evaluation gap for models de-5

signed to accelerate optimization. Additionally, these benchmarks are trained on6

datasets consisting mainly of known stable or near-stable materials, thus failing7

to capture the challenges of unexplored chemical spaces. We address these lim-8

itations by introducing a benchmark that evaluates state-of-the-art MLIPs and a9

one-shot relaxation model on structure relaxation with crystals generated via a rein-10

forcement learning pipeline. We compare energy lowering and average maximum11

force computed via DFT, as well as relaxation runtime. We also contrast direct12

force-prediction strategies against conservative energy-differentiation approaches13

to determine which paradigm delivers superior relaxation performance. Our results14

indicate that there is a clear disconnect between MLIP energy prediction and force15

convergence in relaxation, challenging current benchmarking approaches.16

1 Introduction17

The discovery of new materials with desired properties presents an important challenge in modern18

materials science, with applications including energy storage, catalysis, and electronics. Central19

to these discovery pipelines is structure relaxation: the process of optimizing atomic positions20

and structural parameters to energetically stable configurations. For crystalline materials, property21

predictions are sensitive to their underlying structure, and having crystals in a stable, relaxed state22

is crucial [13]. High-throughput screening of materials routinely involves relaxation of thousands23

to millions of candidate structures, making the efficiency and accuracy of structure optimization a24

critical bottleneck in materials discovery pipelines. Crystal structure relaxation is generally performed25

with density functional theory (DFT), which provides a first-principles estimate of the energy and26

forces of a system. However, DFT’s computational cost scales cubically with the system size[6],27

making it difficult to massively screen the vast chemical space in short time. This trade-off between28

accuracy and throughput has long restricted the acceleration of materials discovery with computers.29

Machine learning interatomic potentials (MLIPs) have emerged as a promising solution to this30

computational bottleneck, offering the potential to achieve near-DFT accuracy at a fraction of the31

computational cost. MLIPs involve the mapping of atomic structures to the potential energy and32

forces, primarily via supervised learning architectures[5]. Recent advances in graph neural networks,33

equivariant architectures, and transformer-based models have demonstrated impressive performance34

on energy and force prediction tasks across diverse materials systems. MatBench Discovery [15]35

represents the most extensive benchmarking effort to date for assessing MLIPs in the prediction of36
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thermodynamic stability through energy and force-based metrics. However, because the benchmark37

centers on classification tasks, such as convex hull distance estimation and regression errors, it does38

not systematically evaluate MLIPs on the actual structure relaxation process of inorganic crystals39

based on energy minimization. Consequently, rigorous comparative evaluation of MLIP-driven40

geometry relaxations in inorganic systems remains limited. Further, the established benchmarks rely41

on datasets derived from already-known stable or near-stable materials, such as the Materials Project42

(MPTraj) derivatives used in WBM[16], creating an artificial selection bias toward well-explored43

chemical spaces. It is therefore unclear if MLIPs can generalize to unknown chemical systems.44

To address this gap, we evaluate the performance of state-of-the-art MLIPs on crystal structures45

generated through a reinforcement learning (RL) pipeline using CrystalGym[10]: CrystalGym is an46

open-source RL environment for crystal generation based on the Gymnasium framework for training47

policies with reward signals obtained directly from DFT. We evaluate 6 diverse architectures from48

MatBench Discovery including universal graph neural network potentials (M3GNet[3], CHGNet[4],49

MACE[2]), transformer-based approaches (EquiformerV2[12], eSEN-30M[8]), and direct structure50

prediction methods (DeepRelax[17]) on crystal structures obtained from trained CrystalGym RL51

policies. For evaluation, we compare the average formation energy difference and maximum atomic52

force obtained using DFT simulations. We also compare the differences in formation energies relative53

to the structure relaxed entirely with DFT. In practice, our energy-based analyses offer a more reliable54

measure of relaxation accuracy than metrics such as RMSD, which only quantify structural deviations55

from the reference state. The dataset of RL-generated crystals and their DFT-relaxed states will be56

released upon publication.57

2 Background58

2.1 MLIP Architectures59

CHGNet[4] is a graph-based MLIP that integrates site-specific magnetic moments (as proxies for60

charge information) into its pretrained universal potential to capture both atomic positions and61

electronic orbital occupancy. MACE[2] enhances expressivity and efficiency using higher-body62

equivariant message passing, drastically reducing the number of layers needed while maintaining63

fast, accurate interatomic force predictions. M3GNet is a materials graph neural network that64

incorporates explicit three-body interactions, atomic coordinates, and full lattice tensors, enabling65

accurate tensorial predictions (forces and stresses) across the periodic table via auto-differentiation.66

Additionally, we include an iteration-free structure relaxation approach, DeepRelax, which is not67

an MLIP. DeepRelax is a generative model capable of directly predicting relaxed crystal structures68

without iterative energy minimization. Using a periodicity-aware equivariant GNN, it achieves 100-69

fold speed improvements over iterative models while maintaining competitive accuracy. CHGNet,70

MACE, and M3GNet have been trained on ∼ 1.3M structures from the MPTraj dataset, and are71

conservative models: atomic forces are obtained by differentiating the system energy. DeepRelax, in72

contrast, is trained on the X-MN-O dataset[11] derived from the MP database. EquiformerV2[12]73

presents a significant advancement in equivariant transformers, using eSCN convolutions to scale74

to higher degree representations along with attention re-normalization, separable S2 activation,75

and separable layer normalization. Another key feature in our study is the utilization of direct76

force prediction compared to conservative force prediction. eSEN[8] is a message-passing neural77

network that processes atomic structures through alternating edgewise and node-wise operations,78

with atoms embedded as multi-channel spherical harmonic representations, maintaining continuous79

representations throughout the network and significantly improving energy conservation.80

2.2 Current Benchmarking Challenges81

Evaluating ML models for materials applications presents unique challenges. Bartel et al.[1] demon-82

strated that accurate formation energy prediction does not necessarily translate to reliable stability83

predictions. In our work, we intend to evaluate whether the models optimized for accurate energy pre-84

dictions can perform well in structural relaxation, particularly with new chemical systems. Together,85

we address a broader theme: that the utility of ML models in materials discovery depends not only86

on the energy estimation but also on their ability to capture the overall energy landscapes. Current87

MLIP benchmarks predominantly focus on energy-centric metrics, typically evaluating performance88

by comparing predicted energies to DFT reference calculations[7]. MatBench Discovery evaluates89
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relaxation performance using RMSD between predicted and DFT-relaxed structures, but it does not90

validate these results against energies computed with DFT.91

3 Methods92

3.1 Experimental Setup and Dataset93

We evaluate crystal structure relaxation performance across six state-of-the-art ML models. Five94

models (CHGNet, MACE, M3GNet, eSEN, and EquiformerV2 trained on the MPTraj dataset) utilize95

the Atomic Simulation Environment (ASE) library for structure optimization, while DeepRelax96

employs a direct structure prediction approach without iterative optimization. For ASE-based models,97

we maintained consistent use of the FIRE optimizer to ensure fair comparison. For DFT calculations,98

we use Quantum Espresso v7.3 [9], an open-source software suite for atomic simulations. We99

generated crystals by performing rollouts using different RL policies trained on the CrystalGym100

environment[10]. The original set of tasks of CrystalGym was to train policies to design crystal101

compositions on known crystal structures (from Materials Project) and optimize properties such102

as bulk modulus, band gap, and density. As structure optimization is not included as part of the103

original CrystalGym pipeline, the generated crystals are not relaxed. By choosing structures with104

unique compositions, we obtain around 1000 crystals. Further background is provided in Appendix A.105

The distribution of formation energies of these crystals is shown in the Appendix 3. The presence106

of crystals with positive formation energies indicates that many of them are thermodynamically107

unfavorable.108

3.2 Evaluation109

We assess model performance using three complementary metrics that capture different aspects of110

relaxation quality and computational efficiency.111

Formation energy reduction measures the difference in DFT-computed formation energies between112

initial and model-relaxed structures. This metric evaluates whether models successfully identify113

energetically favorable relaxation trajectories, with larger reductions indicating superior thermody-114

namic optimization performance. Additionally, we include the formation energy difference between115

relaxed structures from DFT and the MLIPs (Figure 1b) to highlight cases where MLIPs achieve116

better formation energy lowering than DFT.117

Maximum atomic force represents the largest force magnitude across all atoms in the relaxed118

structure. This metric directly quantifies structural equilibrium quality, as well-relaxed crystals should119

exhibit near-zero atomic forces. Lower maximum forces indicate superior convergence to local120

energy minima.121

Optimization runtime measures the computational time required for structure relaxation, providing122

essential insights into model efficiency for high-throughput materials discovery applications. This123

metric is particularly crucial for evaluating the practical deployment potential of different ML124

approaches as DFT proxies.125

4 Results and Discussion126

Our comprehensive evaluation reveals distinct performance profiles with clear trade-offs between127

computational efficiency and relaxation quality across three key metrics.128

Formation Energy Reduction: While all models except for DeepRelax outperform DFT in formation129

energy reduction (Figure 1b), CHGNet and EquiformerV2 demonstrate superior thermodynamic130

optimization, achieving the most significant formation energy improvements compared to DFT131

(Figure 1a).132

Force Convergence: eSEN and EquiformerV2 emerge as clear leaders, achieving force magnitudes133

>0.100 eV/Å, better than the next-best performer (M3GNet) and demonstrating superior ability to134

locate well-converged local minima (Figure 1d). Despite achieving the best energy statistics, CHGNet135

exhibits the second-worst force convergence, reinforcing that energy accuracy does not guarantee136

effective structural relaxation.137
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(a) Eform differences between unrelaxed and relaxed
structures (↑)

(b) Eform difference w.r.t DFT relaxation (↑)

(c) Runtime Comparison (↓) (d) Force Convergence (↓)

Figure 1: Evaluation of ML models for relaxation: (a) formation energy reduction achieved during
relaxation (↑), (b) formation energy difference between MLIP and DFT relaxation (↑), (c) runtime of
relaxation (↓), (d) maximum force magnitudes in relaxed structures (↓).

Computational Efficiency: DeepRelax offers relaxation times orders of magnitude faster than138

iterative approaches, but this speed comes at substantial accuracy costs in both formation energy139

and force convergence (Figure 1c). eSEN and EquiformerV2 provide superior accuracy but require140

significantly longer computation times with numerous outliers.141

Overall Assessment: While CHGNet achieves the best formation energy, its force convergence is142

worse by a much larger margin compared to eSEN and eQV2. MACE emerges as an attractive middle143

ground, offering reasonable relaxation quality with moderate computational requirements, making144

it suitable for workflows requiring balanced throughput and accuracy, such as materials discovery145

pre-screening steps.146

5 Conclusion147

This work presents the first systematic evaluation of state-of-the-art MLIPs for crystal structure148

relaxation using unseen RL-generated materials, highlighting trade-offs between computational149

efficiency and relaxation quality. Our analysis reveals a critical disconnect between energy accuracy150

and relaxation performance: CHGNet achieves the best formation energy reduction but has the151

second-worst force convergence. This challenges energy-centric benchmarking and shows that energy152

prediction alone is insufficient for evaluating relaxation. Rather than identifying a single "best"153

model, our multi-metric evaluation emphasizes balancing runtime, formation energy reduction, and154

force convergence according to application needs. Future work should expand dataset size and model155

diversity to more comprehensively assess MLIPs as DFT proxies across chemical systems.156
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A CrystalGym Background207

CrystalGym [10] is an open-source RL environment that allows training of online RL policies to208

sequentially place atoms in a given crystal structure backbone, with the aim of designing crystals209

to match a desired property value. The reward (obtained at the terminal state) is a distance function210

of the property obtained from DFT with respect to the desired value. Several RL policies have211

been trained in this environment with PPO, SAC, Rainbow, and DQN, optimizing for properties212

such as band gap, density, and bulk modulus, and focusing on tasks of varying difficulty. For this213

study, rollouts with different seeds were performed using the trained policies to generate a library of214

∼ 1000 crystals, which was used for evaluation and benchmarking. Around 60% of the RL-generated215

compositions were novel—i.e., not found in the Materials Project.216

B DFT parameters217

We performed DFT single-point SCF simulations using Quantum Espresso v7.1 [9], which is fully218

open-source. Solid-state pseudopotentials from SSSP version 1.3.0 [14] were used for the calculations.219

The settings used are listed below.220

1. calculation221

• scf for single-point calculations222

• vc-relax for relaxation223

2. nstep: 50 (for relaxation)224

3. ecutwfc: 50225

4. ecutrho: 400226

5. occupations: smearing227

6. degauss: 0.001228

7. nspin: 1229

8. electron_maxstep: 300230

9. mixing_mode: plain231

10. mixing_beta: 0.7232

11. diagonalization: david233

12. kpoints: Chosen automatically from Kpoint density.234

B.1 Formation Energy Calculation235

The formation energy per atom was calculated using the total energies of the crystals and their236

constituent elements. The total energies of the isolated elements (88 in the action space) were237

calculated by performing SCF calculations on the most stable elemental crystals (i.e., 0 formation238

energy) present in the Materials Project. For elements that do not have a stable elemental crystal (e.g.239

Lu) or those that have large number of atoms in the elemental crystal (e.g. P, Se), the total energies240

were calculated for a single atom inside a primary cubic cell of length 10. For a crystal with N atoms,241

the formation energy (per atom) calculation is defined as follows.242

Eform =

(
Etot −

∑
i
Ni

ni
Ei

tot

N

)
(eV/atom) (1)

Here, Ni is the number of atoms of the constituent element i present in the crystal, ni is the number243

of atoms (sites) of i in the elemental crystal, and Ei
tot is the total energy of i in the most stable244

elemental crystal form.245
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C Experimental Details246

C.1 RL-Generated Crystals247

The RL-generated crystals are generated in a dataset-independent manner using DFT-based reward248

signals starting from existing structures. While they do not necessarily resemble materials in Materials249

Project, some of the compositions (with unique structures) exist in the database.250

C.2 Data Preprocessing and Filtering251

Our evaluation dataset initially contained 1,005 crystal structures generated through reinforcement252

learning using CrystalGym. However, computing DFT forces for model-relaxed structures revealed253

that a subset of predicted structures failed DFT calculations across different models. To ensure robust254

statistical comparison, we applied intersection filtering, retaining only structures that successfully255

completed DFT force calculations for all evaluated models. This filtering process reduced our final256

analysis set to 831 structures, ensuring consistent evaluation across all models and metrics.257

C.3 Relaxation Parameters258

For DeepRelax we used the default checkpoint and parameters on the model GitHub. For ASE-based259

models, we maintained consistent optimization parameters to ensure fair comparison:260

1. optimizer: Fast Inertial Relaxation Engine (FIRE)261

2. cell filter: Unit Cell Filter262

3. max optimization steps: 500263

4. fmax: 0.01264

D Compute Resources265

For all tasks we used an Nvidia Quadro RTX 8000 to ensure fair comparison of runtimes.266

E Supplementary Results267

E.1 Additional Plots268
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Figure 2: Histogram of unrelaxed formation energies

(a) Percentage of structures with positive-to-negative energy transitions

CHGNet MACE M3GNet DeepRelax eSEN eqV2
28.8% 22.2% 24.0% 13.9% 25.1% 27.7%

(b) Distribution of Formation Energy Differences between Unrelaxed and Relaxed Structures

Figure 3:
Formation energy reduction achieved during relaxation: (a) Percentage of successful positive to

negative formation energy changes across all structures, (b) distribution of formation energy
differences between unrelaxed and relaxed structures.
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Figure 4: Runtime Box Plot

Figure 5: Force Convergence Box Plot
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