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ABSTRACT

Model decomposition in large language models has drawn much attention due
to its superiority and good interpretability, where activation-aware singular value
decomposition (SVD) can achieve competitive performance by mitigating recon-
struction errors brought by outliers in activation. However, the performance of the
state-of-the-art SVD-based LLM compression method is limited to the selection
of truncation positions. No work meticulously examines the details of this prob-
lem theoretically and empirically tests its correlation with model performance. To
fill the research gap, we propose an efficient method that can automatically select
truncation positions, namely AutoTrunc. In our work, we first analyze the corre-
lation between truncation positions and the model performance. Then, the model
layer importance is modeled based on the correlation, followed by mathematical
proof to illustrate how to reach and obtain the optimal truncation position config-
uration for different layer types. Extensive experiments are carried out to verify
our presumption and evaluate our proposed method. Our proposed AutoTrunc
outperforms the state-of-the-art SVD-based LLM compression method, with per-
plexity scores dropping by 24.65% and 38.63% at the compression ratio of 50% in
LLaMA-2-7B and LLaMA-2-13B, respectively. The code will be released upon
acceptance.

1 INTRODUCTION

The large language model has been proven to perform exceptionally in natural language processing
and related areas (Zhao et al., 2023). Despite the remarkable performance brought by billions of
model parameters (Kaplan et al., 2020), modern large language models (LLMs) have presented con-
siderable challenges to inference and deployment. It is necessary to reduce memory footprint during
the inference to facilitate LLM deployment and democratization. To achieve this goal, researchers
have proposed various model compression techniques (Miao et al., 2023), where model decomposi-
tion has recently drawn much attention due to its good interpretability. Despite some methods can
achieve competitive performance without post-training (Yu & Wu, 2023; Yuan et al., 2023), it is
still challenging to determine the truncation position for each layer. Selecting the most appropriate
truncation position plays a crucial part in model performance, where a configuration of poor quality
can lead to drastic performance degradation.

Many efforts have been devoted to this field and distinct methods are tried to address this prob-
lem. The most naive one is to adopt uniform truncation positions for all layers (Wang et al., 2024),
which ignores the discrepancy between distinct layers to pursue each component to get equally com-
pressed. Some propose to search for the best configuration in an iterative or adaptive manner (Hsu
et al., 2022; Yuan et al., 2023; Chavan et al., 2024). Still, the search process is time-consuming
since it involves expensive actual evaluation on the real-world dataset. Other methods leverage prior
knowledge provided by artificial metrics designed by experts to guide the determination of trunca-
tion positions (Yin et al., 2024). The works discussed above have drawbacks to different extents,
making it hard to reach a graceful balance between overhead and model quality. To the best of our
knowledge, there is no work dedicated to studying how to determine truncation positions for each
layer.
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Contributions To mitigate the research gap illustrated above, we conduct a comprehensive anal-
ysis of the truncation position selection problem in our work. First, we meticulously examined the
correlation between reconstruction error and inference quality through both theoretical and empiri-
cal methods. Then, we formalized the problem by formally defining it and mathematically proved
it to be an NP-hard problem. In order to obtain solutions of good quality at an acceptable time
expense, we first facilitated model performance estimation with learning-based layer importance
modeling and then we proposed a highly efficient method to search the truncation configuration that
is estimated to have the best model performance. In the end, we carried out comprehensive and ex-
tensive experiments to evaluate our proposed method AutoTrunc. To summarize, our contributions
are listed below.

• We facilitate model performance estimation with learning-based layer importance modeling.
The resulting scores of layer importance can be used with the layer’s reconstruction error to
effectively discriminate the model performance of different truncation configurations.

• We formalize the truncation position selection problem by formally defining it, and prove its
hardness by a reduction from the 0-1 Knapsack Problem.

• We propose AutoTrunc, an efficient method that can automatically select appropriate truncation
positions with only theoretical calculation, where we can prove that the resulting configurations
can reach the upper bound of the estimated performance.

• We conduct comprehensive and extensive experiments to evaluate AutoTrunc. The results
demonstrate the superiority of our proposed method, where the perplexity drops by 24.65%
and 38.63% under the compression ratio of 50% in LLaMA-2-7B and LLaMA-2-13B, respec-
tively.

2 TOWARDS THEORETICAL ESTIMATION ON MODEL PERFORMANCE

In this section, we give the preliminaries regarding the state-of-the-art SVD-based LLM compres-
sion technique SVD-LLM (Wang et al., 2024) and analyze the correlation between the truncation
position selection (TPS) and its resulting model performance with both theoretical analysis and em-
pirical experiments. In the end, we formalize the TPS problem by formally defining it.

2.1 PRELIMINARIES

The vanilla SVD method only focuses on the compression of pre-trained weights, whose compress
loss can be denoted as Equation (1). Existing research found it suffers from reconstruction errors
brought by outliers in activation (Yuan et al., 2023). To address this issue, activation-aware model
decomposition (Yuan et al., 2023; Yu & Wu, 2023) proposes to minimize the reconstruction error of
the activation instead of the pre-trained weights, whose compression loss now shifts to Equation (2)
from Equation (1).

L = ∥W − W′∥F , (1)

L = ∥WX − W′X∥F , (2)

where W is the pre-trained weight of a linear layer and W′ is its approximation, and X is the input.
∥ · ∥F denotes the Frobenius norm.

To improve the computing efficiency, Wang et al. (2024) propose to perform data whitening on the
activation through Cholesky decomposition to capture data distribution. The process is described as
follows. Let S be the result of Cholesky decomposition of the collected gram matrix XXT , it per-
forms singular value decomposition on WS instead of W, where compression loss, i.e., Equation (2),
has a similar characteristic as the vanilla SVD (Eckart & Young, 1936), i.e., its square equals to the
square sum of the truncated singular values (Theorem 1).

Theorem 1. Given an input X, a weight matrix W with its two dimensions m and n where m ≤ n,
and its singular value decomposition results from UΣVT =W. Let S be the Cholesky decomposition
of XXT . The compression loss of truncating the smallest singular values is L2 = ∥WX − W′X∥2F =

∥
∑k

i=m+1 σiuivTi S−1X∥2F =
∑k

i=m+1(σi)
2 and such truncating leads to the lowest loss.
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Figure 1: Unweighted (weighted) F (K) and their rankings on Llama-2-70B, where data are col-
lected through two different strategies under compression ratios ranging from 50% to 10%.

With the help of the closed-form solution of compression loss given in Theorem 1, we can define
a performance score by measuring its relative error to assess the performance of a reconstructed
linear layer l with its truncation position kl. The performance score of layer l is defined as f(kl; l)
in Equation (3).

f(kl; l) =

∑kl

i=1 σ
2
l,i∑ml

i=1 σ
2
l,i

, (3)

where σl,i denotes the i-th singular value in layer l, ml is the amount of singular values in layer l,
0 ≤ f(kl; l) ≤ 1, and 0 ≤ kl ≤ ml. A high f(kl; l) indicates layer l suffers few reconstruction
errors.

2.2 CORRELATION BETWEEN PERFORMANCE SCORES AND MODEL QUALITY

Intuitively, with the given dataset, if every linear layer has a small compression loss, the com-
pressed model will generally perform better. To this end, we treat the sum of all performance scores,
i.e., Equation (4), as a metric to theoretically estimate model performance after compression under
a certain truncation position configuration K.

F (K) =
∑

f(kl; l), where kl ∈ K and l ∈ L (4)

Perplexity is a widely used metric to evaluate model performance, and it is closely related to the
cross-entropy loss of the language model. The more likely it is for the language model to generate
sentences that appear in the test set, the less the resulting perplexity is. The value of performance
estimation F (K) thus should strongly correlate with the perplexity. To end this, we test the correla-
tion between the perplexity on Wikitext-2 (Merity et al., 2016) and F (K), with data collected from
two different strategies, the first of which is to compress all the layers uniformly, and the second is
adopting greedy search to search the optimal truncation positions according to Equation (4). Both
strategies are respectively applied to the model with all layers, w/o the first and last, w/o the first
two and last two layers. Additionally, the compression ratio is gradually increased from 10% to
50%, making 6 × 40 = 240 data points available in total. The results are shown in Figure 1(a) and
Figure 1(b).

Notably, the perplexity tends to decrease with the value F (K) increasing overall. However, consid-
ering samples from different sources, there is a conspicuous divergence in the perplexity as F (K)
decreases, and it is therefore unreliable to estimate model performance based on the value of F (K).
One intuitive explanation for this phenomenon is the lack of layer importance, where in LLMs some
layers are more important than others and the unweighted sum ignores this essential factor (Yin
et al., 2024; Gromov et al., 2024; Men et al., 2024). We thus conjecture that for each layer, there
is a factor representing its importance, which can make the weighted sum (also denoted as F (K))
of the performance scores and their importance factors able to estimate the model’s quality. With
effective layer importance factors, our defined F (K) can be a powerful tool to efficiently estimate
model performance, as illustrated in Figure 1(c) and Figure 1(d), where the divergence is signif-
icantly mitigated. The problem and solution regarding layer importance will be particularized in
§3.
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2.3 PROBLEM DEFINITION

Our vision of estimating the model performance by theoretical calculation can be divided into two
smaller problems. The first problem is how to define and find a coefficient for each layer that
can represent its importance so that their weighted sum (i.e., the value of F (K)) can be used to
discriminate the model performance. The second problem is determining the truncation position for
each layer, where the value of F (K) can reach maximal.

For the first problem, we notice the calculation of perplexity and the way we define performance
scores have a strong relationship, intuitively. However, since the LLM is essentially a black-box
model, it is impracticable to find layer importance where there is a strictly monotonic mapping
between its F (K) and the model’s perplexity. Therefore, we try to establish a strong correlation
between the value of F (K) and the model performance. The first problem thus can be formalized as
follows.

Definition 1. Layer Importance Fitting problem (LIF problem). For a large language model, given
its layers l ∈ L, for each layer l, the layer importance fitting needs to find its coefficient αl, making
their weighted sum with performance score, i.e., F (K) = αlf(kl; l), where kl ∈ K, has a strong
correlation with model’s performance.

With the given presumption (i.e., it is solvable for LIF problem), where each layer has a coefficient
that can represent its importance and their weighted sum can be leveraged to discriminate the model
performance, we formalize the truncation selection problem in SVD-based LLM compression as
follows.

Definition 2. Truncation Position Selection problem (TPS problem). For a large language model,
given its layers l ∈ L and their importance αl, layers’ corresponding performance score function
f(kl; l) under truncation position kl, and memory consumption function g(kl; l), the objective of
TPS is to determine the truncation position kl for each layer such that:

argmax
K

F (K) =
∑
l∈L

αlf(kl; l), where kl ∈ K

s.t.
∑
l∈L

g(kl; l) ≤ M

f(kl; l) ≥ f l
min

(5)

where M represents the constraint on memory usage, and f l
min denotes the user-defined lower-

bound constraint of layer l to avoid excessive compression of certain layers.

3 METHODOLOGY

For the LIF problem, even though there are many existing works whose proposed artificial metrics
are proven to be effective in measuring layers’ importance (Yin et al., 2024; Gromov et al., 2024;
Men et al., 2024), it is infeasible to employ these metrics straightforwardly. This is because the
correlation between F (K) and the model performance is not captured through the priori knowledge.
Adopting these artificial metrics will lead to the failure of performance estimation. Instead of em-
ploying the prior knowledge, we propose fitting layer importance with a learning-based method,
where the resulting layer importance scores can successfully establish a correlation between F (K)
and the model performance.

3.1 LEARNING-BASED LAYER IMPORTANCE MODELING

One intuitive idea for solving the LIF problem is regression. However, predicting the perplexity
is not our goal, and the linear regression can not fit highly complicated non-linear data, which
significantly undermines its feasibility in solving the LIF problem. Moreover, simply employing
linear regression can lead to negative values of the layer importance scores, which conflict with
existing practices. Notably, our goal is to establish a correlation between F (K) and the perplex-
ity so that F (K) can be used to guide us in selecting the best truncation position configuration for
model decomposition. Therefore, we do not need to seek high accuracy on the perplexity prediction,
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but rather, the accuracy of discriminating the model quality under different configurations. Conse-
quently, we choose to solve the LIF problem with a ranking model. The ranking model uses F (K)
as its scoring function, whose parameters are essentially the layer importance. Once the ranking
model is well trained, the F (K) can strongly correlate with the perplexity. To this end, we intro-
duce a listwise ranking method called LambdaRank (Burges et al., 2006) to learn to rank different
truncation position configurations.

LambdaRank is a listwise learning-to-rank method that can capture information existing in the
change of scores on metrics such as NDCG (Järvelin & Kekäläinen, 2002). Considering an or-
dered pair (i, j), where i has a higher relevant score, the loss function for the LambdaRank model
can be formulated as Equation (6).

Lij = log(1 + exp(si − sj)) · |∆Zij | (6)

where si is the score of item i given by the ranking model and |∆Zij | is the absolute value of the
change value of a certain metric (e.g., NDCG) if the two item’s position is swapped.

In our scenario, the ranking model is just a single-layer perceptron without an activation function,
i.e., F (K) =

∑
αlf(kl; l), where l ∈ K and αl > 0. The data used to train the ranking model

are collected following the same routine as described in §2.2, i.e., truncation configurations under
uniform compression and greedy search-based compression and their corresponding perplexity. In
each epoch, we randomly generate four sequences with a length of 60 out of a total of 240 pairs and
use these four sequences to train our ranking model. To prevent the importance score of the layer
from becoming extremely large, we clamp the α within a certain range, e.g., [0.1, 10]. The ranking
model is evaluated with NDCG@100 on our collected data. Additionally, we employ the early stop
strategy to select the best parameters as the layer importance to solve the TPS problem later. The
evaluation of the ranking model will be presented in §4.2.

3.2 OPTIMAL CONFIGURATION TOWARDS SUB-LAYERS IN LLMS

We can prove the TPS problem is an NP-hard problem by a reduction from the 0-1 Knapsack Prob-
lem (see Appendix §B). It means we cannot easily find the optimal truncation configuration for
the whole model at an acceptable time expense because of its vast solution space. However, when
focusing on a single type of layers in Transformer-based (Vaswani et al., 2017) LLMs, the opti-
mization challenge ceases to be NP-hard. This change in complexity is due to the uniformity in
the dimensions of their weight matrices, defined as m and n where m < n, making it practical to
pinpoint the optimal solution for different sub-layer types. In this context, we provide the upper
bound of performance scores for specific types of layers and particularize the method for obtaining
the corresponding solution.
Lemma 1. The upper bound of the performance score F (Ks) for a specific type s of layers Ls ⊆ L
in a large language model under memory usage constraint Ms is given by:

F (Ks) ≤
⌊M/βs⌋∑

i=1

Vs (7)

where βs = (m+n) signifies the memory parameter associated for layers of type s, Vs = {γlσ2
i,l|l ∈

Ls} represent the set of all values γlσ2
i,l for layers of type s, arranged in descending order.

Proof. According to Equation (3) and Equation (5), we can derive the following:

F (Ks) =
∑
l∈Ls

αlf(kl; l) =
∑
l∈Ls

αl∑m
i=1 σ

2
i,l

kl∑
i=1

σ2
i,l.

Let γl = αl/
∑m

i=1 σ
2
i,l, then:

F (Ks) =
∑
l∈Ls

kl∑
i=1

γlσ
2
i,l. (8)

Since we focus on a specific type of layers, all of which have weight matrices of identical dimensions
m and n (where m < n), we can determine the memory usage of layer l at its truncation point kl

5
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using the formula g(kl; l) = kl(m+n). Defining β = m+n and given the memory constraint Ms,
we arrive at the following conclusion:∑

l∈Ls

g(kl; l) =
∑
l∈Ls

βkl ≤ Ms ⇒
∑
l∈Ls

kl ≤
Ms

β
. (9)

By integrating Equation (8) with Equation (9), we deduce that, given the memory usage limit Ms,
no more than Ms/β singular values can be selected. Let Vs = {γlσ2

i,l|l ∈ Ls} represent the set
of all values γlσ2

i,l for layers of type s, arranged in descending order. Consequently, the maximum
value of F (Ks) is the sum of the top ⌊Ms/β⌋ values in the set Vs.

To prevent a certain layer from being excessively compressed, there is a user-defined lower bound
of f(kl; l) where f(kl; l) ≥ f l

min. From which we can obtain kmin
l for each sub-layer l ∈ Ls where

f(kmin
l , l) ≥ f l

min since we already know every singular values. Once kmin
l values have been selected

for each layer l ∈ Ls, meeting the user-defined lower bound for f(kl; l), the focus shifts to satisfying
the memory usage constraint. This scenario aligns with the problem described in Lemma 1, allowing
us to easily derive the following corollary.

Corollary 1. The upper bound of the performance score F (Ks) for a specific type s of layers
Ls ⊆ L in a large language model under Equation (5) is given by:

F (Ks) ≤ Fmin +

kleft∑
i=1

Vleft
s (10)

where Fmin =
∑

l∈Ls

∑kmin
l

i=1 γlσ
2
i,l represents the minimum performance score, set by the user-

defined lower limit of f(kl; l) where f(kl; l) ≥ f l
min. The term kleft = ⌊Ms/β⌋ −

∑
l ∈ Ls repre-

sents the number of selections left, and Vleft
s is the set of yet unselected values, sorted in descending

order, after choosing kmin
l values for each layer.

Algorithm 1 Pseudocode for reaching the
upper limit of F (Ks)

Input: f l
min, γl, σ2

l where l ∈ Ls

Input: Truncation budget B = ⌊Ms/β⌋
1: for l ∈ L do
2: tl ← f l

min // Initialize layer state, tl is
truncation position of layer l

3: B ← B − tl // Initialize budget state
4: end for
5: repeat
6: l← Select the layer that has the largest

γlσ
2
tl+1,l

7: tl ← tl + 1
8: B ← B − 1
9: until B = 0

Based on Corollary 1, identifying the solution that
corresponds to the maximum performance score is
straightforward. Initially, we choose kmin

l values for
each layer l ∈ Ls to satisfy the user-defined lower limit
of f(kl; l). Then, we iteratively select the largest value
γlσ

2
i,l until the memory usage surpasses the constraint

M. Upon selecting a value γlσ
2
i,l, the truncation po-

sition kl for the corresponding layer l is incremented
by 1. Consequently, this method of selecting trunca-
tion positions enables us to achieve the upper limit of
F (Ks). The whole process is described in Algorithm 1.

Although we can obtain the optimal configuration for
each layer type, it cannot guarantee that it is the opti-
mal configuration for the whole model. To this end, we
allocate the memory consumption budget to different
types of layers and find the optimal configuration for each layer type. Then, we traverse different ra-
tios of budget allocation to try to get the best truncation configuration overall, where the calculation
in different budget allocations can be conducted in a parallel manner for less time expense.

4 EXPERIMENTS

In this section, we carry out extensive experiments to evaluate our proposed method. First, we test
the commonsense reasoning and generation performance of the compressed model under different
compression ratios (§4.1). Secondly, we evaluate the effectiveness of our ranking model under
different compression ratios (§4.2). In the end, we conduct an in-depth analysis of module sensitivity
and budget allocation, and explore how the setting of f l

min affects the model performance (§4.3).
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Table 1: Zero-shot performance of top@1 accuracy on downstream task for compressed LLaMA-2-
7B/13B/70B models, where the score in Bold indicates the best result at the same compression ratio

Methods Ratio BoolQ PIQA WinoGrande HellaSwag ARC-E ARC-C OBQA Avg.

Dense-7B 0% 0.7777 0.7905 0.6938 0.7592 0.7449 0.4625 0.442 0.6672

SliceGPT
20%

0.3792 0.6126 0.5983 0.4428 0.4609 0.2841 0.306 0.4406
SVD-LLM 0.5468 0.6513 0.6243 0.5173 0.4722 0.2782 0.380 0.4957
Ours 0.6217 0.6839 0.6212 0.5492 0.5665 0.2944 0.386 0.5318

SliceGPT
30%

0.3783 0.5555 0.5446 0.3517 0.3906 0.2457 0.280 0.3923
SVD-LLM 0.5180 0.6001 0.5825 0.4185 0.4331 0.2543 0.340 0.4495
Ours 0.6031 0.6170 0.5754 0.4392 0.4402 0.2602 0.352 0.4696

Dense-13B 0% 0.8055 0.8041 0.7253 0.7941 0.7739 0.4915 0.456 0.6929

SliceGPT
20%

0.3786 0.6224 0.6354 0.4730 0.4659 0.3191 0.386 0.4686
SVD-LLM 0.7217 0.716 0.6843 0.5991 0.6212 0.3669 0.404 0.5876
Ours 0.7422 0.7203 0.6827 0.6153 0.6305 0.3746 0.406 0.5959

SliceGPT
30%

0.3783 0.5675 0.5770 0.3827 0.4087 0.2619 0.316 0.4132
SVD-LLM 0.6401 0.6556 0.6393 0.4800 0.5059 0.3003 0.376 0.5139
Ours 0.6606 0.6708 0.6440 0.5122 0.5156 0.2978 0.392 0.5276

Dense-70B 0% 0.8388 0.8275 0.7782 0.838 0.8072 0.5717 0.486 0.7353

SliceGPT
20%

0.4394 0.6801 0.7214 0.5716 0.6864 0.4394 0.436 0.5678
SVD-LLM 0.6422 0.7824 0.7664 0.7629 0.7912 0.5410 0.450 0.6766
Ours 0.6972 0.7960 0.7545 0.7760 0.7883 0.5461 0.454 0.6875

SliceGPT
30%

0.3783 0.6235 0.6701 0.4491 0.5404 0.3285 0.392 0.4831
SVD-LLM 0.6235 0.7448 0.7427 0.6735 0.7449 0.4957 0.420 0.6350
Ours 0.6306 0.7688 0.7561 0.7323 0.7590 0.4991 0.440 0.6551

Baselines We compare our proposed method with the state-of-the-art model decomposition
method SVD-LLM (Wang et al., 2024) and a structured pruning method SliceGPT (Ashkboos et al.,
2024) in commonsense reasoning tasks. Additionally, we also add ASVD (Yuan et al., 2023) and an
unstructured pruning method LLMPruner (Ma et al., 2023) as the baseline in the generation task.

Models and Datasets The model we adopted are from LLaMA-2 family (Touvron et al., 2023)
(LLaMA-2-7B, LLaMA-2-13B, LLaMA-2-70B). For a fair and reliable comparison, we evaluate
our proposed method on seven widely adopted commonsense reasoning datasets in a zero-shot man-
ner. Datasets are BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi
et al., 2019), HellaSwag (Zellers et al., 2019), ARC-easy/challenge (Clark et al., 2018), Open-
BookQA (Mihaylov et al., 2018) from publicly available benchmark suite called Language Model
Evaluation Harness framework (Gao et al., 2024). For the generation task, we adopted a common
high quality dataset WikiText-2(Merity et al., 2016) to measure the model’s perplexity.

Implementation Details The process of model decomposition is kept the same as SVD-LLM. For
the ranking model, we use AdamW (Loshchilov & Hutter, 2019) as our optimizer with parameters
clamping between 0.1 and 10. The number of data pairs collected to train our ranking model is
240, and we apply the early stop strategy to select the ranking model with the best NDCG@100
score in 1000 iterations. As for the memory usage budget allocation, we traverse the ratios for
MLP and Attention sublayer between 0.2 and 0.8 with 601 steps. Since there is no strict monotonic
correlation between F (K) and the perplexity, we evaluate the performance of truncation position
configurations whose F (K) is within the top-10. Additionally, to leverage NVIDIA hardware1, we
set the granularity of truncation to 16.

4.1 OVERALL PERFORMANCE

Commonsense Reasoning To evaluate the overall performance of our proposed method, we com-
pared the zero-shot performance on the seven downstream commonsense reasoning datasets with
top@1 accuracy, where the foundation models are compressed to different degrees and the results are

1https://docs.nvidia.com/cuda/cublas/index.html#tensor-core-usage
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Table 2: Perplexity(↓) of compressed methods
for LLaMA-2 family on WikiText-2.

Method Ratio LLaMA-2

7B 13B 70B

Dense 0% 5.11 4.57 3.12

LLM-Pruner

20%

10.55 9.67 -
SliceGPT 9.70 8.21 5.76

ASVD 9.38 6.33 -
SVD-LLM 8.07 6.18 4.34

AutoTrunc (Ours) 7.80 6.01 4.23
LLM-Pruner

30%

18.25 17.59 -
SliceGPT 15.42 12.68 8.09

ASVD 364.53 20.77 -
SVD-LLM 11.40 7.93 5.07

AutoTrunc (Ours) 10.72 7.42 5.00

20 30 40 50
Compression Ratio (%)

0

10
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40

50

60
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xi

ty

LLMPrun.
SliceGPT
ASVD
SVD-LLM
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Figure 2: Perplexity(↓) on WikiText2 under dif-
ferent compression ratios. on LLaMA-2-13B.

shown in Table 1. As shown, AutoTrunc consistently outperforms SVD-LLM as well as the struc-
tured pruning method SliceGPT in multiple downstream datasets. For LLaMA-2-7B, AutoTrunc
outperforms SVD-LLM 7.23% and 4.47% under 20% and 30% compression ratios, respectively.

Generation Quality We tested models’ perplexity scores under different compression ratios on
WikiText-2 to evaluate generation quality. The results are reported in Table 2. We also add an
unstructured pruning method called LLM-Pruner (Ma et al., 2023) as an additional baseline on
LLaMA-2-7B/13B. Our AutoTrunc outperforms SVD-LLM under the compression ratios of 20%
and 30% in different LLaMA-2 models. Furthermore, we increase the compression ratio up to 50%
for LLaMA-2-7B/13B and calculate the perplexity to see how our method performs under a high
compression ratio. The perplexity variation on LLaMA-2-13B is shown in Figure 2. When the
compression ratio is 50%, our AutoTrunc has the lowest perplexity, with 41.34 (vs. 54.86 by SVD-
LLM) on LLaMA-2-7B and 19.56 (vs. 31.87 by SVD-LLM) on LLaMA-2-13B. The perplexity
drops 24.65% and 38.63%, respectively.

4.2 PERFORMANCE OF RANKING MODEL

To verify our presumption (i.e., the LIF problem) and evaluate our ranking model, we traversed all
feasible solutions to explore the correlation between F (K) and perplexity. For the solution space,
we tried every possible budget allocation ratio between 20% and 80% at a step length of 0.1%. The
results are shown in Figure 3. Notably, Figure 3(a) and Figure 3(c) indicate a strong correlation
between F (K) and perplexity, where they share a similar pattern of variation when the budget al-
location ratio varies. As F (K) increases, the resulting perplexity decreases until F (K) reaches its
maximum and then declines where the perplexity drops to its minimum before deteriorating again.

Table 3: NDCG(↑) of the ordered list predicted by
our method under different compression ratios on
LLaMA-2-7B

Ratio 20% 30% 40% 50%

NDCG@10 0.915 0.960 0.999 0.996
NDCG@20 0.915 0.957 0.999 0.995
NDCG@30 0.916 0.959 0.998 0.997

We ranked all the results according to their
scores in F (K) in descending order and tested
their perplexity, where the results are shown in
Figure 3(b) and Figure 3(d). Although, theoret-
ically, there is no strictly monotonic correlation
between F (K) and the perplexity, it is clear that
our learned layer importance scores are proved
to be effective where F (K) can discriminate the
performance of models after decomposition. To
evaluate effectiveness with quantitative metrics,
we calculate the NDCG score of the ordered list predicted by our method and the results are reported
in Table 3, where high NDCG scores indicate our method can easily find those configurations with
similarly low perplexity scores.
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Figure 3: The variation and correlation between values of F (K) and perplexity(↓) on LLaMA-2-7B,
where (a) and (b) are for the 50% compression ratio, (c) and (d) are for the 40%.

4.3 IN-DEPTH ANALYSIS

Layer Sensitivity Our proposed method finds truncation position configurations for different lay-
ers following the guidance presented in §3.2. During the process, AutoTrunc iteratively increases
truncation positions that lead to the maximal increment of F (K). To explore the layer’s sensitivity,
we tried different f l

min values from 0.85 to 0.95 to see the variation of klmin, where k is normalized
to [0, 1] and 1 denotes the maximal profitable truncation position. The results are visualized in
Figure 4. Notably, it is clear that there is a significant difference between different modules. For
instance, “q proj” and “k proj” have much smaller klmin compared with other modules even under a
high f l

min value, and the rapid change on klmin in their deeper layers suggests these layers less sen-
sitive than their shallow layers. A similar phenomenon can be witnessed in the shallow layers of
“gate proj”. As for most layers in “v proj”, “o proj”, and “down proj”, a little change of klmin under
a certain ∆f l

min suggests their sensitivity to alteration in the truncation position. Sensitive modules
and layers are more likely to consume the budget since they can bring maximal increment to F (K).

Budget Allocation To verify our analysis, we tested how the budget is allocated to different layers
and their corresponding contribution to ∆F (K). Additionally, we also recorded how different layers
make up the final proportion of F (K) and parameters. The results are reported in Table 4, where
we can notice that about 75% budget is allocated to “q proj”, “k proj”, and “gate proj”. About
85% contribution to ∆F (K) is attributed to these three layers, ending up with the highest three
proportions of F (K). The resulting performance (PPL 41.34 vs. 54.86 by SVD-LLM) demonstrates
the effectiveness of budget allocation, indicating it can automatically find the appropriate truncation
positions. Besides, we also tested model performance on commonsense reasoning tasks under high
compression ratios to demonstrate the superiority of AutoTrunc, where the results are reported in
Table 5.

6 10 14 18 22 26
Layer Index

(a)

q
k
v
o

gate
up

down

f l
min=0.85

6 10 14 18 22 26
Layer Index

(b)

f l
min=0.9

6 10 14 18 22 26
Layer Index

(c)

f l
min=0.925

6 10 14 18 22 26
Layer Index

(d)

f l
min=0.95

6 10 14 18 22 26 30 34
Layer Index

(e)

q
k
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o
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Layer Index

(f)
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Layer Index

(g)

f l
min=0.925
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Layer Index
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Figure 4: klmin under different f l
min settings in LLaMA-2-7B (a-d) and LLaMA-2-13B (e-h). Given

a fixed ∆f l
min, a drastic change in klmin indicates that the layer l is sensitive to compression.
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Table 4: Proportion of budget, F (K), and model
parameters in LLaMA-2-7B under 50% compres-
sion ratio.

Layers ∆F (K) Budget F (K) Params (Init) Params

q 0.267 0.190 0.188 0.030 0.065

k 0.309 0.190 0.197 0.062 0.062

v 0.054 0.089 0.085 0.099 0.097

o 0.041 0.086 0.092 0.085 0.085

gate 0.280 0.361 0.184 0.168 0.209

up 0.023 0.054 0.122 0.251 0.208

down 0.026 0.031 0.133 0.341 0.274

Table 5: Comparison of commonsense rea-
soning performance on LLaMA-2 models un-
der different compression ratios and methods

Models Methods Ratio
30% 40% 50%

7B
ASVD 0.373 0.352 0.347

SVD-LLM 0.450 0.387 0.362
AutoTrunc 0.470 0.404 0.370

13B
ASVD 0.525 0.393 0.347

SVD-LLM 0.514 0.435 0.380
AutoTrunc 0.528 0.460 0.392

0.8 0.85 0.9
f l
min where l < 16

0.8

0.83

0.86

fl m
in

 w
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 l
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50

100

Pe
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Figure 5: Variation of the perplexity(↓)
on LLaMA-2-7B under 50% compres-
sion ratios with different f l

min settings.

Impact of the user-defined lower bound f l
min We con-

ducted grid search on LLaMA-2-7B under 50% com-
pression ratio to explore the impact of f l

min. Motivated
by Gromov et al. (2024), we grouped the whole model
into two parts: the first/last 16 layers, where the f l

min ≥
0.8, and shallow layers is not less than the deeper layers.
The results are shown in Figure 5, where an appropriate
setting on f l

min can prevent some layers from being ex-
cessively compressed, resulting in a better performance.
Subtle control on f l

min will be deferred to future works.

5 RELATED WORKS

Large Language Model Compression LLM compression has drawn much attention for its cru-
cial part in LLM deployment. According to the granularity and methodology, they can be roughly
categorized into the following types: unstructured-pruning (Ma et al., 2023; Yin et al., 2024; Dong
et al., 2024); Quantization (Frantar et al.); structured-pruning (Ashkboos et al., 2024; Men et al.,
2024); knowledge distillation (Du et al., 2024); model decomposition (Yuan et al., 2023; Wang
et al., 2024; Yu & Wu, 2023). Different types of LLM compression techniques have their own
strength and drawbacks. They are orthogonal and can be applied at the same time. There is no par-
ticular technique that can significantly outperform others in terms of overhead, efficiency, generation
quality, and performance on the downstream tasks at the same time (Miao et al., 2023).

Model Decomposition for LLMs Vanilla SVD suffers from reconstruction errors brought by out-
liers. To mitigate the error, researchers have proposed different methods to capture data distribution
in the input and output. Yu & Wu (2023) noticed low-rank structure does not exist in the pre-
trained weights but their features, proposing to approximate the features (WX) instead of the weight
(X) with Atomic Feature Mimicking (AFM). Activation-aware singular value decomposition (Yuan
et al., 2023) and SVD-LLM (Wang et al., 2024) employ the same idea, using improved SVD to
compress LLMs. To summarize, all advanced model decomposition methods realize the problem
incurred by outliers and try to solve it, i.e., AFM-based (Yu & Wu, 2023; Kaushal et al., 2023; Ji
et al., 2024; Chavan et al., 2024), improved SVD (Yuan et al., 2023; Chavan et al., 2024), mask-
ing (Li et al., 2023), and fine-grained decomposition (Liu et al., 2024).

6 CONCLUSION

In this paper, we propose AutoTrunc, an efficient method to address the truncation position selection
problem with only theoretical calculation. It facilitates model performance estimation with learning-
based layer importance modeling, followed by searching the truncation configurations that are most
likely to have the best model performance. Extensive experiments are carried out to evaluate our
proposed method AutoTrunc. We have demonstrated the superiority of AutoTrunc under different
compression ratios on 8 datasets and 3 models from the LLaMA-2 family. Compared with the
state-of-the-art method, the perplexity on WikiText-2 by 24.65% and 38.63% in LLaMA-2-7B and
LLaMA-2-13B, under 50% compression ratio drops, respectively.
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APPENDIX

This appendix aims to provide additional information and in-depth analysis to supplement the main
content, which mainly includes three parts: further discussion, hardness of truncation position se-
lection problem, and supplementary materials. In the first section, we discuss the advantages and
limitations of AutoTrunc, as well as our insight on the implications of AutoTrunc. Then, we provide
details regarding the hardness of the truncation position selection problem in the second part, and
more experiment results in the last section.

A FURTHER DISCUSSION

A.1 ADVANTAGES AND LIMITATIONS

The major advantage of AutoTrunc is it can select appropriate truncation positions for each layer au-
tomatically, where the whole process is highly efficient since it only requires theoretical calculation.
However, the superiority of AutoTrunc largely depends on the performance of the ranking model,
i.e., F (K) in the main content. A ranking model with high accuracy in discriminating truncation
configurations helps improve the quality of the derived configuration.

A.2 FEASIBILITY OF GENERALIZATION

Our proposed AutoTrunc can be generalized and integrated into other model decomposition-based
LLM compression methods as long as they satisfy the following three conditions: (1) It can define
a function f(kl; l) to estimate compressed layer l’s performance based on its truncation position kl;
(2) It collects enough data pairs that include values of f(kl; l) for each layer of the model and its
resulting perplexity score. With these two key component, we can successfully build a metric that
strongly correlated with the model performance.

B HARDNESS OF TRUNCATION POSITION SELECTION PROBLEM (TPS)

We argue for the use of an approximate algorithm to address the problem of selecting truncation
positions. We introduce the concept of the Truncation Position Verification Problem (TPV), which
is a more constrained version of the broader Truncation Position Selection Problem. We demonstrate
that even this limited version remains computationally challenging.
Definition 3. Truncation Position Verification Problem (TPV). Given the layers l ∈ L of a large
language model, we have performance parameter γl and memory consumption parameter βl. The
objective of this problem is to find the truncation position kl for each layer such that:

F (K) =
∑
l∈L

(γl

kl∑
i=1

σ2
i,l) ≥ F , where kl ∈ K,

s.t.
∑
l∈L

βlkl ≤ M, kl ≥ kmin,

(11)

where σl,i denotes the i-th singular value in layer l, M represents the constraint on memory usage,
F is the desired performance, and kmin is the minimum threshold for truncation positions across all
layers, ensuring that no layer is compressed too aggressively.
Theorem 2. The problem of TPS is NP-hard.

Proof. We will prove the theorem by showing that even a simpler problem of verifying whether
F (K) is larger than a given value (i.e.,, TPV problem) is NP-complete, which is proved by a reduc-
tion from the 0-1 Knapsack Problem.

It is obvious that TPV problem belongs to NP. It simply requires calculating the performance func-
tion F (K) and verifying if the performance meets the specified target, while also ensuring that the
total memory usage and each truncation position satisfy the constraints. This can be done in poly-
nomial time. Therefore, TPV problem belongs to NP.
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To show that TPV problem is NP-complete, we will reduce it from the 0-1 Knapsack Problem.
Consider an arbitrary instance of the 0-1 Knapsack Problem, which includes n binary variables
{x1, x2, ..., xn}, where w[j] and p[j] represent the weight and profit of item xj , respectively. The
backpack can hold items up to a total weight of W . The objective is to find whether or not there
exists a “solution” with profit no less than P , where P is the desired profit. Then, we construct a
TPV corresponding to the 0-1 Knapsack Problem instance as follows:

• The model is composed of n layers, with each layer featuring two possible truncation po-
sitions: 0 or 1, meaning kl ∈ 0, 1. The minimum truncation position, kmin, is set to 0.

• For the lth layer, βl = w[l]. And if the truncation position kl = 1, then γlσ
2
1,l = p[l].

• The constraint on memory usage is equivalent to the knapsack’s capacity, and the target
performance matches the desired profit, i.e.,, M = W and F = P .

Hence, the TPV problem instance is defined as identifying the truncation position kl for each layer
to satisfy the following conditions:

n∑
l=1

(klp[l]) ≥ P , where kl ∈ {0, 1},

s.t.
∑
l∈L

w[l]kl ≤ W.

(12)

Then, we demonstrate that a solution to the 0-1 Knapsack Problem instance exists if and only if a
solution to the TPV problem instance exists. It is clear that if a solution for the 0-1 Knapsack Prob-
lem exists—where items are chosen (corresponding to selecting truncation positions kl) to achieve
a profit of at least P without surpassing the knapsack’s capacity W—then this selection approach
also addresses the TPV problem instance as outlined in Equation (12).

Conversely, suppose there is a solution for the TPV problem. In that case, it can be adapted to solve
the 0-1 Knapsack Problem by aligning the chosen truncation positions with the items selected for the
knapsack. This alignment is possible because the solution to the TPV problem ensures a knapsack
profit of at least P while keeping the total weight under W . This implies that solving the Truncation
Position Verification Problem (TPV) is at least as hard as solving the 0-1 Knapsack Problem, which
is known to be NP-complete.

C SUPPLEMENTARY MATERIALS

C.1 INFERENCE THROUGHPUT

Figure 6: Throughput (tokens/sec) under differ-
ent compression ratios and batch size.

Batch size 0% 20% 40% 60%
256 2933 2989 3116 3277
128 2521 2568 2705 2862
64 1954 1959 2026 2118

We tested the throughput under different com-
pression ratios and batch size on a single GPU
of A800 and CPU of Intel Xeon 8358P. The se-
quence length has been fixed to 32, the number of
generated tokens to 128, and the decoding strat-
egy is greedy sampling. The results are reported
in Table 6, where we did not compress KV cache,
and the speedup is thus not significant as illus-
trated in SVD-LLM and ASVD.

C.2 COMMONSENSE REASONING PERFORMANCE

We provide detailed experiment results regarding Table 5. As we already give the zero-shot perfor-
mance results under 30% compression ratio in Table 1, we only reported results under 40% and 50%
compression ratios in Table 6.
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Table 6: Zero-shot performance of top@1 accuracy on downstream task for compressed LLaMA-2-
7B/13B models, where the score in Bold indicates the best result at the same compression ratio

Methods Ratio BoolQ PIQA WinoGrande HellaSwag ARC-E ARC-C OBQA Avg.

Dense-7B 0% 0.7777 0.7905 0.6938 0.7592 0.7449 0.4625 0.442 0.6672

ASVD
40%

0.4434 0.5016 0.4807 0.2554 0.2517 0.2773 0.254 0.3520
SVD-LLM 0.3786 0.5555 0.5478 0.3408 0.3620 0.2287 0.292 0.3865
Ours 0.3939 0.5680 0.5533 0.3632 0.3691 0.2517 0.326 0.4036

ASVD
50%

0.3813 0.4995 0.4878 0.2569 0.2622 0.2722 0.270 0.3471
SVD-LLM 0.3783 0.5305 0.5225 0.2989 0.3064 0.2363 0.260 0.3618
Ours 0.3783 0.5288 0.5375 0.3022 0.3089 0.2312 0.300 0.3696

Dense-13B 0% 0.8055 0.8041 0.7253 0.7941 0.7739 0.4915 0.456 0.6929

ASVD
40%

0.5355 0.5566 0.5383 0.3067 0.3165 0.2261 0.274 0.3934
SVD-LLM 0.4119 0.5990 0.6046 0.3976 0.4087 0.2739 0.348 0.4348
Ours 0.5327 0.6094 0.6077 0.4192 0.4331 0.2722 0.348 0.4603

ASVD
50%

0.3786 0.5120 0.4893 0.2623 0.2748 0.2526 0.260 0.3471
SVD-LLM 0.3783 0.5381 0.5391 0.3232 0.3401 0.2304 0.308 0.3796
Ours 0.3826 0.5501 0.562 0.3405 0.3527 0.2389 0.314 0.3915

C.3 DETAILS OF EXPERIMENTS ON USER-DEFINED f l
MIN

We here provide details of experiments regarding impacts of user-defined f l
min in §4.3. The infor-

mation related to the experiment settings and results are reported in Table 7. In this experiment, we
noticed the select configurations are clustered around the ratio of 0.6, whose density of distribution
is shown in Figure 7.

Table 7: Experiment details

Argument Values

Search Space1 [0.3, 0.7]
Steps2 81

#Feasible Configs 1064
#Selected Top-1 Config 59

The Best Perplexity 41.33
The Worset Perplexity 109.08
1 The ratio of budget allocated to MLP.
2 The number of steps it needs to traverse

the search space.

0.56 0.58 0.60 0.62 0.64 0.66
Budget Allocated to MLP [0-1]
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Figure 7: Distribution of budget allocation ra-
tios in selected configurations
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