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ABSTRACT

In the domain of Three-dimensional Structure-Based Drug Design (3D SBDD),
the 3D spatial structures of target pockets serve as inputs for the generation of
molecular geometric graphs. The Geometric Diffusion Model (GDM) has been
recognized as the state-of-the-art (SOTA) method in 3D SBDD, attributed to its
exceptional generation capabilities on geometric graphs. However, the inherent
data-driven nature of GDM occasionally neglects critical inter-molecular inter-
actions, such as Van der Waals force and Hydrogen Bonding. Such omissions
could produce molecules that violate established physical principles. Particular
evidence is that GDMs exhibit atomic clashes during generation due to the overly
close proximity of generated molecules to protein structures. To address this, our
paper introduces a novel constrained sampling process designed to obviate such
undesirable collisions. By integrating a non-convex constraint within the current
Langevin Dynamics (LD) of GDM and utilizing the proximal regularization tech-
niques, we force molecular coordinates to obey the imposed physical constraints.
Notably, the proposed method requires no modifications to the training process of
GDMs. Empirical evaluations show a significant reduction in atomic clashes via
the proposed method compared to the original LD process of GDMs.

1 INTRODUCTION

Structure-based drug design plays a crucial role in the drug development process because it enables
scientists to predict how different drugs will interact with their target proteins at the molecular level
(Anderson, 2003). It utilizes the knowledge of the three-dimensional (3D) structures of biological
targets, allowing for the generation and optimization of compounds with high affinity and speci-
ficity. With the recent advancements in deep learning, researchers are continuously exploring how
to use deep learning to design structure-based generative models. Unlike models that generate small
molecules from scratch (Luo & Ji, 2022), without considering protein information, structure-based
generative models integrate the intricate details of protein structures to create more informed and
contextually relevant molecules. Clearly, such models have the potential to greatly accelerate the
discovery of new drugs against known specific targets (Dara et al., 2022).

The incorporation of 3D structure information significantly enhances the process of drug design
(Adcock & McCammon, 2006; Hollingsworth & Dror, 2018; Yuriev & Ramsland, 2013). There is
a prevalent set of approaches that incorporate 3D structure information into the autoregressive flow
model (Rezende & Mohamed, 2015; Dinh et al., 2014; Gebauer et al., 2019). For instance, The
GraphBP (Liu et al., 2022) and the cG-SchNet (Gebauer et al., 2022), both of which are autore-
gressive flow models, employ an atom-by-atom method to generate molecules designed to bind to
specific proteins. However, this atom-by-atom method may not always be optimal when generating
molecules based on the pocket, as it has the potential to produce chemically invalid intermediates.

Due to the limitations associated with the autoregressive model, Hoogeboom et al. (2022) pioneered
the use of the diffusion model for the task of molecule generation. This model holds an advantage
as it generates molecules in their entirety all at once, avoiding the creation of invalid chemical in-
termediates like the autoregressive models. Building on this success, several other structure-based
molecular diffusion models such as Targetdiff (Guan et al., 2023a), DiffSBDD (Schneuing et al.,
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2022), and PMDM (Huang, 2023) have been proposed. Each of these models possesses a distinctive
design. In Targetdiff, uniform noise is added to the atom types. DiffSBDD introduces an inpainting
method to generate molecules during inference time. PMDM, on the other hand, employs a dual
equivariant score kernel network based on the distance between atoms. According to experimental
results, all these models have demonstrated the capability to generate molecules with lower docking
scores (indicating higher affinity) compared to reference molecules. However, these methods pre-
dominantly rely on data-driven approaches to simulate the spatial relationship between molecules
and proteins, thereby overlooking certain physical rules.

To illustrate this point, for instance, in the sample results of Targetdiff, a phenomenon that we
defined as ”atomic clash” is observed, indicating that some generated molecules maintain an inap-
propriate spatial relationship with the corresponding pocket. This observation is grounded on the
assumption (Hooft et al., 1996) that atoms being overly proximate in protein structure constitute an
error, coupled with the common bond length (Lide et al., 2005). We postulate that any distance less
than 2Å between the atoms of generated molecules and the amino acid atoms is incorrect and could
potentially be construed as a bond (See Figure 1.a). We conducted an analysis of the distribution of
the atomic gap between the ligand and protein within the CrossDock2020 dataset. The results of the
statistical analysis reveal that gap distances of less than 2Å are virtually non-existent in the database
(See Figure 1.b). We also provide the statistic results of the PDBbind dataset (see Appendix C.1).
Additionally, Harris et al. (2023) believe that the non-clash distance is based on the bond length plus
a 0.5Å threshold, which is closely aligned with our definition. For instance, the typical C-C bond
length is around 1.5Å, and adding 0.5Å results in 2.0Å. To address the atomic clash issue, Guan
et al. (2023b) attempts to refine the sampling process by utilizing the gradient of clash constraints,
but the direct application of the gradient algorithm may potentially induce errors, especially when
dealing with non-smooth constraints.

In this paper, we formulate the issue of the spatial clash between the molecule and protein as a con-
strained optimization problem, conceptualizing it based on the observed ”atomic clash” phenomena
in models like Targetdiff. We enhance the original sampling process based on Langevin Algorithm
(LA) by integrating a proximal operator to ascertain the optimal solution under such constraints.
Concurrently, in comparison to the previously mentioned method, we conducted a theoretical ex-
ploration to elucidate the reasons behind its incremental improvement. The key contributions of our
study are outlined as follows:

• We employ the proximal operator to tackle the non-smooth distance constraints, subse-
quently diminishing the frequency of atomic clashes.

• Our methods avoid the necessity for any training process specific to the structure-based
diffusion model.

• We conduct a theoretical validation to confirm the convergence of our approach.

In Section 3, we present the foundational knowledge necessary for understanding our research. In
Section 4, we provide a detailed explanation of our proposed method. In Section 5, we first compare
our method with existing models, wherein the comparative results demonstrate that our approach
achieves a lower clash ratio. Subsequently, we investigate the influence of the parameters of our
method on the final outcome through an ablation study. Finally, we evaluate the impact of our
method on the chemical properties of the generated molecules.

2 RELATED WORK

Molecule Generation The advancement of the generative model has led to the application of var-
ious models such as Variational Autoencoders (VAE), Generative Adversarial Networks (GAN),
Flow, and Denoising Diffusion Probabilistic Models (DDPM) in diverse molecule generation meth-
ods. Xu et al. (2021) proposed a SMILES generation model based on the conditional RNN (Lipton
et al., 2015) framework, wherein protein information was treated as conditional input. In a different
approach, the DeepTarget model (Chen et al., 2023) generates SMILES of molecules from protein
target sequences. One notable approach is the JT-VAE (Jin et al., 2018), which generates molecules
fragment-by-fragment. This process involves two phases: the generation of coarse and valid chem-
ical substructure, followed by assembling these fragments into a complete molecule. In contrast,
the GF-VAE (Ma & Zhang, 2021) and Two-step Graph VAE (Bresson & Laurent, 2019) generate
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Figure 1: a. Two distance situations between amino acids and molecules are depicted: the upper
half represents an inappropriate spatial distance (< 2Å), while the lower half portrays an appropri-
ate spatial distance (> 2Å). b. Statistical distribution of pairwise distances between proteins and
molecules within 6Åin the Crossdocked2020 Dataset.

molecules by incrementally adding atoms and bonds. Training GAN models for molecule generation
is challenging compared to VAE models. One attempt of GAN models calls LatentGAN (Prykhodko
et al., 2019) which is a molecule generation model that generates molecules in SIMILES notation.
Building upon this, Bai et al. (2021) proposed MolGAN, a GAN-based architecture capable of gen-
erating more meaningful drug-like molecules. MoFlow (Zang & Wang, 2020), GraphAF (Shi et al.,
2020), GraphBP (Liu et al., 2022), and GraphDF (Luo et al., 2021b) take a different approach by
generating molecules through the sequential addition of bonds and then atoms, contrasting with the
aforementioned VAE models’ methods. Furthermore, both MDM (Huang et al., 2023), MolDiff
(Peng et al., 2023) and MiDi (Vignac et al., 2023) are end-to-end molecular generation models that
have been trained using analogous diffusion frameworks. Specifically, MolDiff and MiDi construct
bonds directly from the trained model through a bond diffusion process, unlike MDM.

Structure-based Drug Design The primary objective of structure-based drug design is to identify
potential molecules that can specifically target a protein, thereby inducing effective conformation
changes in the protein. In a recent study, Kang et al. (2022) utilized a conditional variational autoen-
coder model (VAE) for the generation of molecular graphs. However, Their model did not account
for the inherent spatial relationship within the ligand-protein complex. In contrast, Ragoza et al.
(2022) proposed a cVAE model trained on an atomic density grid representation of a protein-ligand
complex. They utilized an atom fitting algorithm and a bond inference procedure to transform the
atomic density grids into a discrete 3D molecular structure. Building on the assumption that a drug’s
shape undergoes minimal changes upon binding to a pocket, Long et al. (2022) developed a model
that generates molecules conditioned on sketching reasonable shapes from protein pockets. This
innovative approach provides a new perspective on drug design. Furthermore, considering the inter-
action between the functional groups of molecules and protein residues, the FLAG model (Zhang
et al., 2022) can generate the molecules motif-by-motif in a 3D perspective. These methods offer a
more detailed and comprehensive view of molecule generation based on the pocket.

3 PRELIMILARIES

3.1 SCORE MATCHING MODEL

Directly modeling the data distribution pdata(x) using a neural network pθ(x) is challenging (Song
& Ermon, 2019). To avoid this, they learn the gradients of the perturbed data distribution and obtain
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samples via Langevin dynamics. From an energy perspective, the pθ(x) can be expressed as

pθ(x) =
1

Zθ
e−U(x). (1)

where U(x) := fθ(x), an arbitrarily flexible and parameterizable energy function often modeled by
a neural network. Zθ serves as a normalizing constant to guarantee that

∫
pθ(x)dx = 1. Computing

the normalizing constant is intractable, so both the frameworks of the denoising score matching
model and the denoising diffusion probabilistic model aim to learn a network sθ(x̃, t) that accurately
represents the gradient of the perturbed data distribution ∇x̃ log p(x̃|x) (Song et al., 2020).

Perturbing Data As same to the diffusion model, the aim of the score-matching model is to estab-
lish a diffusion process {xt}Tt=0, which is indexed by a continuous time variable t ∈ [0, T ]. This
process ensures that x0 and xT correspond to the data distribution, v, and a tractable form (prior
distribution) for efficiently generating samples, respectively. The diffusion process can be modeled
by the following SDE:

dx = f(x, t)dt+ η(t)dw, (2)
where w symbolizes the Brownian motion, f(·, t) denotes the drift coefficient of xt, and η(·) is
the diffusion coefficient of xt. Let vt := Law(xt) be the measures along the process above. The
forward process can be interpreted as a transformation of samples from the data distribution v into
noises.

Reverse SDEs Interestingly, Anderson (1982) posits that the reverse of a diffusion process also
constitutes a diffusion process, which generates samples by running backward in time and is char-
acterized by the reverse-time Stochastic Differential Equation (SDE)::

dx = [f(x, t)− η(t)2∇x log pt(x)]dt+ η(t)dw̄, (3)

where w̄ represents the Brownian motion when time flows backward from T to 0. Notably, from
Eq.3, if we can obtain ∇x log pt(x) for all t, we can derive the reverse diffusion process and simulate
it to acquire p0 from pT .

Traing and Sampling According to the Eq.3, a score neural network sθ is required to model the
∇x log pt(x). A direct and efficient approach is to calculate the Mean Squared Error (MSE) loss
between them, as previously mentioned. The continuous generalization can be expressed as:

θ∗ = argmin
θ

Et{φ(t)Ex0
Ext|x0

[
∥sθ(xt, t)−∇xt

log p(xt|x0)∥22
]
}, (4)

where θ∗ is the optimal parameter of the trained model. The φ(t) is a weight function depending
on the time step t. Given sufficient data and model capacity, the score-matching is trained by Eq.3,
denoted as sθ∗(x, t), which approximates ∇x log pt(x) for nearly all x and t. For sampling purposes,
once the trained score-matching network is obtained, the standard Langevin Dynamics Sampling
method (Song & Ermon, 2019; Pierzchlewicz, 2022) can be employed to generate the target sample,
which can be sequentially executed in preset steps using this sample equation:

xt−1 = xt + ϵt∇x log pt(x) +
√
2ϵtz, t = 1, 2, . . . , T, (5)

where z ∼ N (0, 1) and ϵt represents a step size, which serves as a hyper-parameter depending on
time T . After iterating T times, the final sample xT is obtained from its distribution p(xT ), and this
distribution is approximately equal to the data distribution pdata(x).

3.2 PROXIMAL REGULARIZATION

For the task of unconstrained minimization of a continuously differentiable function (denoted f(x)),
the gradient descent algorithm is often used. This method seeks to minimize the function f(x) by
iteratively applying:

xk = xk−1 − tk∇f(xk−1), x0 ∈ R, (6)
Considering the regularized problem, a function g(x) is incorporated into the equation 6. As a
result, the general formulation can be expressed as minF (x) ≡ f(x) + g(x) : x ∈ Rn. Given a
point xk−1, a quadratic approximation of F (x) (Beck & Teboulle, 2009) can be obtained:

argmin
x

:= f(xk−1) + ⟨xk − xk−1,∇f(xk−1)⟩+
1

2λ
∥xk − xk−1∥2 + g(xk). (7)
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Figure 2: Simplified schematic of the sampling process with the incorporation of the constraint for-
mula. The dotted line denotes the surface of the protein pocket, while G̃t denotes the information of
the generated molecule after incorporating constraints. Gt represents the information on molecules
normally generated by the model.

By disregarding constant terms in xk−1:

proxg(y) = argmin
x

{g(x) + 1

2λ
∥x− y∥2}. (8)

where the 1
2λ plays the role of a step size. Clearly, in accordance with the proximal mapping Eq.8,

the value of xk can be computed via proxg(xk−1).

4 METHOD

Notation Let Gl = (xl, vl) denote the 3D generated molecular geometric structure, where xl rep-
resents the atomic positions and vl encompasses the atomic features (e.g. atom type, atom charge).
Similarly, we employ Gp = (xp, vp) to represent the geometric structure of the protein pocket. Here,
xp and vp correspond to the positions and types of protein atoms, respectively.

4.1 ENERGY CONSTRAINT

Recalling Eq.1 and considering the position xl of molecules, we introduce a constraint function
g(xl) as:

min
xl

U(xl) := fθ(xl) (9)

s.t. g(xl) ≤ 0. (10)

In order to tackle the atomic clash problem, we define g(xl) as a function that return larger values
when the distance between the xl and xp is too close. Additionally, when the distance between them
exceeds 2Å, g(xl) should no longer impose a constraining effect. Therefore, to satisfy the above
conditions, we design g(xl) as a piece-wise function:

g(xl) =

{∑K
k=1 e

−(xl−xk
p)

2/σ, if d ≤ 2

0, if d > 2,

where d = min(norm(xl−xp)) refers to the closed paired distance of the molecule’s and protein’s
atoms. k represents the k nearest protein atoms surrounding the molecular atom. If g(xl) satisfies the
constraint in Eq. 10, it indicates that all distances between the atoms in xl and xp are larger than 2Å.
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Then, we utilize the Lagrange Multiplier to incorporate the constraint g(xl) into the optimization
object:

U(xl) := fθ(xl) + g(xl). (11)
According Eq.5 and Eq.10, we can rewrite the Eq.5 as:

xt−1
l = xt

l − ϵt∇x(fθ(x
t
l) + g(xt

l)) +
√
2ϵtz, t = 1, 2, . . . , T. (12)

Here, −∇xl
(fθ(xl)) ≈ sθ(xl) is approximated by the trained diffusion model. However, the de-

signed g(xl) is a piece-wise function, which is non-smooth and non-convex, making the computation
of ∇g(xl) challenging. Consequently, to avoid this, we adapt the proxg to determine the optimal
solution:

proxg(x
t
l) = argmin

x̃t
l

{g(x̃t
l) +

1

2λ
∥x̃t

l − xt
l∥2}, (13)

where xt
l is derived from the Eq.12, λ determines the impact of the proximal terms on the gradi-

ent of this equation during optimization. Alternatively, we find that the proximal formula can be
interpreted as two parts: one conceptualized as protein coordinates constrainedwhich evaluates
the relationship between the updated molecule positions and the protein positions. This effectively
directs the ligand towards a more optimal position and mitigates excessive attraction to the protein
atoms; the other is conceptualized as molecular coordinates constrained, which is employed to
penalize significant deviations in the molecule’s position during optimization. By maintaining the
proximity of x̃t

l to xt
l , this term ensures the molecule remains relatively consistent with its preceding

position. Figure 2 visually illustrates the significant impact of our constrained formula in addressing
clash issues encountered throughout the Langevin Dynamic (LD) sampling procedure.

4.2 PROXIMAL SAMPLING

At each sample time step t, we adjust the position of each atom within the molecule to ensure
that they maintain an adequate distance from the protein surface. This modified structure is then
utilized as the input for the structure-based diffusion model to generate the subsequent sample at
time step t − 1. Regardless of whether the distance of the next step may still be improper (less
than 2Å) or not, our constrained formula consistently remains effective in rectifying such situations.
To implement the process described above, and drawing inspiration from the Stochastic Proximal
Langevin Algorithm (Salim et al., 2019), we divide the solution process (sampling procedure) into
three distinct stages, delineated as follows:

ht−1
l = xt

l + ϵtsθ(Gt,Gp, t)

xt−1
h = ht−1

l +
√
2ϵtz

t−1
l

x̃t−1
l = proxg(x

t−1
h )

xt−1
l = x̃t−1

l ,

where proxg is our designed proximal function, zt−1
l represents standard Gaussian random vari-

ables. Following the above sequence of equations, we initially obtain the ht−1
l and subsequently

incorporate noise to derive xt−1
h . Ultimately, we address the proximal function to acquire x̃t−1

l ,
which corresponds to the final xt−1

l . The algorithm details of employing our constrained formula
are summarized in Appendix A.

4.3 CONVERGENCE ANALYSIS

We consider our sampling process as a novel Proximal Inexact Langevin Algorithm (PILA), where
if the target distribution υ := pθ(x) satisfies α-LSI and then along the Langevin dynamics (Eq. 2),
KL divergence is decreasing exponentially fast. As they proved (Yingxi Yang & Wibisono, 2022)
when s is an approximation of score function sυ and it has bounded MGF error, We show similar
convergence rates accompanied by an additional bias term caused by the score estimation error.
Theorem 1 (Convergence of KL divergence for PILA). Assume υ is α-LSI, fθ is L-smooth, 1

2λ is
the proximal step size, and score estimator s is Ls-Lipschitz and has bounded MGF error (ϵmgf

assumption) with r = 9
α . if 0 < h < min( α

12(Ls+λ−1)(L+λ−1) ,
1
2α ), then after k iterations of PILA

(Eq. 12):
Hυ(ρk) ≤ e−

1
4αhkHυ(ρ0) + C1dh+ C2ϵ

2
mgf
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where C1 = 128(Ls + λ−1)(Ls + L+ 2λ−1)/α and C2 = 8/(3α).

We provide the proof of Theorem 1 as well as related notations and assumptions in Appendix B.

5 EXPERIMENT

In this section, we thoroughly assess our proposed approach by examining it from three distinct
perspectives. Firstly, we apply our constrained formula to the TargetDiff (Guan et al., 2023a) model
and subsequently compare its performance with three alternative models. The experimental results
demonstrate that our approach achieves a lower mean clash ratio. Secondly, we conduct ablation
studies to investigate the impact of our method on the overall performance. Lastly, we evaluate the
chemical properties of the samples generated by our method, with the findings suggesting that our
approach does not affect the original performance.

5.1 SETUP

Data All models were trained on the CrossDocked2020 (Francoeur et al., 2020) dataset. and their
overall data preprocessing approach closely aligns with the methodology employed by Luo et al.
(2021a). For convenience, we utilize a pre-divided test dataset for validation purposes. The pre-
divided test dataset consists of 100 test protein samples.

Evaluation Following previous works (Hoogeboom et al., 2022), we employ a selection of metrics
to effectively evaluate the influence of our proposed approach on the generated sampling outcomes.:
(1) Validity refers to the proportion of generated molecules that adhere to the valence rules of the
RDkit (Bento et al., 2020); (2) Novelty measures the proportion of generated molecules specific to a
protein that are dissimilar to the reference ligand; (3) Uniqueness is the percentage of the unique and
connected molecule among all generated molecules; (4) Diversity assesses the variety of generated
molecules for a specific pocket. In addition, we construct three new metrics to evaluate our method
comprehensively: (1) Connectivity denotes the percentage of all generated molecules that do not
contain any fragment; (2) Mean Clash Ratio calculates the percentage of clash molecules in all
generated molecules. A clash is detected when at least one pair of atomic distances between the
molecule’s and protein’s atoms is less than the 2Å threshold.; (3) Stability represents the proportion
of connected and not-clashing molecules in all the generated molecules, which can be calculated by
Connectivity ∗ (1−MeanClashRatio).

Table 1: Displays the performance of two types of models based on sampling evaluation criteria:
PMDM and DiffSBDD, which do not account for the clash situation, and Decompdiff and Targetdiff
models, which consider the clash situation. ↑: represents that a larger value signifies better perfor-
mance. ↓: indicates that a smaller value corresponds to superior performance.

Model Validity ↑ Novelty ↑ Uniqueness ↑ Diversity ↑ Connectivity ↑ Mean CR ↓ Stability ↑

PMDM 100% 100% 99.31% 0.7505 82.13% 43.44% 46.45%

DiffSBDD 100% 100% 97.44% 0.8246 54.78% 17.17% 45.37%

Decompdiff 97.33% 100% 93.89% 0.7984 76.13% 9.87% 68.61%

Targetdiff(ours) 98.31% 100% 98.77% 0.7107 84.31% 4.38% 80.62%

5.2 MODEL CLASH RESULT COMPARISON

We evaluated each model using the test set containing an equal number of proteins for every model.
For each protein, we generated one hundred molecules separately. Subsequently, we calculated the
clash probability between the one hundred molecules and their corresponding proteins. Finally, we
selected the proteins with a probability greater than 5% in each model to construct their respective
clash data sets. As shown in Table 1, the PMDM (Huang, 2023) model and the DiffSBDD (Schneu-
ing et al., 2022) model do not consider potential clash problem between molecules and proteins
during the molecule generation process, resulting in a relatively high overall collision probability.
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Table 2: Compare the sampling results of the constrained formula with the original sampling results
without constraints under different constraint times, different k values, and different coefficients.

Time Influence Factor Validity ↑ Diversity ↑ Novelty ↑ Uniqueness ↑ Connectivity ↑ Mean CR ↓ Stability ↑

No constrained 98.31% 0.7107 100% 98.77% 85.38% 12.31% 74.86%

K = 1, λ = 10 98.15% 0.7117 100% 98.69% 84.31% 4.38% 80.62%
150-0 K = 3, λ = 10 98.15% 0.7109 100% 98.77% 85.38% 7.08% 79.34%

K = 5, λ = 10 98.15% 0.7102 100% 98.77% 85.38% 9.00% 77.70%

K = 1, λ = 10 97.69% 0.7109 100% 98.69% 82.15% 4.31% 78.61%

300-0 K = 3, λ = 10 98.31% 0.7111 100% 98.77% 84.92% 7.69% 78.39%

K = 5, λ = 10 98.31% 0.7112 100% 98.77% 86.00% 8.00% 79.12%

K = 1, λ = 10 98.15% 0.7062 100% 98.77% 79.38% 3.23% 76.82%

500-0 K = 3, λ = 10 98.00% 0.7099 100% 98.54% 82.46% 6.38% 77.19%

K = 5, λ = 10 98.31% 0.7076 100% 98.54% 83.23% 7.77% 76.76%

Therefore, their final performance in stability evaluations is suboptimal. In contrast, the Decom-
pdiff (Guan et al., 2023b) model and Targetdiff (Guan et al., 2023a) model adopt our constraint
formula, which fully considers the clash between proteins and molecules during the sampling pro-
cess. Therefore, the mean clash ratio of these two models is significantly lower than the previously
mentioned model. We compare the Decompdiff model with the Targetdiff model using our method,
which only significantly reduces the average clash ratio by 4.38% but also minimally impacts the
connectivity of the molecules generated by the model, resulting in a sample stability of 80.62%. We
have also applied our method to the DiffSBDD model, and the experimental results (see Appendix
C.3) indicate that our approach can reduce the clash rate in other models. Additionally, we visualize
the two scenarios of clash and non-clash between molecules and proteins (see Appendix C.4).

5.3 ABLATION STUDY

Figure 3: Dotted lines of different colors denote
various spatial relationships between molecular
atoms and protein atoms.

Our sampling process algorithm basically con-
sists of three adjustable parameters. In this
main text, we mainly analyze the parameter k.
The impact of restricted sampling time steps
and weight parameters λ is further clarified in
the Appendix C.2. As illustrated in Figure 3,
the sequence from the innermost to the outer-
most dashed line represents the spatial proxim-
ity of the single closest protein atom, the three
closest protein atoms, and the five closest pro-
tein atoms to the ligand atom, respectively. As
shown in table 2, we observe that different k
values do have different effects on the mean
clash ratio. Regardless of the time step, the
mean clash ratio decreases most significantly
when k=1. This observation suggests that the protein atoms closest to the ligand atoms play a crucial
role in reducing the clash ratio. We find that when k = 5 and the constrained time step starts from
300, the connectivity even exceeds the connectivity of the unconstrained sample, reaching 86.00%.
This observation suggests that our approach may have the potential to improve connectivity. Tak-
ing into account both connectivity and the mean clash ratio, we conclude that the optimal sampling
results are achieved when k = 1 and the sampling time step begins at 150.

5.4 THE PROPERTIES ANALYSIS
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Table 4: Comparative analysis of the differences between the sampling outcomes for various con-
straint time steps and the original sampling results of the model. ↑ indicates that a higher value is
preferable, while ↓ signifies that a lower value is more desirable.

Different Time step SA ↑ QED ↑ LogP Lipinski ↑ Vina Score ↓ High Affinity ↑
No constraint 0.597±0.11 0.463±0.20 1.915±2.84 4.450±0.85 -7.591±2.43 53.69%

150-0 0.597±0.11 0.464±0.20 1.884±2.84 4.455±0.84 -7.604±2.43 54.23%

300-0 0.599±0.11 0.464±0.20 1.874±2.88 4.448±0.85 -7.633±2.40 54.08%

500-0 0.598±0.11 0.466±0.20 1.959±2.85 4.459±0.85 -7.628±2.62 54.23%

Table 3: Jensen-Shannon divergence com-
paring bond distributions for generated
molecules and reference molecules.

Bond Raw 150-0 300-0 500-0

C-C 0.3316 0.3285 0.3271 0.3279

C=C 0.2018 0.2089 0.2106 0.2040

C-N 0.2494 0.2560 0.2542 0.2505

C=N 0.1820 0.1886 0.1865 0.2033

C-O 0.3155 0.3152 0.3105 0.3070

C=O 0.4101 0.4182 0.4168 0.4204

C:C 0.2314 0.2308 0.2283 0.2191

C:N 0.1695 0.1314 0.1359 0.1344

Metrics We employ widely-used metrics from pre-
vious studies (Polykovskiy et al., 2020) to evalu-
ate the impact of our constrained formula on the
chemical properties of the generated molecules.
(1) SA estimates the likelihood that the generated
molecules can be synthesized by a chemist (Ertl
& Schuffenhauer, 2009). (2) QED measures the
drug-likeness of the generated molecules (Bicker-
ton et al., 2012). (3) LogP not only measures how
well a drug will be absorbed, transported, and dis-
tributed in the body but also informs how a drug
should be formulated and dosed. (4) Lipinski indi-
cates whether a generated molecule adheres to Lip-
inski’s 5 rules or not, which is a summary of the
experience gained from the existing effective drugs.
(5) Vina score estimates the binding affinity be-
tween the generated molecules and the specific pro-
tein. (6) High affinity is the percentage of the gen-
erated molecules with a Vina score lower than the
original bound ligand of the protein. The SA, QED, LogP, and Lipinski are calculated by the RDkit
(Landrum et al., 2022), and the Vina score was calculated by the QVina2 (Alhossary et al., 2015).

Result Analysis We added constraint formulas at different sampling steps and generated corre-
sponding 100 molecules for each protein pocket. The experimental results are shown in Table 4. The
chemical properties of sampled molecules under different constraint steps are not affected compared
to the original sampling results. These experimental results indicate that our constrained formula
does not harm the inherent performance of the pre-trained model. Subsequently, we calculated the
Jensen-Shannon divergence between the bond length distribution of the generated molecules with
different constrained time steps and the bond length distribution of the reference molecules respec-
tively. As shown in Table 3, our method did not destroy the distribution of bonds sampled by the
original model. In summary, the whole experimental results demonstrate that our method can solve
the clash problem without sacrificing the original performance of the model.

6 CONCLUSION

In this study, we introduce a constrained situation aimed at solving the atomic clash issues encoun-
tered during the sampling process in SBDD generative diffusion model. We compare the effect with
a model that considers clash problems, and the comparison results show that our method can reduce
the average clash ratio and improve sampling stability. For future work, we believe that focus on a
deeper understanding of the modeling of the diffusion model Spatial relationship between ligands
and pockets. This may further improve model stability and efficiency in structure-based drug design.
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A SAMPLING ALGORITHM

Algorithm 1 Sampling Process of PILA
Input: Sample Gt, Gp, equivariant model qθ

Pre-train a structure-based molecular diffusion model by optimizing.
Initial GT from Gaussian Noise
Set the limit time step Tl

for t = T to 0 do
Predict the sθ(Gt,Gp, t)

Calculate the ht−1
l = xt

l + ϵtsθ(Gt,Gp, t),∀t = T, ..., 1.
Sample random noise ϵ
xt−1
h = ht−1

l +
√
2ϵtzt−1

if 0 < t < Tl then
x̃t−1
h = proxg(x

t−1
h )

xt−1
l = x̃t−1

h
else
xt−1
l = xt−1

h
end if
Gt−1 = [xt−1

l , vt−1
l ]

Modified the input of sθ as sθ(Gt−1,Gp, t− 1)
end for

Algorithm 2 The Solution Process of Proximal

Input: xt−1
h , xp, λ, k

Procedure:
Set the require grad attribute of xt−1

h to True.
Clone a new reference xt−1

f from xt−1
h .

Identify the k protein atoms, denoted as xk
p , that are closest to the ligand atoms.

Define the optimization function f = (xt−1
h − xt−1

f )2 + λg(xt−1
h ).

Define the optimizer as LBFGS.
Perform an optimizer step.
return xt−1

h

B PROOF OF THEOREM1

B.1 ASSUMPTIONS AND DEFINITIONS

Assumption 1 (LSI). The target probability distribution υ is supported on Rd and satisfies LSI
with constant α > 0, which means for any probability distribution ρ on Rd:

Hυ(ρ) ≤
1

2α
Jυ(ρ)

Assumption 2 (MGF error assumption). The error of s(x) has a finite moment generating function
of some order r > 0 under υ:

ϵ2mgf = ϵ2mgf (r, s, υ) =
1

r
logEυ[exp r∥s(x)− sυ(x)∥2] < ∞

Assumption 3 (Lf -smoothness). If f is L-smooth for some 0 ≤ Lf < ∞. Thus
∥∇f(x)−∇f(y)∥ ≤ Lf∥x− y∥ for all x, y ∈ Rd

Assumption 4 (Ls-Lipschitz). The score estimator s is Ls-Lipschitz for some 0 ≤ Ls < ∞:
∥s(x)− s(y)∥ ≤ Ls∥x− y∥

Definition 5 (Proximal regularization). We define gLg (x) := prox
1
λ
g as the proximal regularization

of non-smooth function g(x). Since gLg (x) is a proximal regularization, it is gradient Lipschitz with
at least Lg-Lipschitz, where Lg := λ−1.
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Definition 6. We define three constants related to Lf , Ls, and Lg as L2
s+g = L2

s + L2
g , L2

f+g =

L2
f + L2

g , Ls+g = Ls + Lg , and Lf+g = Lf + Lg .

B.2 LEMMAS

Lemma 2. Suppose the assumptions in Theorem 1 hold. Let ρt := Law(xt) where xt follows the
SDE Eq. 2. Recall Eq. 10 and gLg (x), we use ρ to replace the pθ(x), which means ρ = 1

Zθ
e−U(x).

then we have the following bound for the time derivative of KL divergence:

∂

∂t
Hυ(ρt) ≤ −3

4
Jυ(ρt) + Eρ0t

[∥s(x0)−∇gLg (x0)−∇log υ(xt)∥2],

Lemma 3. if the score estimator s(xt) ≈ −∇f(xt) is Ls-Lipschitz and t ≤ 1
3Ls

, then:

∥(s(xt)−∇gLg (xt))− (s(x0)−∇gLg (x0))∥2

≤ 18L2
s+gt

2∥s(xt) +∇f(xt)∥2 + 18L2
s+gt

2∥∇ log υ(xt)∥2 + 6L2
s+gt∥z0∥2

Lemma 4. Suppose the assumptions in Theorem 1 hold, then along each step of the sampling algo-
rithm,

Hυ(ρk+1) ≤ e−
1
4αhHυ(ρk) + 144dL2

s+gLf+gh
3 + 24dL2

s+gh
2 +

9

2
ϵ2mgfh.

B.3 PROOFS

Proof. Proof of Lemma 2. The continuity equation corresponding to Eq.2 is

∂ρt(x)

∂t
= −∇ · (ρt(x)Eρ0|t [s(x0)−∇gLg (x0)|xt = x]) +∇ρt(x)

Therefore.

∂

∂t
Hυ(ρt) =

∫
Rd

(−∇ · (ρt(x)Eρ0|t [s(x0)−∇gLg (x0)|xt = x]) +∇ · (ρt∇ log
ρt
υ
) +∇ · (ρt∇ log υ)) log

ρt
υ
dx

=

∫
Rd

(∇ · (ρt(∇ log
ρt
υ

− Eρ0|t [s(x0)−∇gLg (x0)|xt = x] +∇ log υ))) log
ρt
υ
dx

= −
∫
Rd

ρt⟨log
ρt
υ

− Eρ0|t [s(x0)−∇gLg (x0)|xt = x] +∇ log υ, log
ρt
υ
⟩dx

= −
∫
Rd

ρt∥∇ log
ρt
υ
∥2dx+

∫
Rd

ρt⟨Eρ0|t [s(x0)−∇gLg (x0)|xt = x]−∇ log υ, log
ρt
υ
⟩dx

= −Jυ(ρt) +

∫
Rd

ρt⟨Eρ0|t [s(x0)−∇gLg (x0)|xt = x]−∇ log υ, log
ρt
υ
⟩dx

= −Jυ(ρt) + Eρ0t
[⟨s(x0)−∇gLg (x0)−∇ log υ(xt),∇ log

ρt(xt)

υ(xt)
⟩]

≤ −Jυ(ρt) + Eρ0t [∥s(x0)−∇gLg (x0)−∇ log υ(xt)∥2] +
1

4
Eρ0t [∥∇ log

ρt(xt)

υ(xt)
∥2]

= −Jυ(ρt) + Eρ0t [∥s(x0)−∇gLg (x0)−∇ log υ(xt)∥2] +
1

4
Jυ(ρt)

= −3

4
Jυ(ρt) + Eρ0t [∥s(x0)−∇gLg (x0)−∇ log υ(xt)∥2]

Proof. Proof of Lemma 3. By Ls-Lipschitzness of s and Lg-smoothness of gLg , where

∥s(xt)− s(x0)∥2 ≤ L2
s∥xt − x0∥2,

∥∇gLg (xt)−∇gLg (x0)∥2 ≤ L2
g∥xt − x0∥2
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and then

∥(s(xt)−∇gLg (xt))− (s(x0)−∇gLg (x0))∥2 ≤ ∥s(xt)− s(x0)∥2 + ∥∇gLg (xt)−∇gLg (x0)∥2

≤ (L2
s + L2

g)∥xt − x0∥2

≤ L2
s+g∥ts(x0)− t∇gLg (x0) +

√
2tz0∥2

≤ 2L2
s+gt

2∥s(x0)−∇gLg (x0)∥2 + 4L2
s+gt∥z0∥2.

Let U(x) := s(x) − ∇gLg (x) for the sake of our subsequent analysis, we use a bound in terms of
U(xt) rather than U(x0), Therefore, we opt to utilize

Ls+g∥xt − x0∥ ≥ ∥U(xt)− U(x0)∥ ≥ ∥U(x0)∥ − ∥U(xt)∥
Rearranging it gives

∥U(x0)∥ ≤ Ls+g∥xt − x0∥+ ∥U(xt)∥
= Ls+g∥ts(x0)− t∇gLg (x0) +

√
2tz0∥+ ∥U(xt)∥

≤ 1

3
∥U(x0)∥+ Ls+g

√
2t∥z0∥+ ∥U(xt)∥ since t ≤ 1

3Ls+g

It follows that

∥U(x0)∥ ≤ 3

2
∥U(xt)∥+

3√
2
Ls+g

√
t∥z0∥ → ∥U(x0)∥2 ≤ 9

2
∥U(xt)∥2 + 9L2

s+gt∥z0∥2

So we can bound ∥U(xt)− U(x0)∥2 as follows:

∥U(xt)− U(x0)∥2 ≤ 2L2
s+gt

2∥U(x0)∥2 + 4L2
s+gt∥z0∥2

≤ 2L2
s+gt

2(
9

2
∥U(xt)∥2 + 9L2

s+gt∥z0∥2) + 4L2
s+gt∥z0∥2

= 9L2
s+gt

2∥U(xt)∥2 + (18L4
s+gt

3 + 4L2
s+gt)∥z0∥2

≤ 9L2
s+gt

2∥U(xt)∥2 + 6L2
s+gt∥z0∥2

= 9L2
s+gt

2∥s(xt)−∇gLg (xt)−∇f(xt) +∇f(xt))∥+ 6L2
s+gt∥z0∥2

≤ 18L2
s+gt

2∥s(xt) +∇f(xt)∥+ 18L2
s+gt

2∥∇ log υ(xt)∥+ 6L2
s+gt∥z0∥2,

where ∇ log υ(xt) = −(∇f(xt) +∇gLg (xt)).

Proof. (Proof of Lemma 4). Let M(x) = ∥s(xt) +∇f(xt)∥2, By Lemma 2,
∂

∂t
Hυ(ρt) ≤ −3

4
Jυ(ρt) + Eρ0t

[∥U(x0)−∇ log υ(xt)∥2]

≤ −3

4
Jυ(ρt) + 2Eρ0t

[∥U(x0)− U(xt)∥2] + 2Eρ0t
[∥U(xt)−∇ log υ(xt)∥2]

≤ −3

4
Jυ(ρt) + 2Eρ0t [18M (x )∥+ 18L2

s+gt
2∥∇ log υ(xt)∥+ 6L2

st∥z0∥2] + 2Eρt [M(x)]

= −3

4
Jυ(ρt) + (36L2

s+gt
2 + 2)Eρt [M(x)] + 36L2

s+gt
2Eρt [∥∇ log υ(xt)∥2] + 12dL2

s+gt

≤ −3

4
Jυ(ρt) +

9

4
Eρt [M(x)] + 36L2

st
2Eρt [∥∇ log υ(xt)∥2] + 12dL2

s+gt

since t2 ≤ h2 ≤ α2

144L2
s+gL

2
f+g

≤ 1

144Lf+g

≤ −3

4
Jυ(ρt) +

9

4
Eρt

[M(x)] + 36L2
s+gt

2(
4L2

α
Hυ(ρt) + 2dLf+g) + 12dL2

s+gt

= −3

4
Jυ(ρt) +

9

4
Eρt [M(x)] +

144L2
s+gt

2L2

Hυ(ρt)
+ 72dL2

s+gt
2Lf+g + 12dL2

s+gt

≤ −3

4
Jυ(ρt) +

9

4
Eρt [M(x)] + αHυ(ρt) + 72dL2

s+gt
2Lf+g + 12dL2

s+gt since t2 ≤ h2 ≤ α2

144L2
s+gL

2
f+g

≤ −1

2
αHυ(ρt) +

9

4
Eρt

[M(x)] + 72dL2
s+gt

2Lf+g + 12dL2
s+gt by α-LSI

15



Under review as a conference paper at ICLR 2024

where the second term can be bounded as follows:

Eρt
[M(x)] ≤ ϵ2mgf +

α

9
Hυ(ρt)

so we have:
∂

∂t
Hυ(ρt) ≤ −1

4
αHυ(ρt) + 72dL2

s+gt
2Lf+g + 12dL2

s+gt+
9

4
ϵ2mgf

≤ −1

4
αHυ(ρt) + 72dL2

s+gh
2Lf+g + 12dL2

s+gh+
9

4
ϵ2mgf since t ∈ (0, h).

This is equivalent to:

∂

∂t
e−

1
4αtHυ(ρt) ≤ e−

1
4αt(72dL2

s+gh
2Lf+g + 12dL2

s+gh+
9

4
ϵ2mgf )

Therefore,

Hυ(ρh) ≤ e−
1
4αhHυ(ρ0) + e

1
4αh

4e
1
4αh − 1

α
(72dL2

s+gh
2Lf+g + 12dL2

s+gh+
9

4
ϵ2mgf )

≤ e−
1
4αhHυ(ρ0) + 2h(72dL2

s+gh
2Lf+g + 12dL2

s+gh+
9

4
ϵ2mgf )

where the e
1
4αh ≤ 1 and ec − 1 ≤ 2c for c = 1

4αh ∈ (0, 1). Substitute the ρ0 as ρk and ρh as ρk+1,
we can get the desired bound:

Hυ(ρk+1) ≤ e−
1
4αhHυ(ρk) + 144dL2

s+gh
3Lf+g + 24dL2

s+gh
2 +

9

2
ϵ2mgf

Proof of Theorem 1. Applying the recursion contraction in Lemma 4 k times, we have

Hυ(ρk+1) ≤ e−
1
4αhkHυ(ρ0) +

k∑
i=0

e−
1
4αhi

(
144dL2

s+gh
3Lf+g + 24dL2

s+gh
2 +

9

2
ϵ2mgf

)
(i)

≤ e
1
4αhkHυ(ρ0) +

1

1− e−
1
4αh

(
144dL2

s+gh
3Lf+g + 24dL2

s+gh
2 +

9

2
ϵ2mgf

)
≤ e

1
4αhkHυ(ρ0) +

16

3αh

(
144dL2

s+gh
3Lf+g + 24dL2

s+gh
2 +

9

2
ϵ2mgf

)
≤ e

1
4αhkHυ(ρ0) +

768d(Ls+g)
2Lf+g

α
h2 +

128d(Ls+g)
2

α
h+

8

3α
ϵ2mgf since L2

s+g ≤ (Ls+g)
2

≤ e
1
4αhkHυ(ρ0) +

128d(Ls+g)

α
(Ls+g + Lf+g)dh+

8

3α
ϵ2mgf since h <

α

12Ls+gLf+g
≤ 1

12Ls+g
,

where (i) employs the inequality 1 − e−c ≥ 3
4c for 0 < c = 1

4αh ≤ 1
4 , which holdes since

h ≤ 1
2α.

B.4 PROBLEM OF DECOMPDIFF

As we mentioned in the paper, DecompDiff (Guan et al., 2023b) employ an maximum in the gradient
of constraints which make the function to be non-smooth. Moreover, when we resolve S(x) back
into pθ(x), the tractable distribution pθ(x) becomes:

p′θ(x) = emax(0,γ−S(x))pθ(x),

which requires both
∫
emax(0,γ−S(x)) = 1 and

∫
pθ(x) = 1. However, the truncated function∫

emax(0,γ−S(x)) does not satisfy the requirement although
∫
e−S(x) = 1 stands. we have incorpo-

rated the gradient guidance method (Decompdiff) into the targetdiff model and evaluated its perfor-
mance. As depicted in Table 5, this method also succeeds in reducing the clash ratio. Moreover, our
method demonstrates superior stability compared to Decompdiff, given the nearly equal mean clash
ratios.
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Table 5: The comparsion between Gradient guidance (Decompdiff) and Proximal (ours).

Method Validity ↑ Diversity ↑ Novelty ↑ Uniqueness ↑ Connectivity ↑ Mean CR ↓ Stability ↑
Raw 98.31% 0.7107 100% 98.77% 85.38% 12.31% 74.86%

Gradient 94.31% 0.6504 100% 99.39% 74.46% 1.86% 73.08%

Proximal 98.15% 0.7093 100% 99.77% 76.62% 1.92% 75.15%

C EXPERIMENTS

C.1 2 Å MOTIVATION

The threshold we set at 2Å is not arbitrary. Firstly, from a chemical standpoint, when two atoms
are sufficiently close, a bond forms between them. Secondly, the statistical pair distribution analysis
reveals that there are virtually no pair distances smaller than 2Å in the crossdocked training dataset.
Thirdly, the statistical results of the real dataset PDBbind (as shown in Figure 4) indicate that most
pairing distances are indeed less than 2Å. Lastly, PoseCheck also tackles the steric clash issue,
defining pairwise distances between molecular atoms and protein atoms in a manner similar to our
definition. Their definition slightly deviates from ours, as they set a threshold of 0.5Å based on bond
lengths. In summary, considering the factors mentioned above, we establish the threshold at 2Å..

Figure 4: Statistical distribution of pairwise distances between proteins and molecules within 6Åin
the PDBbind Dataset.

C.2 ANALYSIS OF CONSTRAINED TIME STEPS AND WEIGHT PARAMETERS

To identify the optimal combination of sampling time steps and weight, we conducted multiple
ablation experiments. As illustrated in Table 6, a very low clash rate can be obtained when the weight
is generally 10, given the same time step and k value. Simultaneously, under the same time step and
coefficient, a larger k value results in a more significant impact on the clash rate. It can be observed
that the best clash results are achieved when k = 5 and λ = 100. Under the same k value and
weight, the later the time constraint step, the higher the stability value. Consequently, considering
the overall sampling stability, the optimal results were obtained when k=1, λ = 10, and the sampling
constraint time step ranged from 150 to 0. We assess the average time (as shown in Table 7) needed
to sample an individual molecule at different constrained time steps. The time consumption related
to this procedure indicates that our approach is suitable for large-scale sampling.
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Table 6: The impact of different parameters on the final sampling results.

Time Influence Factor Validity ↑ Diversity ↑ Novelty ↑ Uniqueness ↑ Connectivity ↑ Mean CR ↓ Stability ↑
K = 1, λ = 1 98.15% 0.7114 100% 98.69% 85.54% 8.69% 78.10%

K = 1, λ = 10 98.15% 0.7117 100% 98.69% 84.31% 4.38% 80.62%

150-0 K = 1, λ = 100 97.85% 0.7124 100% 98.85% 80.31% 5.38% 75.99%

K = 3, λ = 100 98.00% 0.7115 100% 98.69% 80.00% 4.46% 76.43%

K = 5, λ = 100 97.69% 0.7116 100% 98.69% 80.31% 3.15% 77.78%

K = 1, λ = 10 97.69% 0.7109 100% 98.69% 82.15% 4.31% 78.61%

300-0 K = 1, λ = 100 98.31% 0.7082 100% 99.08% 81.08% 3.54% 78.20%

K = 3, λ = 100 98.15% 0.7112 100% 99.15% 80.62% 3.85% 77.51%

K = 5, λ = 100 98.00% 0.7106 100% 99.08% 79.85% 2.23% 78.07%

K = 1, λ = 10 98.15% 0.7062 100% 98.77% 79.38% 3.23% 76.82%

500-0 K = 1, λ = 100 97.54% 0.7105 100% 99.08% 71.69% 4.46% 68.49%

K = 3, λ = 100 98.31% 0.7081 100% 98.92% 74.77% 2.00% 73.27%

K = 5, λ = 100 98.15% 0.7093 100% 99.77% 76.62% 1.92% 75.15%

Table 7: The comparison of time consumption across various constrained time steps.

Raw sample 500-0 300-0 150-0

Time(s) 17.30 22.28 18.03 18.40

C.3 THE EXPERIMENTAL RESULTS OF THE DIFFSBDD

We apply our method to the DiffSBDD model, and the outcomes (as shown in Table 8) indicate the
effectiveness of our approach in reducing the clash ratio across various models.

Table 8: The experimental results of the DiffSBDD mdoel.

Time Influence Factor Validity ↑ Diversity ↑ Novelty ↑ Uniqueness ↑ Mean CR ↓
No constrained 100% 0.8246 100% 97.44% 17.17%

500-0 K = 1, λ = 10 99.78% 0.8277 100% 96.88% 9.64%

300-0 K = 1, λ = 10 100% 0.8284 100% 96.88% 9.95%

150-0 K = 1, λ = 10 100% 0.8263 100% 96.76% 10.37%

C.4 THE VISUALIZATION RESULTS OF ADDING CONSTRAINED FORMULA

we select three proteins that have the clash situation, and then we sample the molecules for each of
the proteins. we design a dual-sample process, the model can generate the clash molecules and no
clash molecules at the same time. As shown in Figure 5, before constrained we can observe that
those atoms pair between molecular atoms and residue atoms are too close, and after adding the
constrained the atoms of molecules are pushed away from the residues atoms.
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Figure 5: 3D structure shows the coexistence of constrained and unconstrained molecules in a
protein pocket. 2D structure and Constrained 2D structure display the 2D structures of generated
molecules and generated constrained molecules respectively.
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