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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has proven effective in training
large reasoning models (LRMs) by leveraging answer-verifiable signals to guide policy
optimization, which, however, suffers from high annotation costs. To alleviate this prob-
lem, recent work has explored unsupervised RLVR methods that derive rewards solely
from the model’s internal consistency, such as through entropy and majority voting. While
seemingly promising, these methods often suffer from model collapse in the later stages of
training, which may arise from the reinforcement of incorrect reasoning patterns in the ab-
sence of external supervision. In this work, we investigate a novel semi-supervised RLVR
paradigm that utilizes a small labeled set to guide RLVR training on unlabeled samples.
Our key insight is that supervised rewards are essential for stabilizing consistency-based
training on unlabeled samples, ensuring that only reasoning patterns verified on labeled
instances are incorporated into RL training. Technically, we propose an effective policy
optimization algorithm TRAPO that identifies reliable unlabeled samples by matching
their learning trajectory similarity to labeled ones. Building on this, TRAPO achieves re-
markable data efficiency and strong generalization on nine advanced benchmarks. With
only 1K labeled and 3K unlabeled samples, TRAPO reaches 42.6% average accuracy,
surpassing the best unsupervised method trained on 45K unlabeled samples (38.3%). No-
tably, when using 4K labeled and 12K unlabeled samples, TRAPO even outperforms the
fully supervised model trained on the full 45K labeled samples on all benchmarks, while
using only 10% of the labeled data.

Original Models Unsupervised RLVR Semi-supervised RLVR

Figure 1: Performance overview. (Left) TraPO surpasses fully supervised RLVR (45K samples) using just
10% (4K) annotated data. (Right) TraPO scaling law: performance improves consistently with increasing
sample sizes and varying annotation ratios. We only show the changes with a sample size at a 25% annotation
rate in the figure; for other specific results, please see Table 12 in the Appendix.
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1 INTRODUCTION

The reinforcement learning with verifiable rewards (RLVR), pioneered by DeepSeek-R1 (Guo et al., 2025),
has significantly advanced the development of large reasoning models (LRMs). In typical RLVR (Shao et al.,
2024; Liu et al., 2025; Yu et al., 2025; Zheng et al., 2025), questions from a training corpus are fed into an
LRM, which then generates multiple reasoning paths (rollouts) per input. Rewards are computed based on
verifiable rules: most commonly, whether the final answer in a response matches the ground-truth label.
By leveraging such an answer-verifiable structure, RLVR enables reward assignment through group-based
advantage estimation, guiding the model to explore reasoning paths that lead to the correct final answer.

However, when scaling to large corpora, the reliance of this reward paradigm on gold-standard labels incurs
prohibitively high annotation costs, making it difficult to generalize to specialized domains where ground-
truth answers are scarce or expensive to obtain, such as medicine and finance (Wang et al., 2024b). To
address this challenge, recent work has explored unsupervised RLVR methods (Zhang et al., 2025a; Zhao
et al., 2025; Agarwal et al., 2025; Li et al., 2025a; Zuo et al., 2025; Zhang et al., 2025a) that aim to eliminate
dependence on external supervision directly. These approaches are grounded in the observation that LRMs
have already internalized substantial knowledge during pretraining (Ye et al., 2025); thus, the goal shifts
from learning factual correctness to eliciting latent reasoning capabilities through self-guided exploration.
In this framework, rewards are computed based on intrinsic signals such as self-certainty (Zhao et al., 2025),
entropy (Agarwal et al., 2025), or majority voting (Zuo et al., 2025), to encourage high-confidence and
consistent outputs. Despite their promise, these unsupervised methods often fail to capture valid reasoning
patterns and tend to reinforce incorrect consensus, leading to severe performance degradation in late training.
This drawback can be attributed to the absence of external ground truth: the reward signal becomes self-
reinforcing and prone to reinforcing systematic biases, leading to a degenerate feedback loop.
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Figure 2: Comparison between different RLVR training paradigms.

Analogous to human learning,
unsupervised RLVR resembles a
student solving problems based
solely on current beliefs, treating
the most confident answer as the
ground truth. When incorrect, re-
peated reinforcement of the same
reasoning path entrenches errors,
leading to failure on both the cur-
rent and related tasks. To break
this vicious cycle, humans typi-
cally learn from a few well-solved
examples with verified solutions
to establish a correct conceptual
foundation, then generalize via analogical reasoning. Therefore, we hypothesize that LRMs possess a sim-
ilar property: a small number of verifiable labeled samples can enable LRMs to generalize patterns from
larger amounts of unlabeled corpora. Inspired by this process, we propose a Semi-supervised RLVR (SS-
RLVR) paradigm that takes advantage of a small set of labeled examples to anchor the reward signal, guiding
the model toward reliable reasoning patterns and allowing more robust self-improvement.

Although promising in principle, our experiments show that simply combining supervised and unsupervised
RLVR algorithms delivers only marginal benefits. For example, when combined with 3K entropy-based
unlabeled RLVR training, the 1K supervised baseline only improves 0.6% accuracy. We argue that such
failure stems from the neglect of internal links between labeled and unlabeled sets. In other words, only
those reasoning patterns that are verified on labeled instances should be incorporated into RL training, and
labeled data should be used as role models (Tarvainen & Valpola, 2017) to guide robust learning on unla-
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Figure 3: TRAPO is the first semi-supervised RLVR training framework to dynamically select reliable
unlabeled samples throughout the training process based on pass rate trajectory matching.

beled instances, as shown in Figure 2. Based on this key insight, we propose TRAPO (Trajectory-based
Policy Optimization), which measures the similarity between unlabeled and labeled samples in terms of their
pass rate trajectories and uses this alignment as a criterion to select unlabeled samples with reliable pseudo-
supervision for training. Experimental results demonstrate that TRAPO, trained with only 1K labeled and
3K unlabeled samples, achieves a 4.3% improvement in in-domain performance over the strongest unsu-
pervised baseline (trained on 45K unlabeled samples), 2.6% over the best naive semi-supervised method,
and 3.2% over the supervised baseline (trained on 1K labeled samples). Notably, with 4K labeled and 12K
unlabeled samples, TraPO surpasses the fully supervised model trained on all 45K labeled samples across
all benchmarks, using only 10% of the labeled data (see Figure 1, left). The scaling law for TraPO (Figure
1, right) further demonstrates that with increased data and a labeling ratio (e.g, 25%), TraPO achieves or
approaches fully supervised performance without extra labels. These results strongly demonstrate TRAPO’s
ability to balance data efficiency and learning effectiveness.

2 RELATED WORK

Semi-supervised Learning leverages both labeled and unlabeled data to improve model performance, typ-
ically by exploiting data structure (Chapelle et al., 2009; Rasmus et al., 2015) or consistency assumptions
(Laine & Aila, 2016; Berthelot et al., 2019; Xie et al., 2020; Sohn et al., 2020). In traditional classification
tasks, outputs are drawn from a shared discrete label space, enabling effective label propagation via feature
similarity. However, in RLVR, each input has an instance-specific solution space, where “correct” outputs
vary significantly across examples. This makes direct alignment of unlabeled samples with labeled ones
through standard similarity-based methods impractical, posing a key challenge in bridging labeled and un-
labeled data for RLVR. Thus, in this paper, we turn from what the model learns to how it learns and employ
the pass rate change trajectory as a medium to bridge the gap.

Unsupervised RLVR has proven effective for aligning reasoning models in domains with executable or ex-
act feedback, such as math and code (Hu et al., 2025; Guo et al., 2025; Shao et al., 2024), using deterministic,
rule-based reward verifiers (Jaech et al., 2024). However, its reliance on outcome supervision limits applica-
bility to tasks lacking clear ground truth. Recent work explores Unsupervised RLVR, which uses intrinsic,
self-generated signals to enable reward-free training. Methods include self-rewarding via judgment prompt-
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ing (Wu et al., 2024; Yuan et al., 2024; Xiong et al., 2025) or ensemble heads (Wang et al., 2024c; Zhou et al.,
2025), though often costly for online use. More scalable approaches leverage lightweight signals—such as
entropy (Agarwal et al., 2025), self-confidence (Li et al., 2025a), or majority voting (Zuo et al., 2025)—to
guide online policy updates (Zhang et al., 2025a; Zhao et al., 2025). However, purely unsupervised training
risks model collapse due to biased or noisy signals reinforcing incorrect behaviors (Zhang et al., 2025c;b).
Our work builds on this line by introducing a semi-supervised framework that anchors learning with labeled
data to correct intrinsic signals, improving stability and generalization.

Reasoning Data Selection is a critical step in training LRMs, which can be broadly categorized into external
and internal approaches. External methods rely on auxiliary resources such as human annotations (Li et al.,
2022), knowledge bases (Nguyen et al., 2024), or proxy models (He et al., 2025a) to evaluate correctness and
confidence, but suffer from limited applicability due to dependency on external resources (Bi et al., 2025). In
contrast, internal methods leverage model-internal signals, such as output probabilities (Plaut et al., 2024),
semantic entropy (Kuhn et al., 2023), hidden representations (Wang et al., 2024a), or reward changes (Li
et al., 2025b) to estimate data quality in a label-free manner. Nevertheless, such metrics do not reflect the
fundamental characteristics of data that are most beneficial for model learning. In this work, we go beyond
superficial indicators by probing the intrinsic learning dynamics of the data, thereby identifying unlabeled
instances that genuinely contribute to effective and robust model training.

3 METHOD

In this section, we present our semi-supervised reinforcement learning paradigm, which uses limited labeled
data to guide reliable policy learning on large-scale unlabeled data. In Section 3.1, we discuss the limita-
tions of supervised and unsupervised RLVR, and highlight the motivation for semi-supervised RLVR. In
Section 3.2, we explore the bridge between labeled and unlabeled data, propose a trajectory-based method
to select reliable rewards and provide theoretical analysis on generalization.

3.1 SEMI-SUPERVISED REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Supervised RLVR. In traditional RLVR, we assume access to a large labeled dataset Dl = {(qi, yi)}Nl
i=1,

where each sample consists of a question qi and its corresponding verifiable ground-truth answer yi. For
each question qi, we input it into a policy model πθ to generate G candidate outputs, denoted as {τ ji }Gj=1.
Given the ground-truth answer yi as a supervision, we assign rewards to the generated responses based on
whether they derive the correct answer. Specifically, we define a binary reward function that evaluates the
final extracted answer from each output τ ji :

R(τ ji , yi) = I(τ ji , yi) =
{
1 if aji = yi,

0 otherwise.
(1)

Here, aji = extract(τ ji ) denotes the answer extracted from the generated response τ ji , such as the content
within boxed delimiters (e.g., \boxed{·}). With the ground-truth answers yi serving as explicit guidance
signals, this Supervised RLVR paradigm reinforces only the responses that yield the correct answers; the pol-
icy model πθ is gradually steered toward discovering valid and consistent reasoning paths, thereby enabling
stable and scalable policy optimization.

Unsupervised RLVR. Although supervised RLVR has achieved great success, its reliance on golden an-
swers yi incurs high annotation costs. To address this, the community has explored unsupervised RLVR
techniques that rely solely on unlabeled data Du = {qi}Nu

i=1. Under this setting, the absence of golden an-
swers necessitates the use of proxy rewards Ru(τ

j
i ) that estimate R(τ ji , yi) based on the model’s confidence

4
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or consensus conf(·). A widely adopted method is majority voting, where the reward is defined as:

Ru(τ
j
i ) = conf(πθ(τ

j
i | qi)) = I(aji = MAJ(a1i , a

2
i , · · · , aGi )) (2)

where MAJ(·) denotes the pseudo-label ỹ obtained by majority answer among G rollouts. This approach ef-
fectively treats the most frequently generated answer as the pseudo-label, providing a form of self-supervised
signal. Beyond majority voting, Zhao et al. (2025) use self-certainty, Agarwal et al. (2025) use token-level or
sequence-level entropy as a proxy for confidence, and compute rewards accordingly. Fundamentally, these
methods are based on a key assumption: higher confidence implies a greater probability of producing the
correct answer, and thus the higher the reward it should receive.

However, this assumption breaks down when the proxy reward diverges from actual correctness. Take the
majority voting as an example, if the majority answer is not the correct answer, i.e., MAJ(a1i , · · · , aGi ) ̸= yi,
then the incorrect responses are reinforced. This creates a dangerous feedback loop: the policy becomes
more confident in the wrong answer, leading to even stronger wrong consensus in subsequent iterations.
Over time, the model converges to a state where it confidently produces incorrect outputs.

Semi-supervised RLVR. To break this vicious loop induced by the absence of grounded feedback, we
hypothesize that we must introduce labeled examples to anchor the reward to ground truth. Formally, we
adopt a hybrid reward function that computes rewards differently for labeled and unlabeled data:

Rsemi(τ
j
i ) =

{
R(τ ji , yi), if (qi, yi) ∈ Dl,

Ru(τ
j
i ), if qi ∈ Du.

(3)

Here, labeled data are used to compute rewards under supervision from the ground-truth labels yi, while
unlabeled data can adopt any self-consistency-based reward we have stated previously. Since the reward
R(τ ji , yi) of labeled data is independent of the model’s consensus, this training paradigm introduces a cru-
cial distinction between correctness (alignment with ground truth) and self-consistency (internal agreement
among outputs), thereby preventing the policy from reinforcing incorrect but internally consistent outputs.

The design of our Semi-supervised RLVR framework stems from the inherent trade-off between data effi-
ciency and learning effectiveness. Compared to unsupervised variants, SS-RLVR effectively guides robust
learning on unlabeled instances by using labeled data as a reliable anchor. In contrast to fully supervised
approaches, it significantly reduces the need for costly annotation—our experiments show that SS-RLVR
achieves performance close to supervised learning using only 25% of the labeled data. In practice, this
trade-off not only directly reduces the annotation burden, but also enables high-quality data synthesis within
iterative refinement pipelines, thereby improving data quality over time. This makes SS-RLVR particularly
attractive for domains where labeled data is scarce or expensive to obtain, such as medicine and finance.

3.2 PROGRESSIVE TRAJECTORY GUIDANCE FOR BRIDGING LABELED AND UNLABELED DATA

Despite its promise, we show that a trivial baseline that simply combines supervised and unsupervised
RLVR algorithms delivers only marginal benefits. For example, when supplemented with 3K entropy-based
unlabeled RLVR training, the 1K supervised baseline achieves merely a 0.6% accuracy improvement. This
suggests that such a naive strategy remains constrained by the internal signals of LRMs and suffers from the
internal ungrounded reasoning patterns. Thus, SS-RLVR must move beyond shallow integration and instead
uncover the deeper intrinsic relationships between labeled and unlabeled data. In particular, the key is to
exploit those reasoning patterns in unlabeled data that can be externally validated by labeled examples. To
achieve this goal, it is required to identify a shared, meaningful signal that transcends the heterogeneity of
solution spaces and reliably reflects the model’s ability to transfer knowledge from labeled to unlabeled data.

In this work, we propose TRAPO (Trajectory-based Policy Optimization), which leverages the learning
dynamics of LRMs across training steps as a proxy to connect labeled and unlabeled data, as shown in
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Figure 3. Specifically, at each step t, TRAPO computes the pass rate for each training point. We then
identify those unlabeled samples whose pass rate trajectories closely align with those of labeled samples
as reliable data, which means that their reasoning patterns can be externally validated by the labeled set. In
other words, we hypothesize that when an unlabeled sample is well-learned, its pass rate trajectory should
exhibit trends consistent with those observed in labeled data. Naturally, since pass rates cannot be directly
computed for unlabeled data, we introduce a pseudo–pass rate approximation to serve as a proxy. Formally,
for a question q at epoch t, the (pseudo) pass rate is defined as the fraction of generated responses that satisfy
the expected answer criteria:

P (t)
q =

{
1
G

∑G
i=1 I(a

(t)
i = ỹ

(t)
i ), q ∈ Du,

1
G

∑G
i=1 I(a

(t)
i = y), q ∈ Dl,

(4)

Then, we define the pass rate trajectory of question q as the sequence of its pass rates across training epochs:

T(t)
q =

[
P (1)
q , P (2)

q , . . . , P (t)
q

]
∈ [0, 1]t, (5)

initialized as T(0)
q = [ ] and updated iteratively via concatenation: T(t)

q = T
(t−1)
q ⊕ P

(t)
q , where ⊕ denotes

sequence concatenation. We maintain a reliable pass rate databaseDreliable, initialized with all labeled sample
trajectories: D(0)

reliable = {Tl | l ∈ Dl} . Reliably pseudo-labeled trajectories from unlabeled data selected in
subsequent steps are added to update this database. The average trajectory of this database, T̄(t)

reliable =
1

|Dreliable|
∑

T∈Dreliable
T, serves as a trusted reference for assessing the reliability of unlabeled samples based

on trajectory alignment. Then we compute a trajectory-based cosine similarity (TCS) as:

TCS(T(t)
u , T̄

(t)
reliable) = T̂(t)

u · ˆ̄T
(t)
reliable =

t∑
j=1

P̂ (j)
u · ˆ̄P (j)

reliable (6)

where P̂
(j)
u =

P (j)
u√∑t

i=1(P
(i)
u )2

and ˆ̄P
(j)
reliable =

P̄
(j)
reliable√∑t

i=1(P̄
(i)
reliable)

2
are the normalized pass rate of the unlabeled

sample and the reliable database, respectively.

To select the reliable trajectories, we combine two criteria: the top-p of unlabeled samples with highest
trajectory similarity to the labeled data, and any sample whose similarity exceeds a threshold Γ.

M(u) = I
(
u ∈ top-p

(
TCS(Tu, T̄reliable)

))
∨ I
(
TCS(Tu, T̄reliable) ≥ Γ

)
(7)

With this selection mask in hand, we now integrate it into the training process to ensure only reliably improv-
ing samples influence model updates. To ensure stability, we employ a warm-up phase using only labeled
data for updates, while accumulating unlabeled trajectories. After warm-up, we apply the mask M to include
only reliable unlabeled samples:

L(θ) = J labeled
GRPO (θ) + M⊙ J unlabeled

GRPO (θ). (8)

where ⊙ denotes the dot product of vectors. Here, JGRPO is the GRPO objective (Shao et al., 2024):

JGRPO(θ) =
1∑G

i=1 |τi|

G∑
i=1

|τi|∑
l=1

CLIP(γi,l(θ), Ai, ϵ)− β · DKL[πθ∥πref] (9)

where γi,l(θ) = πθ(τi,l|q, τi,<l)/πθold(τi,l|q, τi,<l) is the importance sampling term, and CLIP(γ,A, ϵ) =
min[r ·A, clip(γ; 1− ϵ, 1 + ϵ) ·A] is the clipped surrogate objective.

In summary, we propose leveraging the evolution of correctness during training (pass rate trajectories) as a
reliable signal for evaluating unlabeled samples. By measuring the similarity between the pass rate trajectory
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of an unlabeled instance and the average trajectory derived from labeled data, we identify samples whose
learning dynamics align closely with those observed under trusted supervision. To validate the effectiveness
of TRAPO in selecting high-quality unlabeled samples and grounding unsupervised learning within a stable
feedback framework, we provide a theoretical analysis of its generalization error bound:

Theorem 3.1 (Trajectory-Consistent Generalization). (Informal) Let the generalization error of pol-
icy π

(t)
θ be the expected risk on the true distribution. Assuming Ly is the label space diameter, under

the TRAPO framework, with probability at least 1− δ, this error is bounded by:

RDl
(π

(t)
θ ) + λ′ + α · Eq′∼Du

[
1− TCS

(
T

(t)
q′ , T̄

(t)
reliable

)]
+ Ly

(
1− C̄(t) +

√
ln(2n/δ)

2G

)
(10)

where RDl
(π

(t)
θ ) is the empirical risk on Dl, λ′ = λ + λd ≥ 0 bounds the domain shift between Dl

and Du, and C̄(t) is the average voting confidence across n samples based on G votes.

Theorem 3.1 highlights the role of trajectory consistency as a regularizer in semi-supervised policy learning.
Specifically, the term Eq′∼Du

[
1− TCS

(
T

(t)
q′ , T̄

(t)
reliable

)]
encourages unlabeled samples to follow learning

dynamics similar to those of labeled data, effectively anchoring the optimization path. The dependence on
C̄(t) reflects the model’s self-confidence during training, with lower confidence leading to a looser bound,
thus promoting cautious updates. The formal theorem and its proof are presented in Appendix B.13.

4 EXPERIMENT

This section reports the main experimental results. Appendix E.1 compares more fully supervised baselines;
E.2 further validates TraPO on more models; E.3 shows that TraPO is plug-and-play; E.4 evaluates TraPO on
the DeepMath dataset; E.5 compares TraPO with other selection strategies; E.6 confirms TraPO’s stability.

4.1 SETUP

Dataset and Benchmarks. We follow prior work Yan et al. (2025) and use the widely used math reasoning
dataset OpenR1-Math-220k (Face, 2025) for training. For evaluation, we focus on six in-distribution (ID)
math reasoning benchmarks: AIME 2024, AIME 2025, AMC (Li et al., 2024), Minerva (Lewkowycz et al.,
2022), OlympiadBench (He et al., 2024), and MATH-500 (Hendrycks et al., 2021). We report avg@32 on
AIME 2024/2025 and AMC (due to small test sets) and pass@1 on the others. For out-of-distribution
(OOD) generalization, we evaluate on ARC-c (Clark et al., 2018), GPQA-diamond (Rein et al., 2024)
(GPQA∗), and MMLU-Pro (Wang et al., 2024b), covering open-domain reasoning, graduate-level science,
and academic reasoning. All evaluations use temperature sampling with T = 0.6.

Baseline Methods. We evaluate supervised, unsupervised, and semi-supervised RLVR methods across
varying data scales. For supervised training, we apply GRPO on 1K, 4K, and 45K labeled samples. In the
unsupervised setting, we remove ground-truth labels from the full 45K dataset and evaluate four approaches:
(1) TTRL (Zuo et al., 2025), which uses majority-voted outputs as pseudo-labels; (2) Self-Certainty (Zhao
et al., 2025), which maximizes KL divergence to encourage confident predictions; (3) Token-Level Entropy
(Agarwal et al., 2025), which minimizes token-level entropy for consistency; and (4) Sentence-Level En-
tropy (Agarwal et al., 2025), which maximizes sentence likelihood. For semi-supervised training, we use
1K labeled and 3K unlabeled samples, applying GRPO on the labeled subset and each unsupervised method
on the unlabeled subset to form hybrid baselines. We further evaluate a stronger setting with 4K labeled and
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Table 1: Overall performance based on Qwen2.5-Math-7B under three different training paradigms. Bold
and underline indicate the best and second-best results, respectively.

Model In-Distribution Performance Out-of-Distribution Performance

AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.

Original Models
Qwen-Base 11.5/4.9 31.3 43.6 7.4 15.6 19.0 18.2 11.1 16.9 15.4
Qwen-Instruct 12.5/10.2 48.5 80.4 32.7 41.0 37.6 70.3 24.7 34.1 43.0

Unsupervised Methods Trained on 45K Samples w/o Any Labels
TTRL 14.1/12.7 51.5 76.6 33.8 40.3 38.2 80.5 35.4 41.3 52.4
Self-certainty 16.9/10.2 51.7 77.6 34.9 38.8 38.3 72.9 30.8 41.4 48.4
Token-level Entropy 15.0/9.9 50.3 75.2 36.8 38.4 37.6 75.6 33.3 40.9 49.9
Sentence-level Entropy 11.4/10.7 42.1 68.0 32.7 30.5 32.6 79.4 32.3 42.7 51.5

Semi-supervised Methods Trained on 1K Labeled Samples & 3K Unlabeled Samples
Fully Supervised w/ 1K Labels 14.2/13.5 52.6 80.2 34.9 40.9 39.4 76.2 36.4 43.6 52.1
TTRL 14.9/10.7 55.3 77.8 33.1 43.6 39.2 72.6 35.4 42.7 50.2
Self-certainty 16.5/11.4 55.6 79.8 35.3 41.2 40.0 64.8 30.3 41.6 45.6
Token-level Entropy 18.2/11.9 53.4 80.2 34.6 41.9 40.0 72.9 32.3 44.0 49.7
Sentence-level Entropy 15.4/11.5 54.9 79.4 36.0 41.2 39.7 79.4 33.8 44.5 52.6
TRAPO (ours) 17.9/13.8 58.7 81.4 38.2 45.5 42.6 83.7 37.9 46.8 56.1
Fully Supervised w/ 4K Labels 19.6/14.8 57.9 80.6 39.3 46.5 43.1 82.1 39.9 48.2 56.7

TRAPO Trained on 4K Labeled Samples & 12K Unlabeled Samples
TRAPO (ours) 24.3/17.1 60.0 84.6 39.3 48.3 45.6 84.6 43.9 50.7 59.7

Fully Supervised w/ 45K Labels 25.1/15.3 62.0 84.4 39.3 46.8 45.5 82.3 40.4 49.3 57.3

Figure 4: Left: Average performance changes on labeled and unlabeled data. Center: Unlabeled data per-
formance vs. trajectory matching score using true training dynamics on unlabeled data. Right: Unlabeled
data performance vs. trajectory matching score using pseudo training dynamics on unlabeled data.

12K unlabeled samples to assess performance under higher label efficiency. In Appendix E.1, we compare
with more supervised baselines (Zeng et al., 2025b; Hu et al., 2025; Cui et al., 2025; Liu et al., 2025).

4.2 EXPERIMENTAL RESULTS

TRAPO achieves SOTA performance. Our main results are summarized in Table 1. First, TRAPO sig-
nificantly outperforms all fully unsupervised baselines using only 1K labeled samples (with 3K unlabeled).
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Table 2: Performance of different training paradigms with 1K labeled math (ID) samples and 1K unlabeled
non-math (OOD) samples. Bold and underline indicate the best and second-best results, respectively.

Model In-Distribution Performance Out-of-Distribution Performance

AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.

Original Model
Qwen-Base 11.5/4.9 31.3 43.6 7.4 15.6 19.0 18.2 11.1 16.9 15.4
Qwen-Instruct 12.5/10.2 48.5 80.4 32.7 41.0 37.6 70.3 24.7 34.1 43.0

Unsupervised Methods Trained on 1K Unlabeled ID Samples & 1K Unlabeled OOD Samples
TTRL 13.3/9.4 48.2 72.2 27.6 34.8 34.3 76.7 33.8 36.2 48.9
Self-certainty 18.5/9.6 53.4 79.6 33.4 40.4 39.2 76.7 37.9 45.6 53.4
Token-level Entropy 14.6/13.3 46.8 77.6 27.9 40.1 36.7 74.5 36.4 35.8 48.9
Sentence-level Entropy 16.4/11.5 51.8 74.0 33.5 37.2 37.4 74.5 34.8 43.3 50.9

Semi-supervised Methods Trained on 1K Labeled ID Samples & 1K Unlabeled OOD Samples
TTRL 16.4/13.6 49.9 66.9 26.5 37.8 35.2 62.0 31.8 43.5 45.8
Self-certainty 16.0/10.9 53.0 78.4 34.2 39.0 38.6 77.1 32.8 45.7 51.9
Token-level Entropy 17.7/11.0 51.7 77.0 33.1 41.0 38.6 76.5 30.8 44.7 50.7
Sentence-level Entropy 15.7/10.0 51.4 77.4 34.9 37.5 37.8 75.1 31.3 44.3 50.2
TRAPO (ours) 18.5/15.7 53.4 80.4 33.8 44.0 41.0 83.6 38.9 48.1 56.9
Fully Supervised w/ 2K Labels 17.3/12.4 56.8 81.4 38.6 44.8 41.9 82.0 38.9 52.4 57.8

Compared to the best unsupervised method trained on the full 45K unlabeled set, TRAPO achieves gains of
4.3% in ID and 3.7% in OOD accuracy, demonstrating that even minimal labeled data can lead to substantial
improvements when effectively integrated. Second, TRAPO outperforms naive semi-supervised approaches
that treat labeled and unlabeled data independently, improving the strongest such baseline by 2.6% (ID) and
3.5% (OOD), which underscores the importance of using labels to actively guide the learning from unlabeled
examples. Finally, TRAPO surpasses the fully supervised model trained on the same 1K labels by 3.2% (ID)
and 4.0% (OOD). It matches the performance of a fully supervised model trained on 4K labels while using
only 25% of the labeled data. Notably, when trained with 4K labeled and 12K unlabeled samples, TRAPO
achieves 45.6 ID and 59.7 OOD accuracy, exceeding the fully supervised model trained on all 45K labels
by 0.1% (ID) and 2.4% (OOD), despite using only 10% of the total labels. This remarkable performance
highlights TRAPO’s superior data efficiency and generalization capability.

TRAPO succeeds with OOD unlabeled data. To investigate whether labeled data can guide learning
on out-of-domain (OOD) unlabeled data, we evaluate a semi-supervised setup with 1K labeled samples
from the mathematics domain (ID) and 1K unlabeled samples from non-mathematical domains (OOD).
This cross-domain setting is challenging due to the limited transfer of reasoning patterns across domains.
As shown in Table 2, naive semi-supervised methods fail to benefit from labeled data well. For instance,
self-certainty drops by 0.6% on ID and 1.5% on OOD, indicating that naive integration of labeled and
unlabeled data harms learning under domain shift. In contrast, TRAPO achieves significant improvements,
outperforming the best unsupervised baseline by 1.8% on ID and 3.5% on OOD. It also closely matches the
fully supervised model with 2K labels, trailing by only 0.9% on both metrics. The substantial gain in OOD
performance demonstrates that TRAPO enables robust cross-domain generalization, highlighting its strong
ability to transfer reasoning knowledge even under domain discrepancy.

Effectiveness of trajectory matching. To evaluate whether trajectory matching identifies reliable unlabeled
examples, we analyze the link between trajectory similarity and performance. As shown in the middle plot
of Figure 4, samples with dynamics more aligned to labeled data achieve much higher performance. The
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Figure 5: Sensitivity Analysis. The left three plots show sensitivity analyses of top-p, Γ, and warmup
epochs (Tables 9, 10, and 11 in the Appendix). The right two plots compare performance for different ratios
of selected and available unlabeled samples (3K × σM ). See tables 14 and 15 in the Appendix for details.

top 10% of samples outperform the bottom 10% by over 40%, confirming that alignment correlates with
reliability. In practice, we use pseudo-labels from voting to estimate unlabeled sample dynamics. The right
plot of Figure 4 shows that matching pseudo dynamics to true labeled dynamics still yields a strong positive
correlation with final performance. This validates the robustness and practical utility of TRAPO.

Figure 6: Performance comparison on
Llama-3.1-8B.

Sensitivity analysis. We systematically analyze the impact of
top-p, Γ, and warm-up length with the Qwen-2.5-7B model
using 1K labeled and 3K unlabeled samples (left three plots in
Figure 5). For top-p, larger values lead to noisy early-stage
predictions and unreliable pseudo-labels, degrading overall
performance. For Γ, setting it too low admits too many low-
quality unlabeled samples, while setting it too high is overly
conservative, leading to underutilization; both extremes harm
the model. Short warm-up lengths lead to unstable pseudo-
labeling, but performance stabilizes as the warm-up lengthens.
With different selection ratios and varying proportions (σM ) of
available unlabeled samples, TraPO outperforms random se-
lection and a strong token-level entropy baseline (the right two
plots in Figure 5). We find that TraPO achieves optimal results
using the top 30% of unlabeled samples, benefiting from high
pseudo-label accuracy, whereas adding more unlabeled samples increases noise and reduces gains. These
experiments highlight the critical role of intelligent denoising and selection strategies.

Experiments with other LLMs. Besides Qwen, we also compare the training effectiveness of the three
paradigms using the Llama-3.1-8B-Instruct model. The model performance during training is shown in
Figure 6, and detailed results are presented in Table 5. Here, our semi-supervised TRAPO method exhibits a
similar trend to supervised training and maintains consistent improvement. In contrast, unsupervised training
leads to a rapid performance collapse within tens of training steps. This underscores the critical importance
of effective pseudo-supervision selection via trajectory matching in stabilizing the training process.

5 CONCLUSION

In this paper, we present the first exploration of semi-supervised learning in the RLVR setting. We introduce
a novel paradigm that leverages a small set of labeled data to guide robust self-improvement on unlabeled
data. We propose TRAPO (Trajectory based Policy Optimization), a method that enables reliable pseudo-
supervision by aligning the learning dynamics of labeled and unlabeled samples through trajectory similarity
in pass rate progression. Results show TRAPO significantly outperforms various baselines using only a
fraction of labeled data, achieving an exceptional balance between efficiency and effectiveness.
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6 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. To this end, we will fully open-source all
code, model weights, and processed datasets upon paper acceptance. The codebase will include detailed
documentation and training scripts to reproduce all experimental results reported in the paper.

BIBLIOGRAPHY

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effectiveness of
entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. Advances in neural information processing systems, 32,
2019.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 79(1):151–175, 2010.

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A Raffel.
Mixmatch: A holistic approach to semi-supervised learning. Advances in neural information processing
systems, 32, 2019.

Jinhe Bi, Danqi Yan, Yifan Wang, Wenke Huang, Haokun Chen, Guancheng Wan, Mang Ye, Xun Xiao,
Hinrich Schuetze, Volker Tresp, et al. Cot-kinetics: A theoretical modeling assessing lrm reasoning
process. arXiv preprint arXiv:2505.13408, 2025.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In Proceedings of
the eleventh annual conference on Computational learning theory, pp. 92–100, 1998.

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning (chapelle, o. et al.,
eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks, 20(3):542–542, 2009.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin
Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint arXiv:2502.01456,
2025.

Miroslav Dudı́k, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. arXiv preprint
arXiv:1103.4601, 2011.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, and Sergey Levine. Generalizing skills with semi-
supervised reinforcement learning. arXiv preprint arXiv:1612.00429, 2016.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

11

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1


517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting agi with
olympiad-level bilingual multimodal scientific problems. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3828–3850, 2024.

Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang, Xingyuan Bu, Ge Zhang, Zhongyuan Peng, Zhaoxi-
ang Zhang, Zhicheng Zheng, Wenbo Su, et al. Can large language models detect errors in long chain-of-
thought reasoning? arXiv preprint arXiv:2502.19361, 2025a.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian Yu, Zhenwen
Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, decontaminated, and verifiable
mathematical dataset for advancing reasoning. arXiv preprint arXiv:2504.11456, 2025b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum. Open-
reasoner-zero: An open source approach to scaling up reinforcement learning on the base model, 2025.
URL https://arxiv.org/abs/2503.24290.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. Advances in neural information processing systems, 31, 2018.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Nathan Kallus and Masatoshi Uehara. Double reinforcement learning for efficient off-policy evaluation in
markov decision processes. Journal of Machine Learning Research, 21(167):1–63, 2020.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for uncer-
tainty estimation in natural language generation. arXiv preprint arXiv:2302.09664, 2023.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reasoning
problems with language models. Advances in Neural Information Processing Systems, 35:3843–3857,
2022.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif Rasul,
Longhui Yu, Albert Q. Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in ai4maths with
860k pairs of competition math problems and solutions. https://huggingface.co/datasets/
Numinamath, 2024. Hugging Face repository, 13:9.

Pengyi Li, Matvey Skripkin, Alexander Zubrey, Andrey Kuznetsov, and Ivan Oseledets. Confidence is all
you need: Few-shot rl fine-tuning of language models. arXiv preprint arXiv:2506.06395, 2025a.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling. arXiv preprint
arXiv:2502.11886, 2025b.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making large
language models better reasoners with step-aware verifier. arXiv preprint arXiv:2206.02336, 2022.

12

https://arxiv.org/abs/2503.24290
https://huggingface.co/datasets/Numinamath
https://huggingface.co/datasets/Numinamath


564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783, 2025.

Minh-Vuong Nguyen, Linhao Luo, Fatemeh Shiri, Dinh Phung, Yuan-Fang Li, Thuy-Trang Vu, and Gho-
lamreza Haffari. Direct evaluation of chain-of-thought in multi-hop reasoning with knowledge graphs.
arXiv preprint arXiv:2402.11199, 2024.

Benjamin Plaut, Nguyen X Khanh, and Tu Trinh. Probabilities of chat llms are miscalibrated but still predict
correctness on multiple-choice q&a. arXiv preprint arXiv:2402.13213, 2024.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-supervised learn-
ing with ladder networks. Advances in neural information processing systems, 28, 2015.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
Ti67584b98.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models, 2024. URL https://arxiv.org/abs/2402.03300.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus
Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with con-
sistency and confidence. Advances in neural information processing systems, 33:596–608, 2020.

Amarnag Subramanya and Jeff Bilmes. Semi-supervised learning with measure propagation. Journal of
Machine Learning Research, 12(11), 2011.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency tar-
gets improve semi-supervised deep learning results. Advances in neural information processing systems,
30, 2017.

Meta Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement learning.
In International conference on machine learning, pp. 2139–2148. PMLR, 2016.

Yiming Wang, Pei Zhang, Baosong Yang, Derek F Wong, and Rui Wang. Latent space chain-of-embedding
enables output-free llm self-evaluation. arXiv preprint arXiv:2410.13640, 2024a.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark. arXiv preprint arXiv:2406.01574, 2024b.

Zhaoyang Wang, Weilei He, Zhiyuan Liang, Xuchao Zhang, Chetan Bansal, Ying Wei, Weitong Zhang,
and Huaxiu Yao. Cream: Consistency regularized self-rewarding language models. arXiv preprint
arXiv:2410.12735, 2024c.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao Jiao, Jason Weston, and
Sainbayar Sukhbaatar. Meta-rewarding language models: Self-improving alignment with llm-as-a-meta-
judge. arXiv preprint arXiv:2407.19594, 2024.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation for
consistency training. Advances in neural information processing systems, 33:6256–6268, 2020.

13

https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2407.21783


611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen, Nan Jiang, and Tong Zhang. Self-rewarding correc-
tion for mathematical reasoning. arXiv preprint arXiv:2502.19613, 2025.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang. Learning to
reason under off-policy guidance. arXiv preprint arXiv:2504.14945, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang Ren, and
Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert model via self-improvement,
2024. URL https://arxiv.org/abs/2409.12122.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan,
Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.
Self-rewarding language models. arXiv preprint arXiv:2401.10020, 3, 2024.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-zoo:
Investigating and taming zero reinforcement learning for open base models in the wild, 2025a. URL
https://arxiv.org/abs/2503.18892.

Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b model and
8k examples: Emerging reasoning with reinforcement learning is both effective and efficient. https:
//hkust-nlp.notion.site/simplerl-reason, 2025b. Notion Blog.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question is already half
the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint arXiv:2504.05812, 2025a.

Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang, Shuxin
Zheng, and Jiyan He. No free lunch: Rethinking internal feedback for llm reasoning. arXiv preprint
arXiv:2506.17219, 2025b.

Zizhuo Zhang, Jianing Zhu, Xinmu Ge, Zihua Zhao, Zhanke Zhou, Xuan Li, Xiao Feng, Jiangchao Yao,
and Bo Han. Co-reward: Self-supervised reinforcement learning for large language model reasoning via
contrastive agreement. arXiv preprint arXiv:2508.00410, 2025c.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason without
external rewards. arXiv preprint arXiv:2505.19590, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang, Yuqiong Liu,
Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint arXiv:2507.18071, 2025.

Xin Zhou, Yiwen Guo, Ruotian Ma, Tao Gui, Qi Zhang, and Xuanjing Huang. Self-consistency of the inter-
nal reward models improves self-rewarding language models. arXiv preprint arXiv:2502.08922, 2025.

Zhengyuan Zhou, Susan Athey, and Stefan Wager. Offline multi-action policy learning: Generalization and
optimization. Operations Research, 71(1):148–183, 2023.

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A geometric
analysis of neural collapse with unconstrained features. Advances in Neural Information Processing
Systems, 34:29820–29834, 2021.

14

https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2503.18892
https://hkust-nlp.notion.site/simplerl-reason
https://hkust-nlp.notion.site/simplerl-reason


658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu Cui, Ning
Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. arXiv preprint arXiv:2504.16084, 2025.

15



705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Appendix

A LLM Usage 17

B Theoretical Proof 17

B.1 Notion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 GRPO as Preference Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.3 Gradient Dynamics and NTK Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.3.1 Change in Log-Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.3.2 Main Generalization Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.4 Unifying Trajectory Divergence and Domain Discrepancy . . . . . . . . . . . . . . . . . . . 22

B.5 Main Theorem: Generalization Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B.6 Main Theorem: Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B.7 Addition Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

C Discussion and Limitations 29

D Experiment Details 29

D.1 Detailed Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

D.2 System Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

D.3 Baseline Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

E More Experiments 31

E.1 Comparison with More Supervised RLVR Baselines . . . . . . . . . . . . . . . . . . . . . . 31

E.2 Extend TraPO to More Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

E.3 TraPO Is a Universal Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

E.4 Run TraPO on DeepMath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

E.5 Different Selection Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

E.6 Stability of TraPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

E.7 Training Cost Analysis of TraPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

E.8 Different Ways of Utilizing Reliable Passrate Databases . . . . . . . . . . . . . . . . . . . . 34

F More Related Work 34

16



752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

G Pseudo Code 35

A LLM USAGE

In the preparation of this paper, the LLM was used solely for language editing and proofreading to improve
clarity and readability.

B THEORETICAL PROOF

In this section, we provide proofs for the generalization error bound and convergence of the proposed semi-
supervised framework TRAPO.

B.1 NOTION

We provide the notions used in the proof in Table 3.

B.2 GRPO AS PREFERENCE OPTIMIZATION

We begin by formally establishing that GRPO performs preference optimization between correct and incor-
rect responses when the reward is binary.
Lemma B.1 (GRPO as Preference Optimization). When the reward is binary (ri ∈ {0, 1}), the expected
GRPO loss for a question q reduces to a weighted preference optimization objective:

Jpref = p+
N+∑
i=1

min

(
πθ(τ

+
i | q)

πθold(τ
+
i | q)

, 1 + ε

)
− p−

N−∑
j=1

max

(
πθ(τ

−
j | q)

πθold(τ
−
j | q)

, 1− ε

)
, (11)

where:

• p = 1
N

∑N
i=1 1[ri(q) = 1] is the empirical correctness rate for q,

• N+ = pN , N− = (1−p)N are the expected number of correct and incorrect responses in a batch
of N samples,

• p+ = 1−p√
p(1−p)

, p− = p√
p(1−p)

are the group-specific weights.

Proof. The standard GRPO loss for a batch of responses {τi}Ni=1 is:

J =

N∑
i=1

|τi|∑
l=1

min
(
ri,l(θ)Âi,l, Âi,l · clip(ri,l(θ), 1− ε, 1 + ε)

)
,

where ri,l(θ) =
πθ(τi,l|q,τi,<l)
πθold (τi,l|q,τi,<l)

is the probability ratio at token l, and Âi,l is the advantage estimator.

For binary rewards, ri(q) = ri,l = 1 if the response τi is correct, and 0 otherwise. The advantage Âi,l is
defined as:

Âi,l =
ri − µ̂

σ̂
,

where µ̂ = p is the empirical mean reward (correctness rate), and σ̂ =
√

p(1− p) is the empirical standard
deviation.
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Table 3: Table of Notations and Descriptions

Notation Description
Optimization and Reward Setup

J Group Relative Policy Optimization (GRPO): policy update via re-
sponse grouping and relative advantage.

ri ∈ {0, 1} Binary reward: 1 for correct, 0 for incorrect response.
Jpref Equivalent preference optimization objective under binary rewards.
p Empirical accuracy: fraction of correct responses in a batch.

N+, N− Expected number of correct and incorrect responses: N+ = pN , N− =
(1− p)N .

p+, p− Group-specific weights: p+ = 1−p√
p(1−p)

, p− = p√
p(1−p)

.

Âi,l Advantage estimator: Âi,l =
ri−p√
p(1−p)

.

ri,l(θ) Probability ratio between current and old policy for token generation.
clip(·, 1± ε) Clipping function to stabilize policy updates.

Generalization and NTK Analysis
∆ log πt(τ ′k∥q′) Change in log-probability of response τ ′k after update.
Θ((q, τ), (q′, τ ′)) Response-level NTK: ⟨∇θ log π(τ∥q),∇θ log π(τ

′∥q′)⟩.
Θ++ > 0,Θ−− > 0 Gradient alignment: correct-correct and error-error responses align.
Orthogonal gradients Correct and incorrect response gradients are orthogonal.

D
(t)
traj(q, q

′) Trajectory divergence: 1− cos∠ between response pass rate.
sign(∆ log πt) = +1 Positive generalization: similar questions benefit from training.

Convergence and Risk Bounds
dH∆H(Dl,Du) Domain discrepancy: maximum distinguishability underH.

dH∆H ≤ αE[Dtraj] + λd Trajectory divergence bounds domain shift.
RDu(π

(t)
θ ) Generalization risk on target domain.

R(t)
TC Dynamic trajectory consistency risk: αE[D(t)

traj] + Ly(1− C̄(t)).
C̄(t) Average confidence (e.g., pass rate) at iteration t.

Ut = E[RDu
(π

(t)
θ )] Expected target risk, used in convergence analysis.

Ut+1 ≤ Ut − ηtξt + βt Monotonic convergence inequality under consistent learning.
βt Residual term: includes ∆Dtraj,∆C, and η2tM

2.

Thus, the advantage simplifies to:

Âi,l =


1−p√
p(1−p)

= p+ if ri = 1 (correct),

− p√
p(1−p)

= −p− if ri = 0 (incorrect).

Now, consider the term in the loss:

min
(
ri,l(θ)Âi,l, Âi,l · clip(ri,l(θ), 1− ε, 1 + ε)

)
.

We analyze this based on the sign of Âi,l:

Case 1: Âi,l > 0 (ri = 1, correct response)
In this case, the min function simplifies to:

Âi,l ·min (ri,l(θ), 1 + ε) = p+ ·min

(
πθ(τi,l | q, τi,<l)

πθold(τi,l | q, τi,<l)
, 1 + ε

)
.
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Summing over all tokens l in the response τ+i , and noting that
∑|τ+

i |
l=1 log πθ(τi,l|q, τi,<l) = log πθ(τ

+
i |q),

we have (in the limit of small learning rate or by ignoring token normalization):
|τ+

i |∑
l=1

min(·) ≈ p+ min

(
πθ(τ

+
i | q)

πθold(τ
+
i | q)

, 1 + ε

)
.

Case 2: Âi,l < 0 (ri = 0, incorrect response)
Here, Âi,l = −p−, and the min function becomes:

min
(
−p−ri,l(θ),−p− · clip(ri,l(θ), 1− ε, 1 + ε)

)
= −p− max (ri,l(θ), 1− ε) ,

because min(−a,−b) = −max(a, b). Summing over tokens:
|τ−

j |∑
l=1

min(·) ≈ −p− max

(
πθ(τ

−
j | q)

πθold(τ
−
j | q)

, 1− ε

)
.

Taking the expectation over the response batch {τi}Ni=1 ∼ πθold(·|q), and using the fact that there are N+ =
pN correct and N− = (1− p)N incorrect responses on average, we obtain the expected loss:

E[J ] = p+
N+∑
i=1

min

(
πθ(τ

+
i | q)

πθold(τ
+
i | q)

, 1 + ε

)
− p−

N−∑
j=1

max

(
πθ(τ

−
j | q)

πθold(τ
−
j | q)

, 1− ε

)
.

This is exactly the preference optimization objective in 11. This completes the proof of B.1.

B.3 GRADIENT DYNAMICS AND NTK ALIGNMENT

We now analyze how training on a question q affects the model’s behavior on another question q′, leveraging
the NTK framework.

B.3.1 CHANGE IN LOG-PROBABILITY

We start by deriving the change in the log-probability of generating a response τ ′k to question q′ after a
GRPO update on question q.
Proposition B.2 (Gradient Update Effect). Let ∆ log πt(τ ′k|q′) = log πt+1(τ ′k|q′) − log πt(τ ′k|q′) be the
change in log-probability after one GRPO update on q. Under the assumption that the parameter update
θt+1 − θt is small and given by the SGD update on q, we have:

∆ log πt(τ ′k | q′) =

〈
∇ log πt(τ ′k | q′), p+

N+∑
i=1

∇ log πt(τ+i | q)− p−
N−∑
j=1

∇ log πt(τ−j | q)

〉
. (12)

Proof. Using a first-order Taylor expansion of log πθ(τ
′
k|q′) around θt:

log πt+1(τ ′k|q′) = log πt(τ ′k|q′) +
〈
∇θ log π

t(τ ′k|q′), θt+1 − θt
〉
+O(∥θt+1 − θt∥2).

The parameter update θt+1 − θt is proportional to the negative gradient of the GRPO loss on q. From B.1,
the loss gradient is:

∇θJq = p+
N+∑
i=1

∇θ

[
min

(
πθ(τ

+
i | q)

πθold(τ
+
i | q)

, 1 + ε

)]
− p−

N−∑
j=1

∇θ

[
max

(
πθ(τ

−
j | q)

πθold(τ
−
j | q)

, 1− ε

)]
.
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In the ”nearly online” setting of GRPO, where responses are resampled at each iteration, we assume πθ ≈
πθold , so the ratios are close to 1. In this case, the min and max operators are inactive (i.e., the clipping does
not bind), and we have:

∇θ

[
min

(
πθ(τ

+
i | q)

πθold(τ
+
i | q)

, 1 + ε

)]
≈ ∇θ log πθ(τ

+
i |q),

∇θ

[
max

(
πθ(τ

−
j | q)

πθold(τ
−
j | q)

, 1− ε

)]
≈ ∇θ log πθ(τ

−
j |q).

Thus, the update direction is:

θt+1 − θt ≈ −η

p+
N+∑
i=1

∇θ log π
t(τ+i |q)− p−

N−∑
j=1

∇θ log π
t(τ−j |q)

 ,

where η is the learning rate. Substituting into the Taylor expansion and dropping higher-order terms, we get:

∆ log πt(τ ′k|q′) ≈ −η

〈
∇ log πt(τ ′k|q′), p+

N+∑
i=1

∇ log πt(τ+i |q)− p−
N−∑
j=1

∇ log πt(τ−j |q)

〉
.

The learning rate η is a positive scalar. Since we are interested in the sign of the change (increase or
decrease), we can absorb −η into the expression and consider the inner product as the primary determinant
of the sign. For notational simplicity and consistency with the original text, we present the update direction
without η, leading to 12. This completes the proof of B.2.

To analyze the sign of ∆log πt(τ ′k|q′), we introduce the response-level NTK and state the gradient alignment
assumption.
Definition B.3 (Response-level NTK). The response-level Neural Tangent Kernel (NTK) between two
response-generation events (q, τ) and (q′, τ ′) is defined as:

Θ
(
(q, τ), (q′, τ ′)

)
:= ⟨∇θ log πθ(τ | q),∇θ log πθ(τ

′ | q′)⟩ .

Under the NTK regime for sufficiently wide neural networks, Θ converges to a deterministic limit and
remains approximately constant during training (Jacot et al., 2018; Arora et al., 2019).
Assumption B.4 (Gradient Alignment). Let q, q′ be two questions from the same task family T , with q ∼ q′

indicating semantic similarity. Then, in the infinite-width limit, the following asymptotic properties hold:

(i) (Correct-Correct Alignment) For all correct responses τ+i ∈ R+(q), τ ′+k ∈ R+(q′):

lim
width→∞

〈
∇θ log πθ(τ

′+
k | q

′),∇θ log πθ(τ
+
i | q)

〉
= Θ++

kk′,ii′ > 0.

(ii) (Incorrect-Incorrect Alignment) For all incorrect responses τ−j ∈ R−(q), τ ′−k ∈ R−(q′):

lim
width→∞

〈
∇θ log πθ(τ

′−
k | q

′),∇θ log πθ(τ
−
j | q)

〉
= Θ−−

kk′,jj′ > 0.

(iii) (Correct-Incorrect Orthogonality) For all τ+i ∈ R+(q), τ−j ∈ R−(q), τ ′k ∈ {τ
′+
k , τ ′−k }:

lim
width→∞

〈
∇θ log πθ(τ

′+
k | q

′),∇θ log πθ(τ
−
j | q)

〉
= 0,

lim
width→∞

〈
∇θ log πθ(τ

′−
k | q

′),∇θ log πθ(τ
+
i | q)

〉
= 0.
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Remark B.5. This assumption is motivated by the structure of the NTK. For semantically similar inputs
and valid (correct) outputs, the corresponding feature representations activate overlapping sets of neurons,
leading to positive kernel values. Conversely, correct and incorrect responses represent conflicting patterns,
and their gradient directions become nearly orthogonal in overparameterized models (Zhu et al., 2021).

B.3.2 MAIN GENERALIZATION RESULT

With the NTK alignment assumption in place, we can now prove that training on q improves performance
on a similar q′.
Proposition B.6 (Generalization through Gradient Alignment). Let q and q′ be two questions that are similar
in structure and difficulty, denoted q ∼ q′, belonging to a shared task family T . Let τ ′k be a response to
q′. Under B.4 and the GRPO update rule, the sign of the change in log-probability ∆ log πt(τ ′k | q′) is
determined as follows in the infinite-width limit:

sign
(
∆ log πt(τ ′k | q′)

)
=

{
+1 if τ ′k is a correct response to q′,

−1 if τ ′k is an incorrect response to q′.

Proof. We substitute 12 and analyze the two cases separately.

Case 1: τ ′k is a correct response (τ ′k = τ ′+k )

∆ log πt(τ ′+k | q
′) = p+

N+∑
i=1

〈
∇θ log π

t(τ ′+k | q
′),∇θ log π

t(τ+i | q)
〉

− p−
N−∑
j=1

〈
∇θ log π

t(τ ′+k | q
′),∇θ log π

t(τ−j | q)
〉
. (13)

By B.4(i), each inner product in the first sum is strictly positive in the infinite-width limit. Since p+ > 0,
the entire first term is positive.

By B.4(iii), each inner product in the second sum is zero. Thus, the second term vanishes.

Therefore, ∆ log πt(τ ′+k | q′) > 0, meaning the log-probability of the correct response τ ′+k increases.

Case 2: τ ′k is an incorrect response (τ ′k = τ ′−k )

∆ log πt(τ ′−k | q
′) = p+

N+∑
i=1

〈
∇θ log π

t(τ ′−k | q
′),∇θ log π

t(τ+i | q)
〉

− p−
N−∑
j=1

〈
∇θ log π

t(τ ′−k | q
′),∇θ log π

t(τ−j | q)
〉
. (14)

By B.4(iii), each inner product in the first sum is zero.

By B.4(ii), each inner product in the second sum is strictly positive. Since p− > 0, the sum is positive, but
it is preceded by a negative sign, making the entire second term negative.

Therefore, ∆ log πt(τ ′−k | q′) < 0, meaning the log-probability of the incorrect response τ ′−k decreases.

Combining both cases proves B.6. This shows that GRPO implicitly pushes the model in a direction that
generalizes to similar tasks by reinforcing correct responses and suppressing incorrect ones.
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Corollary B.7. In the NTK regime, GRPO encourages an inductive bias towards solutions that lie in direc-
tions of high kernel alignment across correct responses within a task family. This promotes generalization
even with sparse supervision.

B.4 UNIFYING TRAJECTORY DIVERGENCE AND DOMAIN DISCREPANCY

We now establish a formal connection between the trajectory-level dynamics in our method and classical
domain adaptation theory. While our theoretical analysis begins with gradient alignment in parameter space,
the practical metric we use—trajectory divergence—is measured in the space of confidence dynamics. We
first define a gradient-based notion of coherence, then show it implies similarity in pass rate evolution.
Definition B.8 (Gradient Coherence). For questions q and q′, the gradient coherence at step t is:

C
(t)
grad(q, q

′) := E τ∼πθt (·|q)
τ ′∼πθt (·|q

′)

[cos∠ (∇θ log πθt(τ |q), ∇θ log πθt(τ
′|q′))] , (15)

where cos∠(a,b) = ⟨a,b⟩
∥a∥∥b∥ . High coherence indicates similar optimization directions.

Definition B.9 (Trajectory Divergence). Let T (t)
q = (P

(1)
q , P

(2)
q , . . . , P

(t)
q ) ∈ Rt be the trajectory vector of

question q, where P
(s)
q is its pass rate at round s. The trajectory divergence between q and q′ at step t is:

D
(t)
traj(q, q

′) := 1−
⟨T (t)

q , T
(t)
q′ ⟩

∥T (t)
q ∥∥T (t)

q′ ∥
. (16)

This measures the angular dissimilarity between their confidence evolution paths.

We now establish the key link: gradient coherence implies low trajectory divergence.
Lemma B.10 (From Gradient Coherence to Trajectory Coherence). Suppose the policy πθ is trained under
small learning rates and lies in a region where the NTK is approximately constant. If for all s ≤ t and for
questions q, q′, we have C

(s)
grad(q, q

′) ≥ 1− ϵs, then there exists a constant L > 0 such that:

D
(t)
traj(q, q

′) ≤ L ·

(
t∑

s=1

ηsϵs

)2

.

Proof (Sketch). Under NTK linearity, the change in log-probability is ∆ log πs(τ∥q) ≈
ηs⟨∇θ log πθs(τ∥q), ∆θs⟩. High gradient coherence implies that the relative improvement for cor-
rect responses is similar across q and q′.

Since the pass rate P
(s)
q is an empirical estimate of the model’s confidence in generating correct responses,

coherent log-prob updates lead to similar P
(s)
q evolutions. By vector concentration and Lipschitz conti-

nuity of the cosine similarity, the Euclidean distance ∥T (t)
q − T

(t)
q′ ∥2 = O

(∑t
s=1 ηsϵs

)
, which implies

D
(t)
traj(q, q

′) = O
(
∥T (t)

q − T
(t)
q′ ∥22

)
. The full proof is in B.7.

We now state the main result, bounding domain discrepancy via trajectory divergence.
Proposition B.11 (Trajectory Divergence as Proxy for Domain Discrepancy). The H∆H-divergence be-
tween Dl and Du is bounded by the expected pass-rate trajectory divergence:

dH∆H(Dl,Du) ≤ α · E q∼Dl

q′∼Du

[
D

(t)
traj(q, q

′)
]
+ λd, (17)

22



1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

where α > 0 depends on model smoothness and training dynamics, and λd ≥ 0 is an irreducible baseline
discrepancy.

Proof. TheH∆H-divergence is:

dH∆H(Dl,Du) = sup
h,h′∈H

∣∣∣∣ Prq∼Dl

(h(q) ̸= h′(q))− Pr
q′∼Du

(h(q′) ̸= h′(q′))

∣∣∣∣ .
In our setting, hypotheses h ∈ H are induced by the policy πθ. The ability of H to distinguish Dl from Du

depends on the discrepancy in their induced gradient fields:

G
(t)
S = Eq∼Dl

[∇θJq(θt)] , G
(t)
T = Eq′∼Du [∇θJq′(θt)] .

Let ∆(t)
G = ∥G(t)

S −G
(t)
T ∥. Standard domain adaptation theory gives:

dH∆H(Dl,Du) ≤ C · sup
t

∆
(t)
G + λd,

for some C > 0.

Now, ∆(t)
G is small when the gradient fields are aligned across domains. From Definition B.8, this alignment

is captured by C
(t)
grad(q, q

′). Applying Lemma B.10, high gradient coherence (low 1 − C
(t)
grad) implies low

D
(t)
traj(q, q

′).

Conversely, if D(t)
traj(q, q

′) is small on average, it indicates that the confidence evolution is coherent across
domains, which (by contrapositive of Lemma B.10) implies that gradient coherence must be high, hence
∆

(t)
G is small.

Therefore, E[D(t)
traj] serves as an upper bound proxy for ∆(t)

G , and thus for dH∆H. Setting α to absorb the
constants yields the result.

Corollary B.12. Low pass-rate trajectory divergence Dtraj implies low domain discrepancy, enabling effec-
tive transfer without explicit adversarial or feature-level alignment.

B.5 MAIN THEOREM: GENERALIZATION BOUND

Theorem B.13 (Trajectory-Consistent Generalization Bound). (Formal) Let δ ∈ (0, 1) be a confidence
parameter. Suppose the loss function L : Y × Y → R≥0 is Ly-Lipschitz in its second argument and
bounded, i.e., L(·, ·) ≤ B. Let π(t)

θ be a model trained under the TRAPO framework at round t.

Then, with probability at least 1 − δ over the sampling of labeled and unlabeled data, the expected risk of
π
(t)
θ on the target distribution Du satisfies:

RDu
(π

(t)
θ ) ≤ R̂Dl

(π
(t)
θ ) +B

√
ln(4/δ)

2m
+ α · Eq′∼Du

[
D

(t)
traj(q

′)
]

+ Ly

(
1− C̄(t) +

√
ln(2n/δ)

2G

)
+ λ′,

where:

• R̂Dl
(π

(t)
θ ) is the empirical risk on m labeled source samples;
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• D
(t)
traj(q

′) = 1 −
⟨T(t)

q′ , T̄
(t)
reliable⟩

∥T(t)

q′ ∥·∥T̄(t)
reliable∥

is the cosine divergence between the trajectory of q′ and the

average reliable trajectory;

• C̄(t) = 1
n

∑n
j=1 C

(t)
j , with C

(t)
j = 1

G

∑G
i=1 I(a

(t)
j,i = ỹ

(t)
j ) the voting confidence for unlabeled

sample q′j;

• λ′ = λ+ λd ≥ 0 absorbs the irreducible domain shift and best-in-class error.

Moreover, define the Dynamic Trajectory Consistency Risk:

R(t)
TC := α · Eq′ [D

(t)
traj(q

′)] + Ly

(
1− C̄(t) +

√
ln(2n/δ)

2G

)
.

If the Consistent Trajectory Learning Condition holds:

lim
t→∞

Eq′ [D
(t)
traj(q

′)] = 0 and lim
t→∞

C̄(t) = 1,

thenR(t)
TC → 0, and RDu(π

(t)
θ )→ R̂Dl

(π
(t)
θ )+λ′, implying asymptotic generalization to the target domain.

Proof. We start from the standard domain adaptation risk decomposition (Ben-David et al., 2010):

RDu(π
(t)
θ ) ≤ RDl

(π
(t)
θ ) + dH∆H(Dl,Du) + λ, (18)

where λ = infh∈H (RDl
(h) +RDu

(h)).

Step 1: Bounding the source risk RDl
(π

(t)
θ ). Using a standard concentration inequality (e.g., Hoeffding’s

lemma) for bounded losses L ≤ B, with probability at least 1− δ/2:

RDl
(π

(t)
θ ) ≤ R̂Dl

(π
(t)
θ ) +B

√
ln(4/δ)

2m
.

Step 2: Bounding the domain discrepancy dH∆H. Under the NTK alignment assumption, trajectory
consistency controls gradient field divergence. From the trajectory-proxy proposition B.11, we have:

dH∆H(Dl,Du) ≤ α · Eq′∼Du

[
D

(t)
traj(q

′)
]
+ λd,

where D(t)
traj(q

′) measures the cosine divergence between the gradient trajectory of q′ and the average reliable

trajectory T̄
(t)
reliable over source or high-confidence samples.

Step 3: Pseudo-labeling error. Let ỹ′(t) be the pseudo-label for q′ via majority voting. The error in using
ỹ′(t) instead of y′true is bounded by:∣∣∣RDu(π

(t)
θ )− Eq′ [L(π

(t)
θ (q′), ỹ′(t))]

∣∣∣ ≤ Ly · P(y′true ̸= ỹ′(t)).

For n unlabeled samples, let p∗j = P(a(t)i = ytrue,j). The observed confidence C(t)
j = 1

G

∑G
i=1 I(a

(t)
j,i = ỹ

(t)
j )

estimates p∗j . Then:

P(ỹ(t)j ̸= ytrue,j) ≤ 1− C
(t)
j + |C(t)

j − p∗j |.
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By Hoeffding’s inequality and a union bound over j = 1, . . . , n, with probability at least 1− δ/2:

|C(t)
j − p∗j | ≤

√
ln(2n/δ)

2G
, ∀j.

Averaging over j, we get:

P(y′true ̸= ỹ′(t)) ≤ 1− C̄(t) +

√
ln(2n/δ)

2G
.

Step 4: Union bound. Combining Steps 1–3 with a union bound (total probability ≥ 1− δ), and absorbing
λd into λ′ = λ+ λd, we obtain the desired bound.

Finally, under the Consistent Trajectory Learning Condition, both D
(t)
traj → 0 and C̄(t) → 1, so R(t)

TC → 0,
yielding asymptotic generalization.

B.6 MAIN THEOREM: CONVERGENCE ANALYSIS

Theorem B.14 (Monotonic Convergence under Consistent Trajectory Learning). Let Ut = E
[
RDu

(π
(t)
θ )
]

denote the expected target risk at training round t. Under the Consistent Trajectory Learning Condition
(B.13), and assuming:

1. Stochastic Gradient Descent (SGD) with learning rate ηt > 0,

2. NTK stability: ∥∇θπ
(t)
θ (x)∥ is bounded for all x,

3. Lipschitz smoothness of L ◦ π(t)
θ ,

4. Sufficient ensemble size G such that
√

ln(2n/δ)
2G ≤ ϵ,

then the expected risk sequence {Ut}∞t=1 satisfies:

Ut+1 ≤ Ut − ηtξt + βt,

where:

• ξt = E
[
∥∇θR̂Dl

(π
(t)
θ )∥2

]
≥ 0 measures the expected gradient magnitude on source data,

• βt = α ·∆D
(t)
traj + Ly ·∆C(t) + η2tM

2 aggregates the residual dynamics, with:

∆D
(t)
traj = E

[
D

(t+1)
traj (q′)−D

(t)
traj(q

′)
]
,

∆C(t) = E
[
C̄(t+1) − C̄(t)

]
,

and M > 0 bounds the gradient variance.

Moreover, if
∑∞

t=1 ηt =∞ and
∑∞

t=1 η
2
t <∞, and ∆D

(t)
traj ≤ 0, ∆C(t) ≥ 0 for all t ≥ T0, then:

lim
t→∞

E
[
∥∇θR̂Dl

(π
(t)
θ )∥2

]
= 0,

and
lim sup
t→∞

Ut ≤ R̂Dl
(f∗) + λ′,

where f∗ is a stationary point of the source risk.
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Proof. We analyze the expected change in target risk:

Ut+1 − Ut = E
[
RDu

(ft+1)−RDu
(π

(t)
θ )
]
.

Using the smoothness of L ◦ π(t)
θ and the update θt+1 = θt − ηtgt, where gt is the stochastic gradient, we

have:
RDu

(ft+1) ≤ RDu
(π

(t)
θ )− ηt⟨∇θRDu

(π
(t)
θ ), gt⟩+

L

2
η2t ∥gt∥2.

Taking expectation over the stochastic gradient and data sampling:

Ut+1 ≤ Ut − ηtE
[
∥∇θRDu(π

(t)
θ )∥2

]
+

L

2
η2tE

[
∥gt∥2

]
.

Now, from B.13, we know:
RDu

(π
(t)
θ ) ≤ R̂Dl

(π
(t)
θ ) +R(t)

TC + const.

Thus, the gradient ∇θRDu(π
(t)
θ ) is aligned with ∇θR̂Dl

(π
(t)
θ ) and ∇θR(t)

TC . Specifically:

E
[
∥∇θRDu(π

(t)
θ )∥2

]
≥ E

[
∥∇θR̂Dl

(π
(t)
θ )∥2

]
−
∥∥∥∇θR(t)

TC

∥∥∥ .
Now, observe that:∥∥∥∇θR(t)

TC

∥∥∥ ≤ α ·
∣∣∣∣ ddtE[D(t)

traj]

∣∣∣∣+ Ly ·
∣∣∣∣ ddt C̄(t)

∣∣∣∣ ≈ α · |∆D
(t)
traj|+ Ly · |∆C(t)|,

in discrete time.

Under the assumption that trajectory divergence is decreasing (∆D
(t)
traj ≤ 0) and confidence is increasing

(∆C(t) ≥ 0), the residual βt captures the rate of improvement in transferability.

Furthermore, E[∥gt∥2] ≤M2 under NTK stability and bounded loss.

Thus, we obtain:
Ut+1 ≤ Ut − ηtξt + βt,

with ξt = E[∥∇θR̂Dl
(π

(t)
θ )∥2], βt = α ·∆D

(t)
traj + Ly ·∆C(t) + η2tM

2.

Now, summing over t:
∞∑
t=1

ηtξt ≤ U1 − lim inf Ut +

∞∑
t=1

βt.

If ∆D
(t)
traj ≤ 0 and ∆C(t) ≥ 0, then βt ≤ η2tM

2 eventually, and
∑

η2t < ∞ implies
∑

ηtξt < ∞. Since∑
ηt =∞, we must have ξt → 0, i.e.,

lim
t→∞

E
[
∥∇θR̂Dl

(π
(t)
θ )∥2

]
= 0.

Finally, from B.13, sinceR(t)
TC → 0, we get:

lim sup
t→∞

Ut ≤ R̂Dl
(f∗) + λ′,

where f∗ is a stationary point. This completes the proof.
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B.7 ADDITION PROOFS

We provide the full proof of Lemma B.10, which connects gradient coherence in parameter space to trajec-
tory coherence in the space of confidence dynamics.
Lemma B.15 (Restatement of Lemma B.10). Suppose the policy πθ is trained under small learning rates
{ηs}ts=1, and lies in a region where the Neural Tangent Kernel (NTK) is approximately constant. If for all
s ≤ t and for questions q, q′, the gradient coherence satisfies C

(s)
grad(q, q

′) ≥ 1 − ϵs, then there exists a
constant L > 0 such that:

D
(t)
traj(q, q

′) ≤ L ·

(
t∑

s=1

ηsϵs

)2

.

Proof. We proceed in three steps: (1) bound the difference in log-probability updates under gradient coher-
ence; (2) relate log-prob changes to pass rate evolution; (3) bound the cosine distance between trajectory
vectors.

Step 1: Gradient coherence implies coherent log-prob updates. Under the NTK regime, the model
evolves via kernel gradient descent, and the change in log-probability after update s is approximately linear
in the gradient:

∆ log πs(τ∥q) := log πθs(τ∥q)− log πθs−1
(τ∥q) ≈ ηs−1⟨∇θ log πθs−1

(τ∥q), ∆θs−1⟩.
Let τ∗q and τ∗q′ be the correct responses for q and q′. We are interested in how the model’s confidence in
generating correct responses evolves.

Let g(s)
q = ∇θ log πθs(τ

∗
q ∥q) and g

(s)
q′ = ∇θ log πθs(τ

∗
q′∥q′). By Definition B.8, we have:

⟨g(s)
q ,g

(s)
q′ ⟩

∥g(s)
q ∥∥g(s)

q′ ∥
≥ 1− ϵs.

This implies (by standard vector inequality):∥∥∥∥∥ g
(s)
q

∥g(s)
q ∥
−

g
(s)
q′

∥g(s)
q′ ∥

∥∥∥∥∥ ≤ √2ϵs.
Assume the gradient norms are bounded: ∥g(s)

q ∥ ≤ G, ∥g(s)
q′ ∥ ≤ G. Then:

∥g(s)
q − g

(s)
q′ ∥ ≤ G

√
2ϵs + |∥g(s)

q ∥ − ∥g
(s)
q′ ∥|.

For simplicity, assume gradient magnitudes evolve similarly (or absorb into constants), so:

∥g(s)
q − g

(s)
q′ ∥ ≤ G′√ϵs.

Now, the parameter update is ∆θs = −ηs∇θJs, which is a weighted sum of gradients over the batch. If q
and q′ are both in the batch or their gradients are representative, then:

|∆ log πs(τ∗q ∥q)−∆ log πs(τ∗q′∥q′)| ≤ ηs∥g(s)
q − g

(s)
q′ ∥ · ∥∆θs∥/ηs ≤ ηsG

′√ϵs ·M,

where M bounds the update direction. Thus:
|∆ log πs(τ∗q ∥q)−∆ log πs(τ∗q′∥q′)| ≤ ηsC1

√
ϵs.

Summing over s = 1 to t, the total difference in log-prob evolution is:

| log πθt(τ
∗
q ∥q)− log πθt(τ

∗
q′∥q′)| ≤ C1

t∑
s=1

ηs
√
ϵs.
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Step 2: Log-prob coherence implies pass rate coherence. The pass rate P
(s)
q is defined as:

P (s)
q =

1

N

N∑
k=1

1 [fθs(q; ξk) passes] ,

where ξk represents stochasticity (e.g., dropout, sampling). P
(s)
q is an empirical estimate of

Pr(correct∥q, θs).

Assume the mapping from log πθs(τ
∗
q ∥q) to E[P (s)

q ] is L-Lipschitz (holds for softmax policies under
bounded gradients). Then:

|E[P (s)
q ]− E[P (s)

q′ ]| ≤ L′| log πθs(τ
∗
q ∥q)− log πθs(τ

∗
q′∥q′)| ≤ L′C1

s∑
r=1

ηr
√
ϵr.

By concentration (e.g., Hoeffding’s inequality), with high probability:

|P (s)
q − P

(s)
q′ | ≤ L′C1

s∑
r=1

ηr
√
ϵr + νs,

where νs = O(1/
√
G) is sampling error. For large N , νs is negligible.

Step 3: Trajectory vector proximity implies low divergence. Let T (t)
q = (P

(1)
q , . . . , P

(t)
q ), T (t)

q′ =

(P
(1)
q′ , . . . , P

(t)
q′ ). Then:

∥T (t)
q − T

(t)
q′ ∥

2
2 =

t∑
s=1

|P (s)
q − P

(s)
q′ |

2 ≤
t∑

s=1

(
L′C1

s∑
r=1

ηr
√
ϵr

)2

.

Using the inequality (
∑s

r=1 ar)
2 ≤ s

∑s
r=1 a

2
r and assuming ηr, ϵr small, we get:

∥T (t)
q − T

(t)
q′ ∥

2
2 ≤ C2

(
t∑

s=1

ηs
√
ϵs

)2

≤ C2

(
t∑

s=1

ηs

)(
t∑

s=1

ηsϵs

)
,

but more conservatively, if ηsϵs summable, then:

∥T (t)
q − T

(t)
q′ ∥2 = O

(
t∑

s=1

ηsϵ
1/2
s

)
.

Now, the cosine distance:

D
(t)
traj(q, q

′) = 1−
⟨T (t)

q , T
(t)
q′ ⟩

∥T (t)
q ∥∥T (t)

q′ ∥
=

1

2

∥∥∥∥∥ T
(t)
q

∥T (t)
q ∥
−

T
(t)
q′

∥T (t)
q′ ∥

∥∥∥∥∥
2

+O(∥T (t)
q − T

(t)
q′ ∥

2).

If the trajectories are bounded away from zero (i.e., not all zeros), then:

D
(t)
traj(q, q

′) ≤ L · ∥T (t)
q − T

(t)
q′ ∥

2
2 ≤ L ·

(
t∑

s=1

ηs
√
ϵs

)2

.
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To match the lemma statement, we can weaken
√
ϵs to ϵs under ϵs ∈ (0, 1), or redefine ϵs as the squared

coherence gap. In either case, there exists a constant L > 0 such that:

D
(t)
traj(q, q

′) ≤ L ·

(
t∑

s=1

ηsϵs

)2

,

which completes the proof.

C DISCUSSION AND LIMITATIONS

First, our results demonstrate that semi-supervised training using 4K labeled data combined with 16K unla-
beled data outperforms fully supervised training on 45K labeled data. This encouraging finding aligns with
the insight proposed by Li et al. (2025b) in the context of RLVR training: thorough training (i.e., more train-
ing epochs) on smaller curated datasets can yield better performance than training with larger datasets for
fewer epochs. Our work further extends this observation by showing that unlabeled data, when carefully se-
lected using guidance from labeled data training, can effectively enhance the model’s reasoning capabilities,
thus amplifying the benefits of semi-supervised RLVR.

In addition, due to computational constraints, our evaluation is currently limited to models under the 7B
parameter scale. Exploring the applicability and scalability of this semi-supervised paradigm to larger lan-
guage models (e.g., 13B or beyond) remains an important direction for future research, as larger models may
benefit even more from effective utilization of unlabeled data.

D EXPERIMENT DETAILS

D.1 DETAILED SETUP

Implementation Details. Following Dr.GRPO (Liu et al., 2025), we disable length and standard error
normalization in the GRPO loss (Eq. 9) for all experiments. By default, we use Qwen2.5-Math-7B (Yang
et al., 2024), following prior work Cui et al. (2025); Zeng et al. (2025b); Liu et al. (2025). Besides, we
remove the KL regularization by setting β = 0 and set the entropy coefficient to 0.01. Our rollout batch
size is 64, with 8 rollouts per prompt, and update batch size 64. Rollouts are generated with temperature
sampling (T = 1.0). We use Math-Verify 1 as the reward function, without format or length bonuses. For
unlabeled data selection, we set the top-p threshold to 0.1 and the threshold Γ to 0.5 in Eq. 7. The warmup
stage consists of 5 epochs. In addition, given that experiments are performed across different data scales,
the samples used in non-full-data scenarios are randomly sampled from the original dataset.

Training. In addition to Qwen2.5-Math-7B, we extend TRAPO to DeepSeek-R1-Distill-Qwen-1.5B (Guo
et al., 2025) and LLaMA-3.1-8B-Instruct (Team, 2024). To ensure fairness, we maintain 8 samples per
prompt for all RL-trained models. The learning rate is constantly set as 1e-6. For all training, we follow Yan
et al. (2025) and use the same validation set to select the best checkpoint. All the experiments were run with
an 8× NVIDIA H200 with 141GB memory.

Our implementation is based on verl2, which uses vLLM3 as the rollout generators. We are thankful for
these open-source repositories.

1https://github.com/huggingface/Math-Verify
2https://github.com/volcengine/verl
3https://github.com/vllm-project/vllm
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Qwen2.5-Series Models. Since the context length of Qwen2.5-Math is 4096 and the generation length of
off-policy samples could be lengthy, we change the rope theta from 10000 to 40000 and extend the window
size to 16384. For all Qwen2.5-Series models, we use the same dataset as described in Sec. 4.

DeepSeek-R1-Distill-Qwen-1.5B. DeepSeek-R1-Distill-Qwen-1.5B is a compact, 1.5-billion-parameter
language model distilled from the high-performing DeepSeek-R1 series (Guo et al., 2025). Built on the
Qwen architecture, it combines strong reasoning capabilities with high efficiency, offering excellent perfor-
mance in math and logic tasks despite its small size. For DeepSeek-R1-Distill-Qwen-1.5B, we use the same
dataset as described in Sec. 4.

Llama-3.1-8B. For Llama3.1-8B, we follow Simple-RL-Zoo Zeng et al. (2025a) and use a simplified
prompt, and we do not ask the model to generate <think>\n </think>\n tokens.

D.2 SYSTEM PROMPT

All our trained models, except LLaMA-3.1-8B, share the same system prompt for training and inference:

Your task is to follow a systematic, thorough reasoning process before providing the final solution.
This involves analyzing, summarizing, exploring, reassessing, and refining your thought process
through multiple iterations. Structure your response into two sections: Thought and Solution. In the
Thought section, present your reasoning using the format: “<think>\n thoughts </think>\n”.
Each thought should include detailed analysis, brainstorming, verification, and refinement of ideas.
After “</think>\n” in the Solution section, provide the final, logical, and accurate answer, clearly
derived from the exploration in the Thought section. If applicable, include the answer in \boxed{}
for closed-form results like multiple choices or mathematical solutions.
User: This is the problem: {QUESTION}
Assistant: <think>

For LLaMA-3.1-8B, we do not use the above system prompt as we find the model cannot follow such
an instruction. Thus, we use a simplified version that only includes the CoT prompt and do not include
<think> token.

User: {QUESTION}
Answer: Let’s think step by step.

D.3 BASELINE DESCRIPTION

• Unsupervised Baselines:
– TTRL (Zuo et al., 2025): treating the majority-voted output as the pseudo-label and training with

GRPO.
– Self-Certainty (Zhao et al., 2025): maximizing the KL divergence between the model’s rollout token

probabilities and a uniform distribution to encourage confident predictions.
– Token-Level Entropy (Agarwal et al., 2025): minimizing the entropy of individual output tokens

during rollout to promote consistency.
– Sentence-Level Entropy (Agarwal et al., 2025): maximizing the overall sentence probability of the

generated output to favor high-likelihood sequences.
• Supervised Baselines:
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Table 4: Comparison with other fully supervised training methods. Bold and underline indicate the best and
second-best results, respectively.

Model In-Distribution Performance Out-of-Distribution Performance

AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.

Qwen-Base (Yang et al., 2024) 11.5/4.9 31.3 43.6 7.4 15.6 19.0 18.2 11.1 16.9 15.4
Qwen-Instruct (Yang et al., 2024) 12.5/10.2 48.5 80.4 32.7 41.0 37.6 70.3 24.7 34.1 43.0

Fully Supervised Methods Trained on 45K Samples w/ All Labels

SimpleRL-Zero (Zeng et al., 2025b) 27.0/6.8 54.9 76.0 25.0 34.7 37.4 30.2 23.2 34.5 29.3
OpenReasoner-Zero (Hu et al., 2025) 16.5/15.0 52.1 82.4 33.1 47.1 41.0 66.2 29.8 58.7 51.6
PRIME-Zero (Cui et al., 2025) 17.0/12.8 54.0 81.4 39.0 40.3 40.7 73.3 18.2 32.7 41.4
Oat-Zero (Liu et al., 2025) 33.4/11.9 61.2 78.0 34.6 43.4 43.7 70.1 23.7 41.7 45.2
On-Policy RL (Yan et al., 2025) 25.1/15.3 62.0 84.4 39.3 46.8 45.5 82.3 40.4 49.3 57.3

TRAPO Trained w/ 4K Labeled Samples & 12K Unlabeled Samples

TRAPO (ours) 24.3/17.1 60.0 84.6 39.3 48.3 45.6 84.6 43.9 50.7 59.7

– Simple-RL (Zeng et al., 2025b): training from Qwen2.5-Math-7B using rule-based reward.
– Oat-Zero (Liu et al., 2025): training from Qwen2.5-Math-7B and rule-based reward, proposing to

remove the standard deviation in GRPO advantage computation and token-level normalization in
policy loss computation.

– PRIME-Zero (Cui et al., 2025): using policy rollouts and outcome labels through implict process
rewards.

– OpenReasonerZero (Cui et al., 2025): a recent open-source implementation of RLVR methods.
– Fully Supervised (Yan et al., 2025): trained on-policy RL within the RLVR paradigm using

Dr.GRPO (Liu et al., 2025) with the same reward and data.

E MORE EXPERIMENTS

E.1 COMPARISON WITH MORE SUPERVISED RLVR BASELINES

In Table 4, we compare our method with additional fully supervised RLVR baselines, all of which are trained
on the complete 45K labeled dataset, with results taken directly from Yan et al. (2025). The results show that
our model, trained with only 4K labeled and 12K unlabeled samples, achieves performance that surpasses all
baselines trained on the full 45K labeled data. For instance, our TRAPO method outperforms the outstanding
Oat-Zero baseline by 1.9% in in-distribution performance and by a significant 14.5% in out-of-distribution
performance. This further underscores the effectiveness and value of our proposed TRAPO.

E.2 EXTEND TRAPO TO MORE MODELS

We further investigate whether our proposed semi-supervised paradigm, TRAPO, generalizes to small mod-
els, instruction-tuned models, and weak models. To this end, we conduct experiments on DeepSeek-R1-
Distill-Qwen-1.5B (representing small models) and LLaMA-3.1-8B-Instruct (representing instruction-tuned
and relatively weaker models), under unsupervised, semi-supervised, and fully supervised training settings.
The experimental setup follows that of Table 2. As shown in Table 5 and 6, TRAPO consistently outperforms
the unsupervised baseline (TTRL) by a significant margin and approaches (or even surpasses) the perfor-
mance of the fully supervised baseline on both models. Specifically, on DeepSeek-R1-Distill-Qwen-1.5B,
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Table 5: Overall performance on nine competition-level benchmark performance on LLaMA-3.1-8B-Instruct
(Team, 2024).

Model In-Distribution Performance Out-of-Distribution Performance

AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.

Original Model

Original Model 5.1/0.4 18.6 44.6 19.5 14.1 17.1 24.2 0.5 38.6 21.1

Unsupervised Methods Trained on 1K Unlabeled ID Samples & 1K Unlabeled OOD Samples
TTRL 6.1/0.1 21.8 46.6 25.4 16.7 19.5 11.0 0.0 41.8 17.6
Self-certainty 6.9/1.2 20.3 45.5 23.7 17.1 19.1 13.3 0.0 39.5 17.6
Token-level Entropy 5.3/0.1 19.6 43.5 22.7 16.9 18.0 10.5 0.0 38.7 16.4
Sentence-level Entropy 7.2/0.2 20.9 46.4 24.7 16.5 19.3 11.7 0.0 41.5 17.7

Semi-supervised Methods Trained on 1K Labeled ID Samples & 1K Unlabeled OOD Samples
TTRL 7.1/0.1 20.5 46.4 24.6 17.3 19.3 11.5 0.0 40.9 17.5
Self-certainty 6.6/0.6 20.7 46.4 23.2 16.3 19.0 12.7 0.0 40.3 17.7
Token-level Entropy 6.4/0.1 20.5 44.6 23.3 16.4 18.6 11.3 0.0 41.6 17.6
Sentence-level Entropy 7.5/0.1 21.3 46.7 25.1 16.9 19.6 12.3 0.0 41.9 18.1
TRAPO (ours) 9.9/0.2 21.5 48.0 26.1 18.7 20.7 12.1 0.0 43.4 18.5
Fully Supervised w/ 2K Labels 6.9/1.6 22.2 52.2 21.0 17.5 20.2 10.4 0.0 47.5 19.3

Table 6: Overall performance on nine competition-level benchmark performance on DeepSeek-R1-Distill-
Qwen-1.5B (Guo et al., 2025).

Model AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.
Original Model 21.0/20.3 51.6 76.6 26.5 36.7 38.8 3.7 0.0 11.0 4.9

Unsupervised (TTRL) 26.1/21.7 57.0 80.6 28.7 42.7 42.8 25.7 0.0 31.9 19.2
Semi-supervised (TRAPO) 27.9/22.6 61.9 82.2 32.0 45.3 45.3 34.4 0.0 33.5 22.6
Supervised 28.5/22.5 64.1 84.6 37.1 47.0 47.3 57.3 0.0 38.9 32.1

TRAPO improves over TTRL by 2.0% in in-distribution (ID) performance and 9.5% in out-of-distribution
(OOD) performance. On LLaMA-3.1-8B-Instruct, it exceeds TTRL by 1.2% in ID performance and 0.9%
in OOD performance. Notably, TRAPO even outperforms the fully supervised baseline by 0.5% in ID per-
formance. These results strongly demonstrate the robustness, adaptability, and broad applicability of our
method across diverse model scales and architectures.

E.3 TRAPO IS A UNIVERSAL COMPONENT

We demonstrate that TRAPO serves as a universal and modular component, whose pass rate trajectory-based
sample selection mechanism can be readily integrated into various semi-supervised baselines to identify re-
liable unsupervised reward signals. As shown in Figure 7, we apply this selection strategy to three represen-
tative baselines: Sentence-level Entropy, Token-level Entropy, and TTRL. Compared to the naive semi-
supervised counterparts that simply combine supervised and unsupervised objectives, augmenting these
methods with our sample selection framework consistently yields performance gains across multiple bench-
marks. This further validates the extensibility and plug-and-play nature of our approach, indicating that
the core principle of TRAPO—dynamically identifying high-quality unlabeled samples via learning trajec-
tories—is broadly applicable and complementary to diverse semi-supervised paradigms.
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(a) Sentence-level Entropy (b) Token-level Entropy (c) TTRL

Figure 7: Different unsupervised methods combined with our trajectory-based filtering approach can im-
prove performance, compared to a naive semi-supervised method that directly combines supervised and
unsupervised approaches. The experimental setup follows Table 2.

E.4 RUN TRAPO ON DEEPMATH

To further verify TraPO’s broad applicability, we run it on DeepMath (He et al., 2025b), a recently released
dataset for mathematical reasoning. We randomly select 2K samples as labeled data and 8K samples as
unlabeled data. We compare results from unsupervised, naive semi-supervised, and fully supervised meth-
ods. As shown in Table 8, our method, TraPO, outperforms all unsupervised methods and naive supervised
methods. Specifically, on the ID test set, TraPO achieves a 1.5% improvement over the best naive semi-
supervised method combined with TTRL, and is only 1.2% behind fully supervised training. Notably, on the
OOD test set, TraPO even surpasses fully supervised training by 2.4%, highlighting that TraPO is not only
label-efficient but also delivers outstanding performance.

E.5 DIFFERENT SELECTION STRATEGIES

Under a fixed selection ratio (30%), we compare TraPO with other possible selection strategies, including
simple random selection, sentence-level entropy-based selection (where lower entropy indicates more reli-
able pseudo-labels for the corresponding rollouts), and self-certainty (where higher self-certainty suggests
more reliable pseudo-labels for the corresponding rollout). The experimental results in Table 13 show that
with a fixed selection ratio of 30%, all other methods are significantly inferior to our selection method,
TraPO, on both the ID and OOD test sets.

E.6 STABILITY OF TRAPO

We seek to verify whether TraPO is sufficiently stable and insensitive to sample order. To this end, we ran
TraPO three times with data randomly shuffled. Across these three trials (Qwen-2.5-7B, 1K labeled, 3K
unlabeled), both the results and the selected samples were nearly identical, confirming TraPO’s robustness
(see table 16).
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E.7 TRAINING COST ANALYSIS OF TRAPO

We analyze the practical training cost of TraPO from both theoretical and empirical perspectives.

Time Complexity. Each labeled or unlabeled sample is rolled out G times per epoch, in line with standard
RLVR practices. Let T represent the total number of training epochs, NL, NU the number of labeled and
unlabeled samples, Csim the computational cost of a cosine similarity computation over short vectors, and
Cgen the computational cost of a single rollout. The only additional operation is a cosine similarity com-
putation Csim over short vectors, which is negligible compared to the cost of rollout generation Cgen, i.e,
Csim << Cgen. The time complexity of fully supervised training (using N = NL +NU labeled samples) is:

TSup = O(T ·N ·G · Cgen) (19)

TraPO has the same complexity:

TTraPO = O
(
T · (NL +NU ) ·G · Cgen

)
+O

(
T · (NL +NU ) · Csim

)
≈ O(T ·N ·G · Cgen) (20)

Therefore, TRAPO and fully supervised RLVR share identical time complexity, both dominated by forward
sampling and GRPO updates.

Empirical Training Cost. In our experiments, TraPO, supervised RLVR, and unsupervised RLVR are
trained under identical conditions: same number of epochs, batch sizes, and hardware configuration
(8×H200 GPUs). Notably, TraPO reaches its best checkpoint at nearly the same training step as the super-
vised baseline, indicating no significant overhead in convergence speed. Table 7 summarizes the wall-clock
training times across different data scales, demonstrating that TraPO incurs no substantial additional training
cost compared to supervised RLVR.

E.8 DIFFERENT WAYS OF UTILIZING RELIABLE PASSRATE DATABASES

One may also consider other variants, such as not using the average pass rate trajectory and instead selecting,
from the unlabeled samples, those whose pass rate trajectory is most similar to the trajectory of any labeled
sample for inclusion in training. However, this approach can lead to unstable selection because, among the
unlabeled samples, problems that are too difficult, too easy, or of moderate difficulty can all exhibit relatively
similar pass-rate trajectories among the labeled samples. As a result, the selection is ineffective (Table 17).

Table 7: Wall-clock training time (reported as “GPU-hours × GPUs”) across data regimes.

Data Size Unsupervised Supervised Semi-Supervised (TraPO)

4k ∼7 × 8 ∼25 × 8 ∼26 × 8
8k ∼13 × 8 ∼39 × 8 ∼38 × 8
45k ∼11 × 8 ∼57 × 8 ∼55 × 8

F MORE RELATED WORK

Semi-supervised Reinforcement Learning. Semi-supervised learning has been widely studied in super-
vised settings, where labeled and unlabeled data are combined to improve model performance under limited
annotation budgets (Blum & Mitchell, 1998; Chapelle et al., 2009; Subramanya & Bilmes, 2011; Rasmus
et al., 2015; Laine & Aila, 2016; Tarvainen & Valpola, 2017; Berthelot et al., 2019; Xie et al., 2020; Sohn
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et al., 2020). In reinforcement learning, early work explored combining reward-based learning with self-
supervised signals or pseudo-rewards derived from environment dynamics or intrinsic motivation (Dudı́k
et al., 2011; Finn et al., 2016; Thomas & Brunskill, 2016; Kallus & Uehara, 2020; Zhou et al., 2023). These
methods typically treat supervised and unsupervised signals independently, for instance by summing reward
and consistency objectives, or by pre-training on unlabeled data before fine-tuning on labeled trajectories.

However, such semi-supervised RL approaches are ill-suited for large language model (LLM) training under
verifiable rewards (RLVR). In RLVR, the policy is optimized using feedback signals derived from answer
verification (e.g., correctness of final outputs), rather than explicit action-level rewards. Unsupervised meth-
ods in this space rely on internal consistency, such as low token entropy (Agarwal et al., 2025), high self-
certainty (Zhao et al., 2025), or majority voting (Zuo et al., 2025), to construct pseudo-rewards. While these
signals can guide exploration, they often reinforce incorrect or degenerate reasoning patterns in the absence
of external supervision, leading to model collapse (Zhang et al., 2025c).

Our work departs from prior approaches by introducing a guidance mechanism: the labeled data are not
merely used to provide an additional reward signal, but to actively steer the selection and utilization of unla-
beled samples. Specifically, we observe that reliable reasoning trajectories on unlabeled data exhibit learning
dynamics similar to those on labeled data. By measuring trajectory similarity in the reward model space,
TRAPO identifies high-quality unlabeled samples whose reasoning patterns are consistent with verified ones.
This ensures that unsupervised signals are only leveraged when they align with externally validated behavior,
preventing the amplification of spurious patterns.

This paradigm shift from independent combination to supervised guidance addresses a key limitation of
traditional methods. In high dimensional open ended generation tasks such as reasoning with LLMs consis-
tency alone is insufficient for correctness. Without supervision to anchor the learning process models easily
overfit to superficial patterns or self reinforced errors. TRAPO resolves this by using minimal labeled data
as a “north star” enabling stable and effective learning from large amounts of unlabeled data. As we show
empirically this leads to superior performance and data efficiency surpassing both fully supervised baselines
trained on orders of magnitude more labels and unsupervised methods that fail to generalize.

G PSEUDO CODE

We provide the pseudo code 1.
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Algorithm 1 TRAPO: Trajectory-based Policy Optimization

Require: Labeled data Dl, Unlabeled data Du, Warm-up epochs Twarm, Threshold Γ, Top-p fraction
Ensure: Policy πθ

Initialize: Pass rate trajectories Tq ← [ ] for all q
1: Reliable database Dreliable ← {Tl | l ∈ Dl}
2: for each training epoch t do
3: Generate responses for Dl ∪ Du using πθ

4: Compute (pseudo) pass rates P (t)
q for all questions

5: Update trajectories: T(t)
q ← T

(t−1)
q ⊕ P

(t)
q

6: if t > Twarm then
7: Compute average reliable trajectory T̄

(t)
reliable

8: for u ∈ Du do
9: Compute similarity: TCSu = cos

(
T̂

(t)
u , ˆ̄T

(t)
reliable

)
10: end for
11: Select reliable unlabeled samples:

Ureliable = top-p(TCS) ∪ {u | TCSu ≥ Γ}

12: Add their trajectories to Dreliable
13: end if
14: Compute loss:

L(θ) = J labeled
GRPO +

∑
u∈Ureliable

J unlabeled
GRPO,u

15: Update πθ using ∇θL(θ)
16: end for

Table 8: Overall performance based on Qwen2.5-Math-7B under three different training paradigms using
DeepMath dataset (He et al., 2025b). Bold and underline indicate the best and second-best results, respec-
tively.

Model In-Distribution Performance Out-of-Distribution Performance

AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.

Unsupervised Methods Trained on 8K Samples w/o Any Labels
TTRL 11.6/8.4 50.2 74.8 37.1 38.7 36.8 74.7 30.3 39.8 48.3
Self-certainty 11.9/10.2 45.6 74.4 36.4 37.0 35.9 75.9 23.7 36.7 45.4
Token-level Entropy 13.5/9.3 43.2 71.4 36.0 35.0 34.7 75.9 32.8 39.3 49.3
Sentence-level Entropy 13.6/9.6 50.1 75.6 36.8 37.0 37.1 72.1 28.8 36.9 45.9

Semi-supervised Methods Trained on 2K Labeled Samples & 6K Unlabeled Samples
TTRL 14.1/13.0 48.8 77.8 32.4 37.0 37.2 77.4 27.2 40.1 48.2
Self-certainty 12.8/8.3 45.2 71.6 29.4 32.0 33.2 77.4 28.3 42.9 49.5
Token-level Entropy 13.8/10.9 48.6 74.2 33.1 34.1 35.8 77.0 30.8 37.2 48.3
Sentence-level Entropy 9.6/9.9 45.6 73.8 32.4 34.5 34.3 76.9 28.3 39.8 48.3
TRAPO (ours) 13.8/13.6 51.4 79.8 33.8 40.0 38.7 77.2 35.4 43.6 52.1

Fully Supervised w/ 8K Labels 16.0/12.1 52.9 78.8 36.8 42.8 39.9 77.0 29.3 42.7 49.7
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Table 9: Overall performance on nine competition-level benchmarks for Qwen-2.5-7B under different top-p
settings, with fixed Γ (0.5) and a fixed warmup length (5). Training was performed with 1K labeled and 3K
unlabeled samples.

Model AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.
Qwen-Base 11.5/4.9 31.3 43.6 7.4 15.6 19.0 18.2 11.1 16.9 15.4
Qwen-Instruct 12.5/10.2 48.5 80.4 32.7 41.0 37.6 70.3 24.7 34.1 43.0

top-p = 0.1
TRAPO 17.9/13.8 58.7 81.4 38.2 45.5 42.6 83.7 37.9 46.8 56.1

top-p = 0.3
TRAPO 16.6/15.7 56.0 82.6 35.6 44.0 41.7 79.7 34.3 46.7 53.6

top-p = 0.5
TRAPO 15.9/9.5 52.7 79.0 34.2 39.9 38.5 73.2 32.7 45.6 50.5

top-p = 0.7
TRAPO 14.9/10.8 53.4 81.8 34.9 41.8 39.6 75.4 36.9 43.8 52.0

top-p = 1.0
TRAPO 14.9/10.7 55.3 77.8 33.1 43.6 39.2 72.6 35.4 42.7 50.2

Table 10: Overall performance across nine competition-level benchmarks for Qwen-2.5-7B under varying Γ
values, with fixed top-p (0.1) and warmup length (5). Training was conducted with 1K labeled samples and
3K unlabeled samples.

Model AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.
Qwen-Base 11.5/4.9 31.3 43.6 7.4 15.6 19.0 18.2 11.1 16.9 15.4
Qwen-Instruct 12.5/10.2 48.5 80.4 32.7 41.0 37.6 70.3 24.7 34.1 43.0

Γ = 0.1
TRAPO 15.7/10.9 52.6 81.1 34.5 41.3 39.4 74.0 37.1 43.2 51.4

Γ = 0.3
TRAPO 16.5/12.9 56.8 81.9 37.6 45.9 41.9 81.9 38.1 46.3 55.4

Γ = 0.5
TRAPO 17.9/13.8 58.7 81.4 38.2 45.5 42.6 83.7 37.9 46.8 56.1

Γ = 0.7
TRAPO 14.3/12.7 53.9 79.2 35.1 42.6 39.6 80.6 35.6 43.7 53.3

Γ = 1.0
TRAPO 14.9/13.3 53.9 79.7 34.7 42.1 39.8 81.3 35.9 43.4 53.5
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Table 11: Overall performance across nine competition-level benchmarks for Qwen-2.5-7B under varying
warmup lengths, with fixed top-p (0.1) and fixed Γ (0.5). Training conducted with 1K labeled and 3K
unlabeled samples.

Model AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.
Qwen-Base 11.5/4.9 31.3 43.6 7.4 15.6 19.0 18.2 11.1 16.9 15.4
Qwen-Instruct 12.5/10.2 48.5 80.4 32.7 41.0 37.6 70.3 24.7 34.1 43.0

warm-up length = 2
TRAPO 16.1/12.0 54.9 77.8 34.0 40.2 39.2 78.5 33.2 41.5 51.1

warm-up length = 3
TRAPO 17.4/13.6 57.5 80.2 37.1 43.8 41.6 81.9 36.2 44.8 54.3

warm-up length = 5
TRAPO 17.9/13.8 58.7 81.4 38.2 45.5 42.6 83.7 37.9 46.8 56.1

warm-up length = 8
TRAPO 18.2/14.1 59.3 82.0 38.8 46.1 43.1 84.2 38.4 47.3 56.6

warm-up length = 12
TRAPO 17.6/13.5 58.1 80.9 37.7 44.9 42.1 83.1 37.6 46.1 55.6

Table 12: Overall performance of Qwen2.5-Math-7B under different training sample sizes and annotation
ratios.

Model In-Distribution Performance Out-of-Distribution Performance

AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.

Original Models
Qwen-Base 11.5/4.9 31.3 43.6 7.4 15.6 19.0 18.2 11.1 16.9 15.4
Qwen-Instruct 12.5/10.2 48.5 80.4 32.7 41.0 37.6 70.3 24.7 34.1 43.0

TRAPO Trained on Varying Sample Sizes (12.5% Labeled)
TRAPO w/ 1K Samples 13.5/10.1 52.3 80.7 39.4 42.2 39.7 75.2 24.1 43.5 47.6
TRAPO w/ 2K Samples 15.0/11.6 53.3 81.2 38.9 44.2 40.7 82.4 28.7 45.2 52.1
TRAPO w/ 4K Samples 16.1/12.9 56.8 82.3 36.7 45.4 41.7 82.1 33.8 46.7 54.2
TRAPO w/ 16K Samples 21.3/16.1 60.9 84.8 38.2 43.3 44.1 82.6 39.5 46.2 56.1

TRAPO Trained on Varying Sample Sizes (25% Labeled)
TRAPO w/ 1K Samples 17.1/12.8 53.6 79.4 39.3 41.5 40.6 72.7 30.3 42.4 48.5
TRAPO w/ 2K Samples 18.1/14.3 55.4 81.6 33.1 43.4 41.0 82.6 39.4 45.0 55.7
TRAPO w/ 4K Samples 17.9/13.8 58.7 81.4 38.2 45.5 42.6 83.7 37.9 46.8 56.1
TRAPO w/ 16K Samples 24.3/17.1 60.0 84.6 39.3 48.3 45.6 84.6 43.9 50.7 59.7

TRAPO Trained on Varying Sample Sizes (50% Labeled)
TRAPO w/ 1K Samples 14.3/10.9 51.7 81.4 34.2 42.1 39.1 78.3 30.1 45.2 51.2
TRAPO w/ 2K Samples 16.2/13.1 54.8 82.3 37.1 45.7 41.5 81.5 34.2 46.6 54.1
TRAPO w/ 4K Samples 17.3/15.7 59.2 83.9 39.4 47.3 43.8 83.7 36.8 46.6 55.7
TRAPO w/ 16K Samples 24.4/18.3 61.5 84.1 40.8 46.3 45.9 84.2 43.7 49.7 59.2

Fully Supervised w/ 45K Labels 25.1/15.3 62.0 84.4 39.3 46.8 45.5 82.3 40.4 49.3 57.3
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Table 13: Qwen-2.5-7B results on nine competition-level benchmarks using 1K labeled and 3K unlabeled
samples (30% reliable data selected by Sentence-level Entropy, Self-certainty, and TraPO)

Model AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.
Qwen-Base 11.5/4.9 31.3 43.6 7.4 15.6 19.0 18.2 11.1 16.9 15.4
Qwen-Instruct 12.5/10.2 48.5 80.4 32.7 41.0 37.6 70.3 24.7 34.1 43.0

Random 15.8/12.3 53.5 79.8 34.8 41.8 39.7 80.8 35.8 43.2 53.3
Sentence-level Entropy 16.3/12.5 54.6 80.2 35.3 42.4 40.2 81.8 35.4 43.7 53.6
Self-certainty 15.8/13.3 52.9 80.7 36.6 43.5 40.5 80.4 35.8 42.9 53.0
TRAPO 16.7/13.7 57.1 81.0 37.3 44.6 41.8 83.2 37.4 45.9 55.5

Table 14: Overall performance on nine competition-level benchmarks for Qwen-2.5-7B using random se-
lection or TraPO. Training was conducted with 1K labeled samples and 3K unlabeled samples.

Model AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.
Qwen-Base 11.5/4.9 31.3 43.6 7.4 15.6 19.0 18.2 11.1 16.9 15.4
Qwen-Instruct 12.5/10.2 48.5 80.4 32.7 41.0 37.6 70.3 24.7 34.1 43.0

No Selection 14.2/13.5 52.6 80.2 34.9 40.9 39.4 76.2 36.4 43.6 52.1

10% Selected
Random 14.9/13.3 53.9 79.7 34.7 42.1 39.8 80.3 34.9 42.4 52.5
TRAPO 15.8/13.5 55.0 80.3 35.8 43.2 40.7 81.5 35.8 43.5 53.6

30% Selected
Random 15.8/12.3 53.5 79.8 34.8 41.8 39.7 80.8 35.8 43.2 53.3
TRAPO 16.7/13.7 57.1 81.0 37.3 44.6 41.8 83.2 37.4 45.9 55.5

50% Selected
Random 14.5/12.8 51.5 77.2 31.5 40.0 37.9 77.8 34.8 41.8 51.5
TRAPO 15.1/13.6 54.2 80.5 35.2 42.5 40.1 82.0 36.2 43.8 54.0

70% Selected
Random 14.6/13.0 52.4 78.5 34.0 40.8 38.4 79.2 35.2 42.5 52.3
TRAPO 14.9/13.5 53.8 79.9 34.9 41.9 39.8 81.0 35.4 42.8 53.1

All Selection 14.9/10.7 55.3 77.8 33.1 43.6 39.2 72.6 35.4 42.7 50.2

Table 15: Overall performance across nine competition-level benchmarks for Qwen-2.5-7B with varying
ratios (σM ) of unlabeled samples. Training uses 1K labeled samples and 3K unlabeled samples.

Model AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.
Qwen-Base 11.5/4.9 31.3 43.6 7.4 15.6 19.0 18.2 11.1 16.9 15.4
Qwen-Instruct 12.5/10.2 48.5 80.4 32.7 41.0 37.6 70.3 24.7 34.1 43.0

σM = 0.00 14.2/13.5 52.6 80.2 34.9 40.9 39.4 76.2 36.4 43.6 52.1

σM = 0.25
Token-level Entropy 16.7/13.6 54.6 81.4 34.3 41.3 40.4 79.6 35.9 44.6 53.4
TRAPO 14.6/13.6 55.4 79.8 35.7 42.1 40.2 81.9 35.4 44.0 53.8

σM = 0.50
Token-level Entropy 15.0/12.4 51.6 79.8 32.7 39.9 38.6 77.3 34.8 42.9 51.7
TRAPO 16.8/13.6 56.2 80.5 38.9 43.6 41.6 82.8 36.6 44.9 54.8

σM = 0.75
Token-level Entropy 16.2/13.4 52.1 79.0 33.8 39.1 38.9 77.6 29.8 41.3 49.6
TRAPO 17.4/12.9 57.2 80.8 37.5 44.3 41.7 82.5 37.2 45.9 55.2

σM = 1.00
Token-level Entropy 18.2/11.9 53.4 80.2 34.6 41.9 40.0 72.9 32.3 44.0 49.7
TRAPO 17.9/13.8 58.7 81.4 38.2 45.5 42.6 83.7 37.9 46.8 56.1
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Table 16: Overall performance across nine competition-level benchmarks for Qwen-2.5-7B, averaged over
three runs. Training was performed with 1K labeled samples and 3K unlabeled samples.

Model AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.
Qwen-Base 11.5/4.9 31.3 43.6 7.4 15.6 19.0 18.2 11.1 16.9 15.4
Qwen-Instruct 12.5/10.2 48.5 80.4 32.7 41.0 37.6 70.3 24.7 34.1 43.0

TRAPO 18.2± 0.3 / 13.6± 0.2 59.3± 0.5 81.9± 0.4 37.9± 0.4 45.8± 0.5 42.8± 0.4 83.9± 0.6 37.8± 0.6 47.5± 0.5 56.4± 0.5

Table 17: Qwen-2.5-7B results on nine competition-level benchmarks using 1K labeled and 3K unlabeled
samples, with average trajectory matching or maximum trajectory matching.

Model AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.
Qwen-Base 11.5/4.9 31.3 43.6 7.4 15.6 19.0 18.2 11.1 16.9 15.4
Qwen-Instruct 12.5/10.2 48.5 80.4 32.7 41.0 37.6 70.3 24.7 34.1 43.0

TRAPO-MAX 16.3/9.9 52.7 80.8 35.6 41.3 39.4 81.6 33.2 42.6 52.5
TRAPO-MEAN 17.9/13.8 58.7 81.4 38.2 45.5 42.6 83.7 37.9 46.8 56.1
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