
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADVANCING SPATIOTEMPORAL REPRESENTATIONS IN
SPIKING NEURAL NETWORKS VIA PARAMETRIC IN-
VERTIBLE TRANSFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) are regarded as energy-efficient neural archi-
tectures due to their event-driven, spike-based computation paradigm. However,
existing SNNs suffer from two fundamental limitations: (1) the constrained rep-
resentational space imposed by binary spike firing mechanisms, which restricts
the network’s capacity to encode complex spatiotemporal patterns, and (2) the
ineffective design of surrogate gradient functions that leads to gradient mismatch
issues and suboptimal learning dynamics. To address these challenges, we propose
the Parametric Invertible Transformation (PIT), which operates in a conjugate
manner with neuronal dynamics to achieve adaptive modulation and augmented
spike representations simultaneously. Second, we design an auxiliary gradient
correction term to mitigate the gradient mismatch issue and oscillation phenomena
during training. Moreover, we introduce a theoretical framework for analyzing
the spatiotemporal representation space of SNNs. Extensive experiments on both
static and neuromorphic datasets demonstrate state-of-the-art performance with
our proposed method. This approach lays the theoretical foundation for expand-
ing the spatiotemporal representations of SNNs, offering a viable pathway for
developing low-latency and high-performance neuromorphic processing systems
in resource-constrained environments.

1 INTRODUCTION

Spiking Neural Networks (SNNs) are designed to emulate the neural dynamics of biological systems
by utilizing asynchronous spikes for communication (Maass, 1997; Roy et al., 2019). In contrast to
Artificial Neural Networks (ANNs), which rely on continuous activations, SNNs operate with binary
spikes, providing huge potential for more efficient computations by transforming dense Multiply-
And-Accumulate (MAC) operations into sparse Accumulate (AC) operations. Combined with the
event-driven computation paradigm, where computations are triggered only upon the receipt of spikes,
these characteristics offer inherent sparsity and low energy consumption, making them promising
and appealing for scenarios necessitating real-time and energy-constrained processing (Merolla et al.,
2014; Davies et al., 2018; Pei et al., 2019; Roy et al., 2019).

Despite these advantages, SNNs face two fundamental challenges that limit their practical effective-
ness. First, SNNs suffer from constrained representational capacity due to their low-precision binary
spike representation. This inherently leads to varying degrees of information loss and performance
degradation in complex classification tasks (Deng & Gu, 2021; Guo et al., 2024). To address this
issue, prior works have explored advanced spiking neuron models with complex dynamics (Fang et al.,
2021b; Yin et al., 2021; 2023; Chen et al., 2024; Hao et al., 2024), normalization techniques (Kim
& Panda, 2021; Zheng et al., 2021; Duan et al., 2022), multi-bit spike representations (Guo et al.,
2024; Xing et al., 2024; Guo et al., 2022c), attention mechanisms (Yao et al., 2021; 2023b), and
modern architectures including ResNet (Fang et al., 2021a; Hu et al., 2024) and spike-driven trans-
formers (Zhou et al., 2023; Yao et al., 2023a; 2024; Zhou et al., 2024; Yao et al., 2025). Nevertheless,
these approaches have not adequately addressed the inherent limitations of the representational space
of SNNs, particularly when dealing with data streams characterized by high dynamic variations and
complex distributions. Second, existing surrogate gradient methods tailored for binary spikes (Wu
et al., 2018; Rathi & Roy, 2021; Li et al., 2021) and integer spike neurons (Luo et al., 2024; Yao

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Input Currents

Reorganizing Potential via

Parametric Invertible

Transformation

Potential Updating

Multi-bit Firing

Augmenting Spikes via

Parametric Invertible

Transformation

Hidden Dimension

Temporal Dimension

Post layer

Round functionClipped quantization rangeReorganized potential distributionOriginal potential distribution

Potential Distribution Shifting

(Hard to quantize)

Reorganized Potential

Distribution

(Easy to quantize)

Clipping and Firing

(Minimizing information loss)

Multi-bit Outputs

(Spike-driven inference)

Augmented Output Spikes

(Real values across

spatiotemporal dimensions)

Augmented real-valued outputs

Potential distribution

Multi-bit firing using the round function

Output spikes histogram

Reorganized potential distribution via PIT

Augmented output spikes via PIT

Figure 1: The overall workflow of our proposed method. By incorporating a parametric invertible
transformation (PIT) into neuronal dynamics in a conjugate manner, spiking neurons could adaptively
reorganize the potential distribution before firing and emit real-valued outputs across spatial and
temporal dimensions. It is worth noting that the SNN integrated with PIT could preserve the spike-
based inference and event-driven computation paradigm through the reparameterization technique.

et al., 2025) exhibit limited adaptability and often introduce gradient mismatch issues and oscillation
phenomena during backpropagation (Yin et al., 2019; Spallanzani et al., 2022; Wu et al., 2023b; Nagel
et al., 2022).These two limitations collectively underscore the critical need for developing novel
approaches that can simultaneously enhance the representational capacity of SNNs while enabling
stable and efficient training.

In this study, we focus on enhancing the representational capabilities of SNNs by integrating the
parametric invertible transformation (PIT) into neuronal dynamics. As shown in Figure 1, our
proposed PIT operates in a conjugate manner before and after the firing operation of spiking neurons,
improving spatiotemporal representations while preserving the event-driven and spike-based inference
computation paradigm through the reparameterization technique (see Appendix A). To further
address the non-differentiable spike firing operation, we propose an auxiliary gradient correction
term designed to mitigate the gradient mismatch issue and oscillation phenomena, facilitating
rapid convergence and improved generalization. Additionally, we establish a theoretical framework
to analyze and measure the spatiotemporal representational capacity of SNNs. Comprehensive
experiments on static and neuromorphic visual datasets, including CIFAR10 (Krizhevsky et al., 2009),
CIFAR100 (Krizhevsky et al., 2009), DVS-Gesture (Amir et al., 2017), CIFAR10-DVS (Li et al.,
2017), and ImageNet-1k (Deng et al., 2009), validate the superiority and effectiveness of our method.
Our contributions can be summarized as follows:

• We introduce PIT, a parametric invertible transformation, to enhance the spatiotemporal
representations of SNNs in a conjugate manner. PIT employs an input-distribution-aware
parameterization strategy to dynamically expand representations while preserving spike-
driven inference via the reparameterization technique. Besides, we design a rectified
surrogate gradient term for improved gradient flow, enabling fast and stable convergence.

• We provide a theoretical framework to analyze and measure the spatiotemporal represen-
tation capacity of SNNs. Based on our theoretical framework, we demonstrate that the
representation capacity of SNNs exhibits a logarithmic relationship with both the firing bit
numbers and total time steps.

• Extensive experiments on both static and neuromorphic datasets demonstrate the state-of-
the-art performance achieved by our method across various architectures. Notably, when
incorporating our method into SEW ResNet-34, it surpasses the baseline model with the
same architecture after training for only one epoch and ultimately improves performance by
5.62% on the ImageNet dataset.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Training Methods for SNNs. Current SNN training methods can be broadly categorized into
two strategies: (1) ANN-to-SNN conversion, which establishes mathematical mappings between
ReLU activation layers and spiking neuron layers, and (2) direct training, which employs the
Backpropagation Through Time (BPTT) algorithm. Direct training allows SNNs to operate with an
extremely small time window by employing BPTT alongside surrogate gradient (SG) functions to
approximate the non-differentiable firing operation (Wu et al., 2018; Neftci et al., 2019; Zenke &
Vogels, 2021; Lee et al., 2020). Instabilities during deep SNN training have been mitigated using
normalization techniques (Kim & Panda, 2021; Zheng et al., 2021; Duan et al., 2022; Guo et al.,
2023b), regularization terms to maximize output entropy (Guo et al., 2022a), membrane potential
rearrangement (Guo et al., 2023a; 2022b), and temporal efficient gradient re-weighting (Deng et al.,
2022). For integer spike forms of SNNs, prior works (Luo et al., 2024; Yao et al., 2025) directly utilize
the clipped rectangular surrogate gradient function to achieve direct training. However, this approach
may result in oscillation phenomena that hinder the network from converging to a solution with
good generalizability (Yin et al., 2019; Spallanzani et al., 2022; Wu et al., 2023b; Nagel et al., 2022).
Nevertheless, most existing methods are tailored to binary spike forms of SNNs, while effective and
stable training methods for SNNs with integer spike forms remain underexplored. This gap motivates
us to design corresponding parameterization techniques and surrogate gradients to enable effective
and stable training, particularly in deep networks.

Enhancing Spike Representations for SNNs. At the neuron level, previous works have introduced
learnable parameters into spiking neuron models, including learnable membrane decay factors (Bellec
et al., 2018; Fang et al., 2021b; Yao et al., 2022) and learnable threshold leak factors (Yin et al.,
2021; 2023; Rathi & Roy, 2021). Additionally, bio-inspired approaches have incorporated multi-
compartment structures to enhance neuronal dynamics for sequential modeling (Zhang et al., 2024;
Chen et al., 2024; Hao et al., 2024) and time-series forecasting (Shibo et al., 2025). From the
perspective of spike coding strategies, previous studies based on temporal coding (Yu et al., 2021;
2022) utilize augmented spikes to carry complementary information with spike coefficients in
addition to spike latencies. Recent works based on rate coding expand binary spike trains into ternary
spikes (Guo et al., 2024; Xing et al., 2024) or real-valued spikes (Guo et al., 2022c), while ensuring
multiplication-free inference through the reparameterization technique. At the network structure
level, recent works propose to enhance SNN architectures by redesigning the standard ResNet
backbone (Fang et al., 2021a; Hu et al., 2024), and developing spike-driven transformers (Zhou
et al., 2023; Yao et al., 2023a; 2024; Zhou et al., 2024; Yao et al., 2025). However, previous studies
have shown limited improvements in spatiotemporal representational space and capacity of SNNs,
as evidenced by our theoretical analysis in Section 3.5. These limitations inspire us to design a
differentiable spatiotemporal transformation applied to the neuronal dynamics of SNNs to enhance
their representations. Our proposed method leverages an input-distribution-aware and spatiotemporal-
decoupled parametric strategy to overcome the limitations of binary representations in SNNs, while
preserving the advantages of their event-driven and spike-based inference paradigm.

3 METHODOLOGY

3.1 PRELIMINARIES

Spiking Neuron. The Leaky Integrate-and-Fire (LIF) spiking neuron serves as the most popular
fundamental building block of SNNs due to its low computational complexity (Maass, 1997). For
implementation, the LIF neuron with soft reset is typically described in a discrete iterative format as
follows:

ul
t = λvl

t−1 +W lsl−1
t , (1)

slt = H
(
ul
t − ϑth

)
, (2)

vl
t = ul

t − ϑths
l
t, (3)

where ul
t and slt denote the membrane potential and output spike of LIF neurons in layer l at time

step t, respectively. λ is the decay factor of the membrane potential, and W l represent the linear
synaptic weights corresponding to layer l. H(·) is the Heaviside step function, defined as H(x) = 1
for x ≥ 0 and H(x) = 0 for x < 0. When the membrane potential ul

t exceeds its firing threshold
ϑth, the neuron will fire a spike to its post neurons and reset its membrane potential by subtracting
ϑths

l
t.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 ANALYZING INFORMATION PROPAGATION FROM A TRANSFORMATION PERSPECTIVE

While the binary spike-based processing paradigm of SNNs provides computational efficiency, it
induces performance degradation compared to full-precision counterparts. A critical bottleneck lies
in the firing operation, which converts the full-precision membrane potential into binary spike trains
that serve as information carriers propagating to the post-neurons. For notational simplicity, we
omit layer superscripts in the following analysis. The information loss during the transformation of
the full-precision membrane potential u into the binary spike form s through the firing operation is
expressed as:

L =

∫ T

t=1

d (s (t) ,u (t)) dt =

∫ T

t=1

d (g (u (t)) ,u (t)) dt, (4)

where g (·) denotes the firing operation of spiking neurons, and T signifies the total time steps.
d(·, ·) represents a distance function used to measure the distance between two elements. Based on
information theory, d(·, ·) can be interpreted as the mutual information function or the Kullback-
Leibler (KL) divergence. In Euclidean space, d(·, ·) can alternatively be represented by the Frobenius
norm.

Previous studies have focused on introducing learnable parameters (Fang et al., 2021b; Yao et al.,
2022; Yin et al., 2021; 2023) and multi-compartment structures (Zhang et al., 2024; Chen et al., 2024;
Hao et al., 2024; Shibo et al., 2025) to enhance the neuronal dynamics before the firing operation.
These approaches can be regarded as adding functions with varying complexities before the firing
operation. However, the reduction in information loss achieved by these methods is inherently limited,
as they do not fundamentally expand the output space and capacity of SNNs (see our theoretical
analysis in Section 3.5).

In this paper, we introduce a time-varying invertible transformation applied to neuronal dynamics in
a conjugate manner, both before and after the firing operation. Mathematically, the corresponding
output spikes of SNNs are augmented as:

s (t) = ft ◦ g ◦ f−1
t (u (t)) , (5)

where ft represents our introduced invertible transformation at time step t, and ◦ represents the
composition operator for functions. The corresponding information loss caused by the firing operation
is formulated as: ∫ T

t=1

d
(
ft ◦ g ◦ f−1

t (u (t)) ,u (t)
)
dt. (6)

Generally, the benefits of this design are twofold: (1) It provides additional flexibility to reduce firing
errors by improving the neuronal dynamics before firing and expanding the spike representations
after firing simultaneously. (2) This conjugate manner ensures variance consistency between the
inputs and outputs, which is critical for stable information propagation in deep networks (He et al.,
2015). Next, we will elaborate on how to parameterize the invertible transformation to expand the
representational space of SNNs in a computationally efficient and input-distribution-aware manner.

3.3 INCORPORATING THE PARAMETRIC INVERTIBLE TRANSFORMATION INTO SNNS

In this section, we will elaborate on how to integrate our parametric invertible transformation (PIT)
into SNNs. For the lth layer in the SNN, our introduced parametric invertible transformation f l

t can
be expressed in a matrix form as:

f l
t

(
ul
t

)
= Al

tu
l
t, (7)

where Al
t ∈ RN×N represents the transformation matrix in layer l at time step t, and ul

t ∈ RB×N

denotes the membrane potential of spiking neurons. B and N signify the batch size and hidden
dimensions, respectively.

To reduce the information loss incurred by the inherent binary spikes of the LIF neuron model, we
adopt the Integer Leaky Integrate-and-Fire (I-LIF) neuron (Luo et al., 2024), which allows emitting
integer values during the training stage and maintains its spike-driven propagation during the inference
stage through the reparameterization technique. Specifically, the firing dynamics of the I-LIF neuron
can be rendered as:

slt = clip
(
⌊ul

t⌉, 0, D
)
, (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Quantization interval lineMembrane potential distribution Firing threshold (binary spikes) or truncation line (multi-bit spikes)

(a) (b) (c)

Membrane potential Membrane potential Membrane potential

Figure 2: The comparison of different strategies for the membrane potential quantization. (a) The
firing operation for the binary spiking neuron model. (b) The min-max quantization method for the
multi-bit spiking neuron model. (c) Our quantization strategy is based on the 3-sigma rule of the
normal distribution.

where ⌊·⌉ denotes the rounding operator. clip (x, 0, D) confines the input x within range [0, D]. And
D is a hyperparameter indicating the maximum integer value emitted by the I-LIF neuron.

As illustrated in Eq. (5), our proposed PIT is applied in a conjugate manner both before and after
the firing operation. Collectively, incorporating our PIT into the I-LIF neuron yields the following
neuronal dynamics in discrete form:

ul
t = λvl

t−1 +W lsl−1
t , (9)

slt = Al
tclip

(
⌊
(
Al

t

)−1
ul
t⌉, 0, D

)
, (10)

vl
t = ul

t − slt. (11)
Eqs. (9), (10), and (11) correspond to the charging, firing, and resetting processes of the spiking
neuron, respectively.

The next crucial question is how to parameterize our introduced PIT, i.e., the transformation matrix Al
t

in Eq. (10), to expand the spatiotemporal representations of SNNs. For the parameterization strategy
of the transformation matrix Al

t, several aspects need to be considered: (1) The parameterization
should be efficient in terms of both memory and computation. (2) It could dynamically adapt to the
complex spatiotemporal distribution of the input data streams.

To address the first point, we design Al
t in a diagonal form, enabling efficient computation while

introducing a negligible amount of additional parameters. Specifically, Al
t = diag

(
al
t

)
, where

al
t ∈ RN and N denotes the hidden dimension. In this way, the computation involved in the firing

operation in Eq. (10) is simplified to element-wise production and division, which also facilitates
preserving the event-driven and spike-based computational paradigm during the inference stage, as
detailed in Appendix A. Further discussion about the structure of Al

t is also provided in Appendix F.

To tackle the second point, we propose an input-distribution-aware initialization strategy for Al
t based

on the statistical distribution of the input data, instead of directly applying the min-max method (Xiao
et al., 2023; Shao et al., 2024), which is heavily influenced by large outliers of inputs. As shown
in Figure 2, the min-max strategy suffers from two major drawbacks: (1) It leads to an unstable
quantization range, thereby slowing down the convergence of the model. (2) It wastes a significant
portion of invaluable quantization levels, resulting in larger quantization errors, especially in ultra-
low-bit scenarios, i.e., D is small. Our approach mitigates these issues by designing a channel-wise
initialization method based on the statistical distribution of the input tensor. Specifically, we initialize
al
t based on the 3-sigma rule of the normal distribution as:

al
t = max (|µ

(
ul
t

)
− 3σ

(
ul
t

)
|, |µ

(
ul
t

)
+ 3σ

(
ul
t

)
|)/

√
D, (12)

where µ and σ are calculated based on the mean and standard deviation of the membrane potential ul
t

under the first batch of training data. After initialization, al
t are updated according to BPTT (refer to

Appendix B for the detailed learning rules).

3.4 RECTIFYING SURROGATE GRADIENTS DURING BACKPROPAGATION

The non-differentiable nature of the round function in Eq. (10) poses challenges for training SNNs
using the BPTT algorithm. Previous studies have explored various surrogate gradient functions (Wu

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

et al., 2018; Rathi & Roy, 2021; Li et al., 2021) to approximate derivatives during backpropagation for
binary spikes. For integer spike forms, Luo et al. (Luo et al., 2024) employed a rectangular surrogate
gradient function to train SNNs by retaining gradients for neurons activated within the [0, D] range,
masking all others. This approach resembles the straight-through estimator (STE) (Rosenblatt, 1957;
Bengio et al., 2013), where the identity function is used as a proxy for the derivative of the rounding
function. However, previous studies (Yin et al., 2019; Spallanzani et al., 2022; Wu et al., 2023b;
Nagel et al., 2022) have demonstrated that directly using STE can lead to gradient mismatches,
resulting in oscillation phenomena that hinder the network from converging to a local minimum with
strong generalization ability.

Motivated by this, we rectify the gradient based on the distance between the input and the decision
boundary of the rounding function. Specifically, the derivative of the rounding function with respect
to the input is calculated in the following form:

∂⌊x⌉
∂x

= 1 + λ (0.5− sign (dis(x)) dis(x)) , (13)

where dis(x) = x− ⌊x⌋ − 0.5 denotes the distance between the input x and the decision boundary
of the round function. ⌊·⌋ and sign(·) represent the ceiling function and sign function, respectively.
Noting that the value of the distance variable falls within the range [−0.5, 0.5]. Specifically, the
design of Eq. (13) can be deemed as adding an ℓ2 penalty on ∥0.5− sign(dis(x)) · dis(x)∥22. This
regularization encourages the input to move away from the decision boundary, thereby mitigating
oscillations of the output values between adjacent quantized states. As a result, the statistics of
the rounding function’s outputs are stabilized, reducing oscillation during training and facilitating
convergence to a solution with stronger generalizability.

Collectively, by employing the BPTT algorithm along with our rectified surrogate gradient function,
all learnable parameters of the model, including the introduced transformation matrix Al

t in Eq. (10),
can be effectively optimized (detailed learning rules for learnable parameters are provided in the
Appendix B).

3.5 ANALYSIS OF SPATIOTEMPORAL REPRESENTATION SPACE OF SNNS

This section aims to analyze the spatiotemporal representation space of SNNs from a theoretical
perspective. We first provide the mathematical definition of the representation space and capacity
based on linear algebra, followed by a thorough comparison of the SNN embedded with the PIT and
prior works.

Definition 1. Given s = {s1, s2, · · · , sN}, which refers to N linearly independent elements, the
corresponding representation space (denoted as Span) generated by it can be expressed as follows:

Span {s} = Span {s1, s2, · · · , sN} =


N∑
j=1

kjsj | kj ∈ R

 , (14)

where kj represents the linear combination coefficients (in SNNs, these are typically the weights in
the linear layer or the convolution kernels in the convolutional layer).

Definition 2. Given Span {s} =
{∑N

j=1 kjsj | kj ∈ R
}

, which denotes the representation space
generated by s and k, the corresponding representation capacity (dubbed Cap) is evaluated as
follows:

Cap(Span {s}) = log

∣∣∣∣∣∣


N∑
j=1

kjsj | kj ∈ R, sj ∈ {0, 1, . . . , D}


∣∣∣∣∣∣ , (15)

where |·| denotes the cardinality of the set, i.e., the total number of distinct elements generated by
all possible combinations of s given k. In SNNs with multi-bit spiking neurons, D refers to the
quantization level of s, and N is the number of linearly independent elements in s.

Proposition 1. For a SNN with multi-bit spiking neurons emitting the output spike trains {st}Tt=1 =
{sij | sij ∈ {0, · · · , D} , ∀j ∈ {1, · · · , N} , i ∈ {1, · · · , T}}, where T , N , and D denote the total

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

time step, hidden dimension, and quantization level, respectively, its corresponding spatiotemporal
representation space and representation capacity have the following form:

Span {st}Tt=1 =


T∑

i=1

N∑
j=1

kjsij | kj ∈ R, sij ∈ {0, · · · , D}

 , (16)

Cap(Span {st}Tt=1) = log(T · (D + 1)N). (17)

Corollary 1. For a SNN with multi-bit spiking neurons, incorporating PIT generates the output spike
trains {Atst}Tt=1 = {aijsij | aij ∈ R, sij ∈ {0, · · · , D}}. The corresponding spatio-temporal
representation space and representation capacity of the SNN embedded with PIT can be described as:

Span {Atst}Tt=1 =


T∑

i=1

N∑
j=1

aijkjsij | aij ∈ R, kj ∈ R, sij ∈ {0, · · · , D}

 , (18)

Cap(Span {Atst}Tt=1) = log(T · (D + 1)N). (19)

Proposition 1 elucidates the logarithmic relationship between the representation capacity and the
quantization bit D as well as the total time step T . Specifically, as the quantization bit D increases,
the representation capacity grows at a sublinear rate, while the capacity scales linearly with the hidden
dimension N . Corollary 1 demonstrates that integrating additional parameters, i.e., {Ai}Ti=1 in our
proposed PIT, into the combination coefficients {kj}Nj=1 could increases the representation space of
the SNN by offering more degrees of freedom for temporal and spatial variations in output signals.
Detailed proofs of Proposition 1 and Corollary 1 are provided in Appendix C. Based on Proposition 1
and Corollary 1, Table 1 summarizes the comparative results of the spatiotemporal representation
space and capacity between previous works and our proposed method.

Table 1: Comparison of the representation space and capacity of the currently developed SNNs

Method Representation Space Representation Capacity

Vanilla Binary Spike
{∑T

i=1

∑N
j=1 kjsij | kj ∈ R, sij ∈ {0, 1}

}
log(T · 2N)

Ternary Spike (Guo et al., 2024)
{∑T

i=1

∑N
j=1 kjsij | kj ∈ R, sij ∈ {−1, 0, 1}

}
log(T · 3N)

Trainable Ternary Spike (Guo et al., 2024)
{∑T

i=1

∑N
j=1 akjsij | a ∈ R, kj ∈ R, sij ∈ {−1, 0, 1}

}
log(T · 3N)

Real Spike (Guo et al., 2022c)
{∑T

i=1

∑N
j=1 ajkjsij | aj ∈ R, kj ∈ R, sij ∈ {0, 1}

}
log(T · 2N)

Ours
{∑T

i=1

∑N
j=1 aijkjsij | aij ∈ R, kj ∈ R, sij ∈ {0, · · · , D}

}
log(T · (D + 1)N)

4 EXPERIMENTS

We conduct extensive experiments on CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky
et al., 2009), ImageNet-1k (Deng et al., 2009), CIFAR10-DVS (Li et al., 2017), and DVS-
Gesture (Amir et al., 2017) datasets to evaluate the performance of our proposed method across
various architectures. The Pytorch (Paszke et al., 2019) and SpikingJelly (Fang et al., 2023) frame-
works are utilized to implement SNN training in this paper. Detailed experimental setups are provided
in Appendix D.2.

4.1 COMPARISON WITH THE STATE-OF-THE-ART

Results on static image datasets. We assess the effectiveness of our method on static image datasets,
including CIFAR10 and CIFAR100, and ImageNet-1k. The results are summarized in Table 2. On the
CIFAR10 dataset, integrating our proposed PIT into the baseline model achieves remarkable accuracy
improvements compared to prior works, including maximizing the output information (IM-Loss (Guo
et al., 2022a)) and rectifying the membrane potential distribution (RecDis-SNN (Guo et al., 2022b)).
Furthermore, on the CIFAR100 dataset, with the introduction of PIT, the classification accuracy of
the ResNet19 model surpasses prior methods designed to enhance spike representations, including
Real Spike (Guo et al., 2022c) and Trainable Ternary Spike (Guo et al., 2024), by 14.99% and 1.39%,
respectively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison with SOTA methods on CIFAR10, CIFAR100 and ImageNet-1k. Our results
are reported as averages over three experimental runs with different random seeds. We reformulate
the time steps for all direct training methods as T ×D, where T represents the number of time steps
and D denotes the upper integer activation value of the firing function. In previous directing training
work of SNNs, D is set to 1 by default.

Dataset Method Type Architecture Params T ×D Accuracy
C

IF
A

R
10

TL (Wu et al., 2023a) Tandem learning CIFARNet 44.48M 8× 1 89.04%
PTL (Wu et al., 2022) Tandem learning VGG11 9.23M 16× 1 91.24%
PLIF (Fang et al., 2021b) SNN training PLIFNet 37.31M 8× 1 93.50%
DSR (Meng et al., 2022) SNN training ResNet18 11.18M 20× 1 95.40%
RecDis-SNN (Guo et al., 2022b) SNN training ResNet19 12.70M 2× 1 93.64%
IM-Loss (Guo et al., 2022a) SNN training ResNet19 12.70M 4× 1 95.40%

Diet-SNN (Rathi & Roy, 2021) SNN training ResNet20 11.25M 5× 1 91.78%
10× 1 92.54%

Dspike (Li et al., 2021) SNN training ResNet18 11.18M 2× 1 93.13%
4× 1 93.66%

STBP-tdBN (Zheng et al., 2021) SNN training ResNet19 12.70M 2× 1 92.34%
4× 1 92.92%

TET (Deng et al., 2022) SNN training ResNet19 12.70M 2× 1 94.16%
4× 1 94.44%

Trainable Ternary Spike (Guo et al., 2024) SNN training ResNet19 12.70M 1× 2 95.58%
2× 2 95.80%

Real Spike (Guo et al., 2022c) SNN training ResNet19 12.70M 2× 1 94.01%
4× 1 95.60%

PIT (Ours) SNN training
ResNet18 11.18M 1× 2 95.07%± 0.17

1× 4 95.86%± 0.12

ResNet19 12.70M 1× 2 96.31%± 0.08
1× 4 96.72%± 0.10

C
IF

A
R

10
0

QCFS (Bu et al., 2022) ANN2SNN ResNet20 11.25M 64× 1 70.49%
LTL (Yang et al., 2022) Tandem learning ResNet20 11.25M 31× 1 76.08%
Diet-SNN (Rathi & Roy, 2021) SNN training ResNet20 11.25M 5× 1 64.07%
RecDis-SNN (Guo et al., 2022b) SNN training ResNet19 12.70M 4× 1 74.10%
IM-Loss (Guo et al., 2022a) SNN training VGG16 14.72M 5× 1 70.18%

Dspike (Li et al., 2021) SNN training ResNet18 11.18M 2× 1 71.68%
4× 1 73.35%

TET (Deng et al., 2022) SNN training ResNet19 12.70M 2× 1 72.87%
4× 1 74.47%

Trainable Ternary Spike (Guo et al., 2024) SNN training ResNet19 12.70M 1× 2 78.45%
2× 2 80.20%

Real Spike (Guo et al., 2022c) SNN training ResNet20 12.70M 5× 1 66.60%
VGG16 14.72M 5× 1 70.62%

PIT (Ours) SNN training
ResNet18 11.18M 1× 2 76.88%± 0.12

1× 4 78.83%± 0.10

ResNet19 12.70M 1× 2 80.12%± 0.10
1× 4 81.59%± 0.09

Im
ag

eN
et

-1
k

STBP-tdBN (Zheng et al., 2021) SNN training ResNet34 21.79M 6× 1 63.72%
TET (Deng et al., 2022) SNN training ResNet34 21.79M 6× 1 64.79%
GLIF (Yao et al., 2022) SNN training ResNet34 21.79M 4× 1 67.52%
DSR (Meng et al., 2022) SNN training ResNet18 11.69M 50× 1 67.74%
TEBN (Duan et al., 2022) SNN training ResNet34 21.79M 4× 1 68.28%

MS-ResNet (Hu et al., 2024) SNN training ResNet18 11.69M 6× 1 63.10%
ResNet34 21.79M 6× 1 69.42%

Trainable Ternary Spike (Guo et al., 2024) SNN training ResNet18 11.69M 4× 2 67.68%
ResNet34 21.79M 4× 2 70.74%

Real Spike (Guo et al., 2022c) SNN training ResNet18 11.69M 4× 1 63.68%
ResNet34 21.79M 4× 1 67.69%

SEW ResNet (Fang et al., 2021a) SNN training

ResNet18 11.69M 4× 1 63.18%
ResNet34 21.79M 4× 1 67.04%
ResNet50 25.56M 4× 1 67.78%

ResNet101 44.55M 4× 1 68.76%
ResNet152 60.19M 4× 1 69.26%

Spike-Driven Transformer (Yao et al., 2023a) SNN training Spike-driven Transformer 16.81M 4× 1 72.28%
E-SpikeFormer (Yao et al., 2025) SNN training E-SpikeFormer-S 5.11M 1× 4 75.30%

PIT (Ours) SNN training

ResNet18 11.69M 1× 4 69.39%± 0.24
ResNet34 21.79M 1× 4 72.66%± 0.27

Spike-driven Transformer 16.81M 1× 4 73.45%± 0.26
E-SpikeFormer-S 5.11M 1× 4 76.00%± 0.22

On the more challenging ImageNet-1k dataset, we incorporate our proposed PIT into the standard
SEW ResNet (Fang et al., 2021a) architecture and compare it with state-of-the-art methods, including
BN-based approaches (STBP-tdBN (Zheng et al., 2021), TEBN (Duan et al., 2022)) and spike repre-
sentation enhancement methods (Real Spike (Guo et al., 2022c) and Trainable Ternary Spike (Guo
et al., 2024)). As reported in Table 2, by applying PIT to the SEW-ResNet18 and SEW-ResNet34
models, we achieve accuracy improvements of 6.21% and 5.62% over the baselines, respectively.
Notably, the SEW-ResNet34 integrated with PIT surpasses the classification accuracy of the 152-layer
SEW ResNet model, demonstrating the effectiveness and superiority of our method.

Results on neuromorphic datasets. Table 7 and Table 8 in Appendix E present the experimental
results on the CIFAR10-DVS and DVS-Gesture datasets, respectively. On the CIFAR10-DVS dataset,
when utilizing VGG11 under equivalent inference latency (T × D = 10), our method surpasses

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) (b) (c)

Figure 3: Comparison of (a) training loss, (b) training accuracy, and (c) test accuracy on ImageNet-1k.

previous approaches aimed at improving spike representation, including Real Spike (Guo et al.,
2022c) and Trainable Ternary Spike (Guo et al., 2024), in terms of accuracy by 5.92% and 3.90%,
respectively. Moreover, as the quantization level D increases, the model’s classification performance
can be further improved. Similar conclusions can be drawn from the comparison in Table 8 on the
DVS-Gesture dataset.

4.2 ANALYSIS OF OPTIMIZATION DYNAMICS

Visualization of learning curves. To investigate the optimization procedure during the training stage,
we plot the learning curves of our methods and their vanilla counterparts on ImageNet-1k in Figure 3.
It is evident that the introduction of PIT facilitates rapid model convergence and ultimately achieves
higher performance. Specifically, the SEW-ResNet34 integrated with PIT (red line) converges rapidly
and eventually achieves a superior accuracy level (72.66%), closely matching its ANN counterpart
(ResNet34 (He et al., 2016)), which achieves 73.31%.

Visualization of membrane potential distribution. We visualize the membrane potential distribution
after the last convolutional layer of VGG11 for vanilla LIF, I-LIF (Luo et al., 2024), and our PIT
on CIFAR10-DVS, as shown in Figure 4. The surface plot is smoothed using Gaussian filtering for
better visualization. We observe that vanilla LIF exhibits minimal discriminative ability for inputs at
different timesteps, showing uniform distributions along the temporal dimension. In contrast, both
I-LIF and our PIT demonstrate better temporal resolution. Notably, our PIT dynamically adjusts the
potential distribution for inputs at different timesteps, particularly at T = 3 and T = 4, highlighting
the ability of our method to better capture the temporal structure of the data stream.

(a) (b) (c)

Figure 4: Comparison of the membrane potential distribution after the last convolutional layer of
VGG11 for (a) vanilla LIF, (b) I-LIF, and (c) PIT on CIFAR10-DVS.

5 CONCLUSION

In this work, we introduced a parametric invertible transformation into neuronal dynamics to enhance
the spatiotemporal representations of SNNs. By further incorporating an input-distribution-aware
parametric strategy and a rectified surrogate gradient function into SNNs, we demonstrated state-of-
the-art performance across a broad range of tasks. Our theoretical analysis further provides insights
into the enhanced spatiotemporal representation and capacity of our approach, paving the way for
low-latency and high-accuracy neuromorphic computing systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

We acknowledge and adhere to the ICLR Code of Ethics in all aspects of this research. This paper
focuses on analyzing and expanding spatiotemporal representations of SNNs. In general, there are
no direct negative social impacts associated with this work. The SNNs studied in this paper are
dedicated to operating in an event-driven and spike-based computational paradigm, offering significant
potential for energy efficiency and contributing to the reduction of carbon dioxide emissions. The
method proposed in this work is applied to neuronal dynamics in a conjugate manner, enhancing the
SNNs’ spatiotemporal representations while preserving the advantages of the spike-driven inference
computational paradigm. This work provides a theoretical foundation for analyzing and improving
the spatiotemporal representation space and capacity of SNNs.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive documentation of all experi-
mental and theoretical components. The complete descriptions of datasets used in our experiments,
including detailed data processing steps and training configurations, are provided in Appendix D. The
learning rules for our PIT method during backpropagation are thoroughly explained in Appendix B.
Complete proofs for all theoretical claims and theorems presented in the main text can be found in
Appendix C.

REFERENCES

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan
Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low power, fully
event-based gesture recognition system. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7243–7252, 2017.

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
short-term memory and learning-to-learn in networks of spiking neurons. Advances in neural
information processing systems, 31, 2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Tong Bu, Wei Fang, Jianhao Ding, PENGLIN DAI, Zhaofei Yu, and Tiejun Huang. Optimal ANN-
SNN conversion for high-accuracy and ultra-low-latency spiking neural networks. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=7B3IJMM1k_M.

Xinyi Chen, Jibin Wu, Chenxiang Ma, Yinsong Yan, Yujie Wu, and Kay Chen Tan. Pmsn: A
parallel multi-compartment spiking neuron for multi-scale temporal processing. arXiv preprint
arXiv:2408.14917, 2024.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 113–123, 2019.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. In International Conference on Learning Representations, 2021.

10

https://openreview.net/forum?id=7B3IJMM1k_M
https://openreview.net/forum?id=7B3IJMM1k_M

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. In International Conference on Learning Representations,
2022.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Chaoteng Duan, Jianhao Ding, Shiyan Chen, Zhaofei Yu, and Tiejun Huang. Temporal effective batch
normalization in spiking neural networks. Advances in Neural Information Processing Systems,
35:34377–34390, 2022.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056–21069, 2021a.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2661–2671,
2021b.

Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadi1480, 2023.

Yufei Guo, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Yinglei Wang, Xuhui Huang, and Zhe Ma. Im-
loss: information maximization loss for spiking neural networks. Advances in Neural Information
Processing Systems, 35:156–166, 2022a.

Yufei Guo, Xinyi Tong, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Zhe Ma, and Xuhui Huang. Recdis-
snn: Rectifying membrane potential distribution for directly training spiking neural networks. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 326–335,
2022b.

Yufei Guo, Liwen Zhang, Yuanpei Chen, Xinyi Tong, Xiaode Liu, YingLei Wang, Xuhui Huang,
and Zhe Ma. Real spike: Learning real-valued spikes for spiking neural networks. In European
conference on computer vision, pp. 52–68. Springer, 2022c.

Yufei Guo, Xiaode Liu, Yuanpei Chen, Liwen Zhang, Weihang Peng, Yuhan Zhang, Xuhui Huang,
and Zhe Ma. Rmp-loss: Regularizing membrane potential distribution for spiking neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 17391–17401,
2023a.

Yufei Guo, Yuhan Zhang, Yuanpei Chen, Weihang Peng, Xiaode Liu, Liwen Zhang, Xuhui Huang,
and Zhe Ma. Membrane potential batch normalization for spiking neural networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 19420–19430, 2023b.

Yufei Guo, Yuanpei Chen, Xiaode Liu, Weihang Peng, Yuhan Zhang, Xuhui Huang, and Zhe Ma.
Ternary spike: Learning ternary spikes for spiking neural networks. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 12244–12252, 2024.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Zecheng Hao, Xinyu Shi, Yujia Liu, Zhaofei Yu, and Tiejun Huang. Lm-ht snn: Enhancing the
performance of snn to ann counterpart through learnable multi-hierarchical threshold model. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
international solid-state circuits conference digest of technical papers (ISSCC), pp. 10–14. IEEE,
2014.

Yifan Hu, Lei Deng, Yujie Wu, Man Yao, and Guoqi Li. Advancing spiking neural networks
toward deep residual learning. IEEE transactions on neural networks and learning systems, 36(2):
2353–2367, 2024.

Yulong Huang, Xiaopeng LIN, Hongwei Ren, Haotian FU, Yue Zhou, Zunchang LIU, biao pan,
and Bojun Cheng. CLIF: Complementary leaky integrate-and-fire neuron for spiking neural
networks. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=yY6N89IlHa.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency
deep spiking neural networks from scratch. Frontiers in neuroscience, 15:773954, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik Roy.
Enabling spike-based backpropagation for training deep neural network architectures. Frontiers in
neuroscience, 14:497482, 2020.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. In Neural Information Processing Systems, 2018.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differentiable
spike: Rethinking gradient-descent for training spiking neural networks. Advances in neural
information processing systems, 34:23426–23439, 2021.

Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-driven
inference spiking neural network for high-performance and energy-efficient object detection. In
European Conference on Computer Vision, pp. 253–272. Springer, 2024.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
high-performance low-latency spiking neural networks by differentiation on spike representation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 12444–12453, June 2022.

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science, 345
(6197):668–673, 2014.

Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort. Overcoming
oscillations in quantization-aware training. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
16318–16330. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/
nagel22a.html.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

12

https://openreview.net/forum?id=yY6N89IlHa
https://openreview.net/forum?id=yY6N89IlHa
https://proceedings.mlr.press/v162/nagel22a.html
https://proceedings.mlr.press/v162/nagel22a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
architecture. Nature, 572(7767):106–111, 2019.

Nitin Rathi and Kaushik Roy. Diet-snn: A low-latency spiking neural network with direct input
encoding and leakage and threshold optimization. IEEE Transactions on Neural Networks and
Learning Systems, 34(6):3174–3182, 2021.

Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para. Cornell
Aeronautical Laboratory, 1957.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

Darjan Salaj, Anand Subramoney, Ceca Kraisnikovic, Guillaume Bellec, Robert Legenstein, and
Wolfgang Maass. Spike frequency adaptation supports network computations on temporally
dispersed information. Elife, 10:e65459, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=8Wuvhh0LYW.

Feng Shibo, Wanjin Feng, Xingyu Gao, Peilin Zhao, and Zhiqi Shen. TS-LIF: A temporal segment
spiking neuron network for time series forecasting. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
rDe9yQQYKt.

Matteo Spallanzani, Gian Paolo Leonardi, and Luca Benini. Training quantised neural networks with
ste variants: the additive noise annealing algorithm. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 470–479, 2022.

Ziming Wang, Runhao Jiang, Shuang Lian, Rui Yan, and Huajin Tang. Adaptive smoothing gradient
learning for spiking neural networks. In International conference on machine learning, pp. 35798–
35816. PMLR, 2023.

Jibin Wu, Chenglin Xu, Xiao Han, Daquan Zhou, Malu Zhang, Haizhou Li, and Kay Chen Tan.
Progressive tandem learning for pattern recognition with deep spiking neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(11):7824–7840, 2022. doi: 10.
1109/TPAMI.2021.3114196.

Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan. A tandem learning
rule for effective training and rapid inference of deep spiking neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 34(1):446–460, 2023a. doi: 10.1109/TNNLS.2021.
3095724.

Xiao-Ming Wu, Dian Zheng, Zuhao Liu, and Wei-Shi Zheng. Estimator meets equilibrium perspective:
A rectified straight through estimator for binary neural networks training. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 17055–17064, 2023b.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

13

https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=rDe9yQQYKt
https://openreview.net/forum?id=rDe9yQQYKt

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Xingrun Xing, Zheng Zhang, Ziyi Ni, Shitao Xiao, Yiming Ju, Siqi Fan, Yequan Wang, Jiajun Zhang,
and Guoqi Li. Spikelm: Towards general spike-driven language modeling via elastic bi-spiking
mechanisms. In International Conference on Machine Learning, pp. 54698–54714. PMLR, 2024.

Qu Yang, Jibin Wu, Malu Zhang, Yansong Chua, Xinchao Wang, and Haizhou Li.
Training spiking neural networks with local tandem learning. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 12662–12676. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/523caec7832a47fb19b8471dbfeec471-Paper-Conference.pdf.

Man Yao, Huanhuan Gao, Guangshe Zhao, Dingheng Wang, Yihan Lin, Zhaoxu Yang, and Guoqi Li.
Temporal-wise attention spiking neural networks for event streams classification. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 10221–10230, 2021.

Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
transformer. Advances in neural information processing systems, 36:64043–64058, 2023a.

Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi Li.
Attention spiking neural networks. IEEE transactions on pattern analysis and machine intelligence,
45(8):9393–9410, 2023b.

Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, XU Bo, and Guoqi
Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design
of next-generation neuromorphic chips. In The Twelfth International Conference on Learning
Representations, 2024.

Man Yao, Xuerui Qiu, Tianxiang Hu, Jiakui Hu, Yuhong Chou, Keyu Tian, Jianxing Liao, Luzi-
wei Leng, Bo Xu, and Guoqi Li. Scaling spike-driven transformer with efficient spike firing
approximation training. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025.

Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. Glif: A unified gated leaky integrate-and-fire
neuron for spiking neural networks. Advances in Neural Information Processing Systems, 35:
32160–32171, 2022.

Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient time-domain classification
with adaptive spiking recurrent neural networks. Nature Machine Intelligence, 3(10):905–913,
2021.

Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate online training of dynamical spiking
neural networks through forward propagation through time. Nature Machine Intelligence, 5(5):
518–527, 2023.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley J. Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=Skh4jRcKQ.

Qiang Yu, Shiming Song, Chenxiang Ma, Linqiang Pan, and Kay Chen Tan. Synaptic learning
with augmented spikes. IEEE Transactions on Neural Networks and Learning Systems, 33(3):
1134–1146, 2021.

Qiang Yu, Jialu Gao, Jianguo Wei, Jing Li, Kay Chen Tan, and Tiejun Huang. Improving multispike
learning with plastic synaptic delays. IEEE Transactions on Neural Networks and Learning
Systems, 34(12):10254–10265, 2022.

Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning for
instilling complex function in spiking neural networks. Neural computation, 33(4):899–925, 2021.

14

https://proceedings.neurips.cc/paper_files/paper/2022/file/523caec7832a47fb19b8471dbfeec471-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/523caec7832a47fb19b8471dbfeec471-Paper-Conference.pdf
https://openreview.net/forum?id=Skh4jRcKQ
https://openreview.net/forum?id=Skh4jRcKQ

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Shimin Zhang, Qu Yang, Chenxiang Ma, Jibin Wu, Haizhou Li, and Kay Chen Tan. Tc-lif: A
two-compartment spiking neuron model for long-term sequential modelling. In Proceedings of the
AAAI conference on artificial intelligence, volume 38, pp. 16838–16847, 2024.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 11062–11070, 2021.

Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan, Zhengyu
Ma, Huihui Zhou, and Yonghong Tian. Qkformer: Hierarchical spiking transformer using qk
attention. Advances in Neural Information Processing Systems, 37:13074–13098, 2024.

Shanglin Zhou and Yuguo Yu. Synaptic ei balance underlies efficient neural coding. Frontiers in
neuroscience, 12:46, 2018.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, YAN Shuicheng, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendix

A IMPLEMENTATION OF SPIKE-DRIVEN INFERENCE

In this section, we illustrate the equivalence between real-valued training and binary spike-driven
inference using the reparameterization technique. This enables the SNN integrated with our PIT to
retain the advantages of spike-driven inference.

Reparameterization technique. Due to the introduction of our designed PIT, the output of spiking
neurons (as illustrated in Eq. (10)) takes a real-valued form. This results in the multiplication of
weights and activations in the SNN being converted into MAC operations instead of AC operations,
thereby losing the computational efficiency advantage of SNNs. To address this issue, we follow a
training-inference decoupled technique (Guo et al., 2022c; 2024), which converts the real-valued
outputs into binary spikes during the inference stage while maintaining computational efficiency
through weight folding.

The key insight is that the PIT matrix Al−1
t can be folded into the weight matrix of the next layer

through a reparameterization technique similar to that employed in Batch Normalization (Ioffe &
Szegedy, 2015). This folding operation enables the preservation of spike-driven computation while
accommodating the real-valued intermediate representations during training.

Here, we take a fully connected layer as an example to illustrate the reparameterization technique.
For a fully connected layer, the inputs from the preceding layer are multiplied by a weight matrix to
produce the output features, which can be expressed as follows:

Ol
t = W lsl−1

t , (20)

where Ol
t denotes the outputs of layer l at time step t, and W l represents the weight matrix associated

with layer l. For standard SNNs, the inputs sl−1
t consists of binary values. While in our model, the

inputs are augmented by our introduced PIT, thus possessing the real-valued form. Recall the firing
operation in Eq. (10), we have:

sl−1
t = Al−1

t clip
(
⌊
(
Al−1

t

)−1
ul−1
t ⌉, 0, D

)
= Al−1

t

D∑
d=1

ŝl−1
d , (21)

where ŝl−1
d denotes the output spikes generated by the vanilla Integrate-and-Fire neuron model

with Soft Reset (IF-SR) at time step d. Specifically, this involves feeding the IF-SR with the input(
Al−1

t

)−1
ul−1
t at the first time step, and subsequently subtracting 1 at each following time step until

D. This temporal dimension expanding strategy has also been validated by prior works (Luo et al.,
2024; Yao et al., 2025).

In this manner, the calculation process during inference of Eq. (20) can be illustrated as follows:

Ol
t = W lsl−1

t = W l

(
Al−1

t

D∑
d=1

ŝl−1
d

)
=
(
W lAl−1

t

) D∑
d=1

ŝl−1
d . (22)

By folding our PIT matrix, i.e., Al−1
t , into the original weight matrix (W l) of the SNN, the whole

model could maintain the spike-driven computational paradigm during the inference stage.

Layer-specific implementation details. The folding mechanism varies depending on the layer
architecture, and we provide specific implementations for the most commonly used layer types in
SNNs.

1. Fully connected layers: For a fully connected layer, the weight matrix of the l-th layer is W l ∈
RM×N , where N and M denote the input and output dimensions, respectively. Since Al−1

t ∈ RN×N ,
the product W lAl−1

t ∈ RM×N can be treated as a new weight matrix W̃ l ∈ RM×N , ensuring the
spike-based inference paradigm. Importantly, Al−1

t can be folded into the original weight matrix
regardless of whether it is diagonalized, providing flexibility in the PIT design.

2. Convolutional layers: For convolutional layers, assume that the convolution kernel of the l-th
layer is W l ∈ RCin×Kw×Kh×Cout , where Cin and Cout denote the input and output channels,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

respectively, and Kw and Kh represent the kernel width and height. In practice, Al−1
t is typically set

to a diagonal form for computational efficiency, i.e., Al−1
t = diag(al−1

t), where al−1
t ∈ RCin . To

fold the PIT matrix into the convolution kernel, the diagonal elements al−1
t are absorbed into the

channel dimension of W l via the Hadamard product:

W̃ l
i,:,:,j = al−1

t,i ·W l
i,:,:,j , ∀i ∈ {1, 2, . . . , Cin}, j ∈ {1, 2, . . . , Cout}, (23)

where W̃ l represents the folded weight matrix and al−1
t,i denotes the i-th element of al−1

t .

This reparameterization ensures that during inference, the network operates with binary spikes while
preserving the representational space enhanced by the PIT during training. The folded weights W̃ l

encapsulate both the original synaptic weights and the learned PIT parameters, enabling efficient
spike-driven computation without sacrificing the benefits of real-valued training.

B DETAILED DERIVATIONS OF LEARNING RULES DURING
BACKPROPAGATION

By utilizing the BPTT algorithm (Wu et al., 2018; Neftci et al., 2019; Zenke & Vogels, 2021; Lee
et al., 2020), the gradients of weight parameters in the SNN can be calculated as follows:

∂L
∂W l

=

T∑
t=1

∂L
∂slt

∂slt
∂ul

t

∂ul
t

∂W
=

T∑
t=1

∂L
∂slt

∂slt
∂ul

t

sl−1
t . (24)

Recall the neuronal dynamics of the spiking neuron model integrated with PIT, which can be described
in discrete form as follows:

ul
t = λvl

t−1 +W lsl−1
t , (25)

slt = Al
tclip

(
⌊
(
Al

t

)−1
ul
t⌉, 0, D

)
, (26)

vl
t = ul

t − slt. (27)

According to the firing operation illustrated in Eq. (26), we have:

∂slt

∂
((

Al
t

)−1
ul
t

) =
∂
(
Al

tclip
(
⌊
(
Al

t

)−1
ul
t⌉, 0, D

))
∂
((

Al
t

)−1
ul
t

)
= Al

t

∂⌊
(
Al

t

)−1
ul
t⌉

∂
((

Al
t

)−1
ul
t

) sign
(
0 ≤

(
Al

t

)−1
ul
t ≤ D

)
,

(28)

where sign(·) denotes the sign function. To overcome the non-differentiable nature of the round
function in Eq. (28), we calculate its derivative based on the distance between the input and the
decision boundary of the round function (as illustrated in Eq. (13)):

∂⌊
(
Al

t

)−1
ul
t⌉

∂
((

Al
t

)−1
ul
t

) = 1 + λ
(
0.5− sign

(
dis
((

Al
t

)−1
ul
t

))
dis
((

Al
t

)−1
ul
t

))
, (29)

where dis
((

Al
t

)−1
ul
t

)
=
(
Al

t

)−1
ul
t − ⌊

(
Al

t

)−1
ul
t⌋ − 0.5 that refers to the distance between the

input and the decision boundary of the round function. ⌊·⌋ represents the ceiling function. λ denotes
the hyperparameter that controls the strength of the auxiliary rectifying term, which is set to 0.01 in
our experiments. Noting that the value of the distance variable dis falls within the range [−0.5, 0.5].

Thus, combining Eqs. (28) and (29), we could deduce:

∂slt
∂ul

t

=
∂slt

∂
((

Al
t

)−1
ul
t

) ∂
((

Al
t

)−1
ul
t

)
∂ul

t

=
(
1 + λ

(
0.5− sign

(
dis
((

Al
t

)−1
ul
t

))
dis
((

Al
t

)−1
ul
t

)))
sign

(
0 ≤

(
Al

t

)−1
ul
t ≤ D

)
.

(30)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Regarding the gradient of learnable parameters (i.e., Al
t) involved in our introduced PIT, we could

calculate it according to the chain rule as follows:

∂L
∂Al

t

=
∂L
∂slt

∂slt
∂Al

t

, (31)

∂slt
∂Al

t

= clip
(
⌊
(
Al

t

)−1
ul
t⌉, 0, D

)
+Al

t

∂
(
clip

(
⌊
(
Al

t

)−1
ul
t⌉, 0, D

))
Al

t

= clip
(
⌊
(
Al

t

)−1
ul
t⌉, 0, D

)
−
((

Al
t

)−1
ul
t

)
sign

(
0 ≤

(
Al

t

)−1
ul
t ≤ D

)
.

(32)

Collectively, all learnable parameters in our model could be trained in an end-to-end manner by
utilizing the BPTT algorithm along with our designed surrogate gradient function.

C PROOF OF THEOREMS

Proposition 1. For a SNN with multi-bit spiking neurons emitting the output spike trains {st}Tt=1 =
{sij | sij ∈ {0, · · · , D} , ∀j ∈ {1, · · · , N} , i ∈ {1, · · · , T}}, where T , N , and D denote the total
time step, hidden dimension, and quantization level, respectively, its corresponding spatiotemporal
representation space and representation capacity have the following form:

Span {st}Tt=1 =


T∑

i=1

N∑
j=1

kjsij | kj ∈ R, sij ∈ {0, · · · , D}

 , (33)

Cap(Span {st}Tt=1) = log(T · (D + 1)N). (34)

Proof. For a SNN with multi-bit spiking neurons, at each time step t, its output spike st consists of N
elements, each denoted as stj , where j ∈ {1, · · · , N}. According to Definition 1, the representation
space generated by N linearly independent elements of st has the following form:

Span{st} =


N∑
j=1

kjstj | kj ∈ R, stj ∈ {0, · · · , D}

 . (35)

Over T time steps, the spike trains {st}Tt=1 are aggregated. The spatiotemporal representation space
is therefore constructed by summing across all T time steps:

Span{st}Tt=1 =


T∑

i=1

N∑
j=1

kjsij | kj ∈ R, sij ∈ {0, · · · , D}

 . (36)

Here, the inner summation
∑N

j=1 kjsij represents the contribution of the N dimensions at time step

i. The outer summation
∑T

i=1 aggregates the contributions across T time steps. This establishes the
form of the spatiotemporal representation space in Eq. (33).

Next, we measure its representation capacity based on Definition 2. Specifically, we first calculate
the cardinality (dubbed Card) of its representation space, i.e., Span{st}Tt=1, which yields:

Card(Span{st}Tt=1) =

∣∣∣∣∣∣


T∑
i=1

N∑
j=1

kjsij | kj ∈ R, sij ∈ {0, · · · , D}


∣∣∣∣∣∣ . (37)

Given coefficients {kj}Nj=1 in linear layers or convolutional kernels of the SNN, the cardinality of the
representation space is determined by the distinct values that {sij} can take, given their quantization
level D. Each sij is quantized to D + 1 discrete levels: {0, 1, · · · , D}. Across N dimensions, the
total number of possible combinations of {sij}Nj=1 at a single time step i is (D + 1)N . Over T time
steps, each time step introduces a new combination of {sij}Nj=1. Thus, the total number of distinct
configurations across T time steps is: T · (D + 1)N .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Finally, taking the logarithm of the cardinality, the corresponding representation capacity is:

Cap(Span{st}Tt=1) = log
(
T · (D + 1)N

)
. (38)

This establishes the expression for the representation capacity illustrated in Eq. (34).

Corollary 1. For a SNN with multi-bit spiking neurons, incorporating PIT generates the output spike
trains {Atst}Tt=1 = {aijsij | aij ∈ R, sij ∈ {0, · · · , D}}. The corresponding spatio-temporal
representation space and representation capacity of the SNN embedded with PIT can be described as:

Span {Atst}Tt=1 =


T∑

i=1

N∑
j=1

aijkjsij | aij ∈ R, kj ∈ R, sij ∈ {0, · · · , D}

 , (39)

Cap(Span {Atst}Tt=1) = log(T · (D + 1)N). (40)

Proof. For a SNN with multi-bit spiking neurons, our introduced PIT extends the spike train {st}Tt=1
by introducing parameters aij ∈ R, which are applied to each element sij . The resulting transformed
spike trains are:

{Atst}Tt=1 = {aijsij | aij ∈ R, sij ∈ {0, · · · , D}, i ∈ {1, · · · , T} , j ∈ {1, · · · , N}} . (41)

PIT scales each spike value sij by a real-valued parameter aij , effectively expanding the representation
space by introducing additional degrees of freedom across spatial and temporal dimensions.

Based on Definition 1, aggregating over T time steps, its corresponding spatio-temporal representation
space of the model becomes:

Span {Atst}Tt=1 =


T∑

i=1

N∑
j=1

aijkjsij | aij ∈ R, kj ∈ R, sij ∈ {0, · · · , D}

 . (42)

This establishes the form of the spatio-temporal representation space in Eq. (39).

According to Definition 2, its representation capacity is determined by the logarithmic scale of the
number of distinct elements in the set Span {Atst}Tt=1:

Cap(Span {Atst}Tt=1) = log

∣∣∣∣∣∣


T∑
i=1

N∑
j=1

aijkjsij | aij ∈ R, kj ∈ R, sij ∈ {0, · · · , D}


∣∣∣∣∣∣ . (43)

Given introduced parameters aij in PIT and kj in linear layers or convolutional kernels of the SNN,
the cardinality of the representation space is determined by the distinct values that sij can take, given
their quantization level D. Each sij is quantized to D + 1 discrete levels: {0, 1, · · · , D}. Across N
dimensions, the total number of possible combinations of {sij}Nj=1 at a single time step i is (D+1)N .
Over T time steps, each time step introduces a new combination of {sij}Nj=1. Thus, the total number
of distinct configurations across T time steps is T · (D + 1)N .

Finally, taking the logarithm of the cardinality of the representation space, its representation capacity
yields:

Cap(Span {Atst}Tt=1) = log
(
T · (D + 1)N

)
. (44)

This establishes the expression for the representation capacity in Eq. (40).

D EXPERIMENTAL SETTINGS

D.1 DATASETS

CIFAR-10 and CIFAR-100. The CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009)
consist of 32x32 color images categorized into multiple classes. Specifically, CIFAR-10 comprises
60,000 images distributed across 10 classes, with 50,000 images allocated for training and 10,000
for testing, while CIFAR-100 contains images spanning 100 distinct classes. Both datasets have

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

been preprocessed to achieve zero mean and unit variance. Image data augmentation techniques,
including AutoAugment (Cubuk et al., 2019) and Cutout (DeVries & Taylor, 2017), are employed,
following the methodologies outlined in prior studies (Guo et al., 2022a; Bu et al., 2022; Wang et al.,
2023). The pixel values are directly input into the model’s input layer at each timestep using a direct
encoding method (Rathi & Roy, 2021). Following previous works (Huang et al., 2024; Zheng et al.,
2021; Deng et al., 2022), the Spiking ResNet18 and ResNet19 are utilized as backbone models for
CIFAR-10 and CIFAR-100.

ImageNet-1k. The ImageNet-1k dataset (Deng et al., 2009) consists of 1,281,167 training images
and 50,000 validation images, distributed across 1,000 distinct classes. The images in ImageNet-1K
are normalized to have zero mean and unit variance. During training, the images are randomly resized
and cropped to dimensions of 224x224 pixels, followed by horizontal flipping. For validation, the
images are first resized to 256x256 pixels and subsequently center-cropped to 224x224 pixels. Similar
to the methodology applied to the CIFAR datasets, the images are converted into temporal sequences
using direct encoding (Rathi & Roy, 2021; Fang et al., 2021a). For performance comparison, the
SEW ResNet (Fang et al., 2021a) architecture is used as the backbone model.

CIFAR10-DVS. The CIFAR10-DVS dataset (Li et al., 2017) is a neuromorphic dataset derived from
CIFAR-10 through conversion using a Dynamic Vision Sensor (DVS) camera. It comprises 10,000
event-based images with an expanded resolution of 128×128 pixels. The integration of events into
frames is performed using the SpikingJelly framework (Fang et al., 2023). No data augmentation or
TEBN techniques (Duan et al., 2022) are applied to the CIFAR10-DVS dataset. For performance
comparison, the Spiking-VGG11 (Huang et al., 2024) architecture (referred to as VGG11) is adopted
as the backbone model.

DVS-Gesture. The DVS-Gesture dataset (Amir et al., 2017) is a neuromorphic dataset that captures
11 distinct gestures performed by 29 participants under three different lighting conditions. It contains
a total of 1,342 samples, with an average duration of 6.5 seconds per sample. The dataset is divided
into a training set with 1,208 samples and a test set with 134 samples. Following prior work (Fang
et al., 2021b), the events are integrated into frames using the SpikingJelly framework (Fang et al.,
2023). No data augmentation techniques are applied to the DVS-Gesture dataset, and the Spiking-
VGG11 (Huang et al., 2024) (VGG11) architecture is employed as the backbone for performance
evaluation.

D.2 TRAINING SETUP

Training Details. Table 3 lists the key hyperparameters and configurations required for training
on the static datasets (CIFAR-10, CIFAR-100, ImageNet-1k), and neuromorphic datasets including
CIFAR10-DVS and DVS-Gesture. Our experiments on CIFAR-10, CIFAR-100, CIFAR10-DVS, and
DVS-Gesture datasets are conducted using NVIDIA GeForce RTX 3090 GPUs, each equipped with
24 GB of memory. The training process on ImageNet-1k is executed on eight NVIDIA RTX A6000
GPUs, each equipped with 48 GB of memory.

Table 3: Training hyperparameters and configurations.

CIFAR-10 CIFAR-100 ImageNet-1k CIFAR10-DVS DVS-Gesture

Optimizer SGD SGD AdamW SGD SGD
Epoch 200 200 200 300 300

Learning rate 1e-1 1e-1 5e-2 5e-2 5e-2
Batch size 128 128 256 128 16

Weight decay 5e-5 5e-4 5e-4 5e-4 5e-4
Momentum 0.9 0.9 - 0.9 0.9
Lr schedule Cosine Cosine Cosine Cosine Cosine

Loss function Cross-entropy Cross-entropy Cross-entropy TET TET

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E MORE RESULTS

E.1 ABLATION STUDY

To investigate the impact of the proposed components on the model’s performance, we conducted
several ablation experiments on the CIFAR-10 dataset using ResNet18 as the backbone architecture.
To exclude the effects introduced by multi-bit spikes of the I-LIF neuron, we set T = 1 for the
vanilla ResNet18 and D = 1 for our model. As reported in Table 4, integrating PIT into the model
significantly improves its performance, with accuracy increasing from 86.73% to 91.34%, marking a
notable enhancement of 4.61%. Furthermore, by leveraging our proposed input distribution-aware
initialization strategy and gradient correction term, the model’s performance is further enhanced.
These results demonstrate that, under ultra-low latency conditions (T = 1, D = 1), the introduction
of PIT significantly enhances the performance of SNNs. Furthermore, these performance gains are
not due to the use of multi-bit spikes but arise directly from the PIT itself.

Table 4: Comparison of different configurations of our proposed PIT using ResNet18 as backbone on
CIFAR-10.

Configurations Learnable PIT Input-Distribution-Awared Init Gradient Rectifying Accuracy

ResNet18 ✗ ✗ ✗ 86.73%
(i) ✓ ✗ ✗ 91.34%
(ii) ✓ ✓ ✗ 92.53%

Ours ✓ ✓ ✓ 93.23%

Table 5: Comparison of different configurations of LIF, I-LIF, and our proposed PIT on CIFAR-10.

Model Neuron Model Learnable PIT Multi-bit Spikes Params T ×D Accuracy

ResNet18 LIF ✗ ✗ 11.69M 4× 1 94.22%
ResNet18 I-LIF ✗ ✓ 11.69M 1× 4 94.83%
ResNet18 I-LIF ✓ ✗ 11.69M 4× 1 95.34%
ResNet18 I-LIF ✓ ✓ 11.69M 1× 4 95.86%

To compare the performance of our proposed PIT with LIF and I-LIF (Luo et al., 2024) under the
same inference latency, we conducted an additional ablation study using ResNet18 as the backbone
model on CIFAR10. The comparison results, as shown in Table 5, demonstrate that our proposed
PIT achieves a 1.12% improvement in accuracy compared to vanilla ResNet18 (LIF). Furthermore,
combining PIT with multi-bit spikes provides performance gains of 1.64% and 1.03% compared to
vanilla ResNet18 (LIF) and ResNet18 (I-LIF), respectively, further validating the effectiveness of our
proposed method.

E.2 COMPARISON OF ENERGY CONSUMPTION

In this section, we provide a detailed comparison of the energy cost between LIF, I-LIF (Luo et al.,
2024; Yao et al., 2025), and our spiking neuron models based on Synaptic Operations (SynOps) and
Neuron Operations (NeuOps) incurred during neuron updates. SynOps consist of Accumulate (AC)
and Multiply-And-Accumulate (MAC) operations. Following previous studies (Han et al., 2015;
Horowitz, 2014), we assume that the operations are performed using 32-bit floating-point arithmetic
under 45 nm CMOS technology, where an AC operation consumes 0.9 pJ and a MAC operation
consumes 4.6 pJ. We conduct an extended analysis of energy cost using ResNet18 as the backbone
model for the CIFAR10 dataset.

The results reported in the Table 6 demonstrate that our model (the last row) achieves lower energy
consumption. The energy efficiency of our model can be attributed to the PIT we introduced, which
dynamically adjusts the membrane potential distribution before firing and significantly reduces the
firing rate, as verified in Figure 6. Collectively, although our method introduces a small number of
additional MAC operations, our design minimizes overall energy consumption by reducing the firing
rates of spiking neurons.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: Comparison of the energy cost for LIF, I-LIF, and our PIT using ResNet18 as the backbone
model on CIFAR10.

Model Input Resolution T ×D ACs (M) MACs (M) Params (M) Energy (µJ)

ResNet18 (LIF) 32× 32× 3 4× 1 68.04 2.33 11.18 71.94
ResNet18 (I-LIF) 32× 32× 3 1× 4 56.67 2.33 11.18 61.71
ResNet18 (PIT) 32× 32× 3 1× 4 49.30 2.88 11.18 57.64

E.3 EXPERIMENTAL RESULTS ON CIFAR10-DVS

Table 7 reports the experimental results on the CIFAR10-DVS dataset. Compared to previous
approaches that focus on adjusting the membrane potential distribution before firing, such as
MPBN (Guo et al., 2023b) and IM-Loss (Guo et al., 2022a), our method achieves superior per-
formance with a lower-parameter network architecture (VGG11) under the same equivalent timesteps.
Furthermore, compared to prior methods like Real Spike (Guo et al., 2022c) and Trainable Ternary
Spike (Guo et al., 2024), integrating our method into VGG11 (T = 10, D = 1) achieves improve-
ments of 5.92% and 3.92%, respectively.

Table 7: Comparison with SOTA methods on CIFAR10-DVS. Our results are reported as averages
over three experimental runs with different random seeds.

Method Type Architecture Params T ×D Accuracy
STBP-tdBN (Zheng et al., 2021) SNN training ResNet19 12.70M 10× 1 67.80%
PLIF (Fang et al., 2021b) SNN training PLIF Net 37.31M 20× 1 74.80%
MPBN (Guo et al., 2023b) SNN training ResNet19 12.70M 10× 1 74.40%
IM-Loss (Guo et al., 2022a) SNN training ResNet19 12.70M 10× 1 72.60%
Dspike (Li et al., 2021) SNN training ResNet18 11.18M 10× 1 75.40%
TET (Deng et al., 2022) SNN training VGG11 9.33M 10× 1 77.33%

Trainable Ternary Spike (Guo et al., 2024) SNN training ResNet19 12.70M 10× 2 79.80%
VGG11 9.33M 10× 2 76.60%

Real Spike (Guo et al., 2022c) SNN training ResNet19 12.70M 10× 1 72.85%
VGG16 14.72M 10× 1 74.58%

PIT (Ours) SNN training VGG11 9.33M 10× 1 80.50%± 0.08
VGG11 9.33M 10× 4 81.50%± 0.13

E.4 EXPERIMENTAL RESULTS ON DVS-GESTURE

To further evaluate the effectiveness of our method on neuromorphic datasets, we conducted experi-
ments on the DVS-Gesture dataset. The preprocessing steps followed the procedure outlined in prior
work (Fang et al., 2021b), with the data interpolated to T = 10 using the SpikingJelly framework
(Fang et al., 2023). VGG11 was adopted as the backbone, consistent with previous work (Huang
et al., 2024). As shown in Table 8, it is evident that our method achieves state-of-the-art classification
accuracy under the same network architecture. Specifically, our method, i.e., VGG11 integrated
with PIT (T = 20, D = 1), surpasses Real Spike (Guo et al., 2022c) by 2.02%. Moreover, VGG11
integrated with PIT (T = 20, D = 2) outperforms Trainable Ternary Spike (Guo et al., 2024) by
1.84%, demonstrating the effectiveness of our approach under equivalent inference timesteps.

Table 8: Comparison with SOTA methods on DVS-Gesture. Our results are reported as averages over
three experimental runs with different random seeds.

Method Type Architecture Params T ×D Accuracy
PLIF (Fang et al., 2021b) SNN training PLIF Net 37.31M 20× 1 97.57%
CLIF (Huang et al., 2024) SNN training VGG11 9.33M 20× 1 97.92%
Trainable Ternary Spike (Guo et al., 2024) SNN training VGG11 9.33M 20× 2 96.42%
Real Spike (Guo et al., 2022c) SNN training VGG11 9.33M 20× 1 96.21%

PIT (Ours) SNN training VGG11 9.33M 20× 1 98.23%± 0.05
VGG11 9.33M 20× 2 98.26%± 0.08

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) (b)

(c) (d)

Figure 5: Comparison of the loss landscape of (a, c) vanilla ResNet18 and (b, d) ResNet18 integrated
with PIT models in terms of 3D surface and 2D contour plots on CIFAR10.

E.5 EXTENDED VISUALIZATION OF LOSS LANDSCAPE

To evaluate the impact of the proposed PIT on the optimization procedure, we conducted a comparative
analysis of the loss landscape of our model against its vanilla counterpart. ResNet18 was employed
as the backbone architecture, with T = 1 and D = 1 set to exclude any effects introduced by the
multi-bit spikes of the I-LIF neuron. By utilizing the technique introduced by Li et al. (2018), we
plot the 3D surface and 2D contour of the loss landscape of models in Figure 5. From Figure 5, we
could observe that the model integrated with PIT exhibits a markedly smoother loss landscape around
the local minima, which facilitates more stable and faster convergence during training.

E.6 EXTENDED VISUALIZATION OF FIRING RATES STATISTICS

To analyze the impact of our method on firing rates, we track the average firing rates of the ResNet18
integrated with PIT and its vanilla counterpart across each layer over time, as shown in Figure 6.
Specifically, the ResNet18 integrated with PIT exhibits lower average firing rates (purple line) and
demonstrates a descending trend with respect to the time step. In contrast, the vanilla ResNet18
tends to fire more frequently in later time steps and shows higher firing rates, particularly in the
earlier layers. This phenomenon can be attributed to the ability of our input-distribution-aware PIT to
dynamically adjust the potential distribution before the firing operation, which is absent in vanilla
spiking models.

E.7 EXTENDED VISUALIZATION OF PIT DISTRIBUTION ACROSS LAYERS

To inspect the evolving dynamics of our proposed PIT during the training stage, we use ResNet18
(T = 1, D = 4) as the backbone and visualize the parameter distribution involved in PIT across
layers at the beginning of training and after convergence on CIFAR-10 and CIFAR-100 datasets, as

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 6: Comparison of the firing rates statistics for (a) vanilla ResNet18 and (b) the ResNet18
integrated with PIT models on CIFAR10.

(a) (b)

(c) (d)

Figure 7: Comparison of the parameter distribution in PIT across the layers of the ResNet18 integrated
with the PIT model at the first epoch (a) and the last epoch (b) on CIFAR10. Comparison of the
parameter distribution in PIT across the layers of the ResNet18 integrated with the PIT model at the
first epoch (c) and the last epoch (d) on CIFAR100.

illustrated in Figure 7. It can be observed that, at the beginning of training, the parameter distribution
of PIT is relatively concentrated. After convergence, the parameter distribution of PIT exhibits
significant inter-layer differences, demonstrating that PIT can dynamically learn and adjust according
to the features at different levels.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F DISCUSSION ON THE STRUCTURE OF PIT

The conceptualization of PIT draws inspiration from the adaptive learning mechanisms inherent in
biological systems, particularly the mechanisms underlying neural plasticity and the modulation
of membrane potentials (Salaj et al., 2021). As evidenced by previous neuroscience findings,
neurons exhibit a remarkable ability to modify their neurophysiological characteristics in response to
dynamically changing environmental stimuli. This plasticity plays a critical role in enabling efficient
information encoding and processing, as it allows neurons to flexibly adjust their neuronal activities
and optimize their responses to external inputs.

In this work, to conserve parameters and memory, the transformation matrix of PIT is designed
in a diagonal form. However, in principle, it can adopt a more general structure. Specifically,
if the off-diagonal elements of the transformation matrix are non-zero, it indicates that a neuron
receives modulation signals (the sub-threshold voltages) of neighboring neurons before firing. This
design mimics the excitatory-inhibitory (E-I) balance observed in biological neural groups (Zhou
& Yu, 2018). Such a sub-threshold modulation mechanism could be effectively simulated by our
proposed PIT method. Additionally, neurons in biological systems may exhibit bursting behavior
when responding to complex stimuli, which can also be represented by applying our proposed PIT
after the firing operation. The design of integrating PIT into neuronal dynamics in a conjugate manner
encapsulates both adaptive regulation and efficient neural coding.

G THE USE OF LARGE LANGUAGE MODELS

In this paper, Large Language Models (LLMs) are only used for polishing and correcting grammatical
errors. Their usage does not affect the core methodology, scientific rigor, or originality of this
research.

25

	Introduction
	Related Work
	Methodology
	Preliminaries
	Analyzing Information Propagation from a Transformation Perspective
	Incorporating the Parametric Invertible Transformation into SNNs
	Rectifying Surrogate Gradients during Backpropagation
	Analysis of Spatiotemporal Representation Space of SNNs

	Experiments
	Comparison with the State-of-the-Art
	Analysis of Optimization Dynamics

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Implementation of Spike-Driven Inference
	Detailed Derivations of Learning Rules during Backpropagation
	Proof of Theorems
	Experimental Settings
	Datasets
	Training Setup

	More Results
	Ablation Study
	Comparison of Energy Consumption
	Experimental Results on CIFAR10-DVS
	Experimental Results on DVS-Gesture
	Extended Visualization of Loss Landscape
	Extended Visualization of Firing Rates Statistics
	Extended Visualization of PIT Distribution across Layers

	Discussion on the Structure of PIT
	The Use of Large Language Models

