

000 TRAPO: A SEMI-SUPERVISED REINFORCEMENT LEARN- 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 TRAPO: A SEMI-SUPERVISED REINFORCEMENT LEARN- 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has proven effective in training large reasoning models (LRMs) by leveraging answer-verifiable signals to guide policy optimization, which, however, suffers from high annotation costs. To alleviate this problem, recent work has explored unsupervised RLVR methods that derive rewards solely from the model’s internal consistency, such as through entropy and majority voting. While seemingly promising, these methods often suffer from model collapse in the later stages of training, which may arise from the reinforcement of incorrect reasoning patterns in the absence of external supervision. In this work, we investigate a novel semi-supervised RLVR paradigm that utilizes a small labeled set to *guide* RLVR training on unlabeled samples. Our key insight is that supervised rewards are essential for stabilizing consistency-based training on unlabeled samples, ensuring that only reasoning patterns verified on labeled instances are incorporated into RL training. Technically, we propose an effective policy optimization algorithm **TRAPO** that identifies reliable unlabeled samples by matching their learning trajectory similarity to labeled ones. Building on this, TRAPO achieves remarkable data efficiency and strong generalization on nine advanced benchmarks. With only 1K labeled and 3K unlabeled samples, TRAPO reaches 42.6% average accuracy, surpassing the best unsupervised method trained on 45K unlabeled samples (38.3%). Notably, when using 4K labeled and 12K unlabeled samples, TRAPO even *outperforms the fully supervised model* trained on the full 45K labeled samples on all benchmarks, while using only **10%** of the labeled data.

Figure 1: **Performance overview.** (Left) TRAPO surpasses fully supervised RLVR (45K samples) using just 10% (4K) annotated data. (Right) TRAPO scaling law: performance improves consistently with increasing sample sizes and varying annotation ratios. We only show the changes with a sample size at a 25% annotation rate in the figure; for other specific results, please see Table 12 in the Appendix.

047 1 INTRODUCTION
048
049

050 The reinforcement learning with verifiable rewards (RLVR), pioneered by DeepSeek-R1 (Guo et al., 2025),
051 has significantly advanced the development of large reasoning models (LRMs). In typical RLVR (Shao et al.,
052 2024; Liu et al., 2025; Yu et al., 2025; Zheng et al., 2025), questions from a training corpus are fed into an
053 LRM, which then generates multiple reasoning paths (rollouts) per input. Rewards are computed based on
054 verifiable rules: most commonly, whether the final answer in a response matches the ground-truth label.
055 By leveraging such an answer-verifiable structure, RLVR enables reward assignment through group-based
056 advantage estimation, guiding the model to explore reasoning paths that lead to the correct final answer.

057 However, when scaling to large corpora, the reliance of this reward paradigm on gold-standard labels incurs
058 prohibitively high annotation costs, making it difficult to generalize to specialized domains where ground-
059 truth answers are scarce or expensive to obtain, such as medicine and finance (Wang et al., 2024b). To
060 address this challenge, recent work has explored unsupervised RLVR methods (Zhang et al., 2025a; Zhao
061 et al., 2025; Agarwal et al., 2025; Li et al., 2025a; Zuo et al., 2025; Zhang et al., 2025a) that aim to eliminate
062 dependence on external supervision directly. These approaches are grounded in the observation that LRMs
063 have already internalized substantial knowledge during pretraining (Ye et al., 2025); thus, the goal shifts
064 from learning factual correctness to eliciting latent reasoning capabilities through self-guided exploration.
065 In this framework, rewards are computed based on intrinsic signals such as self-certainty (Zhao et al., 2025),
066 entropy (Agarwal et al., 2025), or majority voting (Zuo et al., 2025), to encourage high-confidence and
067 consistent outputs. Despite their promise, these unsupervised methods often fail to capture valid reasoning
068 patterns and tend to reinforce incorrect consensus, leading to severe performance degradation in late training.
069 This drawback can be attributed to the absence of external ground truth: the reward signal becomes self-
070 reinforcing and prone to reinforcing systematic biases, leading to a degenerate feedback loop.

071 Analogous to human learning,
072 unsupervised RLVR resembles a
073 student solving problems based
074 solely on current beliefs, treating
075 the most confident answer as the
076 ground truth. When incorrect, re-
077 peated reinforcement of the same
078 reasoning path entrenches errors,
079 leading to failure on both the cur-
080 rent and related tasks. To break
081 this vicious cycle, *humans typi-
082 cally learn from a few well-solved
083 examples with verified solutions
084 to establish a correct conceptual
085 foundation*, then generalize via analogical reasoning. Therefore, we hypothesize that LRMs possess a sim-
086 ilar property: a small number of verifiable labeled samples can enable LRMs to generalize patterns from
087 larger amounts of unlabeled corpora. Inspired by this process, we propose a **Semi-supervised RLVR (SS-
088 RLVR)** paradigm that takes advantage of a small set of labeled examples to anchor the reward signal, guiding
089 the model toward reliable reasoning patterns and allowing more robust self-improvement.

090 Although promising in principle, our experiments show that simply combining supervised and unsupervised
091 RLVR algorithms delivers only marginal benefits. For example, when combined with 3K entropy-based
092 unlabeled RLVR training, the 1K supervised baseline only improves 0.6% accuracy. We argue that such
093 failure stems from the neglect of internal links between labeled and unlabeled sets. In other words, only
those reasoning patterns that are verified on labeled instances should be incorporated into RL training, and
labeled data should be used as role models (Tarpainen & Valpoli, 2017) to **guide** robust learning on unla-

087 Figure 2: Comparison between different RLVR training paradigms.

Figure 3: **TRAPO** is the first semi-supervised RLVR training framework to dynamically select reliable unlabeled samples throughout the training process based on pass rate trajectory matching.

beled instances, as shown in Figure 2. Based on this key insight, we propose **TRAPO** (Trajectory-based Policy Optimization), which measures the similarity between unlabeled and labeled samples in terms of their pass rate trajectories and uses this alignment as a criterion to select unlabeled samples with reliable pseudo-supervision for training. Experimental results demonstrate that TRAPO, trained with only 1K labeled and 3K unlabeled samples, achieves a 4.3% improvement in in-domain performance over the strongest unsupervised baseline (trained on 45K unlabeled samples), 2.6% over the best naive semi-supervised method, and 3.2% over the supervised baseline (trained on 1K labeled samples). Notably, with 4K labeled and 12K unlabeled samples, TRAPO surpasses the fully supervised model trained on all 45K labeled samples across all benchmarks, using only 10% of the labeled data (see Figure 1, left). The scaling law for TRAPO (Figure 1, right) further demonstrates that with increased data and a labeling ratio (e.g., 25%), TRAPO achieves or approaches fully supervised performance without extra labels. These results strongly demonstrate TRAPO’s ability to balance data efficiency and learning effectiveness.

2 RELATED WORK

Semi-supervised Learning leverages both labeled and unlabeled data to improve model performance, typically by exploiting data structure (Chapelle et al., 2009; Rasmus et al., 2015) or consistency assumptions (Laine & Aila, 2016; Berthelot et al., 2019; Xie et al., 2020; Sohn et al., 2020). In traditional classification tasks, outputs are drawn from a shared discrete label space, enabling effective label propagation via feature similarity. However, in RLVR, each input has an instance-specific solution space, where “correct” outputs vary significantly across examples. This makes direct alignment of unlabeled samples with labeled ones through standard similarity-based methods impractical, posing a key challenge in bridging labeled and unlabeled data for RLVR. Thus, in this paper, we turn from *what* the model learns to *how* it learns and employ the pass rate change trajectory as a medium to bridge the gap.

Unsupervised RLVR has proven effective for aligning reasoning models in domains with executable or exact feedback, such as math and code (Hu et al., 2025; Guo et al., 2025; Shao et al., 2024), using deterministic, rule-based reward verifiers (Jaech et al., 2024). However, its reliance on outcome supervision limits applicability to tasks lacking clear ground truth. Recent work explores Unsupervised RLVR, which uses intrinsic, self-generated signals to enable reward-free training. Methods include self-rewarding via judgment prompt-

ing (Wu et al., 2024; Yuan et al., 2024; Xiong et al., 2025) or ensemble heads (Wang et al., 2024c; Zhou et al., 2025), though often costly for online use. More scalable approaches leverage lightweight signals—such as entropy (Agarwal et al., 2025), self-confidence (Li et al., 2025a), or majority voting (Zuo et al., 2025)—to guide online policy updates (Zhang et al., 2025a; Zhao et al., 2025). However, purely unsupervised training risks model collapse due to biased or noisy signals reinforcing incorrect behaviors (Zhang et al., 2025c;b). Our work builds on this line by introducing a semi-supervised framework that anchors learning with labeled data to correct intrinsic signals, improving stability and generalization.

Reasoning Data Selection is a critical step in training LMRs, which can be broadly categorized into external and internal approaches. External methods rely on auxiliary resources such as human annotations (Li et al., 2022), knowledge bases (Nguyen et al., 2024), or proxy models (He et al., 2025a) to evaluate correctness and confidence, but suffer from limited applicability due to dependency on external resources (Bi et al., 2025). In contrast, internal methods leverage model-internal signals, such as output probabilities (Plaut et al., 2024), semantic entropy (Kuhn et al., 2023), hidden representations (Wang et al., 2024a), or reward changes (Li et al., 2025b) to estimate data quality in a label-free manner. Nevertheless, such metrics do not reflect the fundamental characteristics of data that are most beneficial for model learning. In this work, we go beyond superficial indicators by probing the intrinsic learning dynamics of the data, thereby identifying unlabeled instances that genuinely contribute to effective and robust model training.

3 METHOD

In this section, we present our semi-supervised reinforcement learning paradigm, which uses limited labeled data to guide reliable policy learning on large-scale unlabeled data. In Section 3.1, we discuss the limitations of supervised and unsupervised RLVR, and highlight the motivation for semi-supervised RLVR. In Section 3.2, we explore the bridge between labeled and unlabeled data, propose a trajectory-based method to select reliable rewards and provide theoretical analysis on generalization.

3.1 SEMI-SUPERVISED REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Supervised RLVR. In traditional RLVR, we assume access to a large labeled dataset $\mathcal{D}_l = \{(q_i, y_i)\}_{i=1}^{N_l}$, where each sample consists of a question q_i and its corresponding verifiable ground-truth answer y_i . For each question q_i , we input it into a policy model π_θ to generate G candidate outputs, denoted as $\{\tau_i^j\}_{j=1}^G$. Given the ground-truth answer y_i as a supervision, we assign rewards to the generated responses based on whether they derive the correct answer. Specifically, we define a binary reward function that evaluates the final extracted answer from each output τ_i^j :

$$R(\tau_i^j, \textcolor{red}{y_i}) = \mathbb{I}(\tau_i^j, \textcolor{red}{y_i}) = \begin{cases} 1 & \text{if } a_i^j = \textcolor{red}{y_i}, \\ 0 & \text{otherwise.} \end{cases} \quad (1)$$

Here, $a_i^j = \text{extract}(\tau_i^j)$ denotes the answer extracted from the generated response τ_i^j , such as the content within boxed delimiters (e.g., $\boxed{\cdot}$). With the ground-truth answers y_i serving as explicit guidance signals, this *Supervised RLVR* paradigm reinforces only the responses that yield the correct answers; the policy model π_θ is gradually steered toward discovering valid and consistent reasoning paths, thereby enabling stable and scalable policy optimization.

Unsupervised RLVR. Although supervised RLVR has achieved great success, its reliance on golden answers y_i incurs high annotation costs. To address this, the community has explored unsupervised RLVR techniques that rely solely on unlabeled data $\mathcal{D}_u = \{q_i\}_{i=1}^{N_u}$. Under this setting, the absence of golden answers necessitates the use of proxy rewards $R_u(\tau_i^j)$ that estimate $R(\tau_i^j, \textcolor{red}{y_i})$ based on the model’s confidence

188 or consensus $\text{conf}(\cdot)$. A widely adopted method is majority voting, where the reward is defined as:
 189

$$R_u(\tau_i^j) = \text{conf}(\pi_\theta(\tau_i^j | q_i)) = \mathbb{I}(a_i^j = \text{MAJ}(a_i^1, a_i^2, \dots, a_i^G)) \quad (2)$$

190 where $\text{MAJ}(\cdot)$ denotes the pseudo-label \tilde{y} obtained by majority answer among G rollouts. This approach effectively treats the most frequently generated answer as the pseudo-label, providing a form of self-supervised signal. Beyond majority voting, Zhao et al. (2025) use self-certainty, Agarwal et al. (2025) use token-level or sequence-level entropy as a proxy for confidence, and compute rewards accordingly. Fundamentally, these methods are based on a key assumption: higher confidence implies a greater probability of producing the correct answer, and thus the higher the reward it should receive.

191 However, this assumption breaks down when the proxy reward diverges from actual correctness. Take the
 192 majority voting as an example, if the majority answer is not the correct answer, *i.e.*, $\text{MAJ}(a_i^1, \dots, a_i^G) \neq y_i$,
 193 then the incorrect responses are reinforced. This creates a dangerous feedback loop: the policy becomes
 194 more confident in the wrong answer, leading to even stronger wrong consensus in subsequent iterations.
 195 Over time, the model converges to a state where it confidently produces incorrect outputs.
 196

197 **Semi-supervised RLVR.** To break this vicious loop induced by the absence of grounded feedback, we
 198 hypothesize that we must introduce labeled examples to anchor the reward to ground truth. Formally, we
 199 adopt a hybrid reward function that computes rewards differently for labeled and unlabeled data:
 200

$$R_{\text{semi}}(\tau_i^j) = \begin{cases} R(\tau_i^j, \textcolor{red}{y_i}), & \text{if } (q_i, y_i) \in \mathcal{D}_l, \\ R_u(\tau_i^j), & \text{if } q_i \in \mathcal{D}_u. \end{cases} \quad (3)$$

201 Here, labeled data are used to compute rewards under supervision from the ground-truth labels y_i , while
 202 unlabeled data can adopt *any* self-consistency-based reward we have stated previously. Since the reward
 203 $R(\tau_i^j, \textcolor{red}{y_i})$ of labeled data is independent of the model’s consensus, this training paradigm introduces a crucial
 204 distinction between correctness (alignment with ground truth) and self-consistency (internal agreement
 205 among outputs), thereby preventing the policy from reinforcing incorrect but internally consistent outputs.
 206

207 The design of our Semi-supervised RLVR framework stems from the inherent trade-off between *data efficiency*
 208 and *learning effectiveness*. Compared to unsupervised variants, SS-RLVR effectively guides robust
 209 learning on unlabeled instances by using labeled data as a reliable anchor. In contrast to fully supervised
 210 approaches, it significantly reduces the need for costly annotation—our experiments show that SS-RLVR
 211 achieves performance close to supervised learning using only **25%** of the labeled data. In practice, this
 212 trade-off not only directly reduces the annotation burden, but also enables high-quality data synthesis within
 213 iterative refinement pipelines, thereby improving data quality over time. This makes SS-RLVR particularly
 214 attractive for domains where labeled data is scarce or expensive to obtain, such as medicine and finance.
 215

216 3.2 PROGRESSIVE TRAJECTORY GUIDANCE FOR BRIDGING LABELED AND UNLABELED DATA

217 Despite its promise, we show that a trivial baseline that simply combines supervised and unsupervised
 218 RLVR algorithms delivers only marginal benefits. For example, when supplemented with 3K entropy-based
 219 unlabeled RLVR training, the 1K supervised baseline achieves merely a 0.6% accuracy improvement. This
 220 suggests that such a naive strategy remains constrained by the internal signals of LRM and suffers from the
 221 internal ungrounded reasoning patterns. Thus, SS-RLVR must move beyond shallow integration and instead
 222 uncover the deeper intrinsic relationships between labeled and unlabeled data. In particular, the key is to
 223 exploit those reasoning patterns in unlabeled data that can be externally validated by labeled examples. To
 224 achieve this goal, it is required to identify a shared, meaningful signal that transcends the heterogeneity of
 225 solution spaces and reliably reflects the model’s ability to transfer knowledge from labeled to unlabeled data.
 226

227 In this work, we propose **TRAPO** (Trajectory-based Policy Optimization), which leverages the learning
 228 dynamics of LRM across training steps as a proxy to connect labeled and unlabeled data, [as shown in](#)

235 **Figure 3.** Specifically, at each step t , TRAPO computes the pass rate for each training point. We then
 236 identify those unlabeled samples whose *pass rate trajectories* closely align with those of labeled samples
 237 as reliable data, which means that their reasoning patterns can be externally validated by the labeled set. In
 238 other words, we hypothesize that when an unlabeled sample is well-learned, its pass rate trajectory should
 239 exhibit trends consistent with those observed in labeled data. Naturally, since pass rates cannot be directly
 240 computed for unlabeled data, we introduce a pseudo-pass rate approximation to serve as a proxy. Formally,
 241 for a question q at epoch t , the (pseudo) pass rate is defined as the fraction of generated responses that satisfy
 242 the expected answer criteria:

$$243 \quad P_q^{(t)} = \begin{cases} \frac{1}{G} \sum_{i=1}^G \mathbb{I}(a_i^{(t)} = \tilde{y}_i^{(t)}), & q \in \mathcal{D}_u, \\ \frac{1}{G} \sum_{i=1}^G \mathbb{I}(a_i^{(t)} = y), & q \in \mathcal{D}_l, \end{cases} \quad (4)$$

246 Then, we define the *pass rate trajectory* of question q as the sequence of its pass rates across training epochs:
 247

$$248 \quad \mathbf{T}_q^{(t)} = [P_q^{(1)}, P_q^{(2)}, \dots, P_q^{(t)}] \in [0, 1]^t, \quad (5)$$

250 initialized as $\mathbf{T}_q^{(0)} = []$ and updated iteratively via concatenation: $\mathbf{T}_q^{(t)} = \mathbf{T}_q^{(t-1)} \oplus P_q^{(t)}$, where \oplus denotes
 251 sequence concatenation. We maintain a reliable pass rate database $\mathcal{D}_{\text{reliable}}$, initialized with all labeled sample
 252 trajectories: $\mathcal{D}_{\text{reliable}}^{(0)} = \{\mathbf{T}_l \mid l \in \mathcal{D}_l\}$. Reliably pseudo-labeled trajectories from unlabeled data selected in
 253 subsequent steps are added to update this database. The average trajectory of this database, $\bar{\mathbf{T}}_{\text{reliable}}^{(t)} =$
 254 $\frac{1}{|\mathcal{D}_{\text{reliable}}|} \sum_{\mathbf{T} \in \mathcal{D}_{\text{reliable}}} \mathbf{T}$, serves as a trusted reference for assessing the reliability of unlabeled samples based
 255 on trajectory alignment. Then we compute a trajectory-based cosine similarity (TCS) as:
 256

$$257 \quad \text{TCS}(\mathbf{T}_u^{(t)}, \bar{\mathbf{T}}_{\text{reliable}}^{(t)}) = \hat{\mathbf{T}}_u^{(t)} \cdot \hat{\mathbf{T}}_{\text{reliable}}^{(t)} = \sum_{j=1}^t \hat{P}_u^{(j)} \cdot \hat{P}_{\text{reliable}}^{(j)} \quad (6)$$

260 where $\hat{P}_u^{(j)} = \frac{P_u^{(j)}}{\sqrt{\sum_{i=1}^t (P_u^{(i)})^2}}$ and $\hat{P}_{\text{reliable}}^{(j)} = \frac{\bar{P}_{\text{reliable}}^{(j)}}{\sqrt{\sum_{i=1}^t (\bar{P}_{\text{reliable}}^{(i)})^2}}$ are the normalized pass rate of the unlabeled
 261 sample and the reliable database, respectively.
 262

263 To select the reliable trajectories, we combine two criteria: the `top-p` of unlabeled samples with highest
 264 trajectory similarity to the labeled data, and any sample whose similarity exceeds a threshold Γ .
 265

$$266 \quad \mathbf{M}(u) = \mathbb{I}(u \in \text{top-p}(\text{TCS}(\mathbf{T}_u, \bar{\mathbf{T}}_{\text{reliable}}))) \vee \mathbb{I}(\text{TCS}(\mathbf{T}_u, \bar{\mathbf{T}}_{\text{reliable}}) \geq \Gamma) \quad (7)$$

267 With this selection mask in hand, we now integrate it into the training process to ensure only reliably improving
 268 samples influence model updates. To ensure stability, we employ a warm-up phase using only labeled
 269 data for updates, while accumulating unlabeled trajectories. After warm-up, we apply the mask \mathbf{M} to include
 270 only reliable unlabeled samples:
 271

$$272 \quad \mathcal{L}(\theta) = \mathcal{J}_{\text{GRPO}}^{\text{labeled}}(\theta) + \mathbf{M} \odot \mathcal{J}_{\text{GRPO}}^{\text{unlabeled}}(\theta). \quad (8)$$

273 where \odot denotes the dot product of vectors. Here, $\mathcal{J}_{\text{GRPO}}$ is the GRPO objective (Shao et al., 2024):
 274

$$275 \quad \mathcal{J}_{\text{GRPO}}(\theta) = \frac{1}{\sum_{i=1}^G |\tau_i|} \sum_{i=1}^G \sum_{l=1}^{|\tau_i|} \text{CLIP}(\gamma_{i,l}(\theta), A_i, \epsilon) - \beta \cdot \mathbb{D}_{\text{KL}}[\pi_\theta \parallel \pi_{\text{ref}}] \quad (9)$$

278 where $\gamma_{i,l}(\theta) = \pi_\theta(\tau_{i,l} \mid q, \tau_{i,< l}) / \pi_{\theta_{\text{old}}}(\tau_{i,l} \mid q, \tau_{i,< l})$ is the importance sampling term, and $\text{CLIP}(\gamma, A, \epsilon) =$
 279 $\min[r \cdot A, \text{clip}(\gamma; 1 - \epsilon, 1 + \epsilon) \cdot A]$ is the clipped surrogate objective.

280 In summary, we propose leveraging the evolution of correctness during training (*pass rate trajectories*) as a
 281 reliable signal for evaluating unlabeled samples. By measuring the similarity between the pass rate trajectory

282 of an unlabeled instance and the average trajectory derived from labeled data, we identify samples whose
 283 learning dynamics align closely with those observed under trusted supervision. To validate the effectiveness
 284 of TRAPO in selecting high-quality unlabeled samples and grounding unsupervised learning within a stable
 285 feedback framework, we provide a theoretical analysis of its generalization error bound:
 286

287 **Theorem 3.1** (Trajectory-Consistent Generalization). *(Informal) Let the generalization error of pol-
 288 icy $\pi_\theta^{(t)}$ be the expected risk on the true distribution. Assuming L_y is the label space diameter, under
 289 the TRAPO framework, with probability at least $1 - \delta$, this error is bounded by:*
 290

$$291 \quad \mathcal{R}_{\mathcal{D}_l}(\pi_\theta^{(t)}) + \lambda' + \alpha \cdot \mathbb{E}_{q' \sim \mathcal{D}_u} \left[1 - \text{TCS}(\mathbf{T}_{q'}^{(t)}, \bar{\mathbf{T}}_{\text{reliable}}^{(t)}) \right] + L_y \left(1 - \bar{C}^{(t)} + \sqrt{\frac{\ln(2n/\delta)}{2G}} \right) \quad (10)$$

294 where $\mathcal{R}_{\mathcal{D}_l}(\pi_\theta^{(t)})$ is the empirical risk on \mathcal{D}_l , $\lambda' = \lambda + \lambda_a \geq 0$ bounds the domain shift between \mathcal{D}_l
 295 and \mathcal{D}_u , and $\bar{C}^{(t)}$ is the average voting confidence across n samples based on G votes.
 296

297 Theorem 3.1 highlights the role of trajectory consistency as a regularizer in semi-supervised policy learning.
 298 Specifically, the term $\mathbb{E}_{q' \sim \mathcal{D}_u} \left[1 - \text{TCS}(\mathbf{T}_{q'}^{(t)}, \bar{\mathbf{T}}_{\text{reliable}}^{(t)}) \right]$ encourages unlabeled samples to follow learning
 299 dynamics similar to those of labeled data, effectively anchoring the optimization path. The dependence on
 300 $\bar{C}^{(t)}$ reflects the model’s self-confidence during training, with lower confidence leading to a looser bound,
 301 thus promoting cautious updates. The formal theorem and its proof are presented in Appendix B.13.
 302

304 4 EXPERIMENT

305 This section reports the main experimental results. Appendix E.1 compares more fully supervised baselines;
 306 E.2 further validates TraPO on more models; E.3 shows that TraPO is plug-and-play; E.4 evaluates TraPO on
 307 the DeepMath dataset; E.5 compares TraPO with other selection strategies; E.6 confirms TraPO’s stability.
 308

309 4.1 SETUP

310 **Dataset and Benchmarks.** We follow prior work Yan et al. (2025) and use the widely used math reasoning
 311 dataset OpenR1-Math-220k (Face, 2025) for training. For evaluation, we focus on six in-distribution (ID)
 312 math reasoning benchmarks: AIME 2024, AIME 2025, AMC (Li et al., 2024), Minerva (Lewkowycz et al.,
 313 2022), OlympiadBench (He et al., 2024), and MATH-500 (Hendrycks et al., 2021). We report `avg@32` on
 314 AIME 2024/2025 and AMC (due to small test sets) and `pass@1` on the others. For out-of-distribution
 315 (OOD) generalization, we evaluate on ARC-c (Clark et al., 2018), GPQA-diamond (Rein et al., 2024)
 316 (GPQA*), and MMLU-Pro (Wang et al., 2024b), covering open-domain reasoning, graduate-level science,
 317 and academic reasoning. All evaluations use temperature sampling with $T = 0.6$.
 318

319 **Baseline Methods.** We evaluate supervised, unsupervised, and semi-supervised RLVR methods across
 320 varying data scales. For supervised training, we apply GRPO on 1K, 4K, and 45K labeled samples. In the
 321 unsupervised setting, we remove ground-truth labels from the full 45K dataset and evaluate four approaches:
 322 (1) **TTRL** (Zuo et al., 2025), which uses majority-voted outputs as pseudo-labels; (2) **Self-Certainty** (Zhao
 323 et al., 2025), which maximizes KL divergence to encourage confident predictions; (3) **Token-Level Entropy**
 324 (Agarwal et al., 2025), which minimizes token-level entropy for consistency; and (4) **Sentence-Level Entropy**
 325 (Agarwal et al., 2025), which maximizes sentence likelihood. For semi-supervised training, we use
 326 1K labeled and 3K unlabeled samples, applying GRPO on the labeled subset and each unsupervised method
 327 on the unlabeled subset to form hybrid baselines. We further evaluate a stronger setting with 4K labeled and
 328

329 Table 1: Overall performance based on Qwen2.5-Math-7B under three different training paradigms. **Bold**
 330 and underline indicate the best and second-best results, respectively.
 331

Model	In-Distribution Performance						Out-of-Distribution Performance				
	AIME 24/25		AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
	Original Models										
Qwen-Base	11.5/4.9	31.3	43.6	7.4	15.6	19.0	18.2	11.1	16.9	15.4	
Qwen-Instruct	12.5/10.2	48.5	<u>80.4</u>	32.7	41.0	37.6	70.3	24.7	34.1	43.0	
Unsupervised Methods Trained on 45K Samples w/o Any Labels											
TTRL	14.1/12.7	51.5	76.6	33.8	40.3	38.2	80.5	35.4	41.3	52.4	
Self-certainty	16.9/10.2	51.7	77.6	34.9	38.8	38.3	72.9	30.8	41.4	48.4	
Token-level Entropy	15.0/9.9	50.3	75.2	36.8	38.4	37.6	75.6	33.3	40.9	49.9	
Sentence-level Entropy	11.4/10.7	42.1	68.0	32.7	30.5	32.6	79.4	32.3	42.7	51.5	
Semi-supervised Methods Trained on 1K Labeled Samples & 3K Unlabeled Samples											
Fully Supervised w/ 1K Labels	14.2/13.5	52.6	80.2	34.9	40.9	39.4	76.2	36.4	43.6	52.1	
TTRL	14.9/10.7	55.3	77.8	33.1	43.6	39.2	72.6	35.4	42.7	50.2	
Self-certainty	16.5/11.4	55.6	79.8	35.3	41.2	40.0	64.8	30.3	41.6	45.6	
Token-level Entropy	18.2/11.9	53.4	80.2	34.6	41.9	40.0	72.9	32.3	44.0	49.7	
Sentence-level Entropy	15.4/11.5	54.9	79.4	36.0	41.2	39.7	79.4	33.8	44.5	52.6	
TRAPO (ours)	17.9/13.8	<u>58.7</u>	81.4	38.2	45.5	42.6	83.7	37.9	46.8	56.1	
Fully Supervised w/ 4K Labels	19.6/14.8	57.9	80.6	39.3	46.5	43.1	82.1	39.9	48.2	56.7	
TRAPO Trained on 4K Labeled Samples & 12K Unlabeled Samples											
TRAPO (ours)	24.3/17.1	60.0	84.6	39.3	48.3	45.6	84.6	43.9	50.7	59.7	
Fully Supervised w/ 45K Labels	25.1/15.3	62.0	84.4	39.3	46.8	45.5	82.3	40.4	49.3	57.3	

366 Figure 4: Left: Average performance changes on labeled and unlabeled data. Center: Unlabeled data performance vs. trajectory matching score using **true** training dynamics on unlabeled data. Right: Unlabeled data performance vs. trajectory matching score using **pseudo** training dynamics on unlabeled data.
 367
 368

369 12K unlabeled samples to assess performance under higher label efficiency. In Appendix E.1, we compare
 370 with more supervised baselines (Zeng et al., 2025b; Hu et al., 2025; Cui et al., 2025; Liu et al., 2025).
 371

372 4.2 EXPERIMENTAL RESULTS

373
 374 **TRAPO achieves SOTA performance.** Our main results are summarized in Table 1. First, TRAPO signifi-
 375 cantly outperforms all fully unsupervised baselines using only 1K labeled samples (with 3K unlabeled).

376
 377 Table 2: Performance of different training paradigms with 1K labeled math (ID) samples and 1K unlabeled
 378 non-math (OOD) samples. **Bold** and underline indicate the best and second-best results, respectively.

379 380 Model	381 In-Distribution Performance						382 Out-of-Distribution Performance			
	383 AIME 24/25	384 AMC	385 MATH-500	386 Minerva	387 Olympiad	388 Avg.	389 ARC-c	390 GPQA*	391 MMLU-Pro	392 Avg.
393 Original Model										
394 Qwen-Base	395 11.5/4.9	396 31.3	397 43.6	398 7.4	399 15.6	400 19.0	401 18.2	402 11.1	403 16.9	404 15.4
405 Qwen-Instruct	406 12.5/10.2	407 48.5	408 80.4	409 32.7	410 41.0	411 <u>37.6</u>	412 70.3	413 24.7	414 34.1	415 43.0
416 Unsupervised Methods Trained on <i>1K</i> Unlabeled ID Samples & <i>1K</i> Unlabeled OOD Samples										
417 TTRL	418 13.3/9.4	419 48.2	420 72.2	421 27.6	422 34.8	423 34.3	424 76.7	425 33.8	426 36.2	427 48.9
428 Self-certainty	429 18.5/9.6	430 53.4	431 79.6	432 33.4	433 40.4	434 <u>39.2</u>	435 76.7	436 37.9	437 45.6	438 <u>53.4</u>
439 Token-level Entropy	440 14.6/13.3	441 46.8	442 77.6	443 27.9	444 40.1	445 36.7	446 74.5	447 36.4	448 35.8	449 48.9
450 Sentence-level Entropy	451 16.4/11.5	452 51.8	453 74.0	454 33.5	455 37.2	456 37.4	457 74.5	458 34.8	459 43.3	460 50.9
461 Semi-supervised Methods Trained on <i>1K</i> Labeled ID Samples & <i>1K</i> Unlabeled OOD Samples										
462 TTRL	463 16.4/13.6	464 49.9	465 66.9	466 26.5	467 37.8	468 35.2	469 62.0	470 31.8	471 43.5	472 45.8
473 Self-certainty	474 16.0/10.9	475 53.0	476 78.4	477 34.2	478 39.0	479 38.6	480 77.1	481 32.8	482 45.7	483 <u>51.9</u>
484 Token-level Entropy	485 17.7/11.0	486 51.7	487 77.0	488 33.1	489 41.0	490 38.6	491 76.5	492 30.8	493 44.7	494 50.7
495 Sentence-level Entropy	496 15.7/10.0	497 51.4	498 77.4	499 34.9	500 37.5	501 37.8	502 75.1	503 31.3	504 44.3	505 50.2
506 TRAPO (ours)	507 18.5/15.7	508 53.4	509 80.4	510 33.8	511 44.0	512 41.0	513 83.6	514 38.9	515 48.1	516 56.9
517 Fully Supervised w/ 2K Labels	518 17.3/12.4	519 56.8	520 81.4	521 38.6	522 44.8	523 41.9	524 82.0	525 38.9	526 52.4	527 57.8

397
 398
 399 Compared to the best unsupervised method trained on the full 45K unlabeled set, TRAPO achieves gains of
 400 4.3% in ID and 3.7% in OOD accuracy, demonstrating that even minimal labeled data can lead to substantial
 401 improvements when effectively integrated. Second, TRAPO outperforms naive semi-supervised approaches
 402 that treat labeled and unlabeled data independently, improving the strongest such baseline by 2.6% (ID) and
 403 3.5% (OOD), which underscores the importance of using labels to actively guide the learning from unlabeled
 404 examples. Finally, TRAPO surpasses the fully supervised model trained on the same 1K labels by 3.2% (ID)
 405 and 4.0% (OOD). It matches the performance of a fully supervised model trained on 4K labels while using
 406 only 25% of the labeled data. Notably, when trained with 4K labeled and 12K unlabeled samples, TRAPO
 407 achieves 45.6 ID and 59.7 OOD accuracy, exceeding the fully supervised model trained on all 45K labels
 408 by 0.1% (ID) and 2.4% (OOD), despite using only **10%** of the total labels. This remarkable performance
 409 highlights TRAPO’s superior data efficiency and generalization capability.

410 **TRAPO succeeds with OOD unlabeled data.** To investigate whether labeled data can guide learning
 411 on out-of-domain (OOD) unlabeled data, we evaluate a semi-supervised setup with 1K labeled samples
 412 from the *mathematics* domain (ID) and 1K unlabeled samples from *non-mathematical* domains (OOD).
 413 This cross-domain setting is challenging due to the limited transfer of reasoning patterns across domains.
 414 As shown in Table 2, naive semi-supervised methods fail to benefit from labeled data well. For instance,
 415 self-certainty drops by 0.6% on ID and 1.5% on OOD, indicating that naive integration of labeled and
 416 unlabeled data harms learning under domain shift. In contrast, TRAPO achieves significant improvements,
 417 outperforming the best unsupervised baseline by 1.8% on ID and 3.5% on OOD. It also closely matches the
 418 fully supervised model with 2K labels, trailing by only 0.9% on both metrics. The substantial gain in OOD
 419 performance demonstrates that TRAPO enables robust cross-domain generalization, highlighting its strong
 420 ability to transfer reasoning knowledge even under domain discrepancy.

421 **Effectiveness of trajectory matching.** To evaluate whether trajectory matching identifies reliable unlabeled
 422 examples, we analyze the link between trajectory similarity and performance. As shown in the middle plot
 423 of Figure 4, samples with dynamics more aligned to labeled data achieve much higher performance. The

Figure 5: Sensitivity Analysis. The left three plots show sensitivity analyses of top-p, Γ , and warmup epochs (Tables 9, 10, and 11 in the Appendix). The right two plots compare performance for different ratios of selected and available unlabeled samples ($3K \times \sigma_M$). See tables 14 and 15 in the Appendix for details.

top 10% of samples outperform the bottom 10% by over 40%, confirming that alignment correlates with reliability. In practice, we use pseudo-labels from voting to estimate unlabeled sample dynamics. The right plot of Figure 4 shows that matching pseudo dynamics to true labeled dynamics still yields a strong positive correlation with final performance. This validates the robustness and practical utility of TRAPO.

Sensitivity analysis. We systematically analyze the impact of top-p, Γ , and warm-up length with the Qwen-2.5-7B model using 1K labeled and 3K unlabeled samples (left three plots in Figure 5). For top-p, larger values lead to noisy early-stage predictions and unreliable pseudo-labels, degrading overall performance. For Γ , setting it too low admits too many low-quality unlabeled samples, while setting it too high is overly conservative, leading to underutilization; both extremes harm the model. Short warm-up lengths lead to unstable pseudo-labeling, but performance stabilizes as the warm-up lengthens. With different selection ratios and varying proportions (σ_M) of available unlabeled samples, TraPO outperforms random selection and a strong token-level entropy baseline (the right two plots in Figure 5). We find that TraPO achieves optimal results using the top 30% of unlabeled samples, benefiting from high pseudo-label accuracy, whereas adding more unlabeled samples increases noise and reduces gains. These experiments highlight the critical role of intelligent denoising and selection strategies.

Experiments with other LLMs. Besides Qwen, we also compare the training effectiveness of the three paradigms using the Llama-3.1-8B-Instruct model. The model performance during training is shown in Figure 6, and detailed results are presented in Table 5. Here, our semi-supervised TRAPO method exhibits a similar trend to supervised training and maintains consistent improvement. In contrast, unsupervised training leads to a rapid performance collapse within tens of training steps. This underscores the critical importance of effective pseudo-supervision selection via trajectory matching in stabilizing the training process.

5 CONCLUSION

In this paper, we present the first exploration of semi-supervised learning in the RLVR setting. We introduce a novel paradigm that leverages a small set of labeled data to guide robust self-improvement on unlabeled data. We propose TRAPO (Trajectory based Policy Optimization), a method that enables reliable pseudo-supervision by aligning the learning dynamics of labeled and unlabeled samples through trajectory similarity in pass rate progression. Results show TRAPO significantly outperforms various baselines using only a fraction of labeled data, achieving an exceptional balance between efficiency and effectiveness.

Figure 6: Performance comparison on Llama-3.1-8B.

470 6 REPRODUCIBILITY STATEMENT
471472 We are committed to ensuring the reproducibility of our work. To this end, we will fully open-source all
473 code, model weights, and processed datasets upon paper acceptance. The codebase will include detailed
474 documentation and training scripts to reproduce all experimental results reported in the paper.
475476 BIBLIOGRAPHY
477478 Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effectiveness of
479 entropy minimization in llm reasoning. *arXiv preprint arXiv:2505.15134*, 2025.
480481 Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact
482 computation with an infinitely wide neural net. *Advances in neural information processing systems*, 32,
483 2019.
484485 Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
486 Vaughan. A theory of learning from different domains. *Machine learning*, 79(1):151–175, 2010.
487488 David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A Raffel.
489 Mixmatch: A holistic approach to semi-supervised learning. *Advances in neural information processing
systems*, 32, 2019.
490491 Jinhe Bi, Danqi Yan, Yifan Wang, Wenke Huang, Haokun Chen, Guancheng Wan, Mang Ye, Xun Xiao,
492 Hinrich Schuetze, Volker Tresp, et al. Cot-kinetics: A theoretical modeling assessing lrm reasoning
493 process. *arXiv preprint arXiv:2505.13408*, 2025.
494495 Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In *Proceedings of
the eleventh annual conference on Computational learning theory*, pp. 92–100, 1998.
496497 Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning (chapelle, o. et al.,
498 eds.; 2006)[book reviews]. *IEEE Transactions on Neural Networks*, 20(3):542–542, 2009.
499500 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
501 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
502 *arXiv:1803.05457v1*, 2018.
503504 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin
505 Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint arXiv:2502.01456*,
506 2025.
507508 Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. *arXiv preprint
arXiv:1103.4601*, 2011.
509510 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.
511512 Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, and Sergey Levine. Generalizing skills with semi-
513 supervised reinforcement learning. *arXiv preprint arXiv:1612.00429*, 2016.
514515 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
516 Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. *arXiv preprint arXiv:2501.12948*, 2025.
517

517 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
 518 jie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting agi with
 519 olympiad-level bilingual multimodal scientific problems. In *Proceedings of the 62nd Annual Meeting of*
 520 *the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3828–3850, 2024.

521 Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang, Xingyuan Bu, Ge Zhang, Zhongyuan Peng, Zhaoxi-
 522 ang Zhang, Zhicheng Zheng, Wenbo Su, et al. Can large language models detect errors in long chain-of-
 523 thought reasoning? *arXiv preprint arXiv:2502.19361*, 2025a.

525 Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian Yu, Zhenwen
 526 Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, decontaminated, and verifiable
 527 mathematical dataset for advancing reasoning. *arXiv preprint arXiv:2504.11456*, 2025b.

528 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
 529 Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv preprint*
 530 *arXiv:2103.03874*, 2021.

532 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum. Open-
 533 reasoner-zero: An open source approach to scaling up reinforcement learning on the base model, 2025.
 534 URL <https://arxiv.org/abs/2503.24290>.

535 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
 536 in neural networks. *Advances in neural information processing systems*, 31, 2018.

538 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
 539 yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 540 *arXiv:2412.16720*, 2024.

541 Nathan Kallus and Masatoshi Uehara. Double reinforcement learning for efficient off-policy evaluation in
 542 markov decision processes. *Journal of Machine Learning Research*, 21(167):1–63, 2020.

543 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for uncer-
 544 tainty estimation in natural language generation. *arXiv preprint arXiv:2302.09664*, 2023.

546 Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. *arXiv preprint*
 547 *arXiv:1610.02242*, 2016.

549 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
 550 Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reasoning
 551 problems with language models. *Advances in Neural Information Processing Systems*, 35:3843–3857,
 552 2022.

553 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif Rasul,
 554 Longhui Yu, Albert Q. Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in ai4maths with
 555 860k pairs of competition math problems and solutions. [https://huggingface.co/datasets/](https://huggingface.co/datasets/Numinamath)
 556 Numinamath, 2024. Hugging Face repository, 13:9.

557 Pengyi Li, Matvey Skripkin, Alexander Zubrey, Andrey Kuznetsov, and Ivan Oseledets. Confidence is all
 558 you need: Few-shot rl fine-tuning of language models. *arXiv preprint arXiv:2506.06395*, 2025a.

560 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling. *arXiv preprint*
 561 *arXiv:2502.11886*, 2025b.

562 Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making large
 563 language models better reasoners with step-aware verifier. *arXiv preprint arXiv:2206.02336*, 2022.

564 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
 565 Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*, 2025.
 566

567 Minh-Vuong Nguyen, Linhao Luo, Fatemeh Shiri, Dinh Phung, Yuan-Fang Li, Thuy-Trang Vu, and Gho-
 568 lamreza Haffari. Direct evaluation of chain-of-thought in multi-hop reasoning with knowledge graphs.
 569 *arXiv preprint arXiv:2402.11199*, 2024.

570 Benjamin Plaut, Nguyen X Khanh, and Tu Trinh. Probabilities of chat llms are miscalibrated but still predict
 571 correctness on multiple-choice q&a. *arXiv preprint arXiv:2402.13213*, 2024.

572

573 Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-supervised learn-
 574 ing with ladder networks. *Advances in neural information processing systems*, 28, 2015.

575 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 576 Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a benchmark. In
 577 *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=Ti67584b98>.

579 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
 580 Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in
 581 open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

582

583 Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus
 584 Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with con-
 585 sistency and confidence. *Advances in neural information processing systems*, 33:596–608, 2020.

586 Amarnag Subramanya and Jeff Bilmes. Semi-supervised learning with measure propagation. *Journal of
 587 Machine Learning Research*, 12(11), 2011.

588

589 Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency tar-
 590 gets improve semi-supervised deep learning results. *Advances in neural information processing systems*,
 591 30, 2017.

592 Meta Team. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

593

594 Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement learning.
 595 In *International conference on machine learning*, pp. 2139–2148. PMLR, 2016.

596 Yiming Wang, Pei Zhang, Baosong Yang, Derek F Wong, and Rui Wang. Latent space chain-of-embedding
 597 enables output-free llm self-evaluation. *arXiv preprint arXiv:2410.13640*, 2024a.

598

599 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren,
 600 Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-task language
 601 understanding benchmark. *arXiv preprint arXiv:2406.01574*, 2024b.

602 Zhaoyang Wang, Weilei He, Zhiyuan Liang, Xuchao Zhang, Chetan Bansal, Ying Wei, Weitong Zhang,
 603 and Huaxiu Yao. Cream: Consistency regularized self-rewarding language models. *arXiv preprint
 604 arXiv:2410.12735*, 2024c.

605

606 Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao Jiao, Jason Weston, and
 607 Sainbayar Sukhbaatar. Meta-rewarding language models: Self-improving alignment with llm-as-a-meta-
 608 judge. *arXiv preprint arXiv:2407.19594*, 2024.

609 Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation for
 610 consistency training. *Advances in neural information processing systems*, 33:6256–6268, 2020.

611 Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen, Nan Jiang, and Tong Zhang. Self-rewarding correc-
 612 tion for mathematical reasoning. *arXiv preprint arXiv:2502.19613*, 2025.

613

614 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang. Learning to
 615 reason under off-policy guidance. *arXiv preprint arXiv:2504.14945*, 2025.

616

617 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
 618 Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang Ren, and
 619 Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert model via self-improvement,
 620 2024. URL <https://arxiv.org/abs/2409.12122>.

621

622 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
 623 reasoning. *arXiv preprint arXiv:2502.03387*, 2025.

624

625 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan,
 626 Gaozhong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
 627 *arXiv preprint arXiv:2503.14476*, 2025.

628

629 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.
 630 Self-rewarding language models. *arXiv preprint arXiv:2401.10020*, 3, 2024.

631

632 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-zoo:
 633 Investigating and taming zero reinforcement learning for open base models in the wild, 2025a. URL
 634 <https://arxiv.org/abs/2503.18892>.

635

636 Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b model and
 637 8k examples: Emerging reasoning with reinforcement learning is both effective and efficient. <https://hkust-nlp.notion.site/simplerl-reason>, 2025b. Notion Blog.

638

639 Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question is already half
 640 the answer: Fully unsupervised llm reasoning incentivization. *arXiv preprint arXiv:2504.05812*, 2025a.

641

642 Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang, Shuxin
 643 Zheng, and Jiyan He. No free lunch: Rethinking internal feedback for llm reasoning. *arXiv preprint
 644 arXiv:2506.17219*, 2025b.

645

646 Zizhuo Zhang, Jianing Zhu, Xinmu Ge, Zihua Zhao, Zhanke Zhou, Xuan Li, Xiao Feng, Jiangchao Yao,
 647 and Bo Han. Co-reward: Self-supervised reinforcement learning for large language model reasoning via
 648 contrastive agreement. *arXiv preprint arXiv:2508.00410*, 2025c.

649

650 Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason without
 651 external rewards. *arXiv preprint arXiv:2505.19590*, 2025.

652

653 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang, Yuqiong Liu,
 654 Rui Men, An Yang, et al. Group sequence policy optimization. *arXiv preprint arXiv:2507.18071*, 2025.

655

656 Xin Zhou, Yiwen Guo, Ruotian Ma, Tao Gui, Qi Zhang, and Xuanjing Huang. Self-consistency of the inter-
 657 nal reward models improves self-rewarding language models. *arXiv preprint arXiv:2502.08922*, 2025.

658

659 Zhengyuan Zhou, Susan Athey, and Stefan Wager. Offline multi-action policy learning: Generalization and
 660 optimization. *Operations Research*, 71(1):148–183, 2023.

661

662 Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A geometric
 663 analysis of neural collapse with unconstrained features. *Advances in Neural Information Processing
 664 Systems*, 34:29820–29834, 2021.

665

658 Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu Cui, Ning
659 Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. *arXiv preprint arXiv:2504.16084*, 2025.
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

705 706 Appendix 707 708

709	A LLM Usage	17
710		
711	B Theoretical Proof	17
712		
713	B.1 Notion	17
714	B.2 GRPO as Preference Optimization	17
715	B.3 Gradient Dynamics and NTK Alignment	19
716	B.3.1 Change in Log-Probability	19
717	B.3.2 Main Generalization Result	21
718	B.4 Unifying Trajectory Divergence and Domain Discrepancy	22
719	B.5 Main Theorem: Generalization Bound	23
720	B.6 Main Theorem: Convergence Analysis	25
721	B.7 Addition Proofs	27
722		
723	C Discussion and Limitations	29
724		
725	D Experiment Details	29
726		
727		
728	D.1 Detailed Setup	29
729	D.2 System Prompt	30
730	D.3 Baseline Description	30
731		
732	E More Experiments	31
733		
734	E.1 Comparison with More Supervised RLVR Baselines	31
735	E.2 Extend TraPO to More Models	31
736	E.3 TraPO Is a Universal Component	32
737	E.4 Run TraPO on DeepMath	33
738	E.5 Different Selection Strategies	33
739	E.6 Stability of TraPO	33
740	E.7 Training Cost Analysis of TraPO	34
741	E.8 Different Ways of Utilizing Reliable Passrate Databases	34
742		
743		
744		
745		
746		
747		
748		
749		
750	F More Related Work	34
751		

752 **G Pseudo Code**753 **A LLM USAGE**754
755 In the preparation of this paper, the LLM was used solely for language editing and proofreading to improve
756 clarity and readability.757 **B THEORETICAL PROOF**758 In this section, we provide proofs for the generalization error bound and convergence of the proposed semi-
759 supervised framework TRAPO.760 **B.1 NOTION**

761 We provide the notions used in the proof in Table 3.

762 **B.2 GRPO AS PREFERENCE OPTIMIZATION**763 We begin by formally establishing that GRPO performs preference optimization between correct and incor-
764 rect responses when the reward is binary.765 **Lemma B.1** (GRPO as Preference Optimization). *When the reward is binary ($r_i \in \{0, 1\}$), the expected
766 GRPO loss for a question q reduces to a weighted preference optimization objective:*

767
768
$$\mathcal{J}_{pref} = p^+ \sum_{i=1}^{N^+} \min \left(\frac{\pi_\theta(\tau_i^+ | q)}{\pi_{\theta_{old}}(\tau_i^+ | q)}, 1 + \varepsilon \right) - p^- \sum_{j=1}^{N^-} \max \left(\frac{\pi_\theta(\tau_j^- | q)}{\pi_{\theta_{old}}(\tau_j^- | q)}, 1 - \varepsilon \right), \quad (11)$$

769 where:

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
172100
172101
172102
172103
172104
172105
172106
172107
172108
172109
172110
172111
172112
172113
172114
172115
172116
172117
172118
172119
172120
172121
172122
172123
172124
172125
172126
172127
172128
172129
172130
172131
172132
172133
172134
172135
172136
172137
172138
172139
172140
172141
172142
172143
172144
172145
172146
172147
172148
172149
172150
172151
172152
172153
172154
172155
172156
172157
172158
172159
172160
172161
172162
172163
172164
172165
172166
172167
172168
172169
172170
172171
172172
172173
172174
172175
172176
172177
172178
172179
172180
172181
172182
172183
172184
172185
172186
172187
172188
172189
172190
172191
172192
172193
172194
172195
172196
172197
172198
172199
172200
172201
172202
172203
172204
172205
172206
172207
172208
172209
172210
172211
172212
172213
172214
172215
172216
172217
172218
172219
172220
172221
172222
172223
172224
172225
172226
172227
172228
172229
172230
172231
172232
172233
172234
172235
172236
172237
172238
172239
172240
172241
172242
172243
172244
172245
172246
172247
172248
172249
172250
172251
172252
172253
172254
172255
172256
172257
172258
172259
172260
172261
172262
172263
172264
172265
172266
172267
172268
172269
172270
172271
172272
172273
172274
172275
172276
172277
172278
172279
172280
172281
172282
172283
172284
172285
172286
172287
172288
172289
172290
172291
172292
172293
172294
172295
172296
172297
172298
172299
172300
172301
172302
172303
172304
172305
172306
172307
172308
172309
172310
172311
172312
172313
172314
172315
172316
172317
172318
172319
172320
172321
172322
172323
172324
172325
172326
172327
172328
172329
172330
172331
172332
172333
172334
172335
172336
172337
172338
172339
172340
172341
172342
172343
172344
172345
172346
172347
172348
172349
172350
172351
172352
172353
172354
172355
172356
172357
172358
172359
172360
172361
172362
172363
172364
172365
172366
172367
172368
172369
172370
172371
172372
172373
172374
172375
172376
172377
172378
172379
172380
172381
172382
172383
172384
172385
172386
172387
172388
172389
172390
172391
172392
172393
172394
172395
172396
172397
172398
172399
172400
172401
172402
172403
172404
172405
172406
172407
172408
172409
172410
172411
172412
172413
172414
172415
172416
172417
172418
172419
172420
172421
172422
172423
172424
172425
172426
172427
172428
172429
172430
172431
172432
172433
172434
172435
172436
172437
172438
172439
172440
172441
172442
172443
172444
172445
172446
172447
172448
172449
172450
172451
172452
172453
172454
172455
172456
172457
172458
172459
172460
172461
172462
172463
172464
172465
172466
172467
172468
172469
172470
172471
172472
172473
172474
172475
172476
172477
172478
172479
172480
172481
172482
172483
172484
172485
172486
172487
172488
172489
172490
172491
172492
172493
172494
172495
172496
172497
172498
172499
172500
172501
172502
172503
172504
172505
172506
172507
172508
172509
172510
172511
172512
172513
172514
172515
172516
172517
172518
172519
172520
172521
172522
172523
172524
172525
172526
172527
172528
172529
172530
172531
172532
172533
172534
172535
172536
172537
172538
172539
172540
172541
172542
172543
172544
172545
172546
172547
172548
172549
172550
172551
172552
172553
172554
172555
172556
172557
172558
172559
172560
172561
172562
172563
172564
172565
172566
172567
172568
172569
172570
172571
172572
172573
172574
172575
172576
172577
172578
172579
172580
172581
172582
172583
172584
172585
172586
172587
172588
172589
172590
172591
172592
172593
172594
172595
172596
172597
172598
172599
172600
172601
172602
172603
172604
172605
172606
172607
172608
172609
172610
172611
172612
172613
172614
172615
172616
172617
172618
172619
172620
172621
172622
172623
172624
172625
172626
172627
172628
172629
172630
172631
172632
172633
172634
172635
172636
172637
172638
172639
172640
172641
172642
172643
172644
17

Table 3: Table of Notations and Descriptions

Notation	Description
Optimization and Reward Setup	
\mathcal{J}	Group Relative Policy Optimization (GRPO): policy update via response grouping and relative advantage.
$r_i \in \{0, 1\}$	Binary reward: 1 for correct, 0 for incorrect response.
$\mathcal{J}_{\text{pref}}$	Equivalent preference optimization objective under binary rewards.
p	Empirical accuracy: fraction of correct responses in a batch.
N^+, N^-	Expected number of correct and incorrect responses: $N^+ = pN$, $N^- = (1-p)N$.
p^+, p^-	Group-specific weights: $p^+ = \frac{1-p}{\sqrt{p(1-p)}}$, $p^- = \frac{p}{\sqrt{p(1-p)}}$.
$\hat{A}_{i,l}$	Advantage estimator: $\hat{A}_{i,l} = \frac{r_i - p}{\sqrt{p(1-p)}}$.
$r_{i,l}(\theta)$	Probability ratio between current and old policy for token generation.
$\text{clip}(\cdot, 1 \pm \varepsilon)$	Clipping function to stabilize policy updates.
Generalization and NTK Analysis	
$\Delta \log \pi^t(\tau'_k \ q')$	Change in log-probability of response τ'_k after update.
$\Theta((q, \tau), (q', \tau'))$	Response-level NTK: $\langle \nabla_\theta \log \pi(\tau \ q), \nabla_\theta \log \pi(\tau' \ q') \rangle$.
$\Theta_{++} > 0, \Theta_{--} > 0$	Gradient alignment: correct-correct and error-error responses align.
Orthogonal gradients	Correct and incorrect response gradients are orthogonal.
$D_{\text{traj}}^{(t)}(q, q')$	Trajectory divergence: $1 - \cos \angle$ between response pass rate.
$\text{sign}(\Delta \log \pi^t) = +1$	Positive generalization: similar questions benefit from training.
Convergence and Risk Bounds	
$d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_l, \mathcal{D}_u)$	Domain discrepancy: maximum distinguishability under \mathcal{H} .
$d_{\mathcal{H}\Delta\mathcal{H}} \leq \alpha \mathbb{E}[D_{\text{traj}}] + \lambda_d$	Trajectory divergence bounds domain shift.
$R_{\mathcal{D}_u}(\pi_\theta^{(t)})$	Generalization risk on target domain.
$\mathcal{R}_{TC}^{(t)}$	Dynamic trajectory consistency risk: $\alpha \mathbb{E}[D_{\text{traj}}^{(t)}] + L_y(1 - \bar{C}^{(t)})$.
$\bar{C}^{(t)}$	Average confidence (e.g., pass rate) at iteration t .
$U_t = \mathbb{E}[R_{\mathcal{D}_u}(\pi_\theta^{(t)})]$	Expected target risk, used in convergence analysis.
$U_{t+1} \leq U_t - \eta_t \xi_t + \beta_t$	Monotonic convergence inequality under consistent learning.
β_t	Residual term: includes ΔD_{traj} , ΔC , and $\eta_t^2 M^2$.

Thus, the advantage simplifies to:

$$\hat{A}_{i,l} = \begin{cases} \frac{1-p}{\sqrt{p(1-p)}} = p^+ & \text{if } r_i = 1 \text{ (correct),} \\ -\frac{p}{\sqrt{p(1-p)}} = -p^- & \text{if } r_i = 0 \text{ (incorrect).} \end{cases}$$

Now, consider the term in the loss:

$$\min \left(r_{i,l}(\theta) \hat{A}_{i,l}, \hat{A}_{i,l} \cdot \text{clip}(r_{i,l}(\theta), 1 - \varepsilon, 1 + \varepsilon) \right).$$

We analyze this based on the sign of $\hat{A}_{i,l}$:

Case 1: $\hat{A}_{i,l} > 0$ ($r_i = 1$, correct response)

In this case, the min function simplifies to:

$$\hat{A}_{i,l} \cdot \min(r_{i,l}(\theta), 1 + \varepsilon) = p^+ \cdot \min \left(\frac{\pi_\theta(\tau_{i,l} | q, \tau_{i,<l})}{\pi_{\theta_{\text{old}}}(\tau_{i,l} | q, \tau_{i,<l})}, 1 + \varepsilon \right).$$

846 Summing over all tokens l in the response τ_i^+ , and noting that $\sum_{l=1}^{|\tau_i^+|} \log \pi_\theta(\tau_{i,l}|q, \tau_{i,<l}) = \log \pi_\theta(\tau_i^+|q)$,
 847 we have (in the limit of small learning rate or by ignoring token normalization):
 848

$$849 \sum_{l=1}^{|\tau_i^+|} \min(\cdot) \approx p^+ \min \left(\frac{\pi_\theta(\tau_i^+|q)}{\pi_{\theta_{\text{old}}}(\tau_i^+|q)}, 1 + \varepsilon \right).$$

852 **Case 2: $\hat{A}_{i,l} < 0$ ($r_i = 0$, incorrect response)**

853 Here, $\hat{A}_{i,l} = -p^-$, and the min function becomes:

$$854 \min(-p^- r_{i,l}(\theta), -p^- \cdot \text{clip}(r_{i,l}(\theta), 1 - \varepsilon, 1 + \varepsilon)) = -p^- \max(r_{i,l}(\theta), 1 - \varepsilon),$$

855 because $\min(-a, -b) = -\max(a, b)$. Summing over tokens:

$$856 \sum_{l=1}^{|\tau_j^-|} \min(\cdot) \approx -p^- \max \left(\frac{\pi_\theta(\tau_j^-|q)}{\pi_{\theta_{\text{old}}}(\tau_j^-|q)}, 1 - \varepsilon \right).$$

857 Taking the expectation over the response batch $\{\tau_i\}_{i=1}^N \sim \pi_{\theta_{\text{old}}}(\cdot|q)$, and using the fact that there are $N^+ = pN$ correct and $N^- = (1-p)N$ incorrect responses on average, we obtain the expected loss:

$$858 \mathbb{E}[\mathcal{J}] = p^+ \sum_{i=1}^{N^+} \min \left(\frac{\pi_\theta(\tau_i^+|q)}{\pi_{\theta_{\text{old}}}(\tau_i^+|q)}, 1 + \varepsilon \right) - p^- \sum_{j=1}^{N^-} \max \left(\frac{\pi_\theta(\tau_j^-|q)}{\pi_{\theta_{\text{old}}}(\tau_j^-|q)}, 1 - \varepsilon \right).$$

859 This is exactly the preference optimization objective in 11. This completes the proof of B.1. \square

860 **B.3 GRADIENT DYNAMICS AND NTK ALIGNMENT**

861 We now analyze how training on a question q affects the model's behavior on another question q' , leveraging
 862 the NTK framework.

863 **B.3.1 CHANGE IN LOG-PROBABILITY**

864 We start by deriving the change in the log-probability of generating a response τ'_k to question q' after a
 865 GRPO update on question q .

866 **Proposition B.2** (Gradient Update Effect). *Let $\Delta \log \pi^t(\tau'_k|q') = \log \pi^{t+1}(\tau'_k|q') - \log \pi^t(\tau'_k|q')$ be the
 867 change in log-probability after one GRPO update on q . Under the assumption that the parameter update
 868 $\theta^{t+1} - \theta^t$ is small and given by the SGD update on q , we have:*

$$869 \Delta \log \pi^t(\tau'_k|q') = \left\langle \nabla \log \pi^t(\tau'_k|q'), p^+ \sum_{i=1}^{N^+} \nabla \log \pi^t(\tau_i^+|q) - p^- \sum_{j=1}^{N^-} \nabla \log \pi^t(\tau_j^-|q) \right\rangle. \quad (12)$$

870 *Proof.* Using a first-order Taylor expansion of $\log \pi_\theta(\tau'_k|q')$ around θ^t :

$$871 \log \pi^{t+1}(\tau'_k|q') = \log \pi^t(\tau'_k|q') + \langle \nabla_\theta \log \pi^t(\tau'_k|q'), \theta^{t+1} - \theta^t \rangle + O(\|\theta^{t+1} - \theta^t\|^2).$$

872 The parameter update $\theta^{t+1} - \theta^t$ is proportional to the negative gradient of the GRPO loss on q . From B.1,
 873 the loss gradient is:

$$874 \nabla_\theta \mathcal{J}_q = p^+ \sum_{i=1}^{N^+} \nabla_\theta \left[\min \left(\frac{\pi_\theta(\tau_i^+|q)}{\pi_{\theta_{\text{old}}}(\tau_i^+|q)}, 1 + \varepsilon \right) \right] - p^- \sum_{j=1}^{N^-} \nabla_\theta \left[\max \left(\frac{\pi_\theta(\tau_j^-|q)}{\pi_{\theta_{\text{old}}}(\tau_j^-|q)}, 1 - \varepsilon \right) \right].$$

893 In the "nearly online" setting of GRPO, where responses are resampled at each iteration, we assume $\pi_\theta \approx$
 894 $\pi_{\theta_{\text{old}}}$, so the ratios are close to 1. In this case, the min and max operators are inactive (i.e., the clipping does
 895 not bind), and we have:

$$\begin{aligned} \nabla_\theta \left[\min \left(\frac{\pi_\theta(\tau_i^+ | q)}{\pi_{\theta_{\text{old}}}(\tau_i^+ | q)}, 1 + \varepsilon \right) \right] &\approx \nabla_\theta \log \pi_\theta(\tau_i^+ | q), \\ \nabla_\theta \left[\max \left(\frac{\pi_\theta(\tau_j^- | q)}{\pi_{\theta_{\text{old}}}(\tau_j^- | q)}, 1 - \varepsilon \right) \right] &\approx \nabla_\theta \log \pi_\theta(\tau_j^- | q). \end{aligned}$$

902 Thus, the update direction is:

$$\theta^{t+1} - \theta^t \approx -\eta \left(p^+ \sum_{i=1}^{N^+} \nabla_\theta \log \pi^t(\tau_i^+ | q) - p^- \sum_{j=1}^{N^-} \nabla_\theta \log \pi^t(\tau_j^- | q) \right),$$

907 where η is the learning rate. Substituting into the Taylor expansion and dropping higher-order terms, we get:

$$\Delta \log \pi^t(\tau_k' | q') \approx -\eta \left\langle \nabla \log \pi^t(\tau_k' | q'), p^+ \sum_{i=1}^{N^+} \nabla \log \pi^t(\tau_i^+ | q) - p^- \sum_{j=1}^{N^-} \nabla \log \pi^t(\tau_j^- | q) \right\rangle.$$

912 The learning rate η is a positive scalar. Since we are interested in the *sign* of the change (increase or
 913 decrease), we can absorb $-\eta$ into the expression and consider the inner product as the primary determinant
 914 of the sign. For notational simplicity and consistency with the original text, we present the update direction
 915 without η , leading to 12. This completes the proof of B.2. \square

916 To analyze the sign of $\Delta \log \pi^t(\tau_k' | q')$, we introduce the response-level NTK and state the gradient alignment
 917 assumption.

919 **Definition B.3** (Response-level NTK). *The response-level Neural Tangent Kernel (NTK) between two
 920 response-generation events (q, τ) and (q', τ') is defined as:*

$$\Theta((q, \tau), (q', \tau')) := \langle \nabla_\theta \log \pi_\theta(\tau | q), \nabla_\theta \log \pi_\theta(\tau' | q') \rangle.$$

923 Under the NTK regime for sufficiently wide neural networks, Θ converges to a deterministic limit and
 924 remains approximately constant during training (Jacot et al., 2018; Arora et al., 2019).

925 **Assumption B.4** (Gradient Alignment). *Let q, q' be two questions from the same task family \mathcal{T} , with $q \sim q'$
 926 indicating semantic similarity. Then, in the infinite-width limit, the following asymptotic properties hold:*

927 (i) **(Correct-Correct Alignment)** For all correct responses $\tau_i^+ \in \mathcal{R}^+(q)$, $\tau_k'^+ \in \mathcal{R}^+(q')$:

$$\lim_{\text{width} \rightarrow \infty} \langle \nabla_\theta \log \pi_\theta(\tau_k'^+ | q'), \nabla_\theta \log \pi_\theta(\tau_i^+ | q) \rangle = \Theta_{kk', ii'}^{++} > 0.$$

931 (ii) **(Incorrect-Incorrect Alignment)** For all incorrect responses $\tau_j^- \in \mathcal{R}^-(q)$, $\tau_k'^- \in \mathcal{R}^-(q')$:

$$\lim_{\text{width} \rightarrow \infty} \langle \nabla_\theta \log \pi_\theta(\tau_k'^- | q'), \nabla_\theta \log \pi_\theta(\tau_j^- | q) \rangle = \Theta_{kk', jj'}^{--} > 0.$$

935 (iii) **(Correct-Incorrect Orthogonality)** For all $\tau_i^+ \in \mathcal{R}^+(q)$, $\tau_j^- \in \mathcal{R}^-(q)$, $\tau_k' \in \{\tau_k'^+, \tau_k'^-\}$:

$$\lim_{\text{width} \rightarrow \infty} \langle \nabla_\theta \log \pi_\theta(\tau_k'^+ | q'), \nabla_\theta \log \pi_\theta(\tau_j^- | q) \rangle = 0,$$

$$\lim_{\text{width} \rightarrow \infty} \langle \nabla_\theta \log \pi_\theta(\tau_k'^- | q'), \nabla_\theta \log \pi_\theta(\tau_i^+ | q) \rangle = 0.$$

940 **Remark B.5.** This assumption is motivated by the structure of the NTK. For semantically similar inputs
 941 and valid (correct) outputs, the corresponding feature representations activate overlapping sets of neurons,
 942 leading to positive kernel values. Conversely, correct and incorrect responses represent conflicting patterns,
 943 and their gradient directions become nearly orthogonal in overparameterized models (Zhu et al., 2021).
 944

945 B.3.2 MAIN GENERALIZATION RESULT

946 With the NTK alignment assumption in place, we can now prove that training on q improves performance
 947 on a similar q' .

948 **Proposition B.6** (Generalization through Gradient Alignment). *Let q and q' be two questions that are similar
 949 in structure and difficulty, denoted $q \sim q'$, belonging to a shared task family \mathcal{T} . Let τ'_k be a response to
 950 q' . Under B.4 and the GRPO update rule, the sign of the change in log-probability $\Delta \log \pi^t(\tau'_k | q')$ is
 951 determined as follows in the infinite-width limit:*

$$953 \text{sign}(\Delta \log \pi^t(\tau'_k | q')) = \begin{cases} +1 & \text{if } \tau'_k \text{ is a correct response to } q', \\ -1 & \text{if } \tau'_k \text{ is an incorrect response to } q'. \end{cases}$$

955 *Proof.* We substitute 12 and analyze the two cases separately.

956 **Case 1: τ'_k is a correct response ($\tau'_k = \tau'^+$)**

$$959 \Delta \log \pi^t(\tau'^+ | q') = p^+ \sum_{i=1}^{N^+} \langle \nabla_{\theta} \log \pi^t(\tau'^+ | q'), \nabla_{\theta} \log \pi^t(\tau_i^+ | q) \rangle \\ 960 - p^- \sum_{j=1}^{N^-} \langle \nabla_{\theta} \log \pi^t(\tau'^+ | q'), \nabla_{\theta} \log \pi^t(\tau_j^- | q) \rangle. \quad (13)$$

966 By B.4(i), each inner product in the first sum is strictly positive in the infinite-width limit. Since $p^+ > 0$,
 967 the entire first term is positive.

968 By B.4(iii), each inner product in the second sum is zero. Thus, the second term vanishes.

969 Therefore, $\Delta \log \pi^t(\tau'^+ | q') > 0$, meaning the log-probability of the correct response τ'^+ increases.

970 **Case 2: τ'_k is an incorrect response ($\tau'_k = \tau'^-$)**

$$973 \Delta \log \pi^t(\tau'^- | q') = p^+ \sum_{i=1}^{N^+} \langle \nabla_{\theta} \log \pi^t(\tau'^- | q'), \nabla_{\theta} \log \pi^t(\tau_i^+ | q) \rangle \\ 974 - p^- \sum_{j=1}^{N^-} \langle \nabla_{\theta} \log \pi^t(\tau'^- | q'), \nabla_{\theta} \log \pi^t(\tau_j^- | q) \rangle. \quad (14)$$

979 By B.4(iii), each inner product in the first sum is zero.

980 By B.4(ii), each inner product in the second sum is strictly positive. Since $p^- > 0$, the sum is positive, but
 981 it is preceded by a negative sign, making the entire second term negative.

982 Therefore, $\Delta \log \pi^t(\tau'^- | q') < 0$, meaning the log-probability of the incorrect response τ'^- decreases.

983 Combining both cases proves B.6. This shows that GRPO implicitly pushes the model in a direction that
 984 generalizes to similar tasks by reinforcing correct responses and suppressing incorrect ones. \square

987 **Corollary B.7.** *In the NTK regime, GRPO encourages an inductive bias towards solutions that lie in directions of high kernel alignment across correct responses within a task family. This promotes generalization even with sparse supervision.*

991 B.4 UNIFYING TRAJECTORY DIVERGENCE AND DOMAIN DISCREPANCY

993 We now establish a formal connection between the trajectory-level dynamics in our method and classical
994 domain adaptation theory. While our theoretical analysis begins with gradient alignment in parameter space,
995 the practical metric we use—trajectory divergence—is measured in the space of confidence dynamics. We
996 first define a gradient-based notion of coherence, then show it implies similarity in pass rate evolution.

997 **Definition B.8** (Gradient Coherence). *For questions q and q' , the gradient coherence at step t is:*

$$998 \quad C_{\text{grad}}^{(t)}(q, q') := \mathbb{E}_{\substack{\tau \sim \pi_{\theta_t}(\cdot|q) \\ \tau' \sim \pi_{\theta_t}(\cdot|q')}} [\cos \angle(\nabla_{\theta} \log \pi_{\theta_t}(\tau|q), \nabla_{\theta} \log \pi_{\theta_t}(\tau'|q'))], \quad (15)$$

1001 where $\cos \angle(\mathbf{a}, \mathbf{b}) = \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{\|\mathbf{a}\| \|\mathbf{b}\|}$. High coherence indicates similar optimization directions.

1003 **Definition B.9** (Trajectory Divergence). *Let $T_q^{(t)} = (P_q^{(1)}, P_q^{(2)}, \dots, P_q^{(t)}) \in \mathbb{R}^t$ be the trajectory vector of
1004 question q , where $P_q^{(s)}$ is its pass rate at round s . The trajectory divergence between q and q' at step t is:*

$$1005 \quad D_{\text{traj}}^{(t)}(q, q') := 1 - \frac{\langle T_q^{(t)}, T_{q'}^{(t)} \rangle}{\|T_q^{(t)}\| \|T_{q'}^{(t)}\|}. \quad (16)$$

1008 This measures the angular dissimilarity between their confidence evolution paths.

1010 We now establish the key link: gradient coherence implies low trajectory divergence.

1011 **Lemma B.10** (From Gradient Coherence to Trajectory Coherence). *Suppose the policy π_{θ} is trained under
1012 small learning rates and lies in a region where the NTK is approximately constant. If for all $s \leq t$ and for
1013 questions q, q' , we have $C_{\text{grad}}^{(s)}(q, q') \geq 1 - \epsilon_s$, then there exists a constant $L > 0$ such that:*

$$1015 \quad D_{\text{traj}}^{(t)}(q, q') \leq L \cdot \left(\sum_{s=1}^t \eta_s \epsilon_s \right)^2.$$

1019 *Proof (Sketch).* Under NTK linearity, the change in log-probability is $\Delta \log \pi^s(\tau|q) \approx$
1020 $\eta_s \langle \nabla_{\theta} \log \pi_{\theta_s}(\tau|q), \Delta \theta_s \rangle$. High gradient coherence implies that the relative improvement for cor-
1021 rect responses is similar across q and q' .

1022 Since the pass rate $P_q^{(s)}$ is an empirical estimate of the model’s confidence in generating correct responses,
1023 coherent log-prob updates lead to similar $P_q^{(s)}$ evolutions. By vector concentration and Lipschitz contin-
1024 uity of the cosine similarity, the Euclidean distance $\|T_q^{(t)} - T_{q'}^{(t)}\|_2 = \mathcal{O}\left(\sum_{s=1}^t \eta_s \epsilon_s\right)$, which implies
1025 $D_{\text{traj}}^{(t)}(q, q') = \mathcal{O}\left(\|T_q^{(t)} - T_{q'}^{(t)}\|_2^2\right)$. The full proof is in B.7. \square

1028 We now state the main result, bounding domain discrepancy via trajectory divergence.

1030 **Proposition B.11** (Trajectory Divergence as Proxy for Domain Discrepancy). *The $\mathcal{H}\Delta\mathcal{H}$ -divergence be-
1031 tween \mathcal{D}_l and \mathcal{D}_u is bounded by the expected pass-rate trajectory divergence:*

$$1032 \quad d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_l, \mathcal{D}_u) \leq \alpha \cdot \mathbb{E}_{\substack{q \sim \mathcal{D}_l \\ q' \sim \mathcal{D}_u}} \left[D_{\text{traj}}^{(t)}(q, q') \right] + \lambda_d, \quad (17)$$

1034 where $\alpha > 0$ depends on model smoothness and training dynamics, and $\lambda_d \geq 0$ is an irreducible baseline
 1035 discrepancy.
 1036

1037 *Proof.* The $\mathcal{H}\Delta\mathcal{H}$ -divergence is:
 1038

$$1039 \quad d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_l, \mathcal{D}_u) = \sup_{h, h' \in \mathcal{H}} \left| \Pr_{q \sim \mathcal{D}_l} (h(q) \neq h'(q)) - \Pr_{q' \sim \mathcal{D}_u} (h(q') \neq h'(q')) \right|.$$

1041 In our setting, hypotheses $h \in \mathcal{H}$ are induced by the policy π_θ . The ability of \mathcal{H} to distinguish \mathcal{D}_l from \mathcal{D}_u
 1042 depends on the discrepancy in their induced gradient fields:
 1043

$$1044 \quad \mathbf{G}_S^{(t)} = \mathbb{E}_{q \sim \mathcal{D}_l} [\nabla_\theta \mathcal{J}_q(\theta_t)], \quad \mathbf{G}_T^{(t)} = \mathbb{E}_{q' \sim \mathcal{D}_u} [\nabla_\theta \mathcal{J}_{q'}(\theta_t)].$$

1046 Let $\Delta_G^{(t)} = \|\mathbf{G}_S^{(t)} - \mathbf{G}_T^{(t)}\|$. Standard domain adaptation theory gives:
 1047

$$1048 \quad d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_l, \mathcal{D}_u) \leq C \cdot \sup_t \Delta_G^{(t)} + \lambda_d,$$

1050 for some $C > 0$.

1051 Now, $\Delta_G^{(t)}$ is small when the gradient fields are aligned across domains. From Definition B.8, this alignment
 1052 is captured by $C_{\text{grad}}^{(t)}(q, q')$. Applying Lemma B.10, high gradient coherence (low $1 - C_{\text{grad}}^{(t)}$) implies low
 1053 $D_{\text{traj}}^{(t)}(q, q')$.
 1054

1055 Conversely, if $D_{\text{traj}}^{(t)}(q, q')$ is small on average, it indicates that the confidence evolution is coherent across
 1056 domains, which (by contrapositive of Lemma B.10) implies that gradient coherence must be high, hence
 1057 $\Delta_G^{(t)}$ is small.
 1058

1059 Therefore, $\mathbb{E}[D_{\text{traj}}^{(t)}]$ serves as an upper bound proxy for $\Delta_G^{(t)}$, and thus for $d_{\mathcal{H}\Delta\mathcal{H}}$. Setting α to absorb the
 1060 constants yields the result. \square
 1061

1062 **Corollary B.12.** *Low pass-rate trajectory divergence D_{traj} implies low domain discrepancy, enabling effective
 1063 transfer without explicit adversarial or feature-level alignment.*

1065 B.5 MAIN THEOREM: GENERALIZATION BOUND

1066

1067 **Theorem B.13** (Trajectory-Consistent Generalization Bound). *(Formal) Let $\delta \in (0, 1)$ be a confidence
 1068 parameter. Suppose the loss function $L : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_{\geq 0}$ is L_y -Lipschitz in its second argument and
 1069 bounded, i.e., $L(\cdot, \cdot) \leq B$. Let $\pi_\theta^{(t)}$ be a model trained under the TRAPO framework at round t .*

1070 *Then, with probability at least $1 - \delta$ over the sampling of labeled and unlabeled data, the expected risk of
 1071 $\pi_\theta^{(t)}$ on the target distribution \mathcal{D}_u satisfies:*

$$1073 \quad R_{\mathcal{D}_u}(\pi_\theta^{(t)}) \leq \hat{R}_{\mathcal{D}_l}(\pi_\theta^{(t)}) + B \sqrt{\frac{\ln(4/\delta)}{2m}} + \alpha \cdot \mathbb{E}_{q' \sim \mathcal{D}_u} [D_{\text{traj}}^{(t)}(q')] \\ 1074 \quad + L_y \left(1 - \bar{C}^{(t)} + \sqrt{\frac{\ln(2n/\delta)}{2G}} \right) + \lambda',$$

1075 where:
 1076

- 1077 • $\hat{R}_{\mathcal{D}_l}(\pi_\theta^{(t)})$ is the empirical risk on m labeled source samples;

1081
1082 • $D_{\text{traj}}^{(t)}(q') = 1 - \frac{\langle \mathbf{T}_{q'}^{(t)}, \bar{\mathbf{T}}_{\text{reliable}}^{(t)} \rangle}{\|\mathbf{T}_{q'}^{(t)}\| \cdot \|\bar{\mathbf{T}}_{\text{reliable}}^{(t)}\|}$ is the cosine divergence between the trajectory of q' and the
1083 average reliable trajectory;
1084
1085 • $\bar{C}^{(t)} = \frac{1}{n} \sum_{j=1}^n C_j^{(t)}$, with $C_j^{(t)} = \frac{1}{G} \sum_{i=1}^G \mathbb{I}(a_{j,i}^{(t)} = \tilde{y}_j^{(t)})$ the voting confidence for unlabeled
1086 sample q'_j ;
1087
1088 • $\lambda' = \lambda + \lambda_d \geq 0$ absorbs the irreducible domain shift and best-in-class error.

1089 Moreover, define the Dynamic Trajectory Consistency Risk:

1091
1092 $\mathcal{R}_{TC}^{(t)} := \alpha \cdot \mathbb{E}_{q'}[D_{\text{traj}}^{(t)}(q')] + L_y \left(1 - \bar{C}^{(t)} + \sqrt{\frac{\ln(2n/\delta)}{2G}} \right).$
1093

1094 If the Consistent Trajectory Learning Condition holds:

1095
1096 $\lim_{t \rightarrow \infty} \mathbb{E}_{q'}[D_{\text{traj}}^{(t)}(q')] = 0 \quad \text{and} \quad \lim_{t \rightarrow \infty} \bar{C}^{(t)} = 1,$
1097

1098 then $\mathcal{R}_{TC}^{(t)} \rightarrow 0$, and $R_{\mathcal{D}_u}(\pi_{\theta}^{(t)}) \rightarrow \hat{R}_{\mathcal{D}_l}(\pi_{\theta}^{(t)}) + \lambda'$, implying asymptotic generalization to the target domain.
1099

1100 Proof. We start from the standard domain adaptation risk decomposition (Ben-David et al., 2010):
1101

1102 $R_{\mathcal{D}_u}(\pi_{\theta}^{(t)}) \leq R_{\mathcal{D}_l}(\pi_{\theta}^{(t)}) + d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_l, \mathcal{D}_u) + \lambda, \quad (18)$
1103

1104 where $\lambda = \inf_{h \in \mathcal{H}} (R_{\mathcal{D}_l}(h) + R_{\mathcal{D}_u}(h))$.

1105 **Step 1: Bounding the source risk** $R_{\mathcal{D}_l}(\pi_{\theta}^{(t)})$. Using a standard concentration inequality (e.g., Hoeffding's
1106 lemma) for bounded losses $L \leq B$, with probability at least $1 - \delta/2$:

1107
1108 $R_{\mathcal{D}_l}(\pi_{\theta}^{(t)}) \leq \hat{R}_{\mathcal{D}_l}(\pi_{\theta}^{(t)}) + B \sqrt{\frac{\ln(4/\delta)}{2m}}.$
1109

1110 **Step 2: Bounding the domain discrepancy** $d_{\mathcal{H}\Delta\mathcal{H}}$. Under the NTK alignment assumption, trajectory
1111 consistency controls gradient field divergence. From the trajectory-proxy proposition B.11, we have:

1112
1113 $d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_l, \mathcal{D}_u) \leq \alpha \cdot \mathbb{E}_{q' \sim \mathcal{D}_u} [D_{\text{traj}}^{(t)}(q')] + \lambda_d,$
1114

1115 where $D_{\text{traj}}^{(t)}(q')$ measures the cosine divergence between the gradient trajectory of q' and the average reliable
1116 trajectory $\bar{\mathbf{T}}_{\text{reliable}}^{(t)}$ over source or high-confidence samples.
1117

1118 **Step 3: Pseudo-labeling error.** Let $\tilde{y}'^{(t)}$ be the pseudo-label for q' via majority voting. The error in using
1119 $\tilde{y}'^{(t)}$ instead of y'_{true} is bounded by:
1120

1121
1122 $|R_{\mathcal{D}_u}(\pi_{\theta}^{(t)}) - \mathbb{E}_{q'}[L(\pi_{\theta}^{(t)}(q'), \tilde{y}'^{(t)})]| \leq L_y \cdot \mathbb{P}(y'_{\text{true}} \neq \tilde{y}'^{(t)}).$
1123

1124 For n unlabeled samples, let $p_j^* = \mathbb{P}(a_i^{(t)} = y_{\text{true},j})$. The observed confidence $C_j^{(t)} = \frac{1}{G} \sum_{i=1}^G \mathbb{I}(a_{j,i}^{(t)} = \tilde{y}_j^{(t)})$
1125 estimates p_j^* . Then:

1126
1127 $\mathbb{P}(\tilde{y}_j^{(t)} \neq y_{\text{true},j}) \leq 1 - C_j^{(t)} + |C_j^{(t)} - p_j^*|.$

1128 By Hoeffding's inequality and a union bound over $j = 1, \dots, n$, with probability at least $1 - \delta/2$:

$$1129 \quad 1130 \quad 1131 \quad |C_j^{(t)} - p_j^*| \leq \sqrt{\frac{\ln(2n/\delta)}{2G}}, \quad \forall j.$$

1132 Averaging over j , we get:

$$1133 \quad 1134 \quad 1135 \quad \mathbb{P}(y'_{\text{true}} \neq \tilde{y}'^{(t)}) \leq 1 - \bar{C}^{(t)} + \sqrt{\frac{\ln(2n/\delta)}{2G}}.$$

1136 **Step 4: Union bound.** Combining Steps 1–3 with a union bound (total probability $\geq 1 - \delta$), and absorbing
1137 λ_d into $\lambda' = \lambda + \lambda_d$, we obtain the desired bound.

1138 Finally, under the Consistent Trajectory Learning Condition, both $D_{\text{traj}}^{(t)} \rightarrow 0$ and $\bar{C}^{(t)} \rightarrow 1$, so $\mathcal{R}_{TC}^{(t)} \rightarrow 0$,
1139 yielding asymptotic generalization. \square

1141 B.6 MAIN THEOREM: CONVERGENCE ANALYSIS

1142
1143 **Theorem B.14** (Monotonic Convergence under Consistent Trajectory Learning). *Let $U_t = \mathbb{E} \left[R_{\mathcal{D}_u}(\pi_{\theta}^{(t)}) \right]$ denote the expected target risk at training round t . Under the Consistent Trajectory Learning Condition
1144 (B.13), and assuming:*

- 1145 1. **Stochastic Gradient Descent (SGD)** with learning rate $\eta_t > 0$,
- 1146 2. **NTK stability**: $\|\nabla_{\theta} \pi_{\theta}^{(t)}(x)\|$ is bounded for all x ,
- 1147 3. **Lipschitz smoothness** of $L \circ \pi_{\theta}^{(t)}$,
- 1148 4. **Sufficient ensemble size** G such that $\sqrt{\frac{\ln(2n/\delta)}{2G}} \leq \epsilon$,

1149 then the expected risk sequence $\{U_t\}_{t=1}^{\infty}$ satisfies:

$$1150 \quad 1151 \quad U_{t+1} \leq U_t - \eta_t \xi_t + \beta_t,$$

1152 where:

- 1153 • $\xi_t = \mathbb{E} \left[\|\nabla_{\theta} \hat{R}_{\mathcal{D}_l}(\pi_{\theta}^{(t)})\|^2 \right] \geq 0$ measures the expected gradient magnitude on source data,
- 1154 • $\beta_t = \alpha \cdot \Delta D_{\text{traj}}^{(t)} + L_y \cdot \Delta C^{(t)} + \eta_t^2 M^2$ aggregates the residual dynamics, with:

$$1155 \quad 1156 \quad \Delta D_{\text{traj}}^{(t)} = \mathbb{E} \left[D_{\text{traj}}^{(t+1)}(q') - D_{\text{traj}}^{(t)}(q') \right],$$

$$1157 \quad 1158 \quad \Delta C^{(t)} = \mathbb{E} \left[\bar{C}^{(t+1)} - \bar{C}^{(t)} \right],$$

1159 and $M > 0$ bounds the gradient variance.

1160 Moreover, if $\sum_{t=1}^{\infty} \eta_t = \infty$ and $\sum_{t=1}^{\infty} \eta_t^2 < \infty$, and $\Delta D_{\text{traj}}^{(t)} \leq 0$, $\Delta C^{(t)} \geq 0$ for all $t \geq T_0$, then:

$$1161 \quad 1162 \quad \lim_{t \rightarrow \infty} \mathbb{E} \left[\|\nabla_{\theta} \hat{R}_{\mathcal{D}_l}(\pi_{\theta}^{(t)})\|^2 \right] = 0,$$

1163 and

$$1164 \quad 1165 \quad \limsup_{t \rightarrow \infty} U_t \leq \hat{R}_{\mathcal{D}_l}(f^*) + \lambda',$$

1166 where f^* is a stationary point of the source risk.

1175 *Proof.* We analyze the expected change in target risk:

$$1177 \quad U_{t+1} - U_t = \mathbb{E} \left[R_{\mathcal{D}_u}(f_{t+1}) - R_{\mathcal{D}_u}(\pi_{\theta}^{(t)}) \right].$$

1179 Using the smoothness of $L \circ \pi_{\theta}^{(t)}$ and the update $\theta_{t+1} = \theta_t - \eta_t g_t$, where g_t is the stochastic gradient, we
1180 have:

$$1182 \quad R_{\mathcal{D}_u}(f_{t+1}) \leq R_{\mathcal{D}_u}(\pi_{\theta}^{(t)}) - \eta_t \langle \nabla_{\theta} R_{\mathcal{D}_u}(\pi_{\theta}^{(t)}), g_t \rangle + \frac{L}{2} \eta_t^2 \|g_t\|^2.$$

1183 Taking expectation over the stochastic gradient and data sampling:

$$1185 \quad U_{t+1} \leq U_t - \eta_t \mathbb{E} \left[\|\nabla_{\theta} R_{\mathcal{D}_u}(\pi_{\theta}^{(t)})\|^2 \right] + \frac{L}{2} \eta_t^2 \mathbb{E} [\|g_t\|^2].$$

1188 Now, from B.13, we know:

$$1189 \quad R_{\mathcal{D}_u}(\pi_{\theta}^{(t)}) \leq \hat{R}_{\mathcal{D}_l}(\pi_{\theta}^{(t)}) + \mathcal{R}_{TC}^{(t)} + \text{const.}$$

1190 Thus, the gradient $\nabla_{\theta} R_{\mathcal{D}_u}(\pi_{\theta}^{(t)})$ is aligned with $\nabla_{\theta} \hat{R}_{\mathcal{D}_l}(\pi_{\theta}^{(t)})$ and $\nabla_{\theta} \mathcal{R}_{TC}^{(t)}$. Specifically:

$$1192 \quad \mathbb{E} \left[\|\nabla_{\theta} R_{\mathcal{D}_u}(\pi_{\theta}^{(t)})\|^2 \right] \geq \mathbb{E} \left[\|\nabla_{\theta} \hat{R}_{\mathcal{D}_l}(\pi_{\theta}^{(t)})\|^2 \right] - \left\| \nabla_{\theta} \mathcal{R}_{TC}^{(t)} \right\|^2.$$

1194 Now, observe that:

$$1196 \quad \left\| \nabla_{\theta} \mathcal{R}_{TC}^{(t)} \right\| \leq \alpha \cdot \left| \frac{d}{dt} \mathbb{E}[D_{\text{traj}}^{(t)}] \right| + L_y \cdot \left| \frac{d}{dt} \bar{C}^{(t)} \right| \approx \alpha \cdot |\Delta D_{\text{traj}}^{(t)}| + L_y \cdot |\Delta C^{(t)}|,$$

1198 in discrete time.

1199 Under the assumption that trajectory divergence is decreasing ($\Delta D_{\text{traj}}^{(t)} \leq 0$) and confidence is increasing
1200 ($\Delta C^{(t)} \geq 0$), the residual β_t captures the rate of improvement in transferability.

1202 Furthermore, $\mathbb{E}[\|g_t\|^2] \leq M^2$ under NTK stability and bounded loss.

1204 Thus, we obtain:

$$1205 \quad U_{t+1} \leq U_t - \eta_t \xi_t + \beta_t,$$

1206 with $\xi_t = \mathbb{E}[\|\nabla_{\theta} \hat{R}_{\mathcal{D}_l}(\pi_{\theta}^{(t)})\|^2]$, $\beta_t = \alpha \cdot \Delta D_{\text{traj}}^{(t)} + L_y \cdot \Delta C^{(t)} + \eta_t^2 M^2$.

1208 Now, summing over t :

$$1209 \quad \sum_{t=1}^{\infty} \eta_t \xi_t \leq U_1 - \liminf U_t + \sum_{t=1}^{\infty} \beta_t.$$

1212 If $\Delta D_{\text{traj}}^{(t)} \leq 0$ and $\Delta C^{(t)} \geq 0$, then $\beta_t \leq \eta_t^2 M^2$ eventually, and $\sum \eta_t^2 < \infty$ implies $\sum \eta_t \xi_t < \infty$. Since
1213 $\sum \eta_t = \infty$, we must have $\xi_t \rightarrow 0$, i.e.,

$$1215 \quad \lim_{t \rightarrow \infty} \mathbb{E} \left[\|\nabla_{\theta} \hat{R}_{\mathcal{D}_l}(\pi_{\theta}^{(t)})\|^2 \right] = 0.$$

1217 Finally, from B.13, since $\mathcal{R}_{TC}^{(t)} \rightarrow 0$, we get:

$$1219 \quad \limsup_{t \rightarrow \infty} U_t \leq \hat{R}_{\mathcal{D}_l}(f^*) + \lambda',$$

1221 where f^* is a stationary point. This completes the proof. \square

1222 B.7 ADDITION PROOFS
12231224 We provide the full proof of Lemma B.10, which connects gradient coherence in parameter space to trajectory
1225 coherence in the space of confidence dynamics.1226 **Lemma B.15** (Restatement of Lemma B.10). *Suppose the policy π_θ is trained under small learning rates
1227 $\{\eta_s\}_{s=1}^t$, and lies in a region where the Neural Tangent Kernel (NTK) is approximately constant. If for all
1228 $s \leq t$ and for questions q, q' , the gradient coherence satisfies $C_{\text{grad}}^{(s)}(q, q') \geq 1 - \epsilon_s$, then there exists a
1229 constant $L > 0$ such that:*

1230
$$D_{\text{traj}}^{(t)}(q, q') \leq L \cdot \left(\sum_{s=1}^t \eta_s \epsilon_s \right)^2.$$

1231
1232

1233 *Proof.* We proceed in three steps: (1) bound the difference in log-probability updates under gradient coherence;
1234 (2) relate log-prob changes to pass rate evolution; (3) bound the cosine distance between trajectory
1235 vectors.
12361237 **Step 1: Gradient coherence implies coherent log-prob updates.** Under the NTK regime, the model
1238 evolves via kernel gradient descent, and the change in log-probability after update s is approximately linear
1239 in the gradient:

1240
$$\Delta \log \pi^s(\tau \| q) := \log \pi_{\theta_s}(\tau \| q) - \log \pi_{\theta_{s-1}}(\tau \| q) \approx \eta_{s-1} \langle \nabla_\theta \log \pi_{\theta_{s-1}}(\tau \| q), \Delta \theta_{s-1} \rangle.$$

1241

1242 Let τ_q^* and $\tau_{q'}^*$ be the correct responses for q and q' . We are interested in how the model's confidence in
1243 generating correct responses evolves.1244 Let $\mathbf{g}_q^{(s)} = \nabla_\theta \log \pi_{\theta_s}(\tau_q^* \| q)$ and $\mathbf{g}_{q'}^{(s)} = \nabla_\theta \log \pi_{\theta_s}(\tau_{q'}^* \| q')$. By Definition B.8, we have:
1245

1246
$$\frac{\langle \mathbf{g}_q^{(s)}, \mathbf{g}_{q'}^{(s)} \rangle}{\|\mathbf{g}_q^{(s)}\| \|\mathbf{g}_{q'}^{(s)}\|} \geq 1 - \epsilon_s.$$

1247
1248

1249 This implies (by standard vector inequality):
1250

1251
$$\left\| \frac{\mathbf{g}_q^{(s)}}{\|\mathbf{g}_q^{(s)}\|} - \frac{\mathbf{g}_{q'}^{(s)}}{\|\mathbf{g}_{q'}^{(s)}\|} \right\| \leq \sqrt{2\epsilon_s}.$$

1252

1253 Assume the gradient norms are bounded: $\|\mathbf{g}_q^{(s)}\| \leq G$, $\|\mathbf{g}_{q'}^{(s)}\| \leq G$. Then:
1254

1255
$$\|\mathbf{g}_q^{(s)} - \mathbf{g}_{q'}^{(s)}\| \leq G\sqrt{2\epsilon_s} + \|\mathbf{g}_q^{(s)}\| - \|\mathbf{g}_{q'}^{(s)}\|.$$

1256 For simplicity, assume gradient magnitudes evolve similarly (or absorb into constants), so:
1257

1258
$$\|\mathbf{g}_q^{(s)} - \mathbf{g}_{q'}^{(s)}\| \leq G' \sqrt{\epsilon_s}.$$

1259 Now, the parameter update is $\Delta \theta_s = -\eta_s \nabla_\theta \mathcal{J}_s$, which is a weighted sum of gradients over the batch. If q
1260 and q' are both in the batch or their gradients are representative, then:
1261

1262
$$|\Delta \log \pi^s(\tau_q^* \| q) - \Delta \log \pi^s(\tau_{q'}^* \| q')| \leq \eta_s \|\mathbf{g}_q^{(s)} - \mathbf{g}_{q'}^{(s)}\| \cdot \|\Delta \theta_s\| / \eta_s \leq \eta_s G' \sqrt{\epsilon_s} \cdot M,$$

1263 where M bounds the update direction. Thus:
1264

1265
$$|\Delta \log \pi^s(\tau_q^* \| q) - \Delta \log \pi^s(\tau_{q'}^* \| q')| \leq \eta_s C_1 \sqrt{\epsilon_s}.$$

1266 Summing over $s = 1$ to t , the total difference in log-prob evolution is:
1267

1268
$$|\log \pi_{\theta_t}(\tau_q^* \| q) - \log \pi_{\theta_t}(\tau_{q'}^* \| q')| \leq C_1 \sum_{s=1}^t \eta_s \sqrt{\epsilon_s}.$$

1269 **Step 2: Log-prob coherence implies pass rate coherence.** The pass rate $P_q^{(s)}$ is defined as:
 1270

$$1271 \quad 1272 \quad 1273 \quad P_q^{(s)} = \frac{1}{N} \sum_{k=1}^N \mathbf{1}[f_{\theta_s}(q; \xi_k) \text{ passes}],$$

1274 where ξ_k represents stochasticity (e.g., dropout, sampling). $P_q^{(s)}$ is an empirical estimate of
 1275 $\Pr(\text{correct} \mid q, \theta_s)$.
 1276

1277 Assume the mapping from $\log \pi_{\theta_s}(\tau_q^* \mid q)$ to $\mathbb{E}[P_q^{(s)}]$ is L -Lipschitz (holds for softmax policies under
 1278 bounded gradients). Then:

$$1279 \quad 1280 \quad 1281 \quad |\mathbb{E}[P_q^{(s)}] - \mathbb{E}[P_{q'}^{(s)}]| \leq L' |\log \pi_{\theta_s}(\tau_q^* \mid q) - \log \pi_{\theta_s}(\tau_{q'}^* \mid q')| \leq L' C_1 \sum_{r=1}^s \eta_r \sqrt{\epsilon_r}.$$

1282 By concentration (e.g., Hoeffding's inequality), with high probability:

$$1283 \quad 1284 \quad 1285 \quad |P_q^{(s)} - P_{q'}^{(s)}| \leq L' C_1 \sum_{r=1}^s \eta_r \sqrt{\epsilon_r} + \nu_s,$$

1286 where $\nu_s = \mathcal{O}(1/\sqrt{G})$ is sampling error. For large N , ν_s is negligible.
 1287

1288 **Step 3: Trajectory vector proximity implies low divergence.** Let $T_q^{(t)} = (P_q^{(1)}, \dots, P_q^{(t)})$, $T_{q'}^{(t)} =$
 1289 $(P_{q'}^{(1)}, \dots, P_{q'}^{(t)})$. Then:

$$1290 \quad 1291 \quad 1292 \quad \|T_q^{(t)} - T_{q'}^{(t)}\|_2^2 = \sum_{s=1}^t |P_q^{(s)} - P_{q'}^{(s)}|^2 \leq \sum_{s=1}^t \left(L' C_1 \sum_{r=1}^s \eta_r \sqrt{\epsilon_r} \right)^2.$$

1293 Using the inequality $(\sum_{r=1}^s a_r)^2 \leq s \sum_{r=1}^s a_r^2$ and assuming η_r, ϵ_r small, we get:
 1294

$$1295 \quad 1296 \quad 1297 \quad \|T_q^{(t)} - T_{q'}^{(t)}\|_2^2 \leq C_2 \left(\sum_{s=1}^t \eta_s \sqrt{\epsilon_s} \right)^2 \leq C_2 \left(\sum_{s=1}^t \eta_s \right) \left(\sum_{s=1}^t \eta_s \epsilon_s \right),$$

1298 but more conservatively, if $\eta_s \epsilon_s$ summable, then:

$$1299 \quad 1300 \quad 1301 \quad \|T_q^{(t)} - T_{q'}^{(t)}\|_2 = \mathcal{O} \left(\sum_{s=1}^t \eta_s \epsilon_s^{1/2} \right).$$

1302 Now, the cosine distance:
 1303

$$1304 \quad 1305 \quad 1306 \quad D_{\text{traj}}^{(t)}(q, q') = 1 - \frac{\langle T_q^{(t)}, T_{q'}^{(t)} \rangle}{\|T_q^{(t)}\| \|T_{q'}^{(t)}\|} = \frac{1}{2} \left\| \frac{T_q^{(t)}}{\|T_q^{(t)}\|} - \frac{T_{q'}^{(t)}}{\|T_{q'}^{(t)}\|} \right\|^2 + \mathcal{O}(\|T_q^{(t)} - T_{q'}^{(t)}\|^2).$$

1307 If the trajectories are bounded away from zero (i.e., not all zeros), then:

$$1308 \quad 1309 \quad 1310 \quad D_{\text{traj}}^{(t)}(q, q') \leq L \cdot \|T_q^{(t)} - T_{q'}^{(t)}\|_2^2 \leq L \cdot \left(\sum_{s=1}^t \eta_s \sqrt{\epsilon_s} \right)^2.$$

1316 To match the lemma statement, we can weaken $\sqrt{\epsilon_s}$ to ϵ_s under $\epsilon_s \in (0, 1)$, or redefine ϵ_s as the squared
 1317 coherence gap. In either case, there exists a constant $L > 0$ such that:
 1318

$$1319 \quad 1320 \quad 1321 \quad D_{\text{traj}}^{(t)}(q, q') \leq L \cdot \left(\sum_{s=1}^t \eta_s \epsilon_s \right)^2,$$

1322 which completes the proof. □
 1323

1324 C DISCUSSION AND LIMITATIONS

1327 First, our results demonstrate that semi-supervised training using 4K labeled data combined with 16K unlabeled
 1328 data outperforms fully supervised training on 45K labeled data. This encouraging finding aligns with
 1329 the insight proposed by Li et al. (2025b) in the context of RLVR training: thorough training (i.e., more training
 1330 epochs) on smaller curated datasets can yield better performance than training with larger datasets for
 1331 fewer epochs. Our work further extends this observation by showing that unlabeled data, when carefully selected
 1332 using guidance from labeled data training, can effectively enhance the model’s reasoning capabilities,
 1333 thus amplifying the benefits of semi-supervised RLVR.

1334 In addition, due to computational constraints, our evaluation is currently limited to models under the 7B
 1335 parameter scale. Exploring the applicability and scalability of this semi-supervised paradigm to larger language
 1336 models (e.g., 13B or beyond) remains an important direction for future research, as larger models may
 1337 benefit even more from effective utilization of unlabeled data.

1339 D EXPERIMENT DETAILS

1341 D.1 DETAILED SETUP

1343 **Implementation Details.** Following Dr.GRPO (Liu et al., 2025), we disable length and standard error
 1344 normalization in the GRPO loss (Eq. 9) for all experiments. By default, we use Qwen2.5-Math-7B (Yang
 1345 et al., 2024), following prior work Cui et al. (2025); Zeng et al. (2025b); Liu et al. (2025). Besides, we
 1346 remove the KL regularization by setting $\beta = 0$ and set the entropy coefficient to 0.01. Our rollout batch
 1347 size is 64, with 8 rollouts per prompt, and update batch size 64. Rollouts are generated with temperature
 1348 sampling ($T = 1.0$). We use Math-Verify¹ as the reward function, without format or length bonuses. For
 1349 unlabeled data selection, we set the top-p threshold to 0.1 and the threshold Γ to 0.5 in Eq. 7. The warmup
 1350 stage consists of 5 epochs. In addition, given that experiments are performed across different data scales,
 1351 the samples used in non-full-data scenarios are *randomly sampled* from the original dataset.

1352 **Training.** In addition to Qwen2.5-Math-7B, we extend TRAPO to DeepSeek-R1-Distill-Qwen-1.5B (Guo
 1353 et al., 2025) and LLaMA-3.1-8B-Instruct (Team, 2024). To ensure fairness, we maintain 8 samples per
 1354 prompt for all RL-trained models. The learning rate is constantly set as 1e-6. For all training, we follow Yan
 1355 et al. (2025) and use the same validation set to select the best checkpoint. All the experiments were run with
 1356 an 8× NVIDIA H200 with 141GB memory.

1357 Our implementation is based on verl², which uses vLLM³ as the rollout generators. We are thankful for
 1358 these open-source repositories.

1360 ¹<https://github.com/huggingface/Math-Verify>

1361 ²<https://github.com/volgengine/verl>

1362 ³<https://github.com/vllm-project/vllm>

1363 **Qwen2.5-Series Models.** Since the context length of Qwen2.5-Math is 4096 and the generation length of
 1364 off-policy samples could be lengthy, we change the rope theta from 10000 to 40000 and extend the window
 1365 size to 16384. For all Qwen2.5-Series models, we use the same dataset as described in Sec. 4.
 1366

1367 **DeepSeek-R1-Distill-Qwen-1.5B.** DeepSeek-R1-Distill-Qwen-1.5B is a compact, 1.5-billion-parameter
 1368 language model distilled from the high-performing DeepSeek-R1 series (Guo et al., 2025). Built on the
 1369 Qwen architecture, it combines strong reasoning capabilities with high efficiency, offering excellent perfor-
 1370 mance in math and logic tasks despite its small size. For DeepSeek-R1-Distill-Qwen-1.5B, we use the same
 1371 dataset as described in Sec. 4.
 1372

1373 **Llama-3.1-8B.** For Llama3.1-8B, we follow Simple-RL-Zoo Zeng et al. (2025a) and use a simplified
 1374 prompt, and we do not ask the model to generate <think>\n </think>\n tokens.
 1375

1376 D.2 SYSTEM PROMPT

1377 All our trained models, except LLaMA-3.1-8B, share the same system prompt for training and inference:
 1378

1379 Your task is to follow a systematic, thorough reasoning process before providing the final solution.
 1380 This involves analyzing, summarizing, exploring, reassessing, and refining your thought process
 1381 through multiple iterations. Structure your response into two sections: Thought and Solution. In the
 1382 Thought section, present your reasoning using the format: “<think>\n thoughts </think>\n”.
 1383 Each thought should include detailed analysis, brainstorming, verification, and refinement of ideas.
 1384 After “</think>\n” in the Solution section, provide the final, logical, and accurate answer, clearly
 1385 derived from the exploration in the Thought section. If applicable, include the answer in \boxed{ }
 1386 for closed-form results like multiple choices or mathematical solutions.
 1387 **User:** This is the problem: {QUESTION}
 1388 **Assistant:** <think>

1390 For LLaMA-3.1-8B, we do not use the above system prompt as we find the model cannot follow such
 1391 an instruction. Thus, we use a simplified version that only includes the CoT prompt and do not include
 1392 <think> token.
 1393

1394 **User:** {QUESTION}
 1395 **Answer:** Let’s think step by step.
 1396

1397 D.3 BASELINE DESCRIPTION

- 1400 • Unsupervised Baselines:
 - 1401 – **TRRL** (Zuo et al., 2025): treating the majority-voted output as the pseudo-label and training with
 1402 GRPO.
 - 1403 – **Self-Certainty** (Zhao et al., 2025): maximizing the KL divergence between the model’s rollout token
 1404 probabilities and a uniform distribution to encourage confident predictions.
 - 1405 – **Token-Level Entropy** (Agarwal et al., 2025): minimizing the entropy of individual output tokens
 1406 during rollout to promote consistency.
 - 1407 – **Sentence-Level Entropy** (Agarwal et al., 2025): maximizing the overall sentence probability of the
 1408 generated output to favor high-likelihood sequences.
- 1409 • Supervised Baselines:

1410 Table 4: Comparison with other fully supervised training methods. **Bold** and underline indicate the best and
 1411 second-best results, respectively.

Model	In-Distribution Performance					Out-of-Distribution Performance				
	AIME 24/25	AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
Qwen-Base (Yang et al., 2024)	11.5/4.9	31.3	43.6	7.4	15.6	19.0	18.2	11.1	16.9	15.4
Qwen-Instruct (Yang et al., 2024)	12.5/10.2	48.5	80.4	32.7	41.0	37.6	70.3	24.7	34.1	43.0
Fully Supervised Methods Trained on 45K Samples w/ All Labels										
SimpleRL-Zero (Zeng et al., 2025b)	<u>27.0</u> /6.8	54.9	76.0	25.0	34.7	37.4	30.2	23.2	34.5	29.3
OpenReasoner-Zero (Hu et al., 2025)	16.5/15.0	52.1	82.4	33.1	<u>47.1</u>	41.0	66.2	29.8	58.7	51.6
PRIME-Zero (Cui et al., 2025)	17.0/12.8	54.0	81.4	<u>39.0</u>	40.3	40.7	73.3	18.2	32.7	41.4
Oat-Zero (Liu et al., 2025)	33.4 /11.9	<u>61.2</u>	78.0	34.6	43.4	43.7	70.1	23.7	41.7	45.2
On-Policy RL (Yan et al., 2025)	25.1/15.3	62.0	<u>84.4</u>	39.3	46.8	<u>45.5</u>	82.3	40.4	49.3	<u>57.3</u>
TRAPO Trained w/ 4K Labeled Samples & 12K Unlabeled Samples										
TRAPO (ours)	24.3/ 17.1	60.0	84.6	39.3	48.3	45.6	84.6	43.9	<u>50.7</u>	59.7

- **Simple-RL** (Zeng et al., 2025b): training from Qwen2.5-Math-7B using rule-based reward.
- **Oat-Zero** (Liu et al., 2025): training from Qwen2.5-Math-7B and rule-based reward, proposing to remove the standard deviation in GRPO advantage computation and token-level normalization in policy loss computation.
- **PRIME-Zero** (Cui et al., 2025): using policy rollouts and outcome labels through implicit process rewards.
- **OpenReasonerZero** (Cui et al., 2025): a recent open-source implementation of RLVR methods.
- **Fully Supervised** (Yan et al., 2025): trained on-policy RL within the RLVR paradigm using Dr.GRPO (Liu et al., 2025) with the same reward and data.

E MORE EXPERIMENTS

E.1 COMPARISON WITH MORE SUPERVISED RLVR BASELINES

In Table 4, we compare our method with additional fully supervised RLVR baselines, all of which are trained on the complete 45K labeled dataset, with results taken directly from Yan et al. (2025). The results show that our model, trained with only 4K labeled and 12K unlabeled samples, achieves performance that surpasses all baselines trained on the full 45K labeled data. For instance, our TRAPO method outperforms the outstanding Oat-Zero baseline by 1.9% in in-distribution performance and by a significant 14.5% in out-of-distribution performance. This further underscores the effectiveness and value of our proposed TRAPO.

E.2 EXTEND TRAPO TO MORE MODELS

We further investigate whether our proposed semi-supervised paradigm, TRAPO, generalizes to *small models*, *instruction-tuned models*, and *weak models*. To this end, we conduct experiments on DeepSeek-R1-Distill-Qwen-1.5B (representing small models) and LLaMA-3.1-8B-Instruct (representing instruction-tuned and relatively weaker models), under unsupervised, semi-supervised, and fully supervised training settings. The experimental setup follows that of Table 2. As shown in Table 5 and 6, TRAPO consistently outperforms the unsupervised baseline (TTRL) by a significant margin and approaches (or even surpasses) the performance of the fully supervised baseline on both models. Specifically, on DeepSeek-R1-Distill-Qwen-1.5B,

1457
1458 Table 5: Overall performance on nine competition-level benchmark performance on LLaMA-3.1-8B-Instruct
1459 (Team, 2024).

Model	In-Distribution Performance						Out-of-Distribution Performance			
	AIME 24/25	AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
Original Model										
Original Model	5.1/0.4	18.6	44.6	19.5	14.1	17.1	24.2	0.5	38.6	21.1
Unsupervised Methods Trained on $1K$ Unlabeled ID Samples & $1K$ Unlabeled OOD Samples										
TTRL	6.1/0.1	21.8	46.6	25.4	16.7	19.5	11.0	0.0	41.8	17.6
Self-certainty	6.9/1.2	20.3	45.5	23.7	17.1	19.1	13.3	0.0	39.5	17.6
Token-level Entropy	5.3/0.1	19.6	43.5	22.7	16.9	18.0	10.5	0.0	38.7	16.4
Sentence-level Entropy	7.2/0.2	20.9	46.4	24.7	16.5	19.3	11.7	0.0	41.5	17.7
Semi-supervised Methods Trained on $1K$ Labeled ID Samples & $1K$ Unlabeled OOD Samples										
TTRL	7.1/0.1	20.5	46.4	24.6	17.3	19.3	11.5	0.0	40.9	17.5
Self-certainty	6.6/0.6	20.7	46.4	23.2	16.3	19.0	12.7	0.0	40.3	17.7
Token-level Entropy	6.4/0.1	20.5	44.6	23.3	16.4	18.6	11.3	0.0	41.6	17.6
Sentence-level Entropy	7.5/0.1	21.3	46.7	25.1	16.9	19.6	12.3	0.0	41.9	18.1
TRAPO (ours)	9.9/0.2	21.5	48.0	26.1	18.7	20.7	12.1	0.0	43.4	18.5
Fully Supervised w/ 2K Labels	6.9/1.6	22.2	52.2	21.0	17.5	20.2	10.4	0.0	47.5	19.3

1478
1479 Table 6: Overall performance on nine competition-level benchmark performance on DeepSeek-R1-Distill-
1480 Qwen-1.5B (Guo et al., 2025).

Model	AIME 24/25	AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
Original Model	21.0/20.3	51.6	76.6	26.5	36.7	38.8	3.7	0.0	11.0	4.9
Unsupervised (TTRL)	26.1/21.7	57.0	80.6	28.7	42.7	42.8	25.7	0.0	31.9	19.2
Semi-supervised (TRAPO)	<u>27.9/22.6</u>	<u>61.9</u>	<u>82.2</u>	<u>32.0</u>	<u>45.3</u>	<u>45.3</u>	<u>34.4</u>	0.0	<u>33.5</u>	<u>22.6</u>
Supervised	<u>28.5/22.5</u>	64.1	84.6	37.1	47.0	47.3	57.3	0.0	38.9	32.1

1486
1487 TRAPO improves over TTRL by 2.0% in in-distribution (ID) performance and 9.5% in out-of-distribution
1488 (OOD) performance. On LLaMA-3.1-8B-Instruct, it exceeds TTRL by 1.2% in ID performance and 0.9%
1489 in OOD performance. Notably, TRAPO even outperforms the fully supervised baseline by 0.5% in ID per-
1490 formance. These results strongly demonstrate the robustness, adaptability, and broad applicability of our
1491 method across diverse model scales and architectures.

1493 E.3 TRAPO IS A UNIVERSAL COMPONENT

1495 We demonstrate that TRAPO serves as a universal and modular component, whose pass rate trajectory-based
1496 sample selection mechanism can be readily integrated into various semi-supervised baselines to identify re-
1497 liable unsupervised reward signals. As shown in Figure 7, we apply this selection strategy to three represen-
1498 tative baselines: Sentence-level Entropy, Token-level Entropy, and TT RL. Compared to the naive semi-
1499 supervised counterparts that simply combine supervised and unsupervised objectives, augmenting these
1500 methods with our sample selection framework consistently yields performance gains across multiple bench-
1501 marks. This further validates the **extensibility** and **plug-and-play** nature of our approach, indicating that
1502 the core principle of TRAPO—dynamically identifying high-quality unlabeled samples via learning trajec-
1503 tories—is broadly applicable and complementary to diverse semi-supervised paradigms.

Figure 7: Different unsupervised methods combined with our trajectory-based filtering approach can improve performance, compared to a naive semi-supervised method that directly combines supervised and unsupervised approaches. The experimental setup follows Table 2.

E.4 RUN TRAPO ON DEEPMATH

To further verify TraPO’s broad applicability, we run it on DeepMath (He et al., 2025b), a recently released dataset for mathematical reasoning. We randomly select 2K samples as labeled data and 8K samples as unlabeled data. We compare results from unsupervised, naive semi-supervised, and fully supervised methods. As shown in Table 8, our method, TraPO, outperforms all unsupervised methods and naive supervised methods. Specifically, on the ID test set, TraPO achieves a 1.5% improvement over the best naive semi-supervised method combined with TTTL, and is only 1.2% behind fully supervised training. Notably, on the OOD test set, TraPO even surpasses fully supervised training by 2.4%, highlighting that TraPO is not only label-efficient but also delivers outstanding performance.

E.5 DIFFERENT SELECTION STRATEGIES

Under a fixed selection ratio (30%), we compare TraPO with other possible selection strategies, including simple random selection, sentence-level entropy-based selection (where lower entropy indicates more reliable pseudo-labels for the corresponding rollouts), and self-certainty (where higher self-certainty suggests more reliable pseudo-labels for the corresponding rollout). The experimental results in Table 13 show that with a fixed selection ratio of 30%, all other methods are significantly inferior to our selection method, TraPO, on both the ID and OOD test sets.

E.6 STABILITY OF TRAPO

We seek to verify whether TraPO is sufficiently stable and insensitive to sample order. To this end, we ran TraPO three times with data randomly shuffled. Across these three trials (Qwen-2.5-7B, 1K labeled, 3K unlabeled), both the results and the selected samples were nearly identical, confirming TraPO’s robustness (see table 16).

1551
1552 **E.7 TRAINING COST ANALYSIS OF TRAPO**1553 We analyze the practical training cost of TraPO from both theoretical and empirical perspectives.
15541555 **Time Complexity.** Each labeled or unlabeled sample is rolled out G times per epoch, in line with standard
1556 RLVR practices. Let T represent the total number of training epochs, N_L, N_U the number of labeled and
1557 unlabeled samples, C_{sim} the computational cost of a cosine similarity computation over short vectors, and
1558 C_{gen} the computational cost of a single rollout. The only additional operation is a cosine similarity com-
1559 putation C_{sim} over short vectors, which is negligible compared to the cost of rollout generation C_{gen} , i.e,
1560 $C_{\text{sim}} \ll C_{\text{gen}}$. The time complexity of fully supervised training (using $N = N_L + N_U$ labeled samples) is:

1561
$$T_{\text{Sup}} = O(T \cdot N \cdot G \cdot C_{\text{gen}}) \quad (19)$$

1562

1563 TraPO has the same complexity:

1564
$$T_{\text{TraPO}} = O(T \cdot (N_L + N_U) \cdot G \cdot C_{\text{gen}}) + O(T \cdot (N_L + N_U) \cdot C_{\text{sim}}) \approx O(T \cdot N \cdot G \cdot C_{\text{gen}}) \quad (20)$$

1565

1566 Therefore, TRAPO and fully supervised RLVR share identical time complexity, both dominated by forward
1567 sampling and GRPO updates.1568 **Empirical Training Cost.** In our experiments, TraPO, supervised RLVR, and unsupervised RLVR are
1569 trained under identical conditions: same number of epochs, batch sizes, and hardware configuration
1570 (8×H200 GPUs). Notably, TraPO reaches its best checkpoint at nearly the same training step as the super-
1571 vised baseline, indicating no significant overhead in convergence speed. Table 7 summarizes the wall-clock
1572 training times across different data scales, demonstrating that TraPO incurs no substantial additional training
1573 cost compared to supervised RLVR.1574
1575
1576 **E.8 DIFFERENT WAYS OF UTILIZING RELIABLE PASSRATE DATABASES**
15771578 One may also consider other variants, such as not using the average pass rate trajectory and instead selecting,
1579 from the unlabeled samples, those whose pass rate trajectory is most similar to the trajectory of any labeled
1580 sample for inclusion in training. However, this approach can lead to unstable selection because, among the
1581 unlabeled samples, problems that are too difficult, too easy, or of moderate difficulty can all exhibit relatively
1582 similar pass-rate trajectories among the labeled samples. As a result, the selection is ineffective (Table 17).1583
1584 Table 7: Wall-clock training time (reported as “GPU-hours × GPUs”) across data regimes.
1585

Data Size	Unsupervised	Supervised	Semi-Supervised (TraPO)
4k	~7 × 8	~25 × 8	~26 × 8
8k	~13 × 8	~39 × 8	~38 × 8
45k	~11 × 8	~57 × 8	~55 × 8

1591
1592 **F MORE RELATED WORK**
15931594 **Semi-supervised Reinforcement Learning.** Semi-supervised learning has been widely studied in super-
1595 vised settings, where labeled and unlabeled data are combined to improve model performance under limited
1596 annotation budgets (Blum & Mitchell, 1998; Chapelle et al., 2009; Subramanya & Bilmes, 2011; Rasmus
1597 et al., 2015; Laine & Aila, 2016; Tarvainen & Valpola, 2017; Berthelot et al., 2019; Xie et al., 2020; Sohn

1598 et al., 2020). In reinforcement learning, early work explored combining reward-based learning with self-
 1599 supervised signals or pseudo-rewards derived from environment dynamics or intrinsic motivation (Dudík
 1600 et al., 2011; Finn et al., 2016; Thomas & Brunskill, 2016; Kallus & Uehara, 2020; Zhou et al., 2023). These
 1601 methods typically treat supervised and unsupervised signals independently, for instance by summing reward
 1602 and consistency objectives, or by pre-training on unlabeled data before fine-tuning on labeled trajectories.

1603 However, such semi-supervised RL approaches are ill-suited for large language model (LLM) training under
 1604 verifiable rewards (RLVR). In RLVR, the policy is optimized using feedback signals derived from answer
 1605 verification (e.g., correctness of final outputs), rather than explicit action-level rewards. Unsupervised meth-
 1606 ods in this space rely on internal consistency, such as low token entropy (Agarwal et al., 2025), high self-
 1607 certainty (Zhao et al., 2025), or majority voting (Zuo et al., 2025), to construct pseudo-rewards. While these
 1608 signals can guide exploration, they often reinforce incorrect or degenerate reasoning patterns in the absence
 1609 of external supervision, leading to model collapse (Zhang et al., 2025c).

1610 Our work departs from prior approaches by introducing a *guidance* mechanism: the labeled data are not
 1611 merely used to provide an additional reward signal, but to actively *steer* the selection and utilization of unlabeled
 1612 samples. Specifically, we observe that reliable reasoning trajectories on unlabeled data exhibit learning
 1613 dynamics similar to those on labeled data. By measuring trajectory similarity in the reward model space,
 1614 TRAPO identifies high-quality unlabeled samples whose reasoning patterns are consistent with verified ones.
 1615 This ensures that unsupervised signals are only leveraged when they align with externally validated behavior,
 1616 preventing the amplification of spurious patterns.

1617 This paradigm shift from independent combination to supervised guidance addresses a key limitation of
 1618 traditional methods. In high dimensional open ended generation tasks such as reasoning with LLMs consis-
 1619 tency alone is insufficient for correctness. Without supervision to anchor the learning process models easily
 1620 overfit to superficial patterns or self reinforced errors. TRAPO resolves this by using minimal labeled data
 1621 as a “north star” enabling stable and effective learning from large amounts of unlabeled data. As we show
 1622 empirically this leads to superior performance and data efficiency surpassing both fully supervised baselines
 1623 trained on orders of magnitude more labels and unsupervised methods that fail to generalize.

1625 G PSEUDO CODE

1627 We provide the pseudo code 1.

1645 **Algorithm 1** TRAPO: Trajectory-based Policy Optimization

1646 **Require:** Labeled data \mathcal{D}_l , Unlabeled data \mathcal{D}_u , Warm-up epochs T_{warm} , Threshold Γ , Top- p fraction

1647 **Ensure:** Policy π_θ

1648 **Initialize:** Pass rate trajectories $\mathbf{T}_q \leftarrow []$ for all q

1649 1: Reliable database $\mathcal{D}_{\text{reliable}} \leftarrow \{\mathbf{T}_l \mid l \in \mathcal{D}_l\}$

1650 2: **for** each training epoch t **do**

1651 3: Generate responses for $\mathcal{D}_l \cup \mathcal{D}_u$ using π_θ

1652 4: Compute (pseudo) pass rates $P_q^{(t)}$ for all questions

1653 5: Update trajectories: $\mathbf{T}_q^{(t)} \leftarrow \mathbf{T}_q^{(t-1)} \oplus P_q^{(t)}$

1654 6: **if** $t > T_{\text{warm}}$ **then**

1655 7: Compute average reliable trajectory $\bar{\mathbf{T}}_{\text{reliable}}^{(t)}$

1656 8: **for** $u \in \mathcal{D}_u$ **do**

1657 9: Compute similarity: $\text{TCS}_u = \cos(\hat{\mathbf{T}}_u^{(t)}, \hat{\mathbf{T}}_{\text{reliable}}^{(t)})$

1658 10: **end for**

1659 11: Select reliable unlabeled samples:

1660 $\mathcal{U}_{\text{reliable}} = \text{top-}p(\text{TCS}) \cup \{u \mid \text{TCS}_u \geq \Gamma\}$

1661 12: Add their trajectories to $\mathcal{D}_{\text{reliable}}$

1662 13: **end if**

1663 14: Compute loss:

1664 $\mathcal{L}(\theta) = \mathcal{J}_{\text{GRPO}}^{\text{labeled}} + \sum_{u \in \mathcal{U}_{\text{reliable}}} \mathcal{J}_{\text{GRPO},u}^{\text{unlabeled}}$

1665 15: Update π_θ using $\nabla_\theta \mathcal{L}(\theta)$

1666 16: **end for**

1670
1671 Table 8: Overall performance based on Qwen2.5-Math-7B under three different training paradigms using
1672 DeepMath dataset (He et al., 2025b). **Bold** and underline indicate the best and second-best results, respec-
1673 tively.

Model	In-Distribution Performance					Out-of-Distribution Performance				
	AIME 24/25	AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
Unsupervised Methods Trained on 8K Samples w/o Any Labels										
TTRL	11.6/8.4	<u>50.2</u>	74.8	37.1	38.7	36.8	74.7	30.3	39.8	48.3
Self-certainty	11.9/10.2	45.6	74.4	36.4	37.0	35.9	75.9	23.7	36.7	45.4
Token-level Entropy	13.5/9.3	43.2	71.4	36.0	35.0	34.7	75.9	<u>32.8</u>	39.3	49.3
Sentence-level Entropy	13.6/9.6	50.1	75.6	<u>36.8</u>	37.0	37.1	72.1	28.8	36.9	45.9
Semi-supervised Methods Trained on 2K Labeled Samples & 6K Unlabeled Samples										
TTRL	14.1 / <u>13.0</u>	48.8	<u>77.8</u>	32.4	37.0	<u>37.2</u>	77.4	27.2	40.1	48.2
Self-certainty	12.8/8.3	45.2	71.6	29.4	32.0	33.2	77.4	28.3	<u>42.9</u>	<u>49.5</u>
Token-level Entropy	<u>13.8</u> /10.9	48.6	74.2	33.1	34.1	35.8	77.0	30.8	37.2	48.3
Sentence-level Entropy	9.6/9.9	45.6	73.8	32.4	34.5	34.3	76.9	28.3	39.8	48.3
TRAPO (ours)	<u>13.8</u> / 13.6	51.4	79.8	33.8	40.0	<u>38.7</u>	<u>77.2</u>	35.4	43.6	52.1
Fully Supervised w/ 8K Labels	16.0/12.1	52.9	78.8	36.8	42.8	<u>39.9</u>	77.0	29.3	42.7	49.7

1692
 1693
 1694
 1695
 1696 Table 9: Overall performance on nine competition-level benchmarks for Qwen-2.5-7B under different top-p
 1697 settings, with fixed Γ (0.5) and a fixed warmup length (5). Training was performed with 1K labeled and 3K
 1698 unlabeled samples.

Model	AIME 24/25	AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
Qwen-Base	11.5/4.9	31.3	43.6	7.4	15.6	19.0	18.2	11.1	16.9	15.4
Qwen-Instruct	12.5/10.2	48.5	80.4	32.7	41.0	37.6	70.3	24.7	34.1	43.0
$\Gamma = 0.1$										
TRAPO	17.9/13.8	58.7	81.4	38.2	45.5	42.6	83.7	37.9	46.8	56.1
$\Gamma = 0.3$										
TRAPO	16.6/15.7	56.0	82.6	35.6	44.0	41.7	79.7	34.3	46.7	53.6
$\Gamma = 0.5$										
TRAPO	15.9/9.5	52.7	79.0	34.2	39.9	38.5	73.2	32.7	45.6	50.5
$\Gamma = 0.7$										
TRAPO	14.9/10.8	53.4	81.8	34.9	41.8	39.6	75.4	36.9	43.8	52.0
$\Gamma = 1.0$										
TRAPO	14.9/10.7	55.3	77.8	33.1	43.6	39.2	72.6	35.4	42.7	50.2

1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719 Table 10: Overall performance across nine competition-level benchmarks for Qwen-2.5-7B under varying Γ
 1720 values, with fixed top-p (0.1) and warmup length (5). Training was conducted with 1K labeled samples and
 1721 3K unlabeled samples.

Model	AIME 24/25	AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
Qwen-Base	11.5/4.9	31.3	43.6	7.4	15.6	19.0	18.2	11.1	16.9	15.4
Qwen-Instruct	12.5/10.2	48.5	80.4	32.7	41.0	37.6	70.3	24.7	34.1	43.0
$\Gamma = 0.1$										
TRAPO	15.7/10.9	52.6	81.1	34.5	41.3	39.4	74.0	37.1	43.2	51.4
$\Gamma = 0.3$										
TRAPO	16.5/12.9	56.8	81.9	37.6	45.9	41.9	81.9	38.1	46.3	55.4
$\Gamma = 0.5$										
TRAPO	17.9/13.8	58.7	81.4	38.2	45.5	42.6	83.7	37.9	46.8	56.1
$\Gamma = 0.7$										
TRAPO	14.3/12.7	53.9	79.2	35.1	42.6	39.6	80.6	35.6	43.7	53.3
$\Gamma = 1.0$										
TRAPO	14.9/13.3	53.9	79.7	34.7	42.1	39.8	81.3	35.9	43.4	53.5

1739
1740 Table 11: Overall performance across nine competition-level benchmarks for Qwen-2.5-7B under varying
1741 warmup lengths, with fixed top-p (0.1) and fixed Γ (0.5). Training conducted with 1K labeled and 3K
1742 unlabeled samples.
1743

Model	AIME 24/25	AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
Qwen-Base	11.5/4.9	31.3	43.6	7.4	15.6	19.0	18.2	11.1	16.9	15.4
Qwen-Instruct	12.5/10.2	48.5	80.4	32.7	41.0	37.6	70.3	24.7	34.1	43.0
warm-up length = 2										
TRAPO	16.1/12.0	54.9	77.8	34.0	40.2	39.2	78.5	33.2	41.5	51.1
warm-up length = 3										
TRAPO	17.4/13.6	57.5	80.2	37.1	43.8	41.6	81.9	36.2	44.8	54.3
warm-up length = 5										
TRAPO	17.9/13.8	58.7	81.4	38.2	45.5	42.6	83.7	37.9	46.8	56.1
warm-up length = 8										
TRAPO	18.2/14.1	59.3	82.0	38.8	46.1	43.1	84.2	38.4	47.3	56.6
warm-up length = 12										
TRAPO	17.6/13.5	58.1	80.9	37.7	44.9	42.1	83.1	37.6	46.1	55.6

1756
1757
1758
1759 Table 12: Overall performance of Qwen2.5-Math-7B under different training sample sizes and annotation
1760 ratios.
1761

Model	In-Distribution Performance						Out-of-Distribution Performance			
	AIME 24/25	AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
Original Models										
Qwen-Base	11.5/4.9	31.3	43.6	7.4	15.6	19.0	18.2	11.1	16.9	15.4
Qwen-Instruct	12.5/10.2	48.5	80.4	32.7	41.0	37.6	70.3	24.7	34.1	43.0
TRAPO Trained on Varying Sample Sizes (12.5% Labeled)										
TRAPO w/ 1K Samples	13.5/10.1	52.3	80.7	39.4	42.2	39.7	75.2	24.1	43.5	47.6
TRAPO w/ 2K Samples	15.0/11.6	53.3	81.2	38.9	44.2	40.7	82.4	28.7	45.2	52.1
TRAPO w/ 4K Samples	16.1/12.9	56.8	82.3	36.7	45.4	41.7	82.1	33.8	46.7	54.2
TRAPO w/ 16K Samples	21.3/16.1	60.9	84.8	38.2	43.3	44.1	82.6	39.5	46.2	56.1
TRAPO Trained on Varying Sample Sizes (25% Labeled)										
TRAPO w/ 1K Samples	17.1/12.8	53.6	79.4	39.3	41.5	40.6	72.7	30.3	42.4	48.5
TRAPO w/ 2K Samples	18.1/14.3	55.4	81.6	33.1	43.4	41.0	82.6	39.4	45.0	55.7
TRAPO w/ 4K Samples	17.9/13.8	58.7	81.4	38.2	45.5	42.6	83.7	37.9	46.8	56.1
TRAPO w/ 16K Samples	24.3/17.1	60.0	84.6	39.3	48.3	45.6	84.6	43.9	50.7	59.7
TRAPO Trained on Varying Sample Sizes (50% Labeled)										
TRAPO w/ 1K Samples	14.3/10.9	51.7	81.4	34.2	42.1	39.1	78.3	30.1	45.2	51.2
TRAPO w/ 2K Samples	16.2/13.1	54.8	82.3	37.1	45.7	41.5	81.5	34.2	46.6	54.1
TRAPO w/ 4K Samples	17.3/15.7	59.2	83.9	39.4	47.3	43.8	83.7	36.8	46.6	55.7
TRAPO w/ 16K Samples	24.4/18.3	61.5	84.1	40.8	46.3	45.9	84.2	43.7	49.7	59.2
Fully Supervised w/ 45K Labels	25.1/15.3	62.0	84.4	39.3	46.8	45.5	82.3	40.4	49.3	57.3

1786
1787 Table 13: Qwen-2.5-7B results on nine competition-level benchmarks using 1K labeled and 3K unlabeled
1788 samples (30% reliable data selected by Sentence-level Entropy, Self-certainty, and TraPO)

Model	AIME 24/25	AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
Qwen-Base	11.5/4.9	31.3	43.6	7.4	15.6	19.0	18.2	11.1	16.9	15.4
Qwen-Instruct	12.5/10.2	48.5	80.4	32.7	41.0	37.6	70.3	24.7	34.1	43.0
Random	15.8/12.3	53.5	79.8	34.8	41.8	39.7	80.8	35.8	43.2	53.3
Sentence-level Entropy	16.3/12.5	54.6	80.2	35.3	42.4	40.2	81.8	35.4	43.7	53.6
Self-certainty	15.8/13.3	52.9	80.7	36.6	43.5	40.5	80.4	35.8	42.9	53.0
TRAPO	16.7/13.7	57.1	81.0	37.3	44.6	41.8	83.2	37.4	45.9	55.5

1795
1796
1797 Table 14: Overall performance on nine competition-level benchmarks for Qwen-2.5-7B using random se-
1798 lection or TraPO. Training was conducted with 1K labeled samples and 3K unlabeled samples.

Model	AIME 24/25	AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
Qwen-Base	11.5/4.9	31.3	43.6	7.4	15.6	19.0	18.2	11.1	16.9	15.4
Qwen-Instruct	12.5/10.2	48.5	80.4	32.7	41.0	37.6	70.3	24.7	34.1	43.0
No Selection	14.2/13.5	52.6	80.2	34.9	40.9	39.4	76.2	36.4	43.6	52.1
<i>10% Selected</i>										
Random	14.9/13.3	53.9	79.7	34.7	42.1	39.8	80.3	34.9	42.4	52.5
TRAPO	15.8/13.5	55.0	80.3	35.8	43.2	40.7	81.5	35.8	43.5	53.6
<i>30% Selected</i>										
Random	15.8/12.3	53.5	79.8	34.8	41.8	39.7	80.8	35.8	43.2	53.3
TRAPO	16.7/13.7	57.1	81.0	37.3	44.6	41.8	83.2	37.4	45.9	55.5
<i>50% Selected</i>										
Random	14.5/12.8	51.5	77.2	31.5	40.0	37.9	77.8	34.8	41.8	51.5
TRAPO	15.1/13.6	54.2	80.5	35.2	42.5	40.1	82.0	36.2	43.8	54.0
<i>70% Selected</i>										
Random	14.6/13.0	52.4	78.5	34.0	40.8	38.4	79.2	35.2	42.5	52.3
TRAPO	14.9/13.5	53.8	79.9	34.9	41.9	39.8	81.0	35.4	42.8	53.1
All Selection	14.9/10.7	55.3	77.8	33.1	43.6	39.2	72.6	35.4	42.7	50.2

1815
1816 Table 15: Overall performance across nine competition-level benchmarks for Qwen-2.5-7B with varying
1817 ratios (σ_M) of unlabeled samples. Training uses 1K labeled samples and 3K unlabeled samples.

Model	AIME 24/25	AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
Qwen-Base	11.5/4.9	31.3	43.6	7.4	15.6	19.0	18.2	11.1	16.9	15.4
Qwen-Instruct	12.5/10.2	48.5	80.4	32.7	41.0	37.6	70.3	24.7	34.1	43.0
$\sigma_M = 0.00$	14.2/13.5	52.6	80.2	34.9	40.9	39.4	76.2	36.4	43.6	52.1
$\sigma_M = 0.25$										
Token-level Entropy	16.7/13.6	54.6	81.4	34.3	41.3	40.4	79.6	35.9	44.6	53.4
TRAPO	14.6/13.6	55.4	79.8	35.7	42.1	40.2	81.9	35.4	44.0	53.8
$\sigma_M = 0.50$										
Token-level Entropy	15.0/12.4	51.6	79.8	32.7	39.9	38.6	77.3	34.8	42.9	51.7
TRAPO	16.8/13.6	56.2	80.5	38.9	43.6	41.6	82.8	36.6	44.9	54.8
$\sigma_M = 0.75$										
Token-level Entropy	16.2/13.4	52.1	79.0	33.8	39.1	38.9	77.6	29.8	41.3	49.6
TRAPO	17.4/12.9	57.2	80.8	37.5	44.3	41.7	82.5	37.2	45.9	55.2
$\sigma_M = 1.00$										
Token-level Entropy	18.2/11.9	53.4	80.2	34.6	41.9	40.0	72.9	32.3	44.0	49.7
TRAPO	17.9/13.8	58.7	81.4	38.2	45.5	42.6	83.7	37.9	46.8	56.1

1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
1841 Table 16: Overall performance across nine competition-level benchmarks for Qwen-2.5-7B, averaged over
1842 three runs. Training was performed with 1K labeled samples and 3K unlabeled samples.
1843

Model	AIME 24/25	AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
Qwen-Base	11.5/4.9	31.3	43.6	7.4	15.6	19.0	18.2	11.1	16.9	15.4
Qwen-Instruct	12.5/10.2	48.5	80.4	32.7	41.0	37.6	70.3	24.7	34.1	43.0
TRAPO	$18.2 \pm 0.3 / 13.6 \pm 0.2$	59.3 ± 0.5	81.9 ± 0.4	37.9 ± 0.4	45.8 ± 0.5	42.8 ± 0.4	83.9 ± 0.6	37.8 ± 0.6	47.5 ± 0.5	56.4 ± 0.5

1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
1864 Table 17: Qwen-2.5-7B results on nine competition-level benchmarks using 1K labeled and 3K unlabeled
1865 samples, with average trajectory matching or maximum trajectory matching.
1866

Model	AIME 24/25	AMC	MATH-500	Minerva	Olympiad	Avg.	ARC-c	GPQA*	MMLU-Pro	Avg.
Qwen-Base	11.5/4.9	31.3	43.6	7.4	15.6	19.0	18.2	11.1	16.9	15.4
Qwen-Instruct	12.5/10.2	48.5	80.4	32.7	41.0	37.6	70.3	24.7	34.1	43.0
TRAPO-MAX	16.3/9.9	52.7	80.8	35.6	41.3	39.4	81.6	33.2	42.6	52.5
TRAPO-MEAN	17.9/13.8	58.7	81.4	38.2	45.5	42.6	83.7	37.9	46.8	56.1