
[Re] Subspace Attack: Exploiting Promising
Subspaces for Query-Efficient Black-box Attacks

Anonymous Author(s)
Affiliation
Address
email

Abstract

As part of the NeurIPS 2019 Reproducibility Challenge, we chose to attempt re-1

produce the attack algorithm proposed in “Subspace Attack: Exploiting Promising2

Subspaces for Query-Efficient Black-box Attacks”. Our reported results are better3

than the original paper in terms of the median number of queries per attack, but4

worse in terms of failure rate. A concise assessment of our implementation is also5

included.6

1 Introduction7

As the use of Machine Learning in services and applications has increased, it becomes important to8

assess its reliability and security. In the last few years, several flaws have been found in state-of-the-art9

Machine Learning methods and algorithms. One of the most studied flaws is the fact that many10

models can be attacked using the so-called adversarial examples, inputs that are minimally perturbed11

in order to be misclassified by the victim model.12

In this paper we attempt to reproduce the results obtained in the paper “Subspace Attack: Exploiting13

Promising Subspaces for Query-Efficient Black-box Attacks” by Yan and Guo et al. [1], published14

among the proceedings of NeurIPS 2019. In their paper, the authors present a new kind of black-box15

attack, that, for the first time, ensembles attacks’ transferability and gradient estimation for Projected16

Gradient Descent.17

Our report has been written for the NeurIPS 2019 Reproducibility Challenge1. It consists of a18

background about adversarial attacks (Section 2), our methodology (Section 3), and a concise19

reproducibility section (Section 4). These are followed by our results, discussion, and conclusions20

(Sections 5 to 7, respectively).21

2 Background22

2.1 Adversarial Examples23

Adversarial examples are inputs fed into a machine learning model and mislead the model to make24

an incorrect prediction. Several machine learning architectures have been proven to be vulnerable25

in adversarial settings, where the adversarial examples can be generated with several attacking26

techniques. Thus, the aim of an attack is to perturb an input x ∈ Rn and to trick a victim model27

f : Rn → Rk, such that it gives a wrong prediction, arg maxi f(x)i 6= y (where y the true label).28

This general definition describes the so-called untargeted attacks. A more specific type of attack is a29

targeted one, which aims for a wrong classification of a specific label y′ 6= y, arg maxi f(x)i = y′.30

1https://reproducibility-challenge.github.io/neurips2019/

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

https://reproducibility-challenge.github.io/neurips2019/

In general, adversarial attacks can be classified into two main types: white-box and black-box. While31

only the confidence score from the victim model is accessible to the latter, the former has full access32

to the network parameters of the victim. This allows for an efficient use of various gradient-based33

methods [2] to generate adversarial examples. This emphasises the attacker’s preference for the34

white-box models. However, it is not a realistic setting.35

Let us now consider the more realistic setting in which the attacker has no access to the trained36

victim model parameters. In this case, it is not possible to compute the gradient of the model with37

respect to the perturbed input. Nonetheless, several methods have been proposed to overcome this38

issue [3, 4, 5, 6, 7, 8, 9, 10, 11]. Some of these methods rely on the so-called adversarial example39

transferability [12], in which a surrogate model is trained with data samples labeled by the victim40

model, and is then used to generate adversarial examples that work on the victim model too. The41

other kind of methods make use of zeroth-order optimization methods (e.g. finite differences [5]) by42

querying the victim model to estimate the gradient of the victim model to run Projected Gradient43

Descent (PGD). A drawback of these methods is the need for a large number of queries for a good44

estimation of the victim model’s gradient. This motivates the attempt for reducing the required45

number of queries for a successful attack. The next subsection describes the solution proposed in [1],46

which harnesses the features of both zeroth-order optimization and transferability.47

2.2 Subspace Attack Algorithm48

In what follows, we present the essence of the subspace attack proposed in [1]. This will include an49

introduction to the principles of the Bandit attack proposed in [10], on which the subspace attack50

heavily relies.51

Given a classification loss function L(x, y), where x is some input and y its corresponding label. We52

can formulate the adversarial attack problem as follows:53

x′ = arg max
x′:‖x′−x‖p≤εp

L (x′, y) (1)

Let g∗ = ∇xL(x, y) be the gradient of L at (x, y), Then the goal of the gradient estimation problem54

is to find a unit vector ĝ that maximize the inner product E
[
ĝT g∗

]
2.55

In [10], the authors have proven that the gradient estimation problem can be considered as a bandit56

optimization problem. Bandit optimization is a tool used in online convex optimization, in which57

there is an agent playing a game that includes a sequence of rounds. During each round t, the58

agent must select an action and incurs in a loss Lt, whose expectation across all the rounds should59

be minimized. The main novelty introduced by [10] is the fact that the estimation is improved by60

accumulating prior information about gradients in a latent vector gt, that is updated each round with61

an estimation of the gradient of the victim model, performed via finite differences. In [10], each new62

basis vector ut used for the gradient estimation is randomly sampled from a Gaussian distribution.63

In the subspace attack proposal, the authors present a novel way to accumulate prior information64

about the gradient. Instead of using the full basis of the sample’s space to estimate the true gradient,65

a subspace of directions is chosen by using the gradients of some reference models. These models66

are pre-trained on the same dataset as the victim and their parameters are fully known. Each round67

of the bandit optimization uses the gradient of a randomly chosen reference model, with respect to68

the adversarial input, as a basis for the gradient estimation. Moreover, [1] proposes a way to apply69

different ratios of drop-out to the enrich the set of reference models.70

The method proposed by [1] is presented in Algorithm 1, which we report in our paper for the sake of71

clarity and ease of read.72

3 Methodology73

In this work, we implemented the subspace attack using PyTorch [13], following the algorithm74

specified in [1], without looking at the source code of the official implementation of the attack. We75

chose to evaluate the reproducibility of the algorithm by attempting to replicate untargeted subspace76

attacks on the GDAS [14] and WRN [15] models trained on the CIFAR-10 dataset [16]. We use77

2The expectation here is taken over the randomness of the estimation algorithm

2

Algorithm 1: Subspace Attack, as described in [1].
Input: A benign example x ∈ Rn, its label y, a set of m reference models {f0, ..., fm−1}, a

chosen attack objective function L(·, ·), and a victim model from which the output of f
can be inferred.

Output: An adversarial example xadv that fulfills ‖xadv − x‖∞ ≤ ε.
1: Initialize the adversarial example to be crafted xadv ← x.
2: Initialize the gradient to be estimated g← 0.
3: Initialize the drop-out/layer ratio p.
4: while not successful do
5: Choose a reference model whose index is i, uniformly at random.
6: Calculate prior gradient with drop-out/layer ratio p as u← ∂L(fi(xadv,p),y)

∂xadv

7: g+ ← g + τu, g− ← g − τu
8: g′+ ← g+/‖g+‖2, g′− ← g−/‖g−‖2
9: ∆t ←

L(f(xadv+δg
′
+),y)−L(f(xadv+δg

′
−),y)

τδ u
10: g← g + ηg∆t

11: xadv ← xadv + η · sign(g)
12: xadv ← Clip(xadv,x− ε,x + ε)
13: xadv ← Clip(xadv, 0, 1)
14: Update the drop-out/layer ratio p, following the original paper’s policy.
15: end while
16: return xadv

as reference models VGG-11/13/16/19 [17] and AlexNet [18]. In order to verify that we use the78

same settings – hyper-parameters and pre-trained models – as the original subspace experiments,79

we checked their log files and loaded the pre-trained models from their source code repository. The80

latter was also required since the available models by PyTorch are pre-trained on ImageNet, while81

our experiment uses images from CIFAR-10.82

Aiming to further assess the performance of our algorithm implementation, we added options to83

keep track of some values encountered during the attack. In addition to the required number of84

queries for a successful attack of each image classification, we recorded in each iteration the cosine85

similarity between the estimated gradient and the true gradient (as done in [10]), and the norms of86

these gradients. Moreover, as the subspace attack’s algorithm uses only the sign of the gradient, we87

also keep track of the ratio of the matching signs of the gradient elements with respect to the previous88

estimated gradient (denoted by the ratio of the common signs) and the true gradient (denoted by the89

ratio of the correctly estimated signs).90

Using the evaluation metrics of [1], an attack’s performance is being evaluated with respect to its91

failure rate and the number of queries. Since the distribution of the latter is heavy-tailed, we use the92

mean and the median number of queries per a successful attack.93

4 Reproducibility94

We first try to implement Algorithm 1 and run the experiment attacking GDAS. We used VGGNets95

and AlexNet as reference models and the hyper-parameters listed in [1] and [10]. We then expand our96

implementation to be used to attack WRN and Pyramidnet3, and look for better hyper-parameters.97

4.1 Machine Setup, experiment duration, and budget98

We run our experiment both on Google Cloud Platform and on Code Ocean [19]. The Ubuntu Virtual99

Machine on Google Cloud Platform has an Nvidia Tesla T4 GPU, 52 GB memory and 8 vCPUs. A100

set of 1000 attacks against GDAS using VGGs and AlexNet as reference models took us about 7h45m101

to run, with a total of $7.75 spent. On Code Ocean, the Virtual Machine we used runs Ubuntu on a102

4-cores CPU with 60 GB of memory and an Nvidia Tesla K80 GPU. As Code Ocean is a sponsor of103

the Reproducibility Challenge, we have been provided with free compute time to run the experiments.104

3An attack on Pyramidnet is implemented but we didn’t run such experiment due to large computation time.

3

A set of 1000 attacks against GDAS using VGGs and AlexNet as reference models took us about 9105

hours to run.106

Even though our reported results are produced using GPUs, our implementation can run on a CPU107

as well. This was tested on a laptop with Ubuntu, an Intel Core i7-7500U and 8GB memory. The108

computation time took about 6 times longer than a GPU (in terms of iterations per second). In109

addition, the results obtained could be different, due to differences in floating point precision and110

implementations of low-level operations4. Such results are outside of the scope of this challenge, and111

therefore not reported.112

4.2 Algorithm implementation113

The source code of our implementation is available online5. As mentioned in section 3, our imple-114

mentation is done using the PyTorch framework. We use the pre-trained reference and victim models6115

provided with the original paper’s code repository, along with their corresponding Python classes.116

The CIFAR-10 dataset is loaded using PyTorch’s torchvision.datasets, and is iterated using117

a DataLoader. The dataset is shuffled, but the seed can be fixed, for comparable results. In all118

our experiments, both PyTorch and NumPy seeds are set to 0, and the following values are set:119

torch.backends.cudnn.deterministic = True and torch.backends.cudnn.benchmark120

= False. Regarding the implementation of the attack itself, we leveraged PyTorch autograd capabili-121

ties to compute the gradient of the reference models.122

Two clipping procedures of the adversarial example are presented in lines 12 and 13 of Algorithm 1.123

While the former was implemented using PyTorch’s functions torch.min and torch.max, in order124

to keep xadv in the region included in [x− ε,x + ε] with `∞-norm, the latter was implemented using125

PyTorch’s torch.clamp, with 0 and 1 as arguments.126

Yan and Guo et al. specify the use of "the hinge logit-diff adversarial loss from Carlini and Wagner"127

[1]. In their paper [20], Carlini and Wagner list a number of possible loss functions that can be128

used along with a hinge term, which regulates the `∞-distance of the adversarial example from the129

original one. However, we did not manage to understand how to implement it as part of the subspace130

attack algorithm. So, we use the Cross Entropy loss without the hinge term. We understood from131

Algorithm 1 that the constraint into the admitted perturbation bounds is applied by the clipping step132

in line 12.133

4.3 Hyper-parameters and experiments settings134

The hyper-parameters used in a subspace attack7 are:135

• τ : the bandit exploration.136

• δ : the finite difference probe.137

• ηg: the OCO learning rate.138

• η : the image learning rate.139

• p : the dropout/layer ratio of the reference models.140

In [1], it is claimed that the used hyper-parameters were the same as those used in [10]. However, we141

have found out that the notation was different and a bit confusing. We reconstructed a translation in142

Table 1 by cross-referencing the notation used in Algorithm 1 of [1] and in Algorithms 1, 2 and 3143

of [10]. The reader should note that we have listed two letters as translations of the δ used in [1] –144

ε and η. This is due to the fact that, in Algorithm 2 of [10], an ε is used as finite difference probe,145

but in Table 3 of Appendix C of the same paper, where hyper-parameters values are listed, the finite146

difference probe is listed as “η (Finite difference probe)".147

To choose the hyper-parameters’ values, we have started from those stated in [1], which should be the148

same used in [10], excluding ε and η. However, as discussed in Section 6, we obtained results which149

4https://pytorch.org/docs/stable/notes/randomness.html
5https://github.com/epfl-ml-reproducers/subspace-attack-reproduction
6https://go.epfl.ch/subspace-pretrained
7For hyper-parameters, we use the same notation as [1]

4

https://pytorch.org/docs/stable/notes/randomness.html
https://github.com/epfl-ml-reproducers/subspace-attack-reproduction
https://go.epfl.ch/subspace-pretrained

Table 1: Translation between hyper-parameters in Subspace attack [1] and the bandit attack [10].
Subspace
Attack [1]

Bandit
Attack [10] Value [1]

Bandit exploration τ δ 1.0
Finite difference probe δ ε/η 0.1
Image `p learning rate η h 1/255
OCO learning rate ηg η 100

were far worse than those obtained in [1]. After exploring the published logs of the experiment8 we150

found out that in the original paper, a value of ηg = 0.1, instead of ηg = 100 was used. The set of151

hyper-parameters that yields the best results is presented in Table 2.152

Table 2: The set of Hyper-parameters which yield the best results.
Hyper-parameter Value
τ (Bandit exploration) 1.0
δ (Finite difference probe) 0.1
η (Image `p learning rate) 1/255
ηg (OCO learning rate) 0.01

The droupout was applied to the reference models, in the following procedure: each experiment starts153

with a 0.05 dropout ratio which is increased every iteration by 0.01, until a maximum ratio of 0.5 is154

reached.155

Finally, using the above settings, each experiment included untargeted attacks on the classification of156

1,000 images using a limit of 10,000 queries per attack – after which the attack is considered a failure.157

Moreover, we set a maximum perturbation of ε = 8/255, defined using `∞-norm.158

5 Results159

In this section, we present the assessment of our implementation as mentioned in Section 3, followed160

by a comparison of the effectiveness of our subspace attacks to those reported in the original paper.161

These results are discussed in Section 6.162

In order to evaluate the performance of our algorithm and its implementation, we saved the progression163

of the loss values along with the estimated and true gradients information of a set of 49 attacks164

on GDAS. We required each attack to complete 5,000 gradient estimation iterations, i.e. 10,000165

queries. Figures 1 and 2 present the mean value along the gradient estimation process of the following166

parameters:167

• the cross entropy loss of the victim model (Figure 1a)168

• the cosine similarity between the estimated and the true gradient (Figure 1b)169

• the ratio of correctly estimated gradient’s sign (Figure 2a)170

• the ratio of common signs between subsequent estimated gradients (Figure 2b)171

Having only a single failed attack in this run, its corresponding curve presents the exact value, while172

the rest of the curves present value averaged on the 48 successful attacks and 49 attacks overall. The173

fluctuations of the curves are a feature of the stochastic nature of the algorithm.174

In addition, we scanned the values of the ηg hyper-parameter. However, as presented in Table 3, it175

seems that ηg = 0.1 yields the best results in terms of a trade-off between failure rate and median176

number of queries. Our best results of the different attack experiments are compared with the two177

baselines [1, 10] in Table 4. There, it is demonstrated that while our implementation managed to get178

similar mean and better median numbers of queries as the subspace attack paper, it leads to higher179

failure rates with respect to the baselines.180

8https://go.epfl.ch/subspace-original-logs

5

https://go.epfl.ch/subspace-original-logs

0 1000 2000 3000 4000 5000
Iteration

0

2

4

6

8

10

Cr
os

s E
nt

ro
py

 lo
ss

 o
f t

he
 v

ict
im

 m
od

el
Overall attacks
Successful attacks
Failed attacks

(a) Cross Entropy loss

0 1000 2000 3000 4000 5000
Iteration

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

Co
sin

e
sim

ila
rit

y

Overall attacks
Successful attacks
Failed attacks

(b) Cosine similarity

Figure 1: The mean value of the Cross Entropy loss of the true victim model (a) of cosine similarity between the
estimated and the true gradient (b) as a function of the estimation iteration in our Subspace Attack implementation.
The results of the successful attacks, the failed attacks, and all the attacks were averaged over 48, 1, and 49
attacks respectively.

0 1000 2000 3000 4000 5000
Iteration

0.25

0.30

0.35

0.40

0.45

0.50

Co
rre

ct
ly

 e
st

im
at

ed
 si

gn
s r

at
io

Overall attacks
Successful attacks
Failed attacks

(a) Correctly estimated signs

0 1000 2000 3000 4000 5000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Su
be

qu
en

t c
om

m
on

 si
gn

s r
at

io

Overall attacks
Successful attacks
Failed attacks

(b) Common signs between estimated gradients

Figure 2: The mean value of the ratio of correctly estimated signs (a), and the ratio of the common signs
between two subsequent estimated gradients (b) as a function of the estimation’s iteration in our Subspace Attack
implementation. The results of the successful attacks, the failed attacks, and the all the attacks were averaged
over 48, 1, and 49 attacks respectively.

Table 3: Comparison between the results obtained with different ηg .
Victim ηg Mean Queries Median Queries Failure Rate

WRN 0.01 369 16 3.2%
0.1 321 16 3.4%
100 288 12 10.1%

GDAS

0.001 263 18 6.3%
0.01 321 20 5.9%
0.1 282 18 6.7%
100 354 16 12.7%

Table 4: Comparison between the results obtained by our implementation and those of the original paper [1]
and of [10]. For the results obtained with the other implementations we report the results presented in [1]. In ηg
for the results obtained by the original paper we state 0.1* as this is the value we found in their logs, and not the
one stated in their paper.

Victim Model Method Ref. Models ηg Mean Queries Median Queries Failure Rate

WRN
Bandit-TD [10] - 100 713 266 1.2%

Subspace Attack [1] AlexNet+VGGNets 0.1* 392 60 0.3%
Subspace Attack (Ours) AlexNet+VGGNets 0.1 330 14 3.7%

GDAS
Bandit-TD [10] - 100 373 128 0.0%

Subspace Attack [1] AlexNet+VGGNets 0.1* 250 58 0.0%
Subspace Attack (Ours) AlexNet+VGGNets 0.1 282 18 6.7%

6

6 Discussion181

The trends of the mean values of the loss and the cosine similarity (Figures 1a and 1b) confirms182

that our implementation is indeed efficiently attacking the victim model, as the loss is increased,183

and the directional agreement between the estimated and the true gradient improves. Furthermore,184

the obtained results of cosine similarity exceed the ones presented in [10], since our successful185

attacks demonstrate twice the cosine similarity than those reported in the reference, in the first 5,000186

iterations.187

Regarding the percentage of correctly estimated signs, we see in Figure 2a that the successful188

attacks achieved a mean ratio of correctly estimated signs of about 55%. This is only slightly above189

the agreement expected by a randomly chosen vector (50%). However, the success of the attacks190

suggests that we are indeed exploiting the reference models to estimate only the gradient components191

corresponding to the most relevant subspaces used for the classification, as aimed in [1, 10]. Clearly,192

the reason why the failed attack did not succeed is the inability to correctly estimate the signs.193

Furthermore, we can observe in Figure 2b that the signs of the gradients almost stop changing after194

the very first few iterations. This leads us to think that the correctly estimated signs are always the195

same, and could correspond exactly to the most relevant subspaces.196

Keeping the guiding rule of [1], we use the hyper-parameters of [10], excluding ε and η. As we197

are performing attacks that make use of `∞-norm, we should use ηg = 100. This yields worse198

results, as seen in Table 3. Information extracted from the logs of the subspace paper mention the199

use of ηg = 0.1. The fact that our use of ηg = 0.1 also result with better results indicates that our200

implementation is close to the original one.201

Comparing our results to those of the original paper, we notice that while we managed to reduce the202

computational cost of the attacks, we couldn’t reach the reported failure rates of either the original203

paper or the Bandit attack. Even though we verified that we followed every step of the algorithm,204

checked for differences in input models and hyper-parameters, we couldn’t improve our produced205

failure rates. It could be that the source of the problem lies in the inconsistency of the implementation206

of the loss function of [20].207

7 Conclusion208

In this work, we re-implemented the algorithm of the subspace black-box adversarial attack presented209

by Yan et al. [1], and introduced methods for the evaluation of its performance. However, we didn’t210

manage to match our effectiveness to that of the original paper. In terms of the reproducibility of [1],211

it is advisable for the authors to include a clearer statement regarding the used set of hyper-parameters.212

In addition, when relying on settings from another work, a corresponding mapping of the notation213

changes can be highly beneficial. Moreover, additional information about the used loss function214

could be helpful to replicate the obtained results.215

Acknowledgments216

The authors would like to thank the NeurIPS Reproducibility Challenge sponsor Code Ocean [19],217

for providing them with additional compute time for free.218

7

References219

[1] Y. Guo, Z. Yan, and C. Zhang, “Subspace attack: Exploiting promising subspaces for220

query-efficient black-box attacks,” in Advances in Neural Information Processing Systems 32,221

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds.222

Curran Associates, Inc., 2019, pp. 3820–3829. [Online]. Available: http://papers.nips.cc/paper/223

8638-subspace-attack-exploiting-promising-subspaces-for-query-efficient-black-box-attacks.224

pdf225

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,226

“Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.227

[3] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical black-228

box attacks against machine learning,” in Proceedings of the 2017 ACM on Asia conference on229

computer and communications security. ACM, 2017, pp. 506–519.230

[4] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial examples and231

black-box attacks,” arXiv preprint arXiv:1611.02770, 2016.232

[5] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order optimization233

based black-box attacks to deep neural networks without training substitute models,”234

in Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,235

ser. AISec ’17. New York, NY, USA: ACM, 2017, pp. 15–26. [Online]. Available:236

http://doi.acm.org/10.1145/3128572.3140448237

[6] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks with limited238

queries and information,” arXiv preprint arXiv:1804.08598, 2018.239

[7] N. Narodytska and S. Kasiviswanathan, “Simple black-box adversarial attacks on deep neural240

networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops241

(CVPRW). IEEE, 2017, pp. 1310–1318.242

[8] A. N. Bhagoji, W. He, B. Li, and D. Song, “Practical black-box attacks on deep neural networks243

using efficient query mechanisms,” in European Conference on Computer Vision. Springer,244

2018, pp. 158–174.245

[9] C.-C. Tu, P. Ting, P.-Y. Chen, S. Liu, H. Zhang, J. Yi, C.-J. Hsieh, and S.-M. Cheng, “Autozoom:246

Autoencoder-based zeroth order optimization method for attacking black-box neural networks,”247

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 742–749.248

[10] A. Ilyas, L. Engstrom, and A. Madry, “Prior convictions: Black-box adversarial attacks with249

bandits and priors,” ICLR 2019, 2018. [Online]. Available: https://arxiv.org/abs/1807.07978250

[11] C. Guo, J. R. Gardner, Y. You, A. G. Wilson, and K. Q. Weinberger, “Simple black-box251

adversarial attacks,” arXiv preprint arXiv:1905.07121, 2019.252

[12] N. Papernot, P. D. McDaniel, and I. J. Goodfellow, “Transferability in machine learning: from253

phenomena to black-box attacks using adversarial samples,” CoRR, vol. abs/1605.07277, 2016.254

[Online]. Available: http://arxiv.org/abs/1605.07277255

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,256

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,257

S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative258

style, high-performance deep learning library,” in Advances in Neural Information Processing259

Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,260

Eds. Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.261

cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf262

[14] X. Dong and Y. Yang, “Searching for a robust neural architecture in four gpu hours,” in263

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),264

2019, pp. 1761–1770.265

[15] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint arXiv:1605.07146,266

2016.267

[16] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,”268

University of Toronto, Tech. Rep., 2009.269

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image270

recognition,” arXiv preprint arXiv:1409.1556, 2014.271

8

http://papers.nips.cc/paper/8638-subspace-attack-exploiting-promising-subspaces-for-query-efficient-black-box-attacks.pdf
http://papers.nips.cc/paper/8638-subspace-attack-exploiting-promising-subspaces-for-query-efficient-black-box-attacks.pdf
http://papers.nips.cc/paper/8638-subspace-attack-exploiting-promising-subspaces-for-query-efficient-black-box-attacks.pdf
http://papers.nips.cc/paper/8638-subspace-attack-exploiting-promising-subspaces-for-query-efficient-black-box-attacks.pdf
http://papers.nips.cc/paper/8638-subspace-attack-exploiting-promising-subspaces-for-query-efficient-black-box-attacks.pdf
http://doi.acm.org/10.1145/3128572.3140448
https://arxiv.org/abs/1807.07978
http://arxiv.org/abs/1605.07277
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional272

neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.273

[19] A. Clyburne-Sherin, X. Fei, and S. A. Green, “Computational reproducibility via containers in274

social psychology,” Meta-Psychology, vol. 3, 2019.275

[20] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017276

IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp. 39–57.277

9

	Introduction
	Background
	Adversarial Examples
	Subspace Attack Algorithm

	Methodology
	Reproducibility
	Machine Setup, experiment duration, and budget
	Algorithm implementation
	Hyper-parameters and experiments settings

	Results
	Discussion
	Conclusion

