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Abstract— Task planning can require defining myriad do-
main knowledge about the world in which a robot needs to act.
To ameliorate that effort, large language models (LLMs) can be
used to score potential next actions during task planning, and
even generate action sequences directly, given an instruction
in natural language with no additional domain information.
However, such methods either require enumerating all possible
next steps for scoring, or generate free-form text that may
contain actions not possible on a given robot in its current
context. We present a programmatic LLM prompt structure
that enables plan generation functional across situated envi-
ronments, robot capabilities, and tasks. Our key insight is
to prompt the LLM with program-like specifications of the
available actions and objects in an environment, as well as with
example programs that can be executed. We make concrete
recommendations about prompt structure and generation con-
straints through ablation experiments, demonstrate state of the
art success rates in VirtualHome household tasks, and deploy
our method on a physical robot arm for tabletop tasks. Website
at progprompt.github.io

I. INTRODUCTION

Everyday household tasks require both commonsense un-
derstanding of the world and situated knowledge about the
current environment. To create a task plan for “Make dinner,”
an agent needs common sense: object affordances, such as
that the stove and microwave can be used for heating; logical
sequences of actions, such as an oven must be preheated be-
fore food is added; and task relevance of objects and actions,
such as heating and food are actions related to “dinner” in the
first place. However, this reasoning is infeasible without state
feedback. The agent needs to know what food is available in
the current environment, such as whether the freezer contains
fish or the fridge contains chicken.

Autoregressive large language models (LLMs) trained on
large corpora to gemerate text sequences conditioned on
input prompts have remarkable multi-task generalization.
This ability has recently been leveraged to generate plausible
action plans in context of robotic task planning [1], [2],
[3], [4] by either scoring next steps or generating new steps
directly. In scoring mode, the LLM evaluates an enumeration
of actions and their arguments from the space of what’s
possible. For instance, given a goal to “Make dinner” with
first action being “open the fridge”, the LLM could score
a list of possible actions: “pick up the chicken”, “pick up
the soda”, “close the fridge”, ..., “turn on the lightswitch.”
In text-generation mode, the LLM can produce the next few
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from actions import grab_and_putin <obj><obj>,
grab_and_puton <obj><obj>, switchon <obj>,
switchoff <obj>, open <obj>, ...

def throw_away_banana():
objects = ['banana', 'garbage can',...]
# 1: put banana in garbage can
grab_and_putin('banana', 'garbagecan')
# 2: Done

def put_fork_and_spoon_on_the_box():
objects = ['fork', 'spoon', 'knife',]

def put_fork_on_plate_and_spoon_in_box():

def sort_fruits_on_plate_and_bottles_in_box():
objects = ['banana', 'bottle', 'box',
'plate', ‘table', 'drill', 'strawberry']
- = ~

2= ~ LLM[GPT3] ?\\”a

Generated Plan >

# 1: put banana on plate # 3: put bottle in box
“grab_and_puton('banana', 'plate') |grab_and_putin('bottle', 'box')
# 2: put strawberry on plate # 4: Done
-(grab_and_puton("strawberry', "plate'))

Fig. 1: PROGPROMPT leverages LLMs’ strengths in both world knowledge
and programming language understanding to generate situated task plans
that can be directly executed.

words, which then need to be mapped to actions and world
objects available to the agent. For example, if the LLM
produced “reach in and pick up the jar of pickles,” that
string would have to neatly map to an executable action like
“pick up jar”” A key component missing in LLM-based task
planning is state feedback from the environment. The fridge
in the house might not contain chicken, soda, or pickles,
but a high-level instruction “Make dinner” doesn’t give us
that world state information. Our work introduces situated-
awareness in LLM-based robot task planning.

We introduce PROGPROMPT, a prompting scheme that
goes beyond conditioning LLMs in natural language. PROG-
PROMPT utilizes programming language structures, lever-
aging the fact that LLMs are trained on vast web cor-
pora that includes many programming tutorials and code
documentation (Fig. [[). PROGPROMPT provides an LLM a
Pythonic program header that imports available actions and
their expected parameters, shows a list of environment
objects, and then defines functions like make_dinner
whose bodies are sequences of actions operating on objects.
We incorporate situated state feedback from the environment
by asserting preconditions of our plan, such as being
close to the fridge before attempting to open it, and re-
sponding to failed assertions with recovery actions. What’s
more, we show that including natural language comments in
PROGPROMPT programs to explain the goal of the upcoming
action improves task success of generated plan programs.


https://progprompt.github.io/

PROMPT for Planning

Import action primitives

from actions import walk <obj>,

d

ef microwave_salmon():

(# 0: walk to kitchen
walk( kitchen™)

grab <obj>, switchon <obj>,
open <obj>, standup, find
(<obj>, putin <obj> <obj>, ...

# 1: find microwave
(find(microwave')
(# Z2: open microwave

J

assert('microwave' is 'closed'
else:

i .
{open('microwave')

pie, apple, fridge, garbagecan,
tv, dishwashingliquid, bed,
bookshelf, salmon, stove, plate,
coffeepot, kitchentable,
wineglass, paper, microwave,
toothbrush, toothpaste,
bathroomcabinet, kitchen, lime,
\painkillers, barsoap, |

Fszttfback

# 5: put salmon in microwave

assert('salmon' in 'hands')
else: find('salmon')

/ else: grab('salmon')

assert( close’ to 'microwave ')

) else: find('microwave')
assert('microwave' is 'opened"))m

else: open('microwave')

putin('salmon', 'microwave')

Example ta

def throw_away_lime():
# 0: find lime
find('lime")

# 5: close garbagecan
assert('close' to 'garbagecan')
else: find('garbagecan')
assert('garbagecan' is 'opened')
else: open('garbagecan')
close('garbagecan')

close( 'microwave')

switchon('microwave')

#8: wait for salmon to be done
cooking 1-2 minutes

#9: turn off microwave

;}‘. é : Done switchoff('microwave')

\, J
open( 'microwave')
Next task prompt P
def microwave_salmon(): grab('salmon')
#12: put salmon on plate
\. J assert('salmon’ in 'hands' )

assert('close' to 'plate’ )
else: find('plate’)

putin('salmon’, ‘plate’)

D

close('microwave')
\_\#_14: Done )

Available objects list assert('close' to 'microwave’ gg;porp’g;t-
objects=[clothesshirt’ sink, else: find('microwave' Mapping

Assertions:

PROMPT for State Feedback

Example assertion check(s)

You see: "fridge is CLOSED,
lightswitch is ON, cereal,
bookshelf, box INSIDE bookshelf,

LLM [GPT-3]

Correct Prediction

cereal ON wallshelf, paper
INSIDE bookshelf..."

You have: "book"

assert('close' to 'mug' ) def microwave_salmon():

False

assert('book' in 'hands')

True Hes ' ' . .
. . \ \ assert('microwave' is ‘opened')

assert('cereal' on 'bookshelf') —» else{ open('microwave')

False

putin( salnon

"microjiave ))
L. )

Current Semantic State

You see: "microwave is OPEN and
OFF, microwave ON
kitchencounter."
You have: "salmon."

@ssert(‘microwave' is 'opened'))
7

: )
open| putin(salmon,
(microwave)®™microwave)

- -

microwave)
-

microwave) microwave (microwave microwave)
- - = = -

Fig. 2: Our PROGPROMPTs include import statement, object list, and example tasks (PROMPT for Planning). The Generated Plan is for microwave
salmon. We highlight prompt comments, actions as imported function calls with objects as arguments, and assertions with recovery steps. PROMPT
for State Feedback represents example assertion checks. We further show execution of the program. We illustrate a scenario where an assertion succeeds
or fails, and how the generated plan corrects the error before executing the next step. Full Execution of the program is shown in bottom-right.

II. BACKGROUND AND RELATED WORK

Task Planning. For high-level planning, most works in
robotics use search in a pre-defined domain [5], [6], [7].
Unconditional search can be hard to scale in environments
with many feasible actions and objects [8], [9] due to large
branching factors. Heuristics are often used to guide the
search [10], [11], [12], [13]. Recent works have explored
learning-based task & motion planning, using methods such
as representation learning, hierarchical learning, language as
planning space, learning compositional skills and more [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26]. Our method sidesteps search to directly generate a plan
that includes conditional reasoning and error-correction.

We  formulate task planning as the tuple
(O, P, A, T,Z,G,t). O is a set of all the objects available
in the environment, P is a set of properties of the objects
which also informs object affordances, A is a set of
executable actions that changes depending on the current
environment state defined as s € S. A state s is a specific
assignment of all object properties, and S is a set of all
possible assignments. 7 represents the transition model
T:S8 x A — S,7T and G are the initial and goal states.
The agent does not have access to the goal state g € G, but
only a high-level task description t.

Consider the task t = “microwave salmon”. Task rel-
evant objects microwave, salmon € O will have proper-
ties modified during action execution. For example, ac-
tion a = open(microwave) will change the state from
closed(microwave) € s to —closed(microwave) €
s’ if a is admissible, i.e., 3I(a,s,s’) st. a €
ANsss € S A T(s,a) = . In this exam-

ple a goal state g € G could contain the conditions
heated(salmon) € g, ~closed(microwave) € g and
—switchedOn(microwave) € g.

Planning with LLMs. A Large Language Model (LLM)
is a neural network with many parameters—currently hun-
dreds of billions [27], [28]—trained on unsupervised learn-
ing objectives such as next-token prediction or masked-
language modelling. An autoregressive LLM is trained with
a maximum likelihood loss to model the probability of a
sequence of tokens y conditioned on an input sequence X,
ie. 8 = argmaxy P(y|x;0), where 6 are model param-
eters. The trained LLM is then used for prediction ¥ =
arg maxyes P(y|x;6), where S is the set of all text se-
quences. Since search space S is huge, approximate decoding
strategies are used for tractability [29], [30], [31].

LLMs are trained on large text corpora, and exhibit multi-
task generalization when provided with a relevant prompt
input x. Prompting LLMs to generate text useful for robot
task planning is a nascent topic [32], [33], [34], [2], [4],
[1]. Prompt design is challenging given the lack of paired
natural language instruction text with executable plans or
robot action sequences [35]. Devising a prompt for task plan
prediction can be broken down into a prompting function
and an answer search strategy [35]. A prompting function,
forompt(-) transforms the input state observation s into a
textual prompt. Answer search is the generation step, in
which the LLM outputs from the entire LLM vocabulary
or scores a predefined set of options.

Closest to our work, [2] generates open-domain plans
using LLMs. In that work, planning proceeds by: 1) selecting
a similar task in the prompt example (fprompt); 2) open-



def put_salmon_in_microwave():
# 1: grab salmon
assert('close' to 'salmon')
else: find('salmon')
grab('salmon')
# 2: put salmon in microwave
assert('salmon' in ‘'hands' )
else: find('salmon')
else: grab('salmon')
assert('close' to 'microwave' )
else: find('microwave')
assert('microwave' is 'opened')
else: open('microwave')
putin('salmon', 'microwave')

Fig. 3: Pythonic PROGPROMPT plan for “put salmon in the microwave.”

ended task plan generation (answer search); and 3) 1:1
prediction to action matching. The entire plan is generated
open-loop without any environment interaction, and later
tested for executability of matched actions. However, action
matching based on generated text doesn’t ensure the action is
admissible in the current situation. INNERMONOLOGUE [1]
introduces environment feedback and state monitoring, but
still found that LLM planners proposed actions involving
objects not present in the scene. Our work shows that a pro-
gramming language-inspired prompt generator can inform
the LLM of both situated environment state and available
robot actions, ensuring output compatibility to robot actions.

The related SAYCAN [4] uses natural language prompting
with LLMs to generate a set of feasible planning steps, re-
scoring matched admissible actions using a learned value
function. SayCan constructs a set of all admissible actions
expressed in natural language and scores them using an
LLM. This is challenging to do in environments with combi-
natorial action spaces. Concurrent with our work are Socratic
models [3], which also use code-completion to generate
robot plans. We go beyond [3] by leveraging additional,
familiar features of programming languages in our prompts.
We define an fyomp that includes import statements to
model robot capabilities, natural language comments to elicit
common sense reasoning, and assertions to track execution
state. Our answer search is performed by allowing the LLM
to generate an entire, executable plan program directly.

III. OUR METHOD: PROGPROMPT

We represent robot plans as pythonic programs. Following
the paradigm of LLM prompting, we create a prompt struc-
tured as pythonic code and use an LLM to complete the code
(Fig. 2). We use features available in Python to construct
prompts that elicit an LLM to generate situated robot task
plans, conditioned on a natural language instruction.

A. Representing Robot Plans as Pythonic Functions

Plan functions consist of API calls to action primitives,
comments to summarize actions, and assertions for tracking
execution (Fig. [3). Primitive actions use objects as argu-
ments. For example, the “put salmon in the microwave” task
includes API calls like find(salmon).

We utilize comments in the code to provide natural lan-
guage summaries for subsequent sequences of actions. Com-

ments help break down the high-level task into logical sub-
tasks. For example, in Fig. 3| the “put salmon in microwave”
task is broken down into sub-tasks using comments “# grab
salmon” and “# put salmon in microwave”. This partition-
ing could help the LLM to express its knowledge about
tasks and sub-tasks in natural language and aid planning.
Comments also inform the LLM about immediate goals,
reducing the possibility of incoherent, divergent, or repetitive
outputs. Prior work [36] has also shown the efficacy of
similar intermediate summaries called ‘chain of thought’ for
improving performance of LLMs on a range of arithmetic,
commonsense, and symbolic reasoning tasks. We empirically
verify the utility of comments (Tab. [I[; column COMMENTS).

Assertions provide an environment feedback mechanism
to make sure that the preconditions hold, and enable error
recovery when they do not. For example, in Fig. |3} before the
grab(salmon) action, the plan asserts the agent is close
to salmon. If not, the agent first executes find(salmon).
In Tab. l we show that such assert statements (column
FEEDBACK) benefit plan generation.

B. Constructing Programming Language Prompts

We provide information about the environment and prim-
itive actions to the LLM through prompt construction. As
done in few-shot LLM prompting, we also provide the LLM
with examples of sample tasks and plans. Fig. ] illustrates
our prompt function fprompe Which takes in all the information
(observations, action primitives, examples) and produces a
Pythonic prompt for the LLM to complete. The LLM then
predicts the <next_task>(.) as an executable function
(microwave_salmon in Fig. [2).

In the task microwave_salmon, a reasonable first step
that an LLM could generate is take_out(salmon, grocery
bag). However, the agent responsible for the executing the
plan might not have a primitive action to take_out. To in-
form the LLM about the agent’s action primitives, we provide
them as Pythonic import statements. These encourage the
LLM to restrict its output to only functions that are available
in the current context. To change agents, PROGPROMPT
just needs a new list of imported functions representing
agent actions. A grocery bag object might also not exist
in the environment. We provide the available objects in the
environment as a list of strings. Since our prompting scheme
explicitly lists out the set of functions and objects available
to the model, the generated plans typically contain actions
an agent can take and objects available in the environment.

PROGPROMPT also includes a few example tasks—fully
executable program plans. Each example task demonstrates
how to complete a given task using available actions and ob-
jects in the given environment. These examples demonstrate
the relationship between task name, given as the function
handle, and actions to take, as well as the restrictions on
actions and objects to involve.

C. Task Plan Generation and Execution

The given task is fully inferred by the LLM based on the
PROGPROMPT prompt. Generated plans are executed on a



TABLE I: Evaluation of generated programs on Virtual Home. PROGPROMPT uses 3 fixed example programs, except the DAVINCI backbone which can fit
only 2 in the available API. [2] use 1 dynamically selected example, as described in their paper. LANGPROMPT uses 3 natural language text examples. Best
performing model with a GPT3 backbone is shown in blue (used for our ablation studies); best performing model overall shown in bold. PROGPROMPT
significantly outperforms the baseline [2] and LANGPROMPT. We also showcase how each PROGPROMPT feature adds to the performance of the method.

— Prompt Format and Parameters —

3

Format COMMENTS FEEDBACK LLM Backbone SR Exec GCR
1 PROGPROMPT v v CODEX 0.40+0.11  0.90+0.05  0.72+0.09
2 PROGPROMPT v v DAVINCI 0.2240.04  0.60+£0.04  0.4640.04
3 PROGPROMPT v v GPT3 0.34+0.08 0.8440.01 0.65+0.05
4 PROGPROMPT v X GPT3 0.2840.04  0.82+0.01 0.56£0.02
5  PROGPROMPT X v GPT3 0.3040.00  0.65+£0.01  0.5840.02
6 PROGPROMPT X X GPT3 0.18+0.04  0.68+0.01  0.42+0.02
7  LANGPROMPT - - GPT3 0.004+0.00  0.36+£0.00  0.4240.02
8 Baseline from HUANG ET AL. [2] GPT3 0.004+0.00  0.45+0.03  0.2140.03

virtual agent or a physical robot system using an interpreter
that executes each action command against the environment.
Assertion checking is done in a closed-loop manner during
execution, providing current environment state feedback.

IV. EXPERIMENTS

We evaluate our method with experiments in a virtual
household environment and on a physical robot manipulator.

A. Simulation Experiments

We evaluate our method in the Virtual Home (VH) Envi-
ronment [8], a deterministic simulation platform for typical
household activities. A VH state s is a set of objects O and
properties P. P encodes information like in(salmon, mi-
crowave) and agent _close_to(salmon). The action space
is A = {grab, putin, putback, walk, find, open,
close, switchon, switchoff, sit, standup}.

We experiment with 3 VH environments. Each environ-
ment contains 115 unique object instances (Fig. [2), including
class-level duplicates. Each object has properties correspond-
ing to its action affordances. Some objects also have a seman-
tic state like heated, washed, or used. For example, an
object in the Food category can become heated whenever
in(object, microwave) A switched_on(microwave).

We create a dataset of 70 household tasks. Tasks are posed
with high-level instructions like “microwave salmon”. We
collect a ground-truth sequence of actions that completes the
task from an initial state, and record the final state g that
defines a set of symbolic goal conditions, g € P.

When executing generated programs, we incorporate en-
vironment state feedback in response to asserts. VH
provides observations in the form of state graph with object
properties and relations. To check assertions in this environ-
ment, we extract information about the relevant object from
the state graph and prompt the LLM to return whether the
assertion holds or not given the state graph and assertion as
a text prompt (Fig. 2] Prompt for State Feedback).

B. Real-Robot Experiments

We use a Franka-Emika Panda robot with a parallel-jaw
gripper. We assume access to a pick-and-place policy. The
policy takes as input two pointclouds of a target object and a
target container, and performs a pick-and-place operation to

place the object on or inside the container. We use the system
of [37] to implement the policy, and use MPPI for motion
generation, SceneCollisionNet [37] to avoid collisions, and
generate grasp poses with Contact-GraspNet [38].

We specify a single import statement for the action
grab_and_putin (objl, obj2) for PROGPROMPT. We
use ViLD [39], an open-vocabulary object detection model,
to identify and segment objects in the scene and construct
the available object list for the prompt. Unlike in the virtual
environment, where object list was a global variable in
common for all tasks, here the object list is a local variable
for each plan function, which allows greater flexibility to
adapt to new objects. The LLM outputs a plan containing
function calls of form grab_and_putin (objl, obj2).
Here, objects obj1 and obJj2 are text strings that we map to
pointclouds using ViLD segmentation masks and the depth
image. Due to real world uncertainty, we do not implement
assert-based closed loop options on the tabletop plans.

C. Evaluation Metrics

We use three metrics to evaluate system performance: suc-
cess rate (SR), goal conditions recall (GCR), and executabil-
ity (Exec). The task-relevant goal-conditions are the set of
goal-conditions that changed between the initial and final
state in the demonstration. SR is the fraction of executions
that achieved all task-relevant goal-conditions. Exec is the
fraction of actions in the plan that are executable in the
environment, even if they are not relevant for the task. GCR
is measured using the set difference between ground truth
final state conditions g and the final state achieved g’ with
the generated plan, divided by the number of task-specific
goal-conditions; SR= 1 only if GCR= 1.

V. RESULTS

PROGPROMPT successfully prompts LLM-based task
planners to both virtual and physical agent tasks.

A. Virtual Experiment Results

Tab. [[] summarizes the performance of our task plan
generation and execution system in the seen environment
of VirtualHome. We utilize a GPT3 as a language model
backbone to receive PROGPROMPT prompts and generate
plans. Each result is averaged over 5 runs in a single VH



environment across 10 tasks. The variability in performance
across runs arises from sampling LLM output. We include
3 Pythonic task plan examples per prompt after evaluating
performance on VH for between 1 prompt and 7 prompts
and finding that 2 or more prompts result in roughly equal
performance for GPT3. The plan examples are fixed to be:
“put the wine glass in the kitchen cabinet”, “throw away the
lime”, and “wash mug”.

We can draw several conclusions from Tab. [l First,
PROGPROMPT (rows 3-6) outperforms prior work [2] (row
8) by a substantial margin on all metrics using the same
large language model backbone. Second, we observe that the
CODEX [28] and DAVINCI models [27]—themselves GPT3
variants—show mixed success at the task. In particular,
DAVINCI does not match base GPT3 performance (row 2
versus row 3), possibly because its prompt length constraints
limit it to 2 task examples versus the 3 available to other
rows. Additionally, CODEX exceeds GPT3 performance on
every metric (row 1 versus row 3), likely because CODEX is
explicitly trained on programming language data. However,
CODEX has limited access in terms of number of queries
per minute, so we continue to use GPT3 as our main
LLM backbone in the following ablation experiments. Our
recommendation to the community is to utilize a program-
like prompt for LLM-based task planning and execution, for
which base GPT3 works well, and we note that an LLM
fine-tuned further on programming language data, such as
CODEX, can do even better.

We explore several ablations of PROGPROMPT. First, we
find that FEEDBACK mechanisms in the example programs,
namely the assertions and recovery actions, improve per-
formance (rows 3 versus 4 and 5 versus 6) across metrics,
the sole exception being that Exec improves a bit without
FEEDBACK when there are no COMMENTS in the prompt ex-
ample code. Second, we observe that removing COMMENTS
from the prompt code substantially reduces performance on
all metrics (rows 3 versus 5 and 4 versus 6), highlighting
the usefulness of the natural language guidance within the
programming language structure.

We also evaluate LANGPROMPT, an alternative to PROG-
PROMPT that builds prompts from natural language text
description of objects available and example task plans (row
7). LANGPROMPT is similar to the prompts built by [2]. The
outputs of LANGPROMPT are generated action sequences,
rather than our proposed, program-like structures. Thus, we
finetune GPT?2 to learn a policy P(as|s:, GPT3 step,aj.;—1)
to map those generated sequences to executable actions in the
simulation environment. We use the 35 tasks in the training
set, and annotate the text steps and the corresponding action
sequence to get 400 data points for training and validation
of this policy. We find that while this method achieves
reasonable partial success through GCR, it does not match
[2] for program executability Exec and does not generate any
fully successful task executions.

Task-by-Task Performance PROGPROMPT performance for
each task in the test set is shown in Table [l We observe
that tasks that are similar to prompt examples, such as throw

TABLE II: PROGPROMPT performance on the VH test-time tasks and their
ground truth actions sequence lengths |A|.

Task Desc |A] SR Exec GCR
watch tv 3 020£040 042+0.13  0.63£0.28
turn off light 3 0404049 1.00£0.00 0.65+0.30
brush teeth 8 0.80+0.40 0.74£0.09 0.87+0.26
throw away apple 8 1.004£0.00 1.00£0.00 1.00+0.00
make toast 8 0.00£0.00 1.00£0.00 0.54+0.33
eat chips on the sofa 5 0.00+0.00 0.4040.00 0.5340.09
put salmon in the fridge 8§ 1.00+0.00 1.00£0.00  1.0040.00
wash the plate 18  0.00+£0.00 0.974+0.04 0.484+0.11
bring coffeepot and cupcake 8 ~ 0.00£0.00  1.00£0.00 0.52+0.14
to the coffee table

microwave salmon 11  0.00+£0.00 0.7640.13  0.2440.09
Avg: 0<|A| <5 0.20+£0.40 0.61+0.29  0.6040.25
Avg: 6 < |A| <10 0.60£0.50  0.954+0.11  0.7940.29
Avg: 11 <A <18 0.00+£0.00 0.874+0.14  0.36%0.16

away apple versus wash the plate have higher GCR since
the ground truth prompt examples hint about good stopping
points. Even with high Exec, some task GCR are low, because
some tasks have multiple appropriate goal states, but we
only evaluate against a single “true” goal. For example,
after microwaving and plating salmon, the agent may put
the salmon on a table or a countertop.

TABLE III: PROGPROMPT results on Virtual Home in additional scenes.
We evaluate on 10 tasks each in two additional VH scenes beyond scene
ENV-0 where other reported results take place.

VH Scene SR Exec GCR

ENV-0 0.34+0.08 0.8440.01 0.65+0.05
ENvV-1 0.56+0.08 0.854+0.02 0.81+0.07
ENv-2 0.56+0.05 0.854+0.03  0.72+0.09
Average 0.48+0.13  0.854+0.02  0.73+£0.10

Other Environments We evaluate PROGPROMPT in two
additional VH environments (Tab. [[IT. For each, we append
a new object list representing the new environment after the
example tasks in the prompt, followed by the task to be
completed in the new scene. The action primitives and other
PROGPROMPT settings remain unchanged. We evaluate on
10 tasks with 5 runs each. For new tasks like wash the
cutlery in dishwasher, PROGPROMPT is able to infer that
cutlery refers to spoons and forks in the new scenes, despite
that cutlery always refers to knives in example prompts.

B. Qualitative Analysis and Limitations

We manually inspect generated programs and their exe-
cution traces from PROGPROMPT and characterize common
failure modes. Many failures stem from the decision to make
PROGPROMPT agnostic to the deployed environment and
its peculiarities, which may be resolved through explicitly
communicating, for example, object affordances of the target
environment as part of the PROGPROMPT prompt.

o Environment artifacts: the VH agent cannot find or
interact with objects nearby when sitting, and some
common sense actions for objects, such as opening a
tvstand’s cabinets, are not available in VH.



Task: sort fruits on the plate and bottles in the box

S

grab_and_puton('banana', 'plate')

grab_and_puton('strawberry"',

'plate')

Fig. 4: Robot plan execution rollout example on the sorting task showing relevant objects banana, strawberry, bottle, plate and box, and a distractor object
drill. The LLM recognizes that banana and strawberry are fruits, and generates plan steps to place them on the plate, while placing the bottle in the box.
The LLM ignores the distractor object drill. See Figure El for the prompt structure used.

o Environment complexities: when an object is not acces-
sible, the generated assertions might not be enough. For
example, if the agent finds an object in a cabinet, it may
not plan to open the cabinet to grab the object.

e Action success feedback is not provided to the agent,
which may lead to failure of the subsequent actions.
Assertion recovery modules in the plan can help, but
aren’t generated to cover all possibilities.

e Incomplete generation: Some plans are cut short by
LLM API caps. One possibility is to query the LLM
again with the prompt and partially generated plan.

In addition to these failure modes, our strict final state
checking means if the agent completes the task and some,
we may infer failure, because the environment goal state will
not match our precomputed ground truth final goal state.
For example, after making coffee, the agent may take the
coffeepot to another fable. Similarly, some task descriptions
are ambiguous and have multiple plausible correct programs.
For example, “make dinner” can have multiple possible
solutions. PROGPROMPT generates plans that cooks salmon
using the fryingpan and stove, and sometimes the agent adds
bellpepper or lime, or sometimes with a side of fruit, or
served in a plate with cutlery. When run in a different VH
environment, the agent cooks chicken instead. PROGPROMPT
is able to generate plans for such complex tasks as well while
using the objects available in the scene and not explicitly
mentioned in the task. However, automated evaluation of
such tasks requires enumerating all valid and invalid pos-
sibilities or introducing human verification.

C. Physical Robot Results

The physical robot results are shown in Tab. We
evaluate on 4 tasks of increasing difficulty listed in Tab. [V}
For each task we perform two experiments: one in a scene
that only contains the necessary objects, and with one to
three distractor objects added.

All results shown use PROGPROMPT with comments,
but not feedback. Our physical robot setup did not allow
reliably tracking system state and checking assertions,
and is prone to random failures due to things like grasps
slipping. The real world introduces randomness that compli-
cates a quantitative comparison between systems. Therefore,
we intend the physical results to serve as a qualitative
demonstration of the ease with which our prompting ap-
proach allows constraining and grounding LLM-generated

plans to a physical robot system. We report an additional
metric Plan SR, which refers to whether the plan would
have likely succeeded, provided successful pick-and-place
execution without gripper failures.

Across tasks, with and without distractor objects, the
system almost always succeeds, failing only on the sort
task. The run without distractors failed due to a random
gripper failure. The run with 2 distractors failed because the
model mistakenly considered a soup can to be a bottle. The
executability for the generated plans was always Exec=1.

TABLE IV: Results on the physical robot by task type.

Task Description Distractors SR Plan SR GCR
put the banana in the bowl 2 i i iﬂ
put the pear on the plate 2 i i iﬁ
put the banana on the plate 0 1 1 2/2
and the pear in the bowl 3 1 2/2
sort the fruits on the plate 0 0 1 2/3
and the bottles in the box 1 1 1 3/3
2 0 0 2/3

VI. CONCLUSIONS AND FUTURE WORK

We present an LLM prompting scheme for robot task
planning that brings together the two strengths of LLMs:
commonsense reasoning and code understanding. We con-
struct prompts that include situated understanding of the
world and robot capabilities, enabling LLMs to directly gen-
erate executable plans as programs. Our experiments show
that PROGPROMPT programming language features improve
task performance across a range of metrics. Our method is
intuitive and flexible, and generalizes widely to new scenes,
agents and tasks, including a real-robot deployment.

As a community, we are only scratching the surface of
task planning as robot plan generation and completion. We
hope to study broader use of programming language features,
including real-valued numbers to represent measurements,
nested dictionaries to represent scene graphs, and more com-
plex control flow. Several works from the NLP community
show that LLMs can do arithmetic and understand numbers,
yet their capabilities for complex robot behavior generation
are still relatively under-explored.
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