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ABSTRACT

Watermarking tabular generative models is critical for preventing misuse of syn-
thetic tabular data. However, existing watermarking methods for tabular data often
lack robustness against common attacks (e.g., row shuffling) or are limited to
specific data types (e.g., numerical), restricting their practical utility. To address
these challenges, we propose RINTAW, a novel watermarking framework for tabular
generative models that is robust to common attacks while preserving data fidelity.
RINTAW embeds watermarks by leveraging a subset of column values as seeds. To
ensure the pseudorandomness of the watermark key, RINTAW employs an adaptive
column selection strategy and a masking mechanism to enforce distribution unifor-
mity. This approach guarantees minimal distortion to the original data distribution
and is compatible with any tabular data format (numerical, categorical, or mixed)
and generative model architecture. We validate RINTAW on six real-world tabu-
lar datasets, demonstrating that the quality of watermarked tables remains nearly
indistinguishable from non-watermarked ones while achieving high detectability
even under strong post-editing attacks. The code is available at this link.

1 INTRODUCTION
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Figure 1: Our proposed RINTAW achieves the
overall best performance in generation quality,
detectability, and robustness.

Recent advances in table generation models - in-
cluding diffusion models (Zhang et al., 2024b;
Kotelnikov et al., 2023), autoregressive models
(Gulati & Roysdon, 2024; Solatorio & Dupriez,
2023), and masked generative models (Zhang
et al., 2024a) - have made significant progress in
generating synthetic data that closely aligns with
real data distributions. These models have proven
valuable in applications such as data augmentation
(Lin & Tsai, 2020), privacy protection (Gascón
et al., 2016), and missing data imputation (Lin &
Tsai, 2020). However, the misuse of synthetic data
can lead to serious issues, including financial fraud
(Cartella et al., 2021) and data pollution (Padhi
et al., 2021). To prevent the misuse of synthetic
data and ensure data traceability and authenticity, watermarking techniques have emerged as an
important solution.

Existing tabular watermarking approaches can be categorized into two types: post-processing wa-
termarks and sampling-phase watermarks. Post-processing methods (Zheng et al., 2024; He et al.,
2024) embed watermarks by modifying data after generation. While these methods are designed to
introduce a small amount of post-editing, they may still introduce distortions to the data distribution.
For example, (He et al., 2024) embeds watermarks by replacing the decimal part of all the numerical
values of a table with a value from the nearest green list. Similarly, TabularMark (Zheng et al., 2024)
modifies values by perturbing a small set of key cells with randomly sampled values from the green
list. Although this specific design keeps the post-editing to a minimum, due to the heterogeneous
nature of the tabular data, a small perturbation can possibly introduce systematic bias to the data
distribution. For example, in a column with values ranging from 0 to 0.1, a decimal replacement
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Table 1: Comparison of our method with baseline methods.

Method Phase Data modality Distribution-preserving Robust
Zheng et al. (2024) Post-processing Cat+Num ✓ ✗

He et al. (2024) Post-processing Num only ✗ ✓
RINTAW (Ours) Sampling Cat+Num ✓ ✓

will create out-of-range values, completely invalidating the generated data. Sampling-phase water-
marking methods, on the other hand, embed watermarks during the data generation process. Existing
sampling-phase watermark methods are mainly for invertible diffusion models (e.g. DDIM (Song
et al., 2020)). Since the sampling process of diffusion models maps a Gaussian noise to the data
distribution, (Wen et al., 2023; Yang et al., 2024) embeds detectable patterns into the latent space,
sampling pseudorandom gaussian noise for watermarked generation. While previous sampling-phase
watermarks can produce invisible watermarks for individual samples, they are limited to invertible
diffusion models. Furthermore, as the DDIM inversion is not exact, the detectability of watermarked
samples is compromised due to error accumulation during the inversion process (Hu et al., 2025).

Our approach. In this work, we present RINTAW, a robust and invisible watermarking method for
tabular generative models. Our method reconsiders where to embed the watermark in the generation
process: since embedding the watermark signal in the latent space (t = 0 for diffusion models)
will inevitably suffer from the inversion error, also inspired by the tournament sampling mechanism
proposed in (Dathathri et al., 2024), we propose to embed the watermark at the end of the sampling
stage (t = 1). The core idea of RINTAW is to embed watermark information by sampling from the
current data distribution using pseudorandomly sampled keys. Specifically, we design a tournament
sampling mechanism: After selecting a key, we sample multiple rows and score each row using a
pseudorandom function. The row achieving the highest score under the function corresponding to
that key is selected as the watermark sample. The keys are generated by applying a hash function
to combinations of several special columns from the table. To ensure the generated keys have
good randomness and uniqueness properties, we develop an adaptive column selection strategy
that dynamically chooses columns for key generation based on the ranking of values within their
distributions. Additionally, we introduce a repeated key masking mechanism to prevent reusing the
same keys. Through these mechanisms, RINTAW can effectively embed watermarks while preserving
the data distribution without distortion. Notably, RINTAW is model-agnostic and applicable to any
table generation model that enables repeated sampling.

We highlight the main contributions of this paper below:

• We propose robust invisible tabular watermarking (RINTAW), to embed robust and distortion-free
watermarks into generative tabular data.

• We conduct extensive experiments to demonstrate the effectiveness of our method. Our experiments
show that RINTAW achieves the overall best performance in generation quality, detectability, and
robustness (Figure 1).

2 METHOD

In this section, we provide a detailed introduction to the proposed watermark algorithm named
RINTAW. First, in Section 2.1, we introduce the overall process of watermark generation. Then, in
Section 2.2, we present details of the column selection strategy. Finally, in Section 2.3, we present a
statistical detection method for RINTAW.

2.1 WATERMARK GENERATION

A watermarking scheme for generative models typically contains two components: 1) a random seed
generator and 2) a sampling method. To generate a watermarked sample, the random seed generator
first generates a random seed, then the sampling method takes the random seed and the generative
model as input to generate a watermarked sample. Previous sampling methods used for watermarking
usually rely on the closed-form expression of the data distribution (density function for continuous
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Figure 2: Top: An overview of the watermark generation process. Two i.i.d sampled tables T1, T2

are generated from the generative model p. Each row gets a score based on a pseudorandom function.
The row with the higher score is kept and appended to the watermarked table, while the row with the
lower score is discarded. Bottom: detail of the pseudorandom score function: for each row, a subset
of columns are selected by an adaptive column selection strategy (Algorithm 2), then a hash function
is applied to the selected columns and the watermark key to generate a score.

data and probability mass function for discrete data) (Kirchenbauer et al., 2023; Kuditipudi et al.,
2023; Yang et al., 2024). However, for diffusion models, the density function is expensive to compute
or estimate (Song et al., 2021). To tackle this problem, previous works (Yang et al., 2024; Wen et al.,
2023) typically rely on an approximate procedure to inverse the diffusion model and then embed
the watermark on the Gaussian noise, for which we know the closed-form expression of the data
distribution.

Our work reconsiders how to embed the watermark into the sampling phase of diffusion models:
previous works embed the watermark into the initial Gaussian noise (i.e., t = 0), which necessitates
a cumbersome recursive inversion of the diffusion model to detect the watermark. Inspired by the
tournament sampling method used for LLM watermark (Dathathri et al., 2024), we propose to embed
the watermark on a fully denoised sample (i.e., t = T ). See Figure 2 (Top). By doing so, we can
directly detect the watermark on the original sample, avoiding the iterative inversion of the diffusion
model. The key idea of Tournament sampling is to sample duplicated i.i.d samples from the data
distribution, then use a tournament-like process to choose a sample that scores highly with respect to
some pseudo-random watermarking functions (score function). This procedure embeds watermark by
biasing the sampling process towards samples that achieve high scores.

To illustrate the main idea of this method, we first describe a simple version of the method in
Algorithm 1, where we use a fixed column of the table to seed the score function.

Algorithm 1 Tabular watermark with fixed seed columns
1: Input: watermark key k, table generative model p(x).
2: Draw two i.i.d samples x1,x2 from p(x).
3: Compute a hash of the the watermark key k and the first element of x1,x2: r1 = hash(k,x1[0]),

r2 = hash(k,x2[0]). ▷ Fixed seed columns.
4: Use r1, r2 as seeds, randomly sample s1, s2 ∈ {0, 1}.
5: Pick xi with the higher score si, break ties randomly.
6: return xi.
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Computation time. To sample a watermarked table with N rows from a generative model p, we
can run Algorithm 1 N times. Since the algorithm takes the same watermark key and generative
model as input, in practice, we can first generate two unwatermarked tables with N rows from p,
then randomly pair rows from these tables, and finally run Algorithm 1 on each pair in batch. This
approach results in a generation time approximately twice that of producing an unwatermarked table.
Compared to (Wen et al., 2023; Yang et al., 2024), which embeds watermark in the initial Gaussian
noise, our method takes twice the time in the watermark generation phase but saves the time in the
watermark detection phase (see details in Section 2.3), effectively balancing the overall computational
cost.

Weakness of using fixed seed columns. The above approach is a simple way to embed a watermark
for tabular data, but it has several potential issues:

1) Venerability to robust attacks.. Note that in Algorithm 1, every sample is chosen based on
the same column. If an attacker identifies the column used to seed the score function, they can
completely remove the watermark by simply deleting that column from the table.

2) Low watermark strength. If the column used to seed the score function has a small number
of possible values, the watermark strength will be low. Consider an extreme scenario where the
column used is constant, the score function will always return the same value. Consequently, the
watermark strength will be zero.

3) High distribution distortion. When the column used to seed the score function has a small set of
possible values, due to repeated usage of the same value for seeding, the strategy of picking the
sample that scores higher may significantly bias the data distribution.

Issues (1) and (2) are evident. Regarding issue (3), It can be shown (Dathathri et al., 2024) that the
watermark scheme defined in Algorithm 1 is distribution-preserving in expectation if the watermark
key is uniformly distributed over Zn.
Definition 2.1 (Watermark distribution). Let x̃ be the output of Algorithm 1 with data distribution p
and watermark key k as input. We call the probability distribution of x̃ as watermark distribution,
denoted by pwm(x̃ | p, k).
Theorem 2.2 (Algorithm 1 is single sample distribution-preserving). Suppose a sample x̃ is gen-
erated from Algorithm 1 with data distribution p and watermark key k as input. Then it holds that
marginalizing over the watermark key k, the watermark distribution is the same as the original data
distribution:

Ek∼Unif(Zn) [pwm(x | p, k)] = p(x)

Theorem 2.2 shows that the watermark scheme defined in Algorithm 1 is single-sample distortion-
free. In reality, we call Theorem 2.2 repeatedly with the same watermark key k to generate multiple
samples to form a table. In the following, we show that we can extend the above result to K-sample
distribution-preserving.
Corollary 2.3 (Algorithm 1 is K-sample distribution-preserving). Suppose a sequence of K samples
(x̃1, . . . , x̃K) are generated consecutively from Algorithm 1 with the same watermark key k and data
distribution p(x). Then it holds that, marginalizing over the watermark key k, the joint distribution
of (x̃1, . . . , x̃K) is the same as the joint distribution of K i.i.d samples from the original data
distribution:

Ek∼Unif(Zn) [pwm(x̃1, . . . , x̃K | p, k)] =
K∏
i=1

p(x̃i)

2.2 COLUMN SELECTION STRATEGY

Based on the above analysis, preserving the original data distribution requires using a uniformly
random distributed watermark key k as input to the random seed generator. While (Kuditipudi
et al., 2023) suggests maintaining a list of pseudo-random watermark keys to generate watermarked
samples, this approach faces challenges with large-scale data. When generating numerous samples
(e.g., tables with N > 105 rows), the pseudo-random key list becomes exhaustive, approaching
complete coverage of the possible key space. This comprehensive coverage significantly increases
the false positive rate (FPR) during watermark detection.
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Algorithm 2 Column Selection
1: Input: Unwatermarked table T , a sample x from T .
2: For each column index j, sort T [:, j] in ascending order, denote the index of x[j] within the

sorted list as r[j].
3: Sort the list r in ascending order, denote the column indices that attain the largest, median, and

smallest of list r as jmin, jmed, jmax, respectively.
4: return column indices {jmin, jmed, jmax}.

In this paper, we use an alternative strategy: we use a fixed watermark key k, but introduce the needed
uniform randomness by selecting a subset of columns of x as the second input to the random seed
generator. This strategy is conceptually similar to some LLM watermarking methods (Kirchenbauer
et al., 2023; Dathathri et al., 2024; Zhao et al., 2023), which use the previous token(s) as the second
input to the random seed generator.

However, determining the proper columns for seeding the score function presents a significant
challenge. As discussed in Section 2.1, tabular data’s heterogeneous nature makes simple fixed-
column selection strategies sub-optimal. In the following, we present two techniques for better
column selection. The complete watermark generation algorithm is presented in Algorithm 3.

Adaptive column selection. Given a non-watermarked table T with N rows and M columns,
suppose we want to determine which columns of a sample x to use for seeding the score function.
We propose the following procedure:

1) For each column j ∈ {1, 2, ...,M}, denote the empirical cumulative distribution function (CDF)
of the column j of T as F̃T [:,j](·), compute its evaluation at xj : rj = F̃T [:,j](xj).

2) Sort the columns based on the rank {rj}Mj=1,

3) Select the columns that attain the largest, median, and smallest rj .

Different from the simple strategy in Algorithm 1, the above procedure is adaptive to each individual
sample of x. This procedure achieves adaptivity by leveraging the deviation from the data distribution
of each individual sample. In our experiments, we choose three quantiles 0, 0.5, and 1 of the sorted
rank to select the columns. Choosing more fine-grained quantiles will result in higher watermark
strength, but potentially harm watermark robustness.

Masking mechanism. Suppose the space of the watermark key is Zn, our goal is to use selected
columns of x as a proxy of the uniformly distributed watermark key over Zn. In reality, so long
as the value at the selected columns is not repeatedly used for watermarking, we consider this as a
uniformly distributed watermark key. For this purpose, we propose a masking mechanism to prevent
repeated usage of the same value for watermarking. It works by maintaining a set of values that have
been used for watermarking and skipping watermarking the current sample if the value has been used.
To control the effect of the masking mechanism, we deploy a parameter α ∈ [0, 1] to control the
probability of skipping watermarking, when repetition is found. This parameter can also be used to
control the watermark strength.

2.3 WATERMARK STATISTICAL DETECTION

In this section, we formalize the statistical detection process for identifying watermarks in a table.
Consider a table T containing N samples (rows) x1, . . . ,xN . During watermarking, each row is
assigned a binary score of 1 or 0 based on a pseudo-random function, and the row that scores higher
is kept. Therefore, for a watermarked table, the total count of rows with a score 1, denoted by |W |, is
expected to be significantly higher than random chance. To statistically validate this, we formulate
watermark detection as a hypothesis testing problem, following (Kirchenbauer et al., 2023):

H0 : The table is generated without watermarking.
vs. H1 : The table is generated with watermarking.
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Algorithm 3 Tabular watermark generation
1: Input: watermark key k, unwatermarked table T .
2: Randomly pairing rows of T into N/2 pairs: {pi}N/2

i=1 .
3: Initialize an empty setR, and a list Twm to store the watermarked table.
4: for i← 1 to N/2 do
5: (x1,x2)← pi
6: I1 ← COLSELECT(T,x1). ▷ Algorithm 2.
7: I2 ← COLSELECT(T,x2). ▷ Algorithm 2.
8: Compute a hash of the watermark key k and the selected columns: r1 = hash(k,x1[I1])

r2 = hash(k,x2[I2])
9: if r1 ∈ R and r2 ∈ R then

10: Append x1 or x2 to Twm decided by coin flip.
11: Continue to the next iteration. ▷ Skip watermarking.
12: else
13: Add r1, r2 toR.
14: end if
15: Use r1, r2 as seeds, randomly sample s1, s2 ∈ {0, 1}, respectively.
16: Pick the sample with the higher score and break ties randomly.
17: Append the sample to Twm.
18: end for
19: return Twm.

Under the null hypothesis, |W | follows a binomial distribution with mean µ = N/2 and variance
σ2 = N/4. The standardized z-statistic is computed as:

z =
|W | − µ

σ
=
|W | −N/2√

N/4

We perform a one-tailed test (upper tail) since the alternative hypothesis predicts |W | > N/2. The
z-statistic is compared against a critical value zα corresponding to a desired significance level α (e.g.
α = 0.05 yields zα = 1.645). If z > zα, we reject the null hypothesis and conclude that the table is
watermarked.

3 EXPERIMENTS

We validate the performance of our watermarking method through extensive experiments. In particular,
we investigate the following questions:

• Can RINTAW have good statistical power (detectability), with minimal distortion to the generated
data (invisibility)? (Table 2)

• How robust is the watermark against various attacks? (Table 3)

• How does RINTAW perform under different masking ratios and the number of selected columns?
(Figure 3)

3.1 SETUP

Datasets. We select six real-world tabular datasets containing both numerical and categorical
attributes: Adult, Default, Shoppers, Magic, Beijing and News. The statistics of the datasets are
summarized in Table 4 in Appendix A.2.

Baselines. We use recent tabular watermarking algorithms as baselines, including TabularMark
(Zheng et al., 2024) and WGTD (He et al., 2024). We re-implement both methods using the authors’
specifications, as the official code was unavailable. The implementation details are provided in
Appendix A.1.
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Table 2: Quality and detectability, RINTAW: without masking, RINTAWdf : with masking. The best
results are highlighted in bold.

Quality Detectability
Dataset Method Num. Training Rows 500 1000

Marg.↑ Corr.↑ C2ST↑ MLE Gap↓ p-value/z-stat AUC/T@1%F p-value/z-stat AUC/T@1%F

Adult

w/o WM 0.994±0.001 0.984±0.001 0.996±0.003 0.017 - - - -
TabularMark 0.992±0.001 0.939±0.000 0.995±0.003 0.017 0.000/7.071 1.000/1.000 0.000/10.000 1.000/1.000
WGTD 0.905±0.089 0.970±0.014 0.975±0.021 0.019 - 1.000/1.000 - 1.000/1.000
RINTAW 0.979±0.001 0.963±0.001 0.883±0.005 0.017 0.000/7.830 1.000/1.000 0.000/8.610 1.000/1.000
RINTAWdf 0.985±0.001 0.973±0.001 0.940±0.003 0.017 0.000/3.486 1.000/1.000 0.003/2.723 1.000/1.000

Beijing

w/o WM 0.977±0.001 0.958±0.003 0.934±0.003 0.199 - - - -
TabularMark 0.970±0.001 0.799±0.002 0.934±0.003 0.204 0.000/7.071 1.000/1.000 0.000/10.000 1.000/1.000
WGTD 0.971±0.004 0.958±0.003 0.664±0.411 0.207 - 1.000/1.000 - 1.000/1.000
RINTAW 0.972±0.001 0.955±0.002 0.926±0.002 0.209 0.000/11.886 1.000/1.000 0.000/16.961 1.000/1.000
RINTAWdf 0.977±0.001 0.959±0.002 0.934±0.005 0.210 0.000/11.794 1.000/1.000 0.000/16.886 1.000/1.000

Default

w/o WM 0.990±0.001 0.934±0.018 0.979±0.006 0.000 - - - -
TabularMark 0.990±0.001 0.934±0.018 0.982±0.003 0.000 0.000/7.071 1.000/1.000 0.000/10.000 1.000/1.000
WGTD 0.990±0.001 0.944±0.019 0.713±0.134 0.001 - 1.000/1.000 - 1.000/1.000
RINTAW 0.983±0.001 0.925±0.000 0.963±0.003 0.002 0.001/3.277 1.000/1.000 0.000/13.786 1.000/1.000
RINTAWdf 0.986±0.001 0.927±0.018 0.963±0.002 0.001 0.000/9.243 1.000/1.000 0.000/13.036 1.000/1.000

Magic

w/o WM 0.990±0.001 0.980±0.007 0.998±0.002 0.008 - - - -
TabularMark 0.989±0.001 0.971±0.007 0.998±0.002 0.009 0.000/7.071 1.000/1.000 0.000/10.000 1.000/1.000
WGTD 0.950±0.010 0.955±0.006 0.932±0.069 0.014 - 1.000/1.000 - 1.000/1.000
RINTAW 0.991±0.002 0.982±0.008 0.999±0.001 0.010 0.000/11.179 1.000/1.000 0.000/15.862 1.000/1.000
RINTAWdf 0.990±0.002 0.981±0.007 0.999±0.002 0.009 0.000/11.122 1.000/1.000 0.000/15.817 1.000/1.000

News

w/o WM 0.960±0.000 0.973±0.003 0.811±0.004 0.024 - - - -
TabularMark 0.960±0.000 0.973±0.003 0.811±0.004 0.023 0.000/7.071 1.000/1.000 0.000/10.000 1.000/1.000
WGTD 0.896±0.003 0.966±0.002 0.216±0.228 0.009 - 1.000/1.000 - 1.000/1.000
RINTAW 0.959±0.001 0.902±0.001 0.812±0.007 0.033 0.000/10.235 1.000/1.000 0.000/19.966 1.000/1.000
RINTAWdf 0.959±0.000 0.974±0.003 0.812±0.009 0.027 0.000/13.912 1.000/1.000 0.000/19.585 1.000/1.000

Shoppers

w/o WM 0.985±0.001 0.974±0.004 0.974±0.007 0.017 - - - -
TabularMark 0.985±0.001 0.923±0.004 0.973±0.006 0.016 0.000/7.071 1.000/1.000 0.000/10.000 1.000/1.000
WGTD 0.983±0.002 0.955±0.006 0.514±0.425 0.025 - 1.000/1.000 - 1.000/1.000
RINTAW 0.982±0.001 0.974±0.002 0.950±0.007 0.015 0.000/11.479 1.000/1.000 0.000/16.226 1.000/1.000
RINTAWdf 0.982±0.001 0.974±0.002 0.952±0.008 0.018 0.000/10.789 1.000/1.000 0.000/15.149 1.000/1.000

Evaluation metrics. (a) To evaluate the detectability of the watermark, we report the area under
the curve (AUC) of the receiver operating characteristic (ROC) curve, and the True Positive Rate
when the False Positive Rate is at 1%, denoted as TPR@1%FPR. (b) To evaluate the distortion of
the watermarked data, we follow standard fedelity and utility metrics used in tabular data generation
(Zhang et al., 2024b; Kotelnikov et al., 2023): we report Marginal distribution (Marg.), Pair-wise
column correlation (Corr.), Classifier Two Sample Test (C2ST), and Machine Learning Efficiency
(MLE). For MLE, we report the gap between the downstream task performance of the generated data
and the real test set (MLE Gap). We refer the readers to (Zhang et al., 2024b) for a more detailed
definition of each evaluation metric.

Implementation details. We use TabSyn (Zhang et al., 2024b) as the generative model for all
experiments. For most datasets, the number of selected columns is set to 3, except for the Default
dataset, where it is set to 7. The masking ratio is configured to range from 0 to 0.5, with the specific
masking ratio for each dataset automatically inferred based on the unique number of values in the
selected columns. Experiments for generation quality evaluation are repeated 10 times and mean and
standard deviation are reported.

3.2 DETECTABILITY VS TABLE QUALITY

We address the first question: whether the watermarking method achieves high statistical power
(detectability) and remains invisible (causing minimal distortion) in the generated data. As shown in
Table 2, while all baseline methods demonstrate high detectability, WGTD significantly falls short in
generation quality. This result is expected, as WGTD modifies the decimal part of all numerical cells
in the table, leading to substantial distortion. In contrast, TabularMark introduces less distortion by
watermarking only a small subset of cells. However, this selective approach makes it more vulnerable
to various attacks. Our proposed method, on the other hand, achieves high detectability with minimal
distortion to the generated data. Previous tabular watermarking methods often cause significant
degradation in data quality. For post-processing watermarking methods, the distortion arises from
modifying the decimal parts of the generated data during the post-processing steps.
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Table 3: Robustness to different attacks, AUC/T@1%F

Attack Type
Dataset Method Shuffle Row Del. Col Del. Cell Del. Alteration Noise

Adult

TabularMark 0.374/0.002 0.374/0.000 - 0.996/0.904 0.366/0.000 0.411/0.002
WGTD 1.000/1.000 1.000/1.000 0.825/0.198 1.000/1.000 0.653/0.008 0.469/0.004
RINTAW 1.000/1.000 1.000/1.000 0.741/0.082 1.000/1.000 1.000/0.994 0.396/0.002
RINTAWdf 1.000/1.000 1.000/1.000 0.717/0.022 0.991/0.822 0.950/0.580 0.582/0.018

Beijing

TabularMark 0.285/0.000 0.338/0.000 - 1.000/0.990 1.000/1.000 1.000/1.000
WGTD 1.000/1.000 1.000/1.000 0.885/0.232 1.000/1.000 0.653/0.020 0.774/0.020
RINTAW 1.000/1.000 1.000/1.000 0.754/0.550 1.000/1.000 0.768/0.054 0.456/0.014
RINTAWdf 1.000/1.000 1.000/1.000 0.708/0.492 1.000/1.000 0.772/0.090 0.479/0.002

Default

TabularMark 0.464/0.002 0.505/0.002 - 0.981/0.750 0.500/0.000 0.412/0.012
WGTD 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000 0.669/0.005 0.733/0.008
RINTAW 1.000/1.000 1.000/1.000 0.921/0.714 1.000/1.000 0.963/0.509 0.628/0.023
RINTAWdf 1.000/1.000 1.000/1.000 0.905/0.683 1.000/1.000 0.955/0.360 0.589/0.017

Magic

TabularMark 0.458/0.006 0.458/0.000 - 0.988/0.736 0.323/0.000 0.415/0.000
WGTD 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000 0.982/0.834 0.484/0.000
RINTAW 1.000/1.000 1.000/1.000 0.892/0.540 0.999/0.988 0.516/0.020 0.499/0.022
RINTAWdf 1.000/1.000 1.000/1.000 0.883/0.504 1.000/0.998 0.496/0.006 0.539/0.004

News

TabularMark 0.482/0.006 0.465/0.008 - 0.977/0.756 0.234/0.000 0.400/0.000
WGTD 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000 0.776/0.026
RINTAW 1.000/1.000 1.000/1.000 0.819/0.614 0.995/0.888 0.476/0.014 0.505/0.004
RINTAWdf 1.000/1.000 1.000/1.000 0.795/0.550 0.993/0.880 0.498/0.004 0.523/0.010

Shoppers

TabularMark 0.310/0.000 0.326/0.002 - 1.000/0.990 0.002/0.000 0.424/0.002
WGTD 1.000/1.000 1.000/1.000 0.938/0.102 1.000/1.000 0.969/0.748 0.764/0.026
RINTAW 1.000/1.000 1.000/1.000 0.812/0.482 1.000/1.000 0.980/0.722 0.510/0.010
RINTAWdf 1.000/1.000 1.000/1.000 0.813/0.458 1.000/0.998 0.952/0.544 0.547/0.010

3.3 ROBUSTNESS AGAINST ATTACKS

We next benchmark the robustness of the tabular watermarking method against six prevalent attacks
tailored to tabular data: row shuffling, column deletion, row deletion, cell deletion, Gaussian
noise addition, and value alteration. The intensity levels are defined as follows: For row deletion,
we remove 20% of rows. For cell deletion, we remove 20% of randomly selected cells. For column
deletion, 3 columns are deleted. For Gaussian noise, we inject noise into numeric columns with
zero mean and identity variance. For value alteration, numeric column values are multiplied by a
factor sampled uniformly from (0.9, 1.1). In Table 3, we report the AUC and TPR@1%FPR of the
watermarking methods under these different attacks. Our method demonstrates high detectability
under row shuffling, row deletion, and cell deletion attacks, but is relatively more vulnerable to
column deletion attacks. In contrast, TabularMark is the least robust method, as it watermarks only
a small subset of cells at fixed positions, making it easier to target. WGTD generally shows strong
robustness to most attacks, though it is more susceptible to value alteration and Gaussian noise
injection. Overall, our method strikes a balance between detectability and robustness, outperforming
other methods in key scenarios.

3.4 ABLATION STUDY

We perform ablation studies to analyze the impact of different components of the proposed method.
Specifically, we examine the effects of the masking ratio and the number of selected columns, as
shown in Figure 3. We observe that the statistical power of the watermarking method decreases as the
masking ratio increases. This is expected, as a higher masking ratio results in fewer samples being
watermarked. For the number of selected columns, since the number of unique values increases as
more columns are selected, the statistical power of the watermarking method is intuitively expected
to improve. However, selecting more columns also makes the watermark more vulnerable to column
deletion attacks. Interestingly, we find that the statistical power generally saturates when the number
of selected columns exceeds 3, except for the Adult dataset, where the z-statistic continues to increase
with more selected columns. This suggests that selecting 3 columns strikes a good balance between
statistical power and robustness against attacks.
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Figure 3: Left: z-statistic under different number of selected columns. The statistic power almost
achieves the highest at 3 columns, except the Adult dataset. Right: z-statistic under different masking
ratios. The statistic power decreases as the masking ratio increases. Negative values are clipped to 0.

4 RELATED WORK

Existing table watermarking approaches can be broadly categorized into two types: post-processing
watermarks and generation-time watermarks. Post-processing methods, such as the work by (Ngo
et al., 2024), embed watermarks by modifying data after it has been generated. While these methods
have minimal impact on data quality and downstream tasks, they can still introduce distortions to
the data distribution. Similarly, TabularMark (Zheng et al., 2024) embeds watermarks by modifying
values in select key cells. Although this approach reduces the impact on machine learning tasks, its
ability to preserve global data distributions remains limited. Another method, proposed by (He et al.,
2024), embeds watermarks through resampling within "green-listed" intervals. While this technique
theoretically maintains low data distortion, it still relies on post-processing modifications, which
can introduce systematic bias into the data distribution. In contrast, generation-time watermarking
methods are more common in image watermarking, as demonstrated by approaches such as (Wen
et al., 2023; Yang et al., 2024). Recently, a concurrent method (Zhu et al., 2025) introduced a
generation-time watermarking technique for tabular data. However, these methods are often limited
to specific diffusion models and depend on DDIM reversibility (Song et al., 2020), which may reduce
the effectiveness of watermark detection. These limitations highlight that existing methods still have
room for improvement in maintaining distortion-free data distributions, ensuring model independence,
and enhancing robustness.

5 CONCLUSION

This paper presents RINTAW, a novel watermarking algorithm that integrates directly into the sampling
process of generative models for tabular data. Unlike existing post-processing approaches, RINTAW
achieves strong statistical detection power while maintaining minimal distribution distortion. Through
extensive experiments, we demonstrate the method’s robustness against common attacks including
row shuffling/deletion, column deletion, cell deletion, alteration, and Gaussian noise addition. With
its general applicability across different generative frameworks, RINTAW represents a promising
advance in protecting synthetic tabular data integrity.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

•WGTD. WGTD embeds watermarks into tabular data through a three-step process: i) dividing the
continuous interval [0, 1] into 2m equal parts to form m pairs of consecutive intervals; ii) randomly
selecting one interval from each pair to create a set of m "green list" intervals; and iii) replacing
the fractional part of data points with a value sampled from the nearest "green list" interval if the
original falls outside. Detection is achieved through a hypothesis-testing framework that leverages
the statistical properties of data distribution to reliably identify watermarks. For reproducibility, we
use the same hyperparameter settings as the original study, setting the number of "green list" intervals
to m = 5.

• TabularMark. TabularMark employs a hypothesis-testing approach for watermarking by parti-
tioning data noise into domains and introducing controlled perturbations to specific cells. Detection
relies on a one-proportion z-test, which examines the deviation characteristics in the data to identify
watermarks. This method involves four hyperparameters: the selected attribute Ai, the number of
key cells nw, the perturbation range controlled by p, and the number of unit domains k. Similar to
the original experiment setup, we use the first numerical column as Ai, set k = 500, p = 25, and
configure nw as 10% of the total number of rows.

A.2 DATASETS

The dataset used in this paper could be automatically downloaded using the script in the provided code.
We use 6 tabular datasets from UCI Machine Learning Repository1: Adult2, Default3, Shoppers4,
Magic5, Beijing6, and News7, which contains varies number of numerical and categorical features.
The statistics of the datasets are presented in Table 4.

Table 4: Dataset statistics.
Dataset # Rows # Continuous # Discrete # Target # Train # Test Task

Adult 32, 561 6 8 1 22, 792 16, 281 Classification
Default 30, 000 14 10 1 27, 000 3, 000 Classification
Shoppers 12, 330 10 7 1 11, 098 1, 232 Classification
Magic 19, 021 10 1 1 17, 118 1, 903 Classification
Beijing 43, 824 7 5 1 39, 441 4, 383 Regression
News 39, 644 46 2 1 35, 679 3, 965 Regression

In Table 4, # Rows refers to the total records in each dataset, while # Continuous and # Discrete
denote the count of numerical and categorical features, respectively. The # Target column indicates
whether the prediction task involves a continuous (regression) or discrete (classification) target
variable. All datasets except Adult are partitioned into training and testing sets using a 9:1 ratio, with
splits generated using a fixed random seed for reproducibility. The Adult dataset uses its predefined
official testing set. For evaluating Machine Learning Efficiency (MLE), the training data is further
subdivided into training and validation subsets with an 8:1 ratio, ensuring consistent evaluation
protocols across experiments.

1https://archive.ics.uci.edu/datasets
2https://archive.ics.uci.edu/dataset/2/adult
3https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
4https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+

intention+dataset
5https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
6https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
7https://archive.ics.uci.edu/dataset/332/online+news+popularity
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