
Published as a conference paper at ICLR 2024

THE REASONABLENESS BEHIND UNREASONABLE
TRANSLATION CAPABILITY OF LARGE LANGUAGE
MODEL

Tingchen Fu♡♢∗ Lemao Liu♢†Deng Cai♢ Guoping Huang♢ Shuming Shi♢ Rui Yan♡†
♡Gaoling School of Artificial Intelligence, Renmin University of China
♢Tencent AI Lab
lucas.futingchen@gmail.com redmondliu@tencent.com ruiyan@ruc.edu.cn

ABSTRACT

Multilingual large language models (LLM) trained on non-parallel data yield
impressive translation capabilities. Existing studies demonstrate that inciden-
tal sentence-level bilingualism within pre-training data contributes to the trans-
lation abilities of large language models. However, it has been observed that
the translation capabilities persist even when incidental sentence-level bilingual-
ism is excluded from the training corpus. Therefore, in this study, we compre-
hensively investigate the question why LLM can acquire translation capability
without sentence-level bilingualism data. To this end, we examine the impacts
of word-level bilingualism data (i.e., word alignment data and code-switching
data) or even purified monolingual data in addition to sentence-level bilingualism
data. Through extensive experiments, we have made significant findings. It turns
out that word alignment data plays a crucial role in enabling LLMs to acquire
translation ability. Surprisingly, the translation signal derived from word align-
ment data is even comparable to that obtained from sentence-level bilingualism.
Moreover, pre-training on purified monolingual data may enable a slight transla-
tion signal for LLM, thanks to the shared parameters in Transformer and some
shared tokens across both source and target languages. Our code is available in
https://github.com/TingchenFu/ICLR24-TransContamination.

1 INTRODUCTION

The performance of modern neural machine translation (NMT) systems is highly subject to the qual-
ity and volume of available parallel corpus. NMT systems trained in low-resource or unsupervised
settings (Ravi & Knight, 2011; Artetxe et al., 2018) are usually less comparable to the ones trained
in fully supervised setting (Lample et al., 2018; Lin et al., 2022; Garcia et al., 2021). However,
recent multilingual large language models (LLMs), exemplified by ChatGPT (OpenAI, 2022) and
GPT4 (OpenAI, 2023), seemingly defy conventional wisdom and exhibit unreasonable effectiveness
in machine translation (Garcı́a et al., 2023; Vilar et al., 2022; Zhang et al., 2023a). Intriguingly, these
models are trained on non-parallel corpus, as opposed to the explicit parallel corpora commonly em-
ployed for NMT training. Therefore, it is imperative to comprehend why LLMs enable translation
by learning from non-parallel corpus.

Concerning the reason why LLMs could learn to translate, a natural assumption is the existence of
incidental sentence-level bilingualism in the pre-training corpus, which provides supervision signals
and has been demonstrated sufficient to train an NMT system (Briakou et al., 2023). Nevertheless,
Briakou et al. (2023) discover that PaLM (Chowdhery et al., 2022) still demonstrates non-trivial
translation capability even after removing such incidental sentence-level bilingualism, indicating
that it only partially accounts for LLM’s translation capability. As a result, there must be other
sources contributing to the LLM’s translation capability beyond the presence of incidental sentence-
level bilingualism.

∗ This work was done during an internship at Tencent AI Lab.
†Corresponding author: Lemao Liu (redmondliu@tencent.com) and Rui Yan (ruiyan@ruc.edu.cn).
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Therefore in this study, we aim to comprehensively answer the in-depth question of why LLMs are
capable of translation even without incidental sentence-level bilingualism. We hypothesize that the
finer granularity of unintentional bilingualism, specifically word alignment data or code-switching
data (exemplified in Table 1), may also play a substantial role. To this end, we propose to measure
and compare the impact of unintentional bilingualism across various levels of granularity. Specifi-
cally, we first identify and collect three types of unintentional bilingualism data from existing multi-
lingual corpora, namely sentence alignment, word alignment, and code-switching (§3). To quantify
the effect of three types of bilingualism, it is too costly to train LLM from scratch and thereby we
develop two computationally feasible methods as surrogates to measure the impact of data (§4).
Subsequently, we apply the two surrogate methods to BLOOM-family model (Scao et al., 2022)
with our collected three types of unintentional bilingual data and compare their effects on transla-
tion capacity (§5). Moreover, extensive experiments are conducted to glean insights into the impact
of other factors (e.g., monolingual data, parameter-sharing, data volume) on the acquisition of trans-
lation capacity for LLM §5.

To summarize, our analysis yields two main findings:

• Aside from sentence alignment data, other forms of unintentional bilingualism also play
an important role in assisting large language model to learn translation capability. In par-
ticular, we discover that word alignment data exhibit comparable or sometimes superior
effectiveness in providing translation signals when compared with sentence alignment data.

• It is possible to observe a slight translation signal by pre-training solely on purified mono-
lingual corpora in addition to unintentional bilingualism, thanks to some shared tokens
(such as digits and symbols) and the shared parameters in model architecture across both
source and target languages.

2 RELATED WORK

Large Language Models for Translation. Multilingual large language models, with Chat-
GPT (OpenAI, 2022) and GPT4 (OpenAI, 2023) as representatives, have garnered heated attention
for their impressive capacity in neural machine translation (Hendy et al., 2023; Zhu et al., 2023;
Vilar et al., 2022; Garcı́a et al., 2023) that is on par with not only commercial translation systems
like Google Translate and Microsoft Translator (Hendy et al., 2023) but also the winner of WMT
competition (Zhang et al., 2023a). Numerous previous works have devoted considerable efforts to
evaluating and analyzing the translation abilities of these LLMs in both high and low resource lan-
guages (Hendy et al., 2023; Jiao et al., 2023b; Robinson et al., 2023), multilingual translation (Zhu
et al., 2023), document-level translation (Wang et al., 2023; Karpinska & Iyyer, 2023). However,
most existing works put emphasis on enhancing the performance of LLMs with fine-tuning (Xu
et al., 2023a; Jiao et al., 2023a; Yang et al., 2023; Zeng et al., 2023; Zhang et al., 2023b) or seeking
a better prompting strategy (Bawden & Yvon, 2023; He et al., 2023; Ghazvininejad et al., 2023; Lu
et al., 2023), In contrast, little attention is paid on the question why are these LLMs able to translate
when they are only trained on multilingual corpus but witness no parallel data?

Data Contamination Data contamination (Magar & Schwartz, 2022) refers to the possible over-
lap between the pre-training corpus and the benchmark for downstream evaluation (Brown et al.,
2020). Data contamination can lead to inflated evaluation results and overestimation of the model’s
true performance since the model might inadvertently memorize the “leaked” information (Dodge
et al., 2021; Lewis et al., 2021; Carlini et al., 2018) that was already present in the pre-training
corpus. The phenomenon has been observed and reported on close-book QA (Lewis et al., 2021;
Kandpal et al., 2022), numerical reasoning (Razeghi et al., 2022) and so on. On the other hand,
Blevins & Zettlemoyer (2022) observe the mixing of other languages in “officially” English corpora
(e.g., BookCorpus Zhu et al., 2015, and C4.en Raffel et al., 2020), christened “language contamina-
tion”, may explain the acquisition of the language model’s cross-lingual ability. Inspired by Blevins
& Zettlemoyer (2022), we posit that language contamination, or in other words the mixing and co-
existing of multiple languages, may also be present in non-parallel multilingual corpora and could
potentially account for the translation capacity of multilingual LLMs. Most relevant to our work,
Briakou et al. (2023) observe and extract unintentional bilingualism from the pre-training corpus
of PaLM (Chowdhery et al., 2022) and examine the impact of various types of bilingualism. How-
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ever, their experiments and analysis primarily involve sentence-level bilingualism on a closed-source
LLM (Chowdhery et al., 2022), but overlook translation signals at a finer granularity.

3 SENTENCE LEVEL AND WORD LEVEL BILINGUALISM IN CORPUS

Usually derived from the Common Crawl1 with a sophisticated data filtering pipeline, existing multi-
lingual corpora such as mC4 (Xue et al., 2021), CC-100 (Conneau et al., 2020a), ROOTS (Laurençon
et al., 2022b) and OSCAR (Ortiz Su’arez et al., 2019) are composed of multiple monolingual splits
with their languages detected by language classification tools (Joulin et al., 2016). Nevertheless, due
to the imperfections of the language classifier (Blevins & Zettlemoyer, 2022), a monolingual split
may inadvertently contain some unintentional bilingual data. In this study, we focus on unintentional
bilingualism between English and Chinese and identify three types of unintentional bilingualism
present in three widely used multilingual corpora:

Type Example

Sentence 
Alignment 

This news, like a light as an indescribable speed, In the blink of 
an eye it spread throughout the entire Martial Dragon 
Continent. 
这个消息，如同光芒一般，以无法形容的速度，眨眼间就传
遍了整个龙武大陆。
This news was like a bullet, landed on the tranquil lake in the 
middle, instantly exploded!

Word 
Alignment

Beijing will procure RMB 80 million in social organization 
services. 
Beijing News (新京报), January 28, 2013

Code-
Switching

上一篇(Previous Article)：New Polio Immunization Drive to 
Start in Nigeria’s
下一篇(Next Article)：Hong Kong's Top Health Official Resigns 
Over SARS

Table 1: Examples of three types of unintentional bilin-
gualism found in mC4. For sentence alignment and
word alignment, the text in italics is a parallel bilin-
gualism in English and Chinese. For code-switching,
the text highlighted in gray is our self-added transla-
tion for illustration.

The first case is sentence alignment (SA),
wherein a sentence and its translation co-
exist within close proximity in a docu-
ment. Sentence alignment data consti-
tutes a form of sentence-level bilingualism
Analogously, word alignment (WA) per-
tains to the co-occurrence of one or more
words (though not an entire sentence) and
their translations within close proximity in
a single document. Both sentence align-
ment and word alignment involve bilin-
gual translation and differ solely in the
granularity of translation. Additionally,
we identify code-switching (CS), which
specifically refers to the co-occurrence of
two languages within close proximity in a
document, where the content in the two
languages is semantically related rather
than bearing a direct translation relation-
ship. Both word alignment and code-
switching are regarded as word-level bilin-
gualism. Table 1 showcases three kinds of
unintentional bilingualism.

To excavate three types of unintentional
bilingualism, we develop a data mining pipeline. Briefly, to identify and gather unintentional bilin-
gualism from a monolingual Chinese split: (1) We first search for alphabetic-composed fragments
in each document with a regular expression. (2) The fragments recognized to be English by an
off-the-shelf language detection tool (Joulin et al., 2016) are then translated into Chinese with an
external commercial translation system (Huang et al., 2021). (3) Finally, we measure the similarity
between the obtained translation and the nearby context of the found fragments and categorize the
fragment together with its nearby context into three types of unintentional bilingualism accordingly.
Aside from collecting unintentional bilingualism, for the purpose of experimental comparison, we
also gather a “pure” monolingual Chinese (English) corpus by meticulously eliminating uninten-
tional bilingualism as much as possible. More specifically, we again use regular expressions to
remove any English letters (Chinese Characteristics) from the Chinese corpus (English corpus) in
mC4. More details can be found in Appendix A.

The distribution of unintentional bilingualism in three corpora is depicted in Figure 1. As evidenced
by the figure, unintentional bilingualism only accounts for a very small proportion (less than 5%)
in the entire corpus. Nonetheless, given the vast scale of the corpus, the absolute quantity of con-
taminated documents is indeed non-trivial. Furthermore, as a common attribute spanning the three
corpora, word alignment and code-switching predominantly comprise the primary components of
unintentional bilingualism.

1
https://commoncrawl.org/
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Dataset Language Test set Example pool

WMT21 English-Chinese newstest2021 (1948/1002) newstest{2017,2018,2019}
English eng Latn.devtest (1012) eng Latn.dev (997)
Chinese zho Hans.devtest (1012) zho Hans.dev (997)
Catalan cat Latn.devtest (1012) cat Latn.dev (997)

Eastern Panjabi pan Guru.devtest (1012) pan Guru.dev (997)
Igbo ibo Latn.devtest (1012) ibo Latn.dev (997)

FLORES-200

Tswana tsn Latn.devtest (1012) tsn Latn.dev (997)

Table 2: Statistics of our evaluation benchmarks. Numbers in brackets denote the number of in-
stances.
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Figure 1: The proportion of documents con-
taining three types of unintentional bilingual
text in three corpora. The proportion is esti-
mated by subset sampling.

mC4.en mC4.zh

sentence
alignment

# Doc 210,931 2,462
# Seq 355,320 432

word
alignment

# Doc 658,643 1,972,764
# Seq 500,550 659,456

code-
switching

# Doc 2,021,502 5,086,373
# Seq 903,810 997,376

Table 3: The statistics of our mined un-
intentional bilingual text from mC4.en and
mC4.zh. We concatenate all the unin-
tentional bilingual data together with their
nearby context in documents to form input
sequences of fixed length. More details could
be found in Appendix A.

4 METHODOLOGY TO QUANTIFY TRANSLATION CAPABILITY

To quantify and analyze the contribution of unintentional bilingual data, Briakou et al. (2023) pri-
marily extract sentence alignment instances from the PaLM pre-training corpus, convert them into
translation pairs (x, y), thereby train an external sequence-to-sequence NMT model and draw com-
parison with another NMT model trained with official WMT parallel data to verify the effectiveness
of sentence alignment data. Unfortunately, the strategy is not applicable when investigating the im-
pact of other types of unintentional bilingualism since we can hardly convert word alignment data
or code-switching data into translation pairs (x, y) to train an external NMT system.

Key Idea Alternatively, we do not train an external NMT model but directly train an LLM on
different data sources and evaluate their performances as follows:

1. Train an LLM on our collected X data. X is one of three types of unintentional bilingualism, i.e.,
sentence alignment (SA), word alignment (WA), and code-switching (CS).
2. Train another LLM on a X-rand dataset as a comparison to X. X-rand data is randomly sam-
pled from the original C4.en and C4.zh with the same number of examples as X. Note that it is
contaminated with unintentional bilingualism and contains SA, WA and CS as shown in Figure 1.
3. Compare different LLMs (X vs. X-rand) with various metrics to measure their translation quality.

Accordingly, it can be inferred that: 1) if the LLM trained on X data performs better than that on X-
rand data, then X contributes to LLM’s translation capability; otherwise, X may have little influence
on translation ability. 2) if the LLM trained on X1 performs better than the models trained on X2,
then we can conclude that X1 contributes more to LLM’s translation capability than X2 (X1 or X2

represents one of SA, WA or CS) and vice versa.

Implementation However, a naive implementation of the above strategy is rather resource-
intensive and infeasible in practice, as it involves the pre-training of multiple LLMs corresponding
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to various data types. To put it into practice, we employ two surrogate methods that are more compu-
tationally efficient. The first approach, dubbed post-training, involves the continued training of the
LLM under various data configurations based on their released checkpoints. The second approach,
referred to as pre-training, is to pre-train a smaller LM with random initialization which serves as
a simulation of training large language models from scratch. More implementation details can be
found in Appendix C.

Metrics Since n-gram metrics like BLEU (Papineni et al., 2002) are known to underestimate the
performance of large language models (Garcı́a et al., 2023), we mainly use COMET (Rei et al.,
2020) and BLEURT (Sellam et al., 2020) to measure translation performance following Zhang et al.
(2023a). Besides, we obtain a fine-grained and explainable evaluation of the translation performance
employing InstructScore (Xu et al., 2023c;b), a compact yet competitive metric closely matching
COMET in translation evaluation. Unfortunately, for the pre-trained smaller language models, their
translation capability is not strong enough to yield readable translations through decoding, as evi-
denced in § 5.3 and it would be meaningless to measure the quality of these translations in terms
of COMET and BLEURT. Instead, for evaluating these pre-trained models, we use a metric that is
independent of decoding, i.e., perplexity for the conditional distribution of reference translation y
on the source x to measure their translation ability.

5 WHY LLMS CAN TRANSLATE? AN EMPIRICAL ANALYSIS

5.1 EXPERIMENT SETUP

Dataset If not otherwise specified, we use the unintentional bilingual data and purified monolin-
gual data (i.e., excluding SA, WA and CS) from mC4.en and mC4.zh to perform the experiments,
and their statistics are shown in Table 3. We use WMT21 news translation task (Akhbardeh et al.,
2021) and the FLORES-200 (team et al., 2022) as our evaluation benchmarks, with their statistics
presented in Table 2.

Language Model In this study, we mainly focus on decoder-only multilingual LLM (Lin et al.,
2022; Scao et al., 2022; Wei et al., 2023) that is not explicitly trained on parallel corpus and choose
BLOOM (Scao et al., 2022) to perform our experiments for its diverse language category (45 natural
languages and programme codes) and public availability.

Prompt Given a test case (xtest, ytest), we randomly sample n in-context translation examples
(x1, y1), (x2, y2), . . . , (xn, yn) from the example pool (Table 2), and then insert into the following
template borrowed from Garcı́a et al. (2023) :

{source language} : {x1}
{target language} : {y1}

· · ·
{source language} : {xn}
{target language} : {yn}
{source language} : {xtest}
{target language} :

where source language and target language are the names of source and target languages.

5.2 POST-TRAINING EXPERIMENT ON BILINGUALISM

We first consider post-training BLOOM-7.1b and the experiment results on WMT21 are displayed
in Table 4. As shown in the table, both sentence alignment data and word alignment data contribute
to the translation ability, as they significantly outperform their X-rand counterparts in general. No-
tably, the overall performance of post-trained models is akin to the original BLOOM-7.1b model,
which may be attributed to the marginal influence of post-training data in light of the pre-existing
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ZH-EN EN-ZH

3-shot 5-shot 3-shot 5-shot

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

BLOOM-7.1b 59.58 37.21 60.38 38.01 79.84 57.87 80.34 58.58

SA 62.05⋆ 41.24⋆ 61.79⋆ 40.47⋆ 79.77 58.32⋆ 80.18 58.64
SA-rand 59.13 37.60 59.28 37.73 79.47 57.48 79.99 58.33

WA 58.36⋆ 36.34⋆ 58.15⋆ 35.75⋆ 79.59 57.61 80.11⋆ 58.46
WA-rand 56.21 32.91 56.51 33.32 79.48 57.42 79.86 58.14

CS 60.00⋆ 38.59⋆ 59.54⋆ 37.82⋆ 78.59 56.63 79.48 57.53
CS-rand 56.64 33.39 57.50 34.44 79.20 57.34 80.24 58.30

Table 4: Translation performance for post-training BLOOM-7.1b. CS = code-switching, WA = word
alignment, SA = sentence alignment. Numbers marked with asterisk are significant improvements
(t-test, p < 0.05) compared with the second-best model in the same block.

ZH-EN EN-ZH

3-shot 5-shot 3-shot 5-shot

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

BLOOM-560m 53.62 34.00 54.55 35.14 66.84 43.23 67.88 44.40

SA 61.55⋆ 43.14⋆ 61.57⋆ 43.04⋆ 69.27⋆ 46.32⋆ 69.98⋆ 47.14⋆

SA-rand 54.87 36.41 55.26 36.60 61.80 38.58 63.71 40.33

WA 60.99⋆ 42.09⋆ 60.77⋆ 41.72⋆ 71.82⋆ 49.03⋆ 72.47⋆ 50.24⋆

WA-rand 58.47 37.83 57.47 36.39 67.55 43.44 68.23 44.27

CS 59.02⋆ 39.66⋆ 59.22⋆ 39.90⋆ 68.24 45.41 69.35 46.60⋆
CS-rand 58.43 38.56 57.95 37.49 68.53 44.70 69.26 45.27

Table 5: Translation performance for post-training smaller-scale LLM (BLOOM-560m). CS = code-
switching, WA = word alignment, SA = sentence alignment. Numbers marked with asterisk are
significant improvements (t-test, p < 0.05) compared with the second best model in the same block.

translation capabilities possessed by the original BLOOM-7.1b.2 Therefore, for BLOOM-7.1b, the
comparison should be limited to X and X-rand counterparts as the performance of post-training
models is dominated by the original BLOOM-7.1b. In addition, 5-shot performance is usually better
than 3-shot ones in general, which echoes prior findings (Zhang et al., 2023a) that more in-context
examples usually help.

Therefore, we conduct similar post-training experiments on top of a smaller LLM (i.e., BLOOM-
560m). Table 5 summarizes the experiment results. From this table, we can observe that both SA
and WA significantly outperform their X-rand counterparts by a large margin in all cases, demon-
strating that both SA and WA substantially contribute to LLM’s translation ability. Notably, to our
surprise, we find the effect of word alignment data is comparable or even superior to that of sentence
alignment. We gauge one possible reason is that the number of WA examples contained in the pre-
training corpus greatly exceeds the number of SA examples, as shown in Table 3. This unexpected
discovery can further be used to elucidate an important phenomenon wherein the LLM’s translation
capability persists when sentence-level bilingualism is excluded from the training corpus — an ob-
servation previously noted in (Briakou et al., 2023) but lacking a clear explanation. In addition, we
also find that CS outperforms CS-rand by a modest margin. This fact indicates that code-switching
data imparts weak translation knowledge to LLMs.

5.3 PRE-TRAINING EXPERIMENT ON BILINGUALISM

Aside from the post-training experiment, we pre-train a self-implemented BLOOM-560m from
scratch with our collected data as the simulation of training LLM. Owing to the constraints of our
computational resources, we are regrettably unable to train a fully-converged BLOOM-560m3 but
alternatively train for a fixed number of updates, resulting in our self-implemented pre-trained mod-

2We present the results of the original BLOOM-7.1b only for reference but not for a basic baseline to
compare since post-training may incur domain shift or hyper-parameter mismatching and thus lead to inferior
performance than the original BLOOM-7.1b.

3Training a BLOOM-560m necessitates 92.61 days on 32 A100 GPUs.
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ZH-EN EN-ZH

target 1-shot 3-shot 5-shot target 1-shot 3-shot 5-shot

SA 149.09 117.69 121.74 123.09 1303.59 523.11⋆ 525.32⋆ 527.93⋆

SA-rand 85.50 110.85 109.13 109.00 – – – –

WA 115.72 80.58⋆ 81.21⋆ 81.30⋆ 346.65 216.33⋆ 212.53⋆ 212.10⋆

WA-rand 130.63 154.89 151.66 150.60 489.26 375.24 363.67 363.34

CS 138.36 129.82 131.35 132.37 343.39 270.67⋆ 268.45 273.18
CS-rand 91.34 112.20 109.21 108.21 351.53 281.94 269.61 266.18

Table 7: Translation performance for pre-training smaller-scale LLM (BLOOM-560m) in terms
of perplexity. CS = code-switching, WA = word alignment, SA = sentence alignment. Numbers
marked with an asterisk are significant improvements (t-test, p < 0.05) compared with the second-
best model in the same block; The Numbers underlined are smaller translation perplexity than target
language modeling perplexity. “–” denotes the number is above 2× 103.

els being incapable of producing meaningful translations upon decoding. As is shown in Table 6,
the majority of pre-trained models under various data settings exhibit only near-random4 COMET
scores that are much lower than the numbers in Table 5, indicating the potential risk of drawing a
conclusion based solely on the comparison of the rather subpar translations upon decoding.

ZH-EN EN-ZH

COMET BLEURT COMET BLEURT

SA 38.07 18.47 32.54 5.16
SA-rand 23.96 8.48 24.19 2.82

WA 35.96 16.36 41.22 3.73
WA-rand 30.35 6.25 33.29 2.45

CS 39.40 18.71 37.10 6.39
CS-rand 37.45 17.63 37.91 6.49

random 36.15 3.54 31.18 0.73

Table 6: Very weak translation performance
of pre-training BLOOM-560m evaluated on
WMT21 with 5 in-context examples. The
near-random performance suggests the num-
bers might be noisy and thus unreliable.

Alternatively, we use bilingual perplexity with var-
ious numbers of examples (1-shot/3-shot/5-shot) to
measure their translation ability, which is obtained
by concatenating the ytest into the prompt outlined
in §5.1 and computing the perplexity on ytest. Apart
from that, we also present the monolingual perplex-
ity of target language modeling (the “target” column
in Table). In implementation, we solely input the
ytest into language models to compute its perplex-
ity. From the information theory perspective (Xu
et al., 2020), when bilingual perplexity is lower than
monolingual perplexity, the LLM encapsulates posi-
tive mutual information between two languages and
is able to employ information in source languages,
which can be interpreted as translation capacity to a
certain degree. Otherwise, it indicates that the lan-
guage model treats the source language as noise and
its translation capacity is too weak to be observed. 5

We can observe that the effect of word alignment data is clearly evidenced by the reduced bilingual
perplexity of WA in comparison to WA-rand. In the case of SA vs. SA-rand, SA-rand attains better
multilingual perplexity in ZH-EN yet fails at EN-ZH direction, possibly because of the imbalanced
proportion of Chinese data in sentence alignment (refer to Table 3). Notably, since the bilingual per-
plexity exceeds the monolingual ones, from the perspective of information theory we can conclude
that SA-rand does not exhibit a translation capacity. In contrast, SA, WA, and CS all achieve positive
mutual information, although CS does not outperform CS-rand in terms of multilingual perplexity.
In summary, both WA and SA contribute significantly to LLM’s translation capability, mirroring the
findings of the post-training experiments.

5.4 TRANSLATION CAPABILITY FROM PURE MONOLINGUAL DATA

So far we have verified the role of unintentional bilingualism in enhancing the LLM’s translation
capabilities. Inspired from Pires et al. (2019); Artetxe et al. (2020), we pose a further question: Does
the presence of unintentional bilingualism within the pre-training corpus constitute a prerequisite
for translation ability? In other words, after eliminating unintentional bilingualism, can the LLM

4The “random” in Table 6 refers to directly outputting a random shuffle of source sentences in the test set
as system hypothesis.

5Mathematically, if the perplexity of target language modeling p(y) if higher than the conditional perplexity
p(y | x), then the mutual information Ip = Hp(y)−Hp(y | x) is positive (Xu et al., 2020).
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# step ZH-EN EN-ZH

target 1-shot 3-shot 5-shot target 1-shot 3-shot 5-shot

4.5k 145.54 155.12 148.94 147.00 562.75 804.49 727.77 711.32
7.5k 114.55 141.42 132.69 129.77 450.33 517.05 477.31 511.61
10k 66.13 90.49 83.75 81.87 242.68 200.21 182.51 179.54

Table 8: The translation capacity (in terms of perplexity) on WMT21 for pre-training smaller-scale
LLM (BLOOM-560m) on purified monolingual data. The underlined numbers represent bilingual
perplexity values that are lower than the monolingual perplexity in the target language.

target 1-shot 3-shot 5-shot

Default 242.68 200.21 182.51 179.54

Sep Layer 241.83 304.03 290.31 288.03
Digit Substitution 410.69 734.54 512.70 432.36

Table 9: The translation capacity (in terms of perplexity) on WMT21 EN-ZH for pre-training
smaller-scale LLM (BLOOM-560m) on purified monolingual data.

acquire translation abilities simply by training on pure monolingual data in English and Chinese? To
answer the question, we pre-train BLOOM-560m from scratch exclusively using pure monolingual
data in English and Chinese. The experiment results are shown in Table 8.

We observe that the LLM exhibits positive mutual information on EN-ZH direction after training
for 10k steps, proving that LLM could acquire a slight translation signal through pure monolingual
data, though possibly conditioned on sufficient data and specific translation direction, which may
be interesting to most researchers. To account for the counter-intuitive translation ability from pure
monolingual corpora, we postulate two crucial factors: (1) some common tokens (e.g., digits and
symbols) shared across both languages, which are mapped to shared space and can act as anchor-
ing points to initially align their adjacent context and progressively extend to the entire semantic
space (Pires et al., 2019; Conneau et al., 2020b). Meanwhile, (2) the shared parameters in Trans-
former across two languages may enable the model to detect the language-universal structures,
thereby learning to align the representation of multiple languages with the help of anchor points, or
unintentional bilingualism in our scenario (Artetxe et al., 2020; Dufter & Schütze, 2020).

EN layer m

LM Head

EN layer 1 ZH layer 1

ZH layer m

EN ZH

… …

Embedding

EN layer 2 ZH layer 2

EN ZH

Figure 2: The model architecture of the Sep
Layer variant. The modules in blue and
yellow are exclusive for English and Chi-
nese, respectively. The modules in green are
shared modules of two languages.

To investigate the effect of shared tokens such as
digits and symbols, we experiment with a variant
Digit Substitution in which we substitute all dig-
its in pure monolingual corpora with correspond-
ing words in respective languages.6 The results are
shown in Table 9 and it becomes apparent that the
positive mutual information on EN-ZH direction dis-
appears, which primarily agrees with our hypothesis.

To verify the second factor regarding the impact
of parameter-sharing architecture, we conduct an
experiment comparing the performance of Default
BLOOM-560m architecture with a variant in which
the shared transformer layers are replaced with
language-specific ones, dubbed Sep Layer. To be
more specific, English data and Chinese data have
respective transformer blocks and shared word em-
bedding, as shown in Figure 2. The experiment re-
sults are shown in Table 9, substantiating the crucial
role of parameter-sharing between languages, as the
default variants exhibit significantly lower monolin-
gual perplexity.

6For example, we substitute “one” for “1” in English and “—” for “1” in Chinese.
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(b) Perplexity dynamics for BLOOM-7.1b

Figure 3: The perplexity dynamics of BLOOM model family on data size (training step) for both
X-EN and EN-X.

5.5 EFFECTS OF TRANSLATION CAPABILITY ON DATA SIZE

To better understand how the translation ability of LLMs emerged, we examine the influence of pre-
training data size utilizing the officially released intermediate checkpoints of the BLOOM-family
model. 7 The trend for BLOOM-560m and BLOOM-7.1b on multiple language pairs (English ↔
Chinese/Catalan/Panjabi/Igbo/Tswana) are shown in Figure 3. Please refer to Appendix D for our
rationale for choosing language pairs. From the figures, we can observe a similar trend:

1. The translation perplexity on a specific language is correlated to its makeup proportion in the pre-
training corpus. The LLM achieves a lower perplexity for high-resource languages (e.g., Chinese,
Catalan) compared to low-resource ones (e.g., Igbo, Tswana).
2. The translation ability experiences a surge at the early stage (approximately 1/6 of the whole
training process) of training but plateaus or gradually increases thereafter. Note that this cannot be
solely attributed to changes in learning rate since the warmup phase ends and the learning rate begins
to decay at around 1/1000 of the whole training process;
3. Overall, X-EN and EN-X exhibit a similar trend for any language X. Except for one or two
outliers, X-EN and EN-X usually surge, plateau, fluctuate, or decline in tandem, implying the two
translation directions X-EN and EN-X may constitute a duality relationship (He et al., 2016).
4. The dynamics of BLOOM-560m and BLOOM-7.1b (and other variants shown in Appendix D)
exhibit similar patterns and trends, despite the differing parameter scales. This implies that small-
sized PLMs might share the same underlying mechanisms as LLMs when learning to translate.
5. Translation into low-resource languages is noticeably worse than from low-resource languages
into English, showing how important target language modeling is in the estimation of translation
quality. With more English data, models are able to produce better English output whereas low-
resource language output is less polished.

6 CONCLUSION

Our study concentrates on the acquisition of translation capability in multilingual LLMs. To com-
prehend the origins of this capacity, we verify the presence of word alignment and code-switching
data in three mainstream multilingual corpora. Our experiments emphasize that the finer granular-
ity of unintentional bilingualism (i.e., word alignment data) yields a significant impact, which is
comparable to or surpasses the effect of sentence alignment data. The translation ability of LLM
still has room for improvement, particularly in low-resource languages (Robinson et al., 2023; Zhu
et al., 2023) where LLM usually lags behind supervised translation model (team et al., 2022). As a
possible remedy, our discoveries may inspire the research community in devising data augmentation
or supervised fine-tuning techniques to address this challenge, which would also be our future work.

7
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A MORE DATA COLLECTION DETAILS

Our experiments are conducted on the excavated data from the mC4 corpus (Xue et al., 2021). mC4
is a commonly used multilingual corpus, from which we randomly sample 192, 715, 980 English
documents and use all of 54, 542, 336 Chinese documents to collect three types of unintentional
bilingualism and “pure” monolingual English/Chinese corpora. Specifically,

1) To search for English fragments from Chinese documents, we first use the regular expression
[A-Za-z0-9 _\,\.\;\:\'\"\?\!\-#\&]*[a-zA-Z]{3,}[A-Za-z0-9 _\,\.\;\:\'\"\?\!\-#\&]*
to detect alphabetic-composed fragment. We use fasttext as our language detection tool. The
fragment recognized to be English by fasttext with a prediction score over 90 is sent to TranSmart
system8 for translation.

2) Next, we use sacrebleu9 (Post, 2018) to measure the similarity between the nearby context of the
English fragment and the obtained translation. The fragment and its nearby context10 are categorized
as sentence alignment (SA) if the fragment contains at least 5 words and the sacreBLEU score is
above 10%. Otherwise, it would be categorized as word alignment (WA) if the similarity is non-zero
or code-switching (CS) if it is zero.

3) The procedure is almost the same when it comes to detecting unintentional Chinese text from
English documents. The only difference is how we seek possible Chinese fragments. Specifically,
we search for character-composed fragments whose Unicode lies between \u4e00 and \u9fff, the
interval corresponding to CJK unified ideographs.

4) Analogously, to obtain “pure” monolingual English/Chinese corpus for experimental use,
we again use regular expressions to eliminate possible bilingual fragments from a “monolin-
gual” corpus to obtain its purified version. Specifically, we get rid of all the strings matched by
[A-Za-z0-9 _\,\.\;\:\'\"\?\!\-#\&]*[a-zA-Z]{3,}[A-Za-z0-9 _\,\.\;\:\'\"\?\!\-#\&]*
from Chinese corpus and all strings whose Unicode lies within \u2e80 and \u9fff11 from an
English corpus.

In our experiment, we first pre-process documents and group them into fixed-length sequences. In
other words, sequences are assembled by concatenating and/or splitting documents to the appropriate
length. Multiple short documents may compose only a single sequence, or a long document will be
cut into a few sequences. Different from Briakou et al. (2023), we do not add a special document-
boundary token.

A.1 DATA QUALITY CONTROL

EN ZH

sentence alignment 87% 90%
word alignment 91% 93%
code-switching 90% 92%

Table 10: The human evaluation on the
quality of our curated unintentional bilingual
data.

To check the quality of our collected unintentional
bilingual data, we recruited three human annota-
tors from our institute, each possessing a bachelor’s
degree and excelling in both languages. We ran-
domly sample 100 instances from the SA/WA/CS
data derived from the EN/ZH corpus and then in-
quire whether the presented texts align with the def-
initions of SA/WA/CS. The final decision is reached
based on the majority vote of the three annotators.
The annotators remain unaware of the origin of sen-
tences so as to eliminate potential bias. The human
evaluation results are shown in the Table 10.

8
https://transmart.qq.com/

9
https://github.com/mjpost/sacrebleu

10We define the nearby context or close proximity as the adjacent lines of the fragment.
11We expand the scope here including CJK strokes, CJK compatibility, CJK punctuation and so on to mitigate

false negatives.
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ZH-EN EN-ZH

3-shot 5-shot 3-shot 5-shot

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

SA(threshold=15.0) 60.76 42.33 60.64 42.21 69.08 46.51 69.69 47.15
SA(threshold=15.0)-rand 52.97 34.59 53.12 34.62 60.47 36.71 62.46 38.92

SA(threshold=12.5) 60.58 41.97 60.61 42.00 68.93 46.19 69.68 47.11
SA(threshold=12.5)-rand 50.55 37.73 50.59 34.01 59.89 37.19 62.27 39.40

Table 11: Translation performance for post-training smaller-scale LLM (BLOOM-560m) with dif-
ferent sentence alignment threshold. SA = sentence alignment.

zh-en en-zh

1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

BLOOM-560m 17.50 17.39 17.44 25.09 22.36 21.69

SA 15.02 14.87 14.87 23.37 22.31 22.26
SA-rand 17.38 17.36 17.36 37.22 31.73 30.83

CS 15.33 15.33 15.36 23.10 21.11 20.97
CS-rand 16.27 16.52 16.52 25.63 23.08 22.94

WA 11.37 11.50 11.62 18.51 17.63 17.60
WA-rand 16.52 16.66 16.65 25.64 22.81 22.64

Table 12: The perplexities on WMT21 after post-training BLOOM-560m with different data set-
tings. CS = code switch, WA = word alignment, SA = sentence alignment.

A.2 MORE ANALYSIS ON CLASSIFICATION THRESHOLD

To verify whether varying hyper-parameters for classifying sentence alignment yield different con-
clusions, we modify the similarity threshold for sentence alignment classification from 10.0 to 12.5
and 15.0 (measured in BLEU). Utilizing the updated sentence alignment thresholds, the experimen-
tal outcomes for post-training BLOOM-560m are displayed in Table 11.

As shown in the table, alterations to the threshold may impact specific translation performance
on WMT21, but not our overall conclusion. In essence, our findings remain robust under varying
similarity thresholds and are relatively unaffected by minor adjustments of the threshold.

A.3 TRAIN-TEST OVERLAP

ROOTS corpus (Laurençon et al., 2022a) is only partially publicly available so it would be infeasible
to accurately compute the overlap between the BLOOM pre-training data and the WMT21 test
set. Therefore, we randomly sample 50 cases from WMT21 EN-ZH and ZH-EN respectively and
approach the overlap proportion by manually searching similar passages in the pre-training corpus
with the ROOTS fuzzy match tool (Piktus et al., 2023). Following previous work (Vilar et al., 2022;
Chowdhery et al., 2022), we regard a test case as leaked if a sub-string of its target sentence with
a minimum length of 15 tokens is contained in top-10 search results returned by the ROOTS fuzzy
search tool. Through our analysis, the overlap proportion of both WMT21 EN-ZH and ZH-EN are
less than 2.0%.

B MORE EXPERIMENT RESULTS ON POST-TRAINING

We present the perplexity results for two post-training experiments (BLOOM-560m and BLOOM-
7.1b) in Table 12 and Table 13, respectively. From the tables, we could see the perplexity results are
consistent with those of BLEURT and COMET (Table 4 and Table 5), verifying that perplexity is an
acceptable proxy for measuring translation ability.

Besides, we employ InstructScore (Xu et al., 2023c) to have a fine-grained and explainable eval-
uation of translation performance. The experiment results on post-training BLOOM-560m and
BLOOM-7.1b are shown in Table 14 and Table 15 respectively.
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ZH-EN EN-ZH

1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

BLOOM-7.1b 6.65 6.84 6.86 9.64 9.38 9.34

SA 6.31 6.62 6.76 9.75 9.64 9.62
SA-rand 6.40 6.65 7.22 10.44 9.85 9.95

WA 6.29 6.69 6.80 9.39 9.25 9.25
WA-rand 6.81 7.02 7.06 9.80 9.58 9.56

CS 6.60 6.79 6.88 9.85 9.60 9.58
CS-rand 6.69 6.92 6.95 9.96 9.85 9.76

Table 13: The perplexities on WMT21 after post-training BLOOM-7.1b under different data set-
tings. CS = code switch, WA = word alignment, SA = sentence alignment.

ZH-EN EN-ZH

3-shot 5-shot 3-shot 5-shot

BLOOM-560m -9.16 -9.08 -11.51 -11.70

SA -9.01 -9.09 -11.95 -11.91
SA-rand -9.32 -9.32 -11.98 -12.12

WA -9.15 -9.24 -11.72 -11.66
WA-rand -9.87 -10.33 -11.78 -11.59

CS -9.25 -9.05 -11.74 -11.63
CS-rand -9.43 -9.74 -11.75 -11.75

Table 14: The InstructScore on WMT21 after post-training BLOOM-560m under different data
settings. CS = code switch, WA = word alignment, SA = sentence alignment.

ZH-EN EN-ZH

3-shot 5-shot 3-shot 5-shot

BLOOM-7.1b -9.88 -9.89 -10.51 -10.45

SA -9.64 -9.76 -9.55 -9.57
SA-rand -9.34 -9.27 -10.48 -10.45

WA -9.76 -9.76 -9.71 -9.61
WA-rand -10.30 -10.40 -10.73 -10.64

CS -9.87 -9.46 -9.21 -9.24
CS-rand -9.83 -9.82 -10.68 -10.60

Table 15: The InstructScore on WMT21 after post-training BLOOM-7.1b under different data set-
tings. CS = code switch, WA = word alignment, SA = sentence alignment.
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post-training (BLOOM-560m) pre-training (BLOOM-560m) post-training (BLOOM-7.1b)

Precision float16 float16 float16
Batch Size 256 512 128
Optimizer AdamW AdamW AdamW
Adam (β1, β2) (0.9,0.95) (0.9,0.95) (0.9, 0.95)
Learning Rate 1e-5 3e-4 1e-4
Sequence Length 1024 1024 1024
Warmup Step 0 500 0
Decay style cosine cosine cosine
Min. Learning Rate 0 0 0
Weight Decay 1e-1 1e-1 1e-1
Gradient clip 1.0 1.0 1.0
LoRA rank NA NA 8
LoRA α NA NA 16

Table 16: The hyper-parameters for post-training and pre-training.
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Figure 4: The perplexity dynamics of BLOOM model family on model size for both X-EN and
EN-X.

C MORE IMPLEMENTATION DETAILS

Our experiments are conducted on a cloud Linux server with Ubuntu 16.04 operating system. The
codes are written in Python 3.10 using the code from huggingface library12. The GPU type is Nvidia
Tesla V100 with 32GB GPU memory.

The detailed hyper-parameter settings for post-training and from-scratch training are shown in Ta-
ble 16. Note that for post-training of BLOOM-7.1b, without loss of generality, we use the LoRA (Hu
et al., 2022) as a parameter-efficient training technique rather than full-parameter training. We apply
the low-rank adaptation for the query, key, value and output projection matrices in the self-attention
module within every transformer layer. We train the model for one epoch for both post-training and
pre-training. To ensure a fair comparison, we maintain the size and language composition of X-rand
to be consistent with X. Specially, when preparing X-rand data, the sampling ratio between C4.en
and C4.zh is in alignment with the composition proportion shown in Table 3.

For prompting, we randomly sample in-context examples from the candidate pool. For decoding,
we use greedy search with a minimal generation length of 5. It is possible that with a more sophis-
ticated prompting and decoding algorithm we may get better results but the decoding algorithm or
prompting strategy is not the focus of this study.

12
https://huggingface.co/
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(a) Perplexity dynamics for BLOOM-1.1b
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(b) Perplexity dynamics for BLOOM-1.7b
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(c) Perplexity dynamics for BLOOM-3b

Figure 5: The perplexity dynamics of BLOOM model family on data size (training step) for both
X-EN and EN-X.

D MORE EXPERIMENTS RESULTS ON LEARNING DYNAMICS

As BLOOM models are trained on English (33%) and other 45 natural languages, we rank these lan-
guages according to their make-up proportion in ROOTS (Laurençon et al., 2022b) and thereby se-
lect 5 languages, namely Simplified Chinese (1st, 18%), Catalan (10th, 1.2%), Eastern Punjabi (19th,
0.1%), Igbo (28th, 0.001%) and Setswana (37th, 0.0001%) to perform to (X-EN) and from (EN-X)
English translation experiments on the FLORES-200 (team et al., 2022) benchmark. The effect of
data size (training steps) for BLOOM-560m and BLOOM-7.1b are shown in Figure 3a and Fig-
ure 3b respectively. Besides, we also track the learning dynamics of BLOOM-1.1b, BLOOM-1.7b
and BLOOM-3b, The results are shown in Figure 5. In addition, we plot the trend of translation
capacity (measured in multilingual perplexity) with the model size on Figure 4.

We can observe that the shape of the curve initially exhibits an obvious decline from 560m to 1.7b,
followed by a period of gradual tapering off. Notably, for low-resource languages (e.g., Igbo and
Setswana) which constitute a small portion of the training corpus, solely expanding the model size to
enhance their translation quality is a suboptimal approach. This strategy necessitates a considerably
larger model size but might only yield marginal returns, which echoes previous findings (Kaplan
et al., 2020; Kandpal et al., 2022) to a certain degree.
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