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ABSTRACT

Spiking Neural Networks (SNNs) are regarded as energy-efficient neural archi-
tectures due to their event-driven, spike-based computation paradigm. However,
existing SNNs suffer from two fundamental limitations: (1) the constrained rep-
resentational space imposed by binary spike firing mechanisms, which restricts
the network’s capacity to encode complex spatiotemporal patterns, and (2) the
ineffective design of surrogate gradient functions that leads to gradient mismatch
issues and suboptimal learning dynamics. To address these challenges, we propose
the Parametric Invertible Transformation (PIT), which operates in a conjugate
manner with neuronal dynamics to achieve adaptive modulation and augmented
spike representations simultaneously. Second, we design an auxiliary gradient
correction term to mitigate the gradient mismatch issue and oscillation phenomena
during training. Moreover, we introduce a theoretical framework for analyzing
the spatiotemporal representation space of SNNs. Extensive experiments on both
static and neuromorphic datasets demonstrate state-of-the-art performance with
our proposed method. This approach lays the theoretical foundation for expand-
ing the spatiotemporal representations of SNNs, offering a viable pathway for
developing low-latency and high-performance neuromorphic processing systems
in resource-constrained environments.

1 INTRODUCTION

Spiking Neural Networks (SNNs) are designed to emulate the neural dynamics of biological systems
by utilizing asynchronous spikes for communication (Maass, |1997; [Roy et al.,|2019). In contrast to
Artificial Neural Networks (ANNs), which rely on continuous activations, SNNs operate with binary
spikes, providing huge potential for more efficient computations by transforming dense Multiply-
And-Accumulate (MAC) operations into sparse Accumulate (AC) operations. Combined with the
event-driven computation paradigm, where computations are triggered only upon the receipt of spikes,
these characteristics offer inherent sparsity and low energy consumption, making them promising
and appealing for scenarios necessitating real-time and energy-constrained processing (Merolla et al.,
2014; Davies et al., 2018} |Pei et al., [2019; [Roy et al.,|2019).

Despite these advantages, SNNs face two fundamental challenges that limit their practical effective-
ness. First, SNNs suffer from constrained representational capacity due to their low-precision binary
spike representation. This inherently leads to varying degrees of information loss and performance
degradation in complex classification tasks (Deng & Gul, [2021} |Guo et al.||2024). To address this
issue, prior works have explored advanced spiking neuron models with complex dynamics (Fang et al.,
2021b;|Yin et al.} 2021; 2023} |Chen et al., [ 2024; [Hao et al.| 2024), normalization techniques (Kim
& Pandal 2021} [Zheng et al., 2021; [Duan et al.l [2022), multi-bit spike representations (Guo et al.,
2024; | Xing et al., [2024; |Guo et al., 2022c)), attention mechanisms (Yao et al., 20215 2023b), and
modern architectures including ResNet (Fang et al.|[2021aj; |Hu et al.,[2024) and spike-driven trans-
formers (Zhou et al.l 2023} [Yao et al.l [2023a};[2024; [Zhou et al.| 2024 |Yao et al.| [2025)). Nevertheless,
these approaches have not adequately addressed the inherent limitations of the representational space
of SNNss, particularly when dealing with data streams characterized by high dynamic variations and
complex distributions. Second, existing surrogate gradient methods tailored for binary spikes (Wu
et al., [2018; |Rathi & Roy, [2021; L1 et al., |2021) and integer spike neurons (Luo et al., 2024} |Yao
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Figure 1: The overall workflow of our proposed method. By incorporating a parametric invertible
transformation (PIT) into neuronal dynamics in a conjugate manner, spiking neurons could adaptively
reorganize the potential distribution before firing and emit real-valued outputs across spatial and
temporal dimensions. It is worth noting that the SNN integrated with PIT could preserve the spike-
based inference and event-driven computation paradigm through the reparameterization technique.

et al.} 2025) exhibit limited adaptability and often introduce gradient mismatch issues and oscillation
phenomena during backpropagation (Yin et al.| 2019} Spallanzani et al.,2022; |Wu et al., 2023b;|Nagel
et al., [2022)). These two limitations collectively underscore the critical need for developing novel
approaches that can simultaneously enhance the representational capacity of SNNs while enabling
stable and efficient training.

In this study, we focus on enhancing the representational capabilities of SNNs by integrating the
parametric invertible transformation (PIT) into neuronal dynamics. As shown in Figure [} our
proposed PIT operates in a conjugate manner before and after the firing operation of spiking neurons,
improving spatiotemporal representations while preserving the event-driven and spike-based inference
computation paradigm through the reparameterization technique (see Appendix [A). To further
address the non-differentiable spike firing operation, we propose an auxiliary gradient correction
term designed to mitigate the gradient mismatch issue and oscillation phenomena, facilitating
rapid convergence and improved generalization. Additionally, we establish a theoretical framework
to analyze and measure the spatiotemporal representational capacity of SNNs. Comprehensive
experiments on static and neuromorphic visual datasets, including CIFAR10 (Krizhevsky et al., 2009),
CIFAR100 (Krizhevsky et al.l |2009), DVS-Gesture (Amir et al.l2017), CIFAR10-DVS (Li et al.
2017), and ImageNet-1k (Deng et al.,|2009), validate the superiority and effectiveness of our method.
Our contributions can be summarized as follows:

* We introduce PIT, a parametric invertible transformation, to enhance the spatiotemporal
representations of SNNs in a conjugate manner. PIT employs an input-distribution-aware
parameterization strategy to dynamically expand representations while preserving spike-
driven inference via the reparameterization technique. Besides, we design a rectified
surrogate gradient term for improved gradient flow, enabling fast and stable convergence.

* We provide a theoretical framework to analyze and measure the spatiotemporal represen-
tation capacity of SNNs. Based on our theoretical framework, we demonstrate that the
representation capacity of SNNs exhibits a logarithmic relationship with both the firing bit
numbers and total time steps.

» Extensive experiments on both static and neuromorphic datasets demonstrate the state-of-
the-art performance achieved by our method across various architectures. Notably, when
incorporating our method into SEW ResNet-34, it surpasses the baseline model with the
same architecture after training for only one epoch and ultimately improves performance by
5.62% on the ImageNet dataset.
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2 RELATED WORK

Training Methods for SNNs. Current SNN training methods can be broadly categorized into
two strategies: (1) ANN-to-SNN conversion, which establishes mathematical mappings between
ReLU activation layers and spiking neuron layers, and (2) direct training, which employs the
Backpropagation Through Time (BPTT) algorithm. Direct training allows SNNs to operate with an
extremely small time window by employing BPTT alongside surrogate gradient (SG) functions to
approximate the non-differentiable firing operation (Wu et al.l 2018 Neftci et al.,|2019; |Zenke &
Vogels| 2021} [Lee et al.| 2020). Instabilities during deep SNN training have been mitigated using
normalization techniques (Kim & Pandal |2021; [Zheng et al., 2021; |Duan et al., 2022} |Guo et al.,
2023b), regularization terms to maximize output entropy (Guo et al., [2022a)), membrane potential
rearrangement (Guo et al.,|2023aj; |2022b), and temporal efficient gradient re-weighting (Deng et al.,
2022). For integer spike forms of SNN, prior works (Luo et al., 2024} Yao et al.,2025)) directly utilize
the clipped rectangular surrogate gradient function to achieve direct training. However, this approach
may result in oscillation phenomena that hinder the network from converging to a solution with
good generalizability (Yin et al.,2019; Spallanzani et al.| 2022 |Wu et al., |2023bj; [Nagel et al., 2022).
Nevertheless, most existing methods are tailored to binary spike forms of SNNs, while effective and
stable training methods for SNNs with integer spike forms remain underexplored. This gap motivates
us to design corresponding parameterization techniques and surrogate gradients to enable effective
and stable training, particularly in deep networks.

Enhancing Spike Representations for SNNs. At the neuron level, previous works have introduced
learnable parameters into spiking neuron models, including learnable membrane decay factors (Bellec
et al., 2018} [Fang et al.l [2021b; [Yao et al., [2022)) and learnable threshold leak factors (Yin et al.,
202152023} Rathi & Roy, |2021). Additionally, bio-inspired approaches have incorporated multi-
compartment structures to enhance neuronal dynamics for sequential modeling (Zhang et al., 2024;
Chen et al., 2024} [Hao et al.| 2024)) and time-series forecasting (Shibo et al.l 2025). From the
perspective of spike coding strategies, previous studies based on temporal coding (Yu et al.| 2021}
2022) utilize augmented spikes to carry complementary information with spike coefficients in
addition to spike latencies. Recent works based on rate coding expand binary spike trains into ternary
spikes (Guo et al} 2024} [Xing et al., [2024) or real-valued spikes (Guo et al., 2022c])), while ensuring
multiplication-free inference through the reparameterization technique. At the network structure
level, recent works propose to enhance SNN architectures by redesigning the standard ResNet
backbone (Fang et al., [2021a; |[Hu et al. 2024), and developing spike-driven transformers (Zhou
et al.,[2023; |Yao et al., [2023a}; 2024} [Zhou et al., 2024; |Yao et al., 2025)). However, previous studies
have shown limited improvements in spatiotemporal representational space and capacity of SNNs,
as evidenced by our theoretical analysis in Section [3.5] These limitations inspire us to design a
differentiable spatiotemporal transformation applied to the neuronal dynamics of SNNs to enhance
their representations. Our proposed method leverages an input-distribution-aware and spatiotemporal-
decoupled parametric strategy to overcome the limitations of binary representations in SNNs, while
preserving the advantages of their event-driven and spike-based inference paradigm.

3 METHODOLOGY

3.1 PRELIMINARIES

Spiking Neuron. The Leaky Integrate-and-Fire (LIF) spiking neuron serves as the most popular
fundamental building block of SNNs due to its low computational complexity (Maass},1997). For
implementation, the LIF neuron with soft reset is typically described in a discrete iterative format as
follows:

ul =l + Wlsl™t, (1
sp=H (u} — ), )
v,l5 = ui - 19thsf57 3)

where u! and s! denote the membrane potential and output spike of LIF neurons in layer [ at time
step ¢, respectively. )\ is the decay factor of the membrane potential, and W' represent the linear
synaptic weights corresponding to layer [. H(-) is the Heaviside step function, defined as H (z) = 1
for z > 0 and H(z) = 0 for z < 0. When the membrane potential u} exceeds its firing threshold
Dih, %he neuron will fire a spike to its post neurons and reset its membrane potential by subtracting
ﬂth S¢.
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3.2 ANALYZING INFORMATION PROPAGATION FROM A TRANSFORMATION PERSPECTIVE

While the binary spike-based processing paradigm of SNNs provides computational efficiency, it
induces performance degradation compared to full-precision counterparts. A critical bottleneck lies
in the firing operation, which converts the full-precision membrane potential into binary spike trains
that serve as information carriers propagating to the post-neurons. For notational simplicity, we
omit layer superscripts in the following analysis. The information loss during the transformation of
the full-precision membrane potential w into the binary spike form s through the firing operation is
expressed as:

L= /tzld(s(t)’u(t))dt: /t:1d(g(u(t)),u(t))dt7 @

where ¢ () denotes the firing operation of spiking neurons, and 7' signifies the total time steps.
d(-, -) represents a distance function used to measure the distance between two elements. Based on
information theory, d(-,-) can be interpreted as the mutual information function or the Kullback-
Leibler (KL) divergence. In Euclidean space, d(-, -) can alternatively be represented by the Frobenius
norm.

Previous studies have focused on introducing learnable parameters (Fang et al.| 2021bj |[Yao et al.|
2022;|Yin et al.,2021;|2023) and multi-compartment structures (Zhang et al.,|2024;|Chen et al., |2024;
Hao et al.|, 2024} |Shibo et al.,[2025) to enhance the neuronal dynamics before the firing operation.
These approaches can be regarded as adding functions with varying complexities before the firing
operation. However, the reduction in information loss achieved by these methods is inherently limited,
as they do not fundamentally expand the output space and capacity of SNNs (see our theoretical
analysis in Section [3.3).

In this paper, we introduce a time-varying invertible transformation applied to neuronal dynamics in
a conjugate manner, both before and after the firing operation. Mathematically, the corresponding
output spikes of SNNs are augmented as:

s(t)=fiogo fi ' (u(t), )

where f; represents our introduced invertible transformation at time step ¢, and o represents the
composition operator for functions. The corresponding information loss caused by the firing operation
is formulated as:

T
/t d(ftogoft_1 (u (t)),u(t)) dt. (6)

=1
Generally, the benefits of this design are twofold: (1) It provides additional flexibility to reduce firing
errors by improving the neuronal dynamics before firing and expanding the spike representations
after firing simultaneously. (2) This conjugate manner ensures variance consistency between the
inputs and outputs, which is critical for stable information propagation in deep networks (He et al.,
2015). Next, we will elaborate on how to parameterize the invertible transformation to expand the
representational space of SNNs in a computationally efficient and input-distribution-aware manner.

3.3 INCORPORATING THE PARAMETRIC INVERTIBLE TRANSFORMATION INTO SNNS

In this section, we will elaborate on how to integrate our parametric invertible transformation (PIT)
into SNNs. For the [*" layer in the SNN, our introduced parametric invertible transformation f} can
be expressed in a matrix form as:

£ (uh) = Alul, ©)

where A! € RV*¥ represents the transformation matrix in layer [ at time step ¢, and u} € REXN
denotes the membrane potential of spiking neurons. B and NN signify the batch size and hidden
dimensions, respectively.

To reduce the information loss incurred by the inherent binary spikes of the LIF neuron model, we
adopt the Integer Leaky Integrate-and-Fire (I-LIF) neuron (Luo et al.,|2024)), which allows emitting
integer values during the training stage and maintains its spike-driven propagation during the inference
stage through the reparameterization technique. Specifically, the firing dynamics of the I-LIF neuron
can be rendered as:

st = clip ([ul],0,D), 8)
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Figure 2: The comparison of different strategies for the membrane potential quantization. (a) The
firing operation for the binary spiking neuron model. (b) The min-max quantization method for the
multi-bit spiking neuron model. (c) Our quantization strategy is based on the 3-sigma rule of the
normal distribution.

where | -] denotes the rounding operator. clip (x, 0, D) confines the input = within range [0, D]. And
D is a hyperparameter indicating the maximum integer value emitted by the I-LIF neuron.

As illustrated in Eq. (5), our proposed PIT is applied in a conjugate manner both before and after
the firing operation. Collectively, incorporating our PIT into the I-LIF neuron yields the following
neuronal dynamics in discrete form:

ul = Ml 4+ Wisi™! ©
st = Alclip (L(Ag)‘l ull, 0, D) : (10)
ol —ul — sl (1n

Egs. (9). (I0), and (II) correspond to the charging, firing, and resetting processes of the spiking
neuron, respectively.

The next crucial question is how to parameterize our introduced PIT, i.e., the transformation matrix Al
in Eq. (I0), to expand the spatiotemporal representations of SNNs. For the parameterization strategy
of the transformation matrix A!, several aspects need to be considered: (1) The parameterization
should be efficient in terms of both memory and computation. (2) It could dynamically adapt to the
complex spatiotemporal distribution of the input data streams.

To address the first point, we design Al in a diagonal form, enabling efficient computation while
introducing a negligible amount of additional parameters. Specifically, A} = diag (ai), where
al € RN and N denotes the hidden dimension. In this way, the computation involved in the firing
operation in Eq. (T0) is simplified to element-wise production and division, which also facilitates
preserving the event-driven and spike-based computational paradigm during the inference stage, as
detailed in Appendix Al Further discussion about the structure of A! is also provided in Appendix E]

To tackle the second point, we propose an input-distribution-aware initialization strategy for A’ based
on the statistical distribution of the input data, instead of directly applying the min-max method (Xiao
et al., 2023} |Shao et al.,|2024), which is heavily influenced by large outliers of inputs. As shown
in Figure [2] the min-max strategy suffers from two major drawbacks: (1) It leads to an unstable
quantization range, thereby slowing down the convergence of the model. (2) It wastes a significant
portion of invaluable quantization levels, resulting in larger quantization errors, especially in ultra-
low-bit scenarios, i.e., D is small. Our approach mitigates these issues by designing a channel-wise
initialization method based on the statistical distribution of the input tensor. Specifically, we initialize
al based on the 3-sigma rule of the normal distribution as:

a; = max (| (ug) — 30 (wg) |, [p (uf) + 30 (ug) |)/VD, (12)

where i and o are calculated based on the mean and standard deviation of the membrane potential !
under the first batch of training data. After initialization, a! are updated according to BPTT (refer to

Appendix Bl for the detailed learning rules).

3.4 RECTIFYING SURROGATE GRADIENTS DURING BACKPROPAGATION

The non-differentiable nature of the round function in Eq. (I0) poses challenges for training SNNs
using the BPTT algorithm. Previous studies have explored various surrogate gradient functions (Wu
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et al., 2018} Rathi & Roy| 2021} |Li et al.|[2021)) to approximate derivatives during backpropagation for
binary spikes. For integer spike forms, Luo et al. (Luo et al.,|2024) employed a rectangular surrogate
gradient function to train SNNs by retaining gradients for neurons activated within the [0, D] range,
masking all others. This approach resembles the straight-through estimator (STE) (Rosenblatt, |1957;
Bengio et al., 2013)), where the identity function is used as a proxy for the derivative of the rounding
function. However, previous studies (Yin et al., 2019; |Spallanzani et al.| [2022; Wu et al., |2023b;
Nagel et al) 2022) have demonstrated that directly using STE can lead to gradient mismatches,
resulting in oscillation phenomena that hinder the network from converging to a local minimum with
strong generalization ability.

Motivated by this, we rectify the gradient based on the distance between the input and the decision
boundary of the rounding function. Specifically, the derivative of the rounding function with respect
to the input is calculated in the following form:

% =1+ X (0.5 —sign (dis(z)) dis(x)), (13)
where dis(x) = x — |x| — 0.5 denotes the distance between the input = and the decision boundary
of the round function. |-] and sign(-) represent the ceiling function and sign function, respectively.
Noting that the value of the distance variable falls within the range [—0.5,0.5]. Specifically, the
design of Eq. can be deemed as adding an /5 penalty on ||0.5 — sign(dis(x)) - dzs(x)Hg This
regularization encourages the input to move away from the decision boundary, thereby mitigating
oscillations of the output values between adjacent quantized states. As a result, the statistics of
the rounding function’s outputs are stabilized, reducing oscillation during training and facilitating
convergence to a solution with stronger generalizability.

Collectively, by employing the BPTT algorithm along with our rectified surrogate gradient function,
all learnable parameters of the model, including the introduced transformation matrix Al in Eq. ,
can be effectively optimized (detailed learning rules for learnable parameters are provided in the

Appendix [B).

3.5 ANALYSIS OF SPATIOTEMPORAL REPRESENTATION SPACE OF SNNS

This section aims to analyze the spatiotemporal representation space of SNNs from a theoretical
perspective. We first provide the mathematical definition of the representation space and capacity
based on linear algebra, followed by a thorough comparison of the SNN embedded with the PIT and
prior works.

Definition 1. Given s = {s1, 82, , sy}, which refers to N linearly independent elements, the
corresponding representation space (denoted as Span) generated by it can be expressed as follows:

N
Span {s} = Span{s1,s2, -+ ,sn} = ijsj |kj R, (14)
j=1

where k; represents the linear combination coefficients (in SNNs, these are typically the weights in
the linear layer or the convolution kernels in the convolutional layer).

Definition 2. Given Span {s} = {Z;V: 1kjsi| k€ R}, which denotes the representation space

generated by s and k, the corresponding representation capacity (dubbed Cap) is evaluated as
follows:

N
Cap(Span{s}) = log ijsj | kj €R,s; €{0,1,...,D} 2|, (15)
j=1
where |-| denotes the cardinality of the set, i.e., the total number of distinct elements generated by

all possible combinations of s given k. In SNNs with multi-bit spiking neurons, D refers to the
quantization level of s, and N is the number of linearly independent elements in s.

Proposition 1. For a SNN with multi-bit spiking neurons emitting the output spike trains {St}?d =
{si;j | s;j €{0,---,D},¥je{l,--- ,N},ie€{1,--- ,T}}, where T, N, and D denote the total
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time step, hidden dimension, and quantization level, respectively, its corresponding spatiotemporal
representation space and representation capacity have the following form:

T N

Span {St};{:l = szjsij ‘ k’j GR, Sij - {0, ,D} s (16)
i=1 j=1

Cap(Span {s;},—_,) = log(T - (D + 1)™). (17)

Corollary 1. For a SNN with multi-bit spiking neurons, incorporating PIT generates the output spike
trains {Atst};‘rzl = {a;jsi; | aij € R, s €{0,---,D}}. The corresponding spatio-temporal
representation space and representation capacity of the SNN embedded with PIT can be described as:

T N

Spcm {Atst}thl = ZZ aijk;jsij | ;5 S R, k‘j S R, Sij S {0, e ,D} s (18)
i=1 j=1

Cap(Span {A;s},_,) =log(T - (D + 1)V). (19)

Proposition 1 elucidates the logarithmic relationship between the representation capacity and the
quantization bit D as well as the total time step 7. Specifically, as the quantization bit D increases,
the representation capacity grows at a sublinear rate, while the capacity scales linearly with the hidden
dimension V. Corollary 1 demonstrates that integrating additional parameters, i.e., {Ai}iT=1 in our
proposed PIT, into the combination coefficients {k; };Vzl could increases the representation space of
the SNN by offering more degrees of freedom for temporal and spatial variations in output signals.
Detailed proofs of Proposition 1 and Corollary 1 are provided in Appendix [C} Based on Proposition 1
and Corollary 1, Table [I| summarizes the comparative results of the spatiotemporal representation
space and capacity between previous works and our proposed method.

Table 1: Comparison of the representation space and capacity of the currently developed SNNs

Method Representation Space Representation Capacity
Vanilla Binary Spike Z?:l Z]V:l kjsij | kj € R, 55 € {0, 1}} log(T - 2VV)

Ternary Spike (Guo et al.|[2024) S i Kysig | By € R sy € {=1,0, 1}} log(T - 3N)

Trainable Ternary Spike (Guo et al.|2024) <S>, SN akjsij | a € R,k € R, 555 € {~1,0, 1}} log(T - 3V)

Real Spike (Guo et al.|[2022c) S S ajkjsii | aj € Rk € R, sy € {0, 1}} log(T - 2N)

Ours >r Z]N:l aijkjsij | aij € R kj € R,s;5 € {0, 7D}} log(T - (D + 1)N)

4 EXPERIMENTS

We conduct extensive experiments on CIFAR10 (Krizhevsky et al.,[2009), CIFAR100 (Krizhevsky
et al| 2009), ImageNet-1k (Deng et al| 2009), CIFAR10-DVS (Li et al) 2017), and DVS-
Gesture (Amir et al., 2017) datasets to evaluate the performance of our proposed method across
various architectures. The Pytorch (Paszke et al.,2019) and SpikingJelly (Fang et al.| [2023)) frame-
works are utilized to implement SNN training in this paper. Detailed experimental setups are provided

in Appendix[D.2]
4.1 COMPARISON WITH THE STATE-OF-THE-ART

Results on static image datasets. We assess the effectiveness of our method on static image datasets,
including CIFAR10 and CIFAR100, and ImageNet-1k. The results are summarized in Table[2] On the
CIFAR10 dataset, integrating our proposed PIT into the baseline model achieves remarkable accuracy
improvements compared to prior works, including maximizing the output information (IM-Loss (Guo
et al.| [2022a))) and rectifying the membrane potential distribution (RecDis-SNN (Guo et al., 2022b)).
Furthermore, on the CIFAR100 dataset, with the introduction of PIT, the classification accuracy of
the ResNet19 model surpasses prior methods designed to enhance spike representations, including
Real Spike (Guo et al.| [2022c) and Trainable Ternary Spike (Guo et al.} 2024), by 14.99% and 1.39%),
respectively.
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Table 2: Comparison with SOTA methods on CIFAR10, CIFAR100 and ImageNet-1k. Our results
are reported as averages over three experimental runs with different random seeds. We reformulate
the time steps for all direct training methods as T' x D, where 7" represents the number of time steps
and D denotes the upper integer activation value of the firing function. In previous directing training
work of SNNs, D is set to 1 by default.

Dataset Method Type Architecture Params T x D Accuracy
TL (Wu et al.|2023a) Tandem learning CIFARNet 4448M 8x1 89.04%

PTL (Wu et al.[[2022) Tandem learning VGGI1 9.23M 16 x 1 91.24%

PLIF (Fang et al.|[2021b) SNN training PLIFNet 3731IM 8x1 93.50%

DSR (Meng et al.|[2022) SNN training ResNet18 11.18M 20 x 1 95.40%
RecDis-SNN (Guo et al.|[2022b) SNN training ResNet19 1270M 2 x1 93.64%
IM-Loss (Guo et al.[[2022a) SNN training ResNet19 1270M 4 x1 95.40%

. — . 5x1 91.78%
Diet-SNN (Rathi & Roy,[2021) SNN training ResNet20 11.25M 10 x 1 92.549%

K - 3 . 2x1 93.13%

Dspike (Li et al.|[2021) SNN training ResNet18 11.18M 11 93.66%

] . R 2x1 92.34%

o STBP-tdBN (Zheng et al.{[2021) SNN training ResNet19 12.70M Ix1 92.92%
[ ] . ki 2x1 94.16%
é TET (Deng et al.{[2022) SNN training ResNet19 12.70M 41 94.44%
o R R . . 1x2 95.58%
Trainable Ternary Spike (Guo et al.||2024) SNN training ResNet19 12.70M 2% 9 95.80%

R : . 2x1 94.01%

Real Spike (Guo et al.|2022c) SNN training ResNet19 12.70M Ix1 95.60%

1x2 9507%+0.17

ResNet18 11.18M
PIT (Ours) SNN training TS L
ResNet19 1270M 1% 1%+ 0.
) ) 1x4 96.72%+ 0.10
QCEFS (Bu et al.|[2022) ANN2SNN ResNet20 1125M 64 x 1 70.49%
LTL (Yang et al.|[2022) Tandem learning ResNet20 11.25M 31 x1 76.08%
Diet-SNN (Rathi & Roy|[2021) SNN training ResNet20 11.25M  5x1 64.07%
RecDis-SNN (Guo et al.|2022b) SNN training ResNet19 1270M 4 x1 74.10%
IM-Loss (Guo et al.|[2022a) SNN training VGG16 14.72M 5x1 70.18%
. - ] .. 2x1 71.68%
Dspike (Li et al.|[2021) SNN training ResNet18 11.18M 4x1 73.35%

= . 2x1 72.87%

S TET (Deng et al.||2022) SNN training ResNet19 12.70M Ix1 14.47%

% Trainable Ternary Spike (Guo etal|2024]  SNN traini ResNet19 7om  Lx2 TBB%

% rainable Ternary Spike (Guo et al.| raining esNe . 2% 9 80.20%

. : . ResNet20 1270M  5x1 66.60%
Real Spike (Guo et al.}2022c) SNN training VGG16 1479M  5x1 70.62%
ResNet18 1ism  Lx2 0 7688%=0.12
. 1x4 7883%+0.10
PIT (Ours) SNN training
ResNet19 12.70M 1x2 80.12%+0.10
esie : 1x4  81.59%= 0.09
STBP-tdBN (Zheng et al.]2021} SNN training ResNet34 2179M 6x1 63.72%
TET (Deng et al.[[2022) SNN training ResNet34 2179M  6x1 64.79%
GLIF (Yao et al.|[2022) SNN training ResNet34 21.79M 4x1 67.52%
DSR (Meng et al.[[2022) SNN training ResNet18 11.69M 50 x 1 67.74%
TEBN (Duan et al.][2022) SNN training ResNet34 2179M 4 x1 68.28%
. .. ResNet18 IT.6OM 6x1 63.10%
MS-ResNet (Hu et al.|[2024) SNN training ResNet34 2179M 6 x 1 69.42%
. . 7 .. ResNetI8 IT.6OM 4 x2 67.68%
Trainable Ternary Spike (Guo et al.||2024) SNN training ResNet34 2179M 4 x2 70.74%
R ] - ResNetI8 I1.6OM 4 x1 63.68%

. Real Spike (Guo et al.|[2022c) SNN training ResNet34 2179M 4 x 1 67.69%

i ResNet18 IT.6OM 4 x1 63.18%

> ResNet34 21.79M 4 x1 67.04%

& SEW ResNet (Fang et al.|2021a) SNN training ResNet50 2556M 4 x1 67.78%

g ResNet101 4455M  4x1 68.76%

- ResNet152 60.1I9M 4 x1 69.26%
Spike-Driven Transformer (Yao et al.[[2023a)  SNN training Spike-driven Transformer 16.8IM 4 x 1 72.28%
E-SpikeFormer (Yao et al.[]2025) SNN training E-SpikeFormer-S 51IM  1x4 75.30%

i ResNetI8 I1.6OM 1x4 69.39%+ 024

. ResNet34 2179M  1x4  72.66%=+ 0.27

PIT (Ours) SNN training -~ e ven Transformer T6.8TM T X 4 73.45% % 0.76
E-SpikeFormer-S 51IM 1x4  76.00%=+ 0.22

On the more challenging ImageNet-1k dataset, we incorporate our proposed PIT into the standard
SEW ResNet (Fang et al.,|2021a) architecture and compare it with state-of-the-art methods, including
BN-based approaches (STBP-tdBN (Zheng et al.| [2021), TEBN (Duan et al.,|2022)) and spike repre-
sentation enhancement methods (Real Spike (Guo et al.,[2022c)) and Trainable Ternary Spike (Guo
et al|[2024)). As reported in Table[2] by applying PIT to the SEW-ResNet18 and SEW-ResNet34
models, we achieve accuracy improvements of 6.21% and 5.62% over the baselines, respectively.
Notably, the SEW-ResNet34 integrated with PIT surpasses the classification accuracy of the 152-layer
SEW ResNet model, demonstrating the effectiveness and superiority of our method.

Results on neuromorphic datasets. Table[7]and Table [§]in Appendix [E|present the experimental
results on the CIFAR10-DVS and DVS-Gesture datasets, respectively. On the CIFAR10-DVS dataset,
when utilizing VGG11 under equivalent inference latency (I' x D = 10), our method surpasses
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Figure 3: Comparison of (a) training loss, (b) training accuracy, and (c) test accuracy on ImageNet-1k.

previous approaches aimed at improving spike representation, including Real Spike (Guo et al.,
2022c) and Trainable Ternary Spike (Guo et al., 2024), in terms of accuracy by 5.92% and 3.90%,
respectively. Moreover, as the quantization level D increases, the model’s classification performance
can be further improved. Similar conclusions can be drawn from the comparison in Table[§|on the
DVS-Gesture dataset.

4.2 ANALYSIS OF OPTIMIZATION DYNAMICS

Visualization of learning curves. To investigate the optimization procedure during the training stage,
we plot the learning curves of our methods and their vanilla counterparts on ImageNet-1k in Figure 3]
It is evident that the introduction of PIT facilitates rapid model convergence and ultimately achieves
higher performance. Specifically, the SEW-ResNet34 integrated with PIT (red line) converges rapidly
and eventually achieves a superior accuracy level (72.66%), closely matching its ANN counterpart
(ResNet34 (He et al.,|2016))), which achieves 73.31%.

Visualization of membrane potential distribution. We visualize the membrane potential distribution
after the last convolutional layer of VGG11 for vanilla LIF, I-LIF (Luo et al., 2024), and our PIT
on CIFAR10-DVS, as shown in Figure[d} The surface plot is smoothed using Gaussian filtering for
better visualization. We observe that vanilla LIF exhibits minimal discriminative ability for inputs at
different timesteps, showing uniform distributions along the temporal dimension. In contrast, both
I-LIF and our PIT demonstrate better temporal resolution. Notably, our PIT dynamically adjusts the
potential distribution for inputs at different timesteps, particularly at 7' = 3 and 7" = 4, highlighting
the ability of our method to better capture the temporal structure of the data stream.

s S S
= = =
c 05 | =4 It L / 035 £ 2
Lo 2 ™ 4 030 2 15
5o 5 03 ) o 5
03 | 025
[} 1 o 02} Ly ) 10
c 02| c 020 2
& 1 S o4 IS
5 01} 8 1 o1 S 0s
€ o0 € o0 010 [
[7] < [ R ~ > (7]
2 2 ¥ ol 3 00
1 > = "8
200 ~ 6 Q
Ry, 300 ~45.0®
"M, 400 3 4-‘(\3
7 a0 g2

Figure 4: Comparison of the membrane potential distribution after the last convolutional layer of
VGG11 for (a) vanilla LIF, (b) I-LIF, and (c) PIT on CIFAR10-DVS.

5 CONCLUSION

In this work, we introduced a parametric invertible transformation into neuronal dynamics to enhance
the spatiotemporal representations of SNNs. By further incorporating an input-distribution-aware
parametric strategy and a rectified surrogate gradient function into SNNs, we demonstrated state-of-
the-art performance across a broad range of tasks. Our theoretical analysis further provides insights
into the enhanced spatiotemporal representation and capacity of our approach, paving the way for
low-latency and high-accuracy neuromorphic computing systems.
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6 ETHICS STATEMENT

We acknowledge and adhere to the ICLR Code of Ethics in all aspects of this research. This paper
focuses on analyzing and expanding spatiotemporal representations of SNNs. In general, there are
no direct negative social impacts associated with this work. The SNNs studied in this paper are
dedicated to operating in an event-driven and spike-based computational paradigm, offering significant
potential for energy efficiency and contributing to the reduction of carbon dioxide emissions. The
method proposed in this work is applied to neuronal dynamics in a conjugate manner, enhancing the
SNNs’ spatiotemporal representations while preserving the advantages of the spike-driven inference
computational paradigm. This work provides a theoretical foundation for analyzing and improving
the spatiotemporal representation space and capacity of SNNs.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive documentation of all experi-
mental and theoretical components. The complete descriptions of datasets used in our experiments,
including detailed data processing steps and training configurations, are provided in Appendix [D] The
learning rules for our PIT method during backpropagation are thoroughly explained in Appendix
Complete proofs for all theoretical claims and theorems presented in the main text can be found in

Appendix
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Appendix

A IMPLEMENTATION OF SPIKE-DRIVEN INFERENCE

In this section, we illustrate the equivalence between real-valued training and binary spike-driven
inference using the reparameterization technique. This enables the SNN integrated with our PIT to
retain the advantages of spike-driven inference.

Reparameterization technique. Due to the introduction of our designed PIT, the output of spiking
neurons (as illustrated in Eq. (I0)) takes a real-valued form. This results in the multiplication of
weights and activations in the SNN being converted into MAC operations instead of AC operations,
thereby losing the computational efficiency advantage of SNNs. To address this issue, we follow a
training-inference decoupled technique (Guo et al.| [2022c; 2024}, which converts the real-valued
outputs into binary spikes during the inference stage while maintaining computational efficiency
through weight folding.

The key insight is that the PIT matrix Affl can be folded into the weight matrix of the next layer
through a reparameterization technique similar to that employed in Batch Normalization (loffe &
Szegedy, 2015)). This folding operation enables the preservation of spike-driven computation while
accommodating the real-valued intermediate representations during training.

Here, we take a fully connected layer as an example to illustrate the reparameterization technique.
For a fully connected layer, the inputs from the preceding layer are multiplied by a weight matrix to
produce the output features, which can be expressed as follows:

O =wlsl~1, (20)

where O! denotes the outputs of layer [ at time step ¢, and W represents the weight matrix associated
with layer /. For standard SNNs, the inputs si_l consists of binary values. While in our model, the
inputs are augmented by our introduced PIT, thus possessing the real-valued form. Recall the firing
operation in Eq. (I0), we have:

D
sffl = Afflclip (L(Ai71)71 ui711»07 D) = Af;l Z éf;l’ 2D
d=1

where éi[l denotes the output spikes generated by the vanilla Integrate-and-Fire neuron model
with Soft Reset (IF-SR) at time step d. Specifically, this involves feeding the IF-SR with the input

(Ai_l) - ui_l at the first time step, and subsequently subtracting 1 at each following time step until
D. This temporal dimension expanding strategy has also been validated by prior works (Luo et al.;
2024; Yao et al., [2025]).

In this manner, the calculation process during inference of Eq. (20) can be illustrated as follows:

D D
O =W'si ™' = W' (Af;l Zgg—l) = (w'Aaih) ) s (22)
d=1

d=1

By folding our PIT matrix, i.e., Ai_l, into the original weight matrix (W) of the SNN, the whole
model could maintain the spike-driven computational paradigm during the inference stage.

Layer-specific implementation details. The folding mechanism varies depending on the layer
architecture, and we provide specific implementations for the most commonly used layer types in
SNNG.

1. Fully connected layers: For a fully connected layer, the weight matrix of the I-th layer is W' €
RM*N ‘where N and M denote the input and output dimensions, respectively. Since Ai_l € RNXN,
the product W'AL~! € RM*N can be treated as a new weight matrix W' € RM*N ensuring the

spike-based inference paradigm. Importantly, Ai_l can be folded into the original weight matrix
regardless of whether it is diagonalized, providing flexibility in the PIT design.

2. Convolutional layers: For convolutional layers, assume that the convolution kernel of the [-th
layer is W' € RCin*KuwxEnxCout where C;, and C,,; denote the input and output channels,
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respectively, and K, and K, represent the kernel width and height. In practice, Aifl is typically set
to a diagonal form for computational efficiency, i.e., Ai_l = diag(ai_l), where ai_l € R%=. To
fold the PIT matrix into the convolution kernel, the diagonal elements affl are absorbed into the
channel dimension of W via the Hadamard product:

Wi . i=a bW, Vie{l,2,...,Cu}t,j€{1.2,...,Coul, (23)

iyishhJ
where W' represents the folded weight matrix and a' 7' denotes the i-th element of a. ',

This reparameterization ensures that during inference, the network operates with binary spikes while
preserving the representational space enhanced by the PIT during training. The folded weights W'
encapsulate both the original synaptic weights and the learned PIT parameters, enabling efficient
spike-driven computation without sacrificing the benefits of real-valued training.

B DETAILED DERIVATIONS OF LEARNING RULES DURING
BACKPROPAGATION

By utilizing the BPTT algorithm (Wu et al., [2018; [Neftci et al., [ 2019; Zenke & Vogels, 2021} |Lee
et al.| 2020), the gradients of weight parameters in the SNN can be calculated as follows:

oL ET: oL 0st dul ET: oL ast ,_,

Wi~ . 9l oul ™!

ot Aol 24
dst Quy OW & 24)

t=1

Recall the neuronal dynamics of the spiking neuron model integrated with PIT, which can be described
in discrete form as follows:

ul =l + Whsl (25)
sl = Alclip (L(Ag)‘l ul],0, D) : (26)
vl =l — s, 27)

According to the firing operation illustrated in Eq. (26), we have:
. -1
95! ) (Agchp (L(Ag) ul],0, D))

o((an) " u) o((4) " i)
al(Al) "l -
= Aéw sign (0 < (Aé) ! ui < D) ,
o((ah)™" ul)
where sign(-) denotes the sign function. To overcome the non-differentiable nature of the round

function in Eq. (28)), we calculate its derivative based on the distance between the input and the
decision boundary of the round function (as illustrated in Eq. (I3)):

A(A) " wl + 2 (0.5 sign (dis (A1) ul) ) dis ((4D) T up)), @9
o((4)" i)
where dis ((Aff) - ué) = (A}) Tl - L (A}) “"ul| — 0.5 that refers to the distance between the

input and the decision boundary of the round function. |-| represents the ceiling function. A denotes
the hyperparameter that controls the strength of the auxiliary rectifying term, which is set to 0.01 in
our experiments. Noting that the value of the distance variable dis falls within the range [—0.5, 0.5].

Thus, combining Egs. (28) and (29), we could deduce:
-1
o ost  0((4) ui)

= (1 +A (0.5 — sign (dis ((Aé)71 ui)) dis ((Ai)71 ui))) sign (0 < (Abi1 ul < D)
(30)

(28)
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Regarding the gradient of learnable parameters (i.e., A!) involved in our introduced PIT, we could
calculate it according to the chain rule as follows:

oL oL s
o= 2= %% 31
DAl ~ 0l DAL’ G1)

0 (clip (L(Aé)fl ul],0, D))
A (32)
= clip (L(Ai)_l uﬂ,O,D) — ((Ai)_l ué) sign <O < (Ai)_1 ul < D) .

dst
0Al

= clip (|(A}) " w/],0.D) + A}

Collectively, all learnable parameters in our model could be trained in an end-to-end manner by
utilizing the BPTT algorithm along with our designed surrogate gradient function.

C PROOF OF THEOREMS

Proposition 1. For a SNN with multi-bit spiking neurons emitting the output spike trains {st}le =
{sij | si €{0,--- ,D},Vje{l,--- ,N},ie{l,--- ,T}}, where T, N, and D denote the total
time step, hidden dimension, and quantization level, respectively, its corresponding spatiotemporal
representation space and representation capacity have the following form:

T N

Span {St}le = Z Z kjsl-j ‘ kj e R7 Sij e {O, e ,D} s (33)
i=1 j=1

Cap(Span {si},_,) = log(T - (D + 1)). (34)

Proof. For a SNN with multi-bit spiking neurons, at each time step ¢, its output spike s; consists of N
elements, each denoted as s;;, where j € {1,---, N}. According to Definition 1, the representation
space generated by NV linearly independent elements of s; has the following form:

N
Span{s:} = ijstj | kj €R,s¢5 €{0,---,D} ». (35)

j=1

Over T time steps, the spike trains {s;}7_, are aggregated. The spatiotemporal representation space
is therefore constructed by summing across all T" time steps:

T N
Span{st};f:l = szjs” | kj < R, Sij € {0, s 7D} . (36)

i=1 j=1

Here, the inner summation Z;\;l k;s;; represents the contribution of the N dimensions at time step

1. The outer summation ZiT=1 aggregates the contributions across 7" time steps. This establishes the
form of the spatiotemporal representation space in Eq. (33).

Next, we measure its representation capacity based on Definition 2. Specifically, we first calculate
the cardinality (dubbed Card) of its representation space, i.e., Span{s;}_;, which yields:

T N

Card(Span{s;}I_,) = sz-jsij | k; €R,s;5€{0,---,D} »|. 37)

i=1j=1

Given coefficients {k; };V: 1 in linear layers or convolutional kernels of the SNN, the cardinality of the
representation space is determined by the distinct values that {s;;} can take, given their quantization
level D. Each s;; is quantized to D + 1 discrete levels: {0,1,--- , D}. Across N dimensions, the
total number of possible combinations of {s;; }?;1 at a single time step i is (D + 1)V. Over T time
steps, each time step introduces a new combination of {s;; } é\le‘ Thus, the total number of distinct
configurations across 7" time steps is: 7' - (D + 1),
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Finally, taking the logarithm of the cardinality, the corresponding representation capacity is:

Cap(Span{s;}{_;) =log (T - (D +1)V). (38)

This establishes the expression for the representation capacity illustrated in Eq. (34).

Corollary 1. For a SNN with multi-bit spiking neurons, incorporating PIT generates the output spike
trains {Atst};l = {a;jsi; | aij € R, s €{0,---,D}}. The corresponding spatio-temporal
representation space and representation capacity of the SNN embedded with PIT can be described as:

T N

Span {Atst}thl = Zzaijkjsij |aij € Rk €R,s;5 € {0,---,D} 2, (39)
i=1 j=1
Cap(Span {Atst};‘il) =log(T - (D + 1)™). (40)

Proof. For a SNN with multi-bit spiking neurons, our introduced PIT extends the spike train {s;}7_;
by introducing parameters a;; € R, which are applied to each element s;;. The resulting transformed
spike trains are:

{AtSt}thl = {aijsij | aij ER,SU S {05 7D}7i€ {17 7T}>j S {17 7N}} (41)

PIT scales each spike value s;; by a real-valued parameter a;;, effectively expanding the representation
space by introducing additional degrees of freedom across spatial and temporal dimensions.

Based on Definition 1, aggregating over 7' time steps, its corresponding spatio-temporal representation
space of the model becomes:

T N
Span {Atst}thl = Z Zaijkjsij | ai; € R, k/’j € R, Si5 € {O, s ,D} . 42)

i=1 j=1
This establishes the form of the spatio-temporal representation space in Eq. (39).

According to Definition 2, its representation capacity is determined by the logarithmic scale of the
number of distinct elements in the set Span { A;s:};_,:

T N
Cap(Span {Atst};f:l) = log ZZaijkzjsij |aij € R,k €R, s €{0,---,D} »|. (43)
i=1 j=1
Given introduced parameters a;; in PIT and k; in linear layers or convolutional kernels of the SNN,
the cardinality of the representation space is determined by the distinct values that s;; can take, given
their quantization level D. Each s;; is quantized to D + 1 discrete levels: {0,1,---, D}. Across N
dimensions, the total number of possible combinations of {s;; };V: | atasingle time step i is (D +1)%.
Over T time steps, each time step introduces a new combination of {s;; } ;_v:l' Thus, the total number
of distinct configurations across 7" time steps is 7' - (D + 1),
Finally, taking the logarithm of the cardinality of the representation space, its representation capacity
yields:
Cap(Span {Atst}thl) =log (T-(D+1)V). (44)
This establishes the expression for the representation capacity in Eq. (40).

D EXPERIMENTAL SETTINGS

D.1 DATASETS

CIFAR-10 and CIFAR-100. The CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., [2009)
consist of 32x32 color images categorized into multiple classes. Specifically, CIFAR-10 comprises
60,000 images distributed across 10 classes, with 50,000 images allocated for training and 10,000
for testing, while CIFAR-100 contains images spanning 100 distinct classes. Both datasets have
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been preprocessed to achieve zero mean and unit variance. Image data augmentation techniques,
including AutoAugment (Cubuk et al.,|2019) and Cutout (DeVries & Taylor,|[2017), are employed,
following the methodologies outlined in prior studies (Guo et al., [2022a; Bu et al., 2022; |Wang et al.,
2023)). The pixel values are directly input into the model’s input layer at each timestep using a direct
encoding method (Rathi & Roy} 2021)). Following previous works (Huang et al.,|2024; |Zheng et al.,
2021} |Deng et al.| 2022)), the Spiking ResNet18 and ResNet19 are utilized as backbone models for
CIFAR-10 and CIFAR-100.

ImageNet-1k. The ImageNet-1k dataset (Deng et al.,|2009) consists of 1,281,167 training images
and 50,000 validation images, distributed across 1,000 distinct classes. The images in ImageNet-1K
are normalized to have zero mean and unit variance. During training, the images are randomly resized
and cropped to dimensions of 224x224 pixels, followed by horizontal flipping. For validation, the
images are first resized to 256x256 pixels and subsequently center-cropped to 224x224 pixels. Similar
to the methodology applied to the CIFAR datasets, the images are converted into temporal sequences
using direct encoding (Rathi & Roy, 2021}; [Fang et al., [2021a)). For performance comparison, the
SEW ResNet (Fang et al.,[2021a) architecture is used as the backbone model.

CIFAR10-DVS. The CIFAR10-DVS dataset (L1 et al.,|2017) is a neuromorphic dataset derived from
CIFAR-10 through conversion using a Dynamic Vision Sensor (DVS) camera. It comprises 10,000
event-based images with an expanded resolution of 128x128 pixels. The integration of events into
frames is performed using the SpikingJelly framework (Fang et al.,|2023). No data augmentation or
TEBN techniques (Duan et al., |2022)) are applied to the CIFAR10-DVS dataset. For performance
comparison, the Spiking-VGG11 (Huang et al.| [2024) architecture (referred to as VGG11) is adopted
as the backbone model.

DVS-Gesture. The DVS-Gesture dataset (Amir et al.,2017) is a neuromorphic dataset that captures
11 distinct gestures performed by 29 participants under three different lighting conditions. It contains
a total of 1,342 samples, with an average duration of 6.5 seconds per sample. The dataset is divided
into a training set with 1,208 samples and a test set with 134 samples. Following prior work (Fang
et al.,[2021b), the events are integrated into frames using the SpikingJelly framework (Fang et al.|
2023)). No data augmentation techniques are applied to the DVS-Gesture dataset, and the Spiking-
VGGL11 (Huang et al2024) (VGG11) architecture is employed as the backbone for performance
evaluation.

D.2 TRAINING SETUP

Training Details. Table [3|lists the key hyperparameters and configurations required for training
on the static datasets (CIFAR-10, CIFAR-100, ImageNet-1k), and neuromorphic datasets including
CIFAR10-DVS and DVS-Gesture. Our experiments on CIFAR-10, CIFAR-100, CIFAR10-DVS, and
DVS-Gesture datasets are conducted using NVIDIA GeForce RTX 3090 GPUs, each equipped with
24 GB of memory. The training process on ImageNet-1k is executed on eight NVIDIA RTX A6000
GPUs, each equipped with 48 GB of memory.

Table 3: Training hyperparameters and configurations.

CIFAR-10 CIFAR-100 ImageNet-1k  CIFAR10-DVS DVS-Gesture

Optimizer SGD SGD AdamW SGD SGD
Epoch 200 200 200 300 300
Learning rate le-1 le-1 Se-2 Se-2 Se-2
Batch size 128 128 256 128 16
Weight decay 5e-5 Se-4 Se-4 Se-4 Se-4
Momentum 0.9 0.9 - 0.9 0.9
Lr schedule Cosine Cosine Cosine Cosine Cosine
Loss function  Cross-entropy  Cross-entropy  Cross-entropy TET TET
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E MORE RESULTS

E.1 ABLATION STUDY

To investigate the impact of the proposed components on the model’s performance, we conducted
several ablation experiments on the CIFAR-10 dataset using ResNet18 as the backbone architecture.
To exclude the effects introduced by multi-bit spikes of the I-LIF neuron, we set 7' = 1 for the
vanilla ResNet18 and D = 1 for our model. As reported in Table[d] integrating PIT into the model
significantly improves its performance, with accuracy increasing from 86.73% to 91.34%, marking a
notable enhancement of 4.61%. Furthermore, by leveraging our proposed input distribution-aware
initialization strategy and gradient correction term, the model’s performance is further enhanced.
These results demonstrate that, under ultra-low latency conditions (7' = 1, D = 1), the introduction
of PIT significantly enhances the performance of SNNs. Furthermore, these performance gains are
not due to the use of multi-bit spikes but arise directly from the PIT itself.

Table 4: Comparison of different configurations of our proposed PIT using ResNet18 as backbone on
CIFAR-10.

Configurations Learnable PIT  Input-Distribution-Awared Init ~ Gradient Rectifying  Accuracy

ResNet18 X X X 86.73%
@) v X X 91.34%

(ii) v v X 92.53%
Ours v v v 93.23%

Table 5: Comparison of different configurations of LIF, I-LIF, and our proposed PIT on CIFAR-10.

Model Neuron Model Learnable PIT  Multi-bit Spikes Params 7T x D Accuracy

ResNetl8 LIF 11.6OM 4 x1 94.22%
ResNetl8 I-LIF 11.6OM 1 x4 94.83%
ResNetl8 I-LIF 11.6OM 4 x 1 95.34%
ResNetl8 I-LIF 11.6OM 1 x4 95.86%

WX X
WX A%

To compare the performance of our proposed PIT with LIF and I-LIF (Luo et al.,|2024)) under the
same inference latency, we conducted an additional ablation study using ResNet18 as the backbone
model on CIFAR10. The comparison results, as shown in Table 5] demonstrate that our proposed
PIT achieves a 1.12% improvement in accuracy compared to vanilla ResNet18 (LIF). Furthermore,
combining PIT with multi-bit spikes provides performance gains of 1.64% and 1.03% compared to
vanilla ResNet18 (LIF) and ResNet18 (I-LIF), respectively, further validating the effectiveness of our
proposed method.

E.2 COMPARISON OF ENERGY CONSUMPTION

In this section, we provide a detailed comparison of the energy cost between LIF, I-LIF (Luo et al.|
2024; Yao et al.} 2025), and our spiking neuron models based on Synaptic Operations (SynOps) and
Neuron Operations (NeuOps) incurred during neuron updates. SynOps consist of Accumulate (AC)
and Multiply-And-Accumulate (MAC) operations. Following previous studies (Han et al.| 2015;
Horowitz, 2014), we assume that the operations are performed using 32-bit floating-point arithmetic
under 45 nm CMOS technology, where an AC operation consumes 0.9 pJ and a MAC operation
consumes 4.6 pJ. We conduct an extended analysis of energy cost using ResNet18 as the backbone
model for the CIFAR10 dataset.

The results reported in the Table [6|demonstrate that our model (the last row) achieves lower energy
consumption. The energy efficiency of our model can be attributed to the PIT we introduced, which
dynamically adjusts the membrane potential distribution before firing and significantly reduces the
firing rate, as verified in Figure[6] Collectively, although our method introduces a small number of
additional MAC operations, our design minimizes overall energy consumption by reducing the firing
rates of spiking neurons.
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Table 6: Comparison of the energy cost for LIF, I-LIF, and our PIT using ResNet18 as the backbone
model on CIFAR10.

Model Input Resolution 7'x D ACs (M) MACs (M) Params (M) Energy (1J)
ResNet18 (LIF) 32x32x%x3 4x1 68.04 2.33 11.18 71.94
ResNet18 (I-LIF) 32x32x%x3 1x4 56.67 2.33 11.18 61.71
ResNet18 (PIT) 32x32x%x3 1x4 49.30 2.88 11.18 57.64

E.3 EXPERIMENTAL RESULTS ON CIFAR10-DVS

Table [/| reports the experimental results on the CIFAR10-DVS dataset. Compared to previous
approaches that focus on adjusting the membrane potential distribution before firing, such as
MPBN (Guo et al., [2023b)) and IM-Loss (Guo et al.| 2022a)), our method achieves superior per-
formance with a lower-parameter network architecture (VGG11) under the same equivalent timesteps.
Furthermore, compared to prior methods like Real Spike (Guo et al., 2022c)) and Trainable Ternary
Spike (Guo et al., [2024), integrating our method into VGG11 (T = 10, D = 1) achieves improve-
ments of 5.92% and 3.92%, respectively.

Table 7: Comparison with SOTA methods on CIFAR10-DVS. Our results are reported as averages
over three experimental runs with different random seeds.

Method Type Architecture  Params 7T x D Accuracy
STBP-tdBN (Zheng et al.|[2021) SNN training  ResNet19 12.70M 10 x 1 67.80%
PLIF (Fang et al.|[2021b) SNN training PLIF Net 373IM 20 x1 74.80%
MPBN (Guo et al.||2023b) SNN training ~ ResNet19 12.70M 10 x 1 74.40%
IM-Loss (Guo et al./[2022a) SNN training ResNet19 1270M 10 x 1 72.60%
Dspike (Li et al.||2021) SNN training  ResNet18 11.18M 10x 1 75.40%
TET (Deng et al.[[2022) SNN training VGG11 9.33M 10x1 77.33%
. e ] . ResNet19 12.70M 10 x 2 79.80%
Trainable Ternary Spike (Guo et al.||2024)  SNN training VGG11 933M 10 x 2 76.60%
. 3 .. ResNet19 1270M 10 x 1 72.85%
Real Spike (Guo et al.|[2022c) SNN training VGG16 472M 10 x 1 74.58%
PIT (Ours) SNN training VGGI1 933M 10x1 80.50%=+ 0.08

VGG11 933M 10x4 81.50%=+ 0.13

E.4 EXPERIMENTAL RESULTS ON DVS-GESTURE

To further evaluate the effectiveness of our method on neuromorphic datasets, we conducted experi-
ments on the DVS-Gesture dataset. The preprocessing steps followed the procedure outlined in prior
work (Fang et al., |2021b), with the data interpolated to 7" = 10 using the SpikingJelly framework
(Fang et al.l 2023). VGG11 was adopted as the backbone, consistent with previous work (Huang
et al.,[2024). As shown in Table B], it is evident that our method achieves state-of-the-art classification
accuracy under the same network architecture. Specifically, our method, i.e., VGG11 integrated
with PIT (T' = 20, D = 1), surpasses Real Spike (Guo et al.,2022c) by 2.02%. Moreover, VGG11
integrated with PIT (T = 20, D = 2) outperforms Trainable Ternary Spike (Guo et al.| 2024)) by
1.84%, demonstrating the effectiveness of our approach under equivalent inference timesteps.

Table 8: Comparison with SOTA methods on DVS-Gesture. Our results are reported as averages over
three experimental runs with different random seeds.

Method Type Architecture  Params 7T x D Accuracy
PLIF (Fang et al.|[2021b) SNN training PLIF Net 373IM 20 x 1 97.57%
CLIF (Huang et al.|[2024) SNN training VGGl11 933M 20x1 97.92%
Trainable Ternary Spike (Guo et al.|[2024)  SNN training VGGl11 9.33M 20 x2 96.42%
Real Spike (Guo et al.|2022c) SNN training VGGI11 933M 20 x1 96.21%

VGGl11 933M 20 x1 98.23%=+ 0.05

PIT (Ours) SNNtraining  yaG1; 933M  20x2  98.26%-+ 0.08
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Figure 5: Comparison of the loss landscape of (a, ¢) vanilla ResNet18 and (b, d) ResNet18 integrated
with PIT models in terms of 3D surface and 2D contour plots on CIFAR10.

E.5 EXTENDED VISUALIZATION OF LOSS LANDSCAPE

To evaluate the impact of the proposed PIT on the optimization procedure, we conducted a comparative
analysis of the loss landscape of our model against its vanilla counterpart. ResNet18 was employed
as the backbone architecture, with 7' = 1 and D = 1 set to exclude any effects introduced by the
multi-bit spikes of the I-LIF neuron. By utilizing the technique introduced by (2018), we
plot the 3D surface and 2D contour of the loss landscape of models in Figure[5] From Figure[5] we
could observe that the model integrated with PIT exhibits a markedly smoother loss landscape around
the local minima, which facilitates more stable and faster convergence during training.

E.6 EXTENDED VISUALIZATION OF FIRING RATES STATISTICS

To analyze the impact of our method on firing rates, we track the average firing rates of the ResNet18
integrated with PIT and its vanilla counterpart across each layer over time, as shown in Figure [f]
Specifically, the ResNet18 integrated with PIT exhibits lower average firing rates (purple line) and
demonstrates a descending trend with respect to the time step. In contrast, the vanilla ResNet18
tends to fire more frequently in later time steps and shows higher firing rates, particularly in the
earlier layers. This phenomenon can be attributed to the ability of our input-distribution-aware PIT to
dynamically adjust the potential distribution before the firing operation, which is absent in vanilla
spiking models.

E.7 EXTENDED VISUALIZATION OF PIT DISTRIBUTION ACROSS LAYERS
To inspect the evolving dynamics of our proposed PIT during the training stage, we use ResNet18

(T'= 1, D = 4) as the backbone and visualize the parameter distribution involved in PIT across
layers at the beginning of training and after convergence on CIFAR-10 and CIFAR-100 datasets, as
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Figure 6: Comparison of the firing rates statistics for (a) vanilla ResNet18 and (b) the ResNet18
integrated with PIT models on CIFAR10.
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Figure 7: Comparison of the parameter distribution in PIT across the layers of the ResNet18 integrated
with the PIT model at the first epoch (a) and the last epoch (b) on CIFAR10. Comparison of the
parameter distribution in PIT across the layers of the ResNet18 integrated with the PIT model at the

first epoch (c) and the last epoch (d) on CIFAR100.

illustrated in Figure[7] It can be observed that, at the beginning of training, the parameter distribution
of PIT is relatively concentrated. After convergence, the parameter distribution of PIT exhibits
significant inter-layer differences, demonstrating that PIT can dynamically learn and adjust according

to the features at different levels.
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F DISCUSSION ON THE STRUCTURE OF PIT

The conceptualization of PIT draws inspiration from the adaptive learning mechanisms inherent in
biological systems, particularly the mechanisms underlying neural plasticity and the modulation
of membrane potentials (Salaj et al., [2021). As evidenced by previous neuroscience findings,
neurons exhibit a remarkable ability to modify their neurophysiological characteristics in response to
dynamically changing environmental stimuli. This plasticity plays a critical role in enabling efficient
information encoding and processing, as it allows neurons to flexibly adjust their neuronal activities
and optimize their responses to external inputs.

In this work, to conserve parameters and memory, the transformation matrix of PIT is designed
in a diagonal form. However, in principle, it can adopt a more general structure. Specifically,
if the off-diagonal elements of the transformation matrix are non-zero, it indicates that a neuron
receives modulation signals (the sub-threshold voltages) of neighboring neurons before firing. This
design mimics the excitatory-inhibitory (E-I) balance observed in biological neural groups (Zhou
& Yu, [2018). Such a sub-threshold modulation mechanism could be effectively simulated by our
proposed PIT method. Additionally, neurons in biological systems may exhibit bursting behavior
when responding to complex stimuli, which can also be represented by applying our proposed PIT
after the firing operation. The design of integrating PIT into neuronal dynamics in a conjugate manner
encapsulates both adaptive regulation and efficient neural coding.

G THE USE OF LARGE LANGUAGE MODELS

In this paper, Large Language Models (LLMs) are only used for polishing and correcting grammatical
errors. Their usage does not affect the core methodology, scientific rigor, or originality of this
research.
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