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Abstract
Predictive modeling often encounters significant challenges
in domains with limited data availability and quality. This is
particularly true in areas like healthcare, where collected fea-
tures may be weakly correlated with outcomes, and gathering
additional features is constrained by ethical considerations
or practical limitations. Traditional machine learning (ML)
models struggle to incorporate unobserved yet critical factors.
In this work, we introduce an effective approach to formulate
latent feature mining as text-to-text propositional logical rea-
soning. We propose FLAME (Faithful Latent FeAture Mining
for Predictive Model Enhancement), a framework that lever-
ages large language models (LLMs) to augment observed fea-
tures with latent features and enhance the predictive power of
ML models in downstream tasks. Our framework is generaliz-
able across various domains with necessary domain-specific
adaptation, as it is designed to incorporate contextual infor-
mation unique to each area, ensuring effective transfer to dif-
ferent areas facing similar data availability challenges. We
validate our framework with a case study using the MIMIC
data. Our results show that inferred latent features signifi-
cantly enhance the downstream classifier over 10%.

Introduction
Prediction plays a crucial role in decision-making across
many domains. While traditional machine learning (ML)
models are powerful, they are often constrained by the avail-
ability of observed data features. Contrary to the common
belief that we are in a “big data era,” this is not always the
case, especially in areas where decisions have profound im-
pacts on human lives. In areas like healthcare, data avail-
ability is often constrained, with ethical limitations further
restricting the features that can be collected and used (Lu,
Dou, and Nguyen 2021; Yuan et al. 2023). As a result, many
critical decisions must rely on a limited set of features, some
of which may have weak correlations with the prediction tar-
get. This presents significant challenges for achieving accu-
rate predictions.

To overcome the challenges posed by limited feature
availability and quality, latent feature mining is a com-
mon approach. However, traditional techniques face two key
limitations in domain-specific applications. First, inferring
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domain-specific latent features often requires contextual in-
formation beyond the available data, such as expert input,
public information, or crowd-sourcing. This information is
typically in natural language, which ML models like neural
networks struggle to process and encode into proper embed-
dings. Second, many latent feature mining techniques, such
as deep-learning based auto-encoders and the Expectation-
Maximization (EM) algorithm, lack interpretability. They
extract features in abstract mathematical formats that are dif-
ficult to explain in human terms. This is especially problem-
atic in high-stakes domains like healthcare or criminal jus-
tice, where explaining and justifying a model’s predictions
is crucial for building trust and ensuring ethical decision-
making. The black-box nature of these methods makes it
harder to gain confidence in the model’s outputs in these do-
mains.

Human experts can infer additional latent features that go
beyond the explicit data provided by drawing on their expe-
rience. For example, predicting a patient’s discharge desti-
nation is critical for optimizing hospital resource allocation
and planning appropriate post-acute care. Available data for
this prediction task typically includes basic demographics
(e.g., age and gender) and clinical information such as diag-
nosis codes and length of stay. However, factors like family
support systems, home/community environment, and finan-
cial resources also play a significant role in discharge loca-
tions. These social-economic factors, combined with stan-
dardized clinical data, can help to predict whether a pa-
tient is ready to be discharged home with sufficient sup-
port, or needs to be transferred to a skilled nursing facil-
ity. That said, collecting such social-economic data raises
privacy concerns and is often not systematically captured
in electronic health records. Instead, experienced healthcare
managers could rely on their understanding of these social
determinants of health to make informed discharge recom-
mendations. While effective, this human-based approach is
difficult to scale, as it relies on tacit human knowledge that
is hard to formalize into standardized processes. Addition-
ally, the human reasoning process is both time- and labor-
intensive, limiting its application to large populations.

Recent advancements in large language models (LLMs)
present a promising new avenue with their advanced rea-
soning capability (Brown et al. 2020; Ouyang et al. 2022;
Achiam et al. 2023). LLMs have potential to process and



generate information in ways that mimic human thought
processes (Ji et al. 2024). Building on this insight, we pro-
pose FLAME , a framework that leverages LLMs to augment
observed features with latent features and enhance the pre-
dictive power of ML models in downstream tasks like clas-
sification. FLAME offers two key advantages over traditional
latent feature mining methods: (1) it seamlessly integrates
contextual information provided in natural language, and
(2) by emulating human reasoning, it produces more in-
terpretable outputs, making it particularly valuable in high-
stakes domains requiring explainability. We summarize our
main contributions as follows.

1. We introduce a new approach that LLMs to formulate la-
tent feature mining as a reasoning task using text-to-text
propositional logic. This method effectively infers latent
features from observed data and provides significant im-
provements in downstream prediction accuracy and inter-
pretability over traditional techniques.

2. We develop a four-step versatile framework that inte-
grates domain-specific contextual information with min-
imal customization efforts. This framework is highly
adaptable across various domains, particularly those with
limited observed features and ethical constraints on data
collection.

3. We empirically validate our framework through a case
study. The results demonstrate that the extracted latent
features enhance the performance of predictive models
by over 10%.

Related Works
Data Augmentation versus Latent Feature Mining.
Data augmentation is a technique widely employed to
provide more data samples to improve the predictive power
of ML models (Van Dyk and Meng 2001). Generative
models such as Generative Adversarial Networks (GANs)
learn data patterns and generate synthetic data to augment
training sample sizes (Goodfellow et al. 2014; Kingma and
Welling 2013). In contrast, latent features are hidden char-
acteristics in a dataset that are not directly observed but can
be inferred from available data. Incorporating meaningful
latent features can enhance the performance of downstream
applications (Zhai and Peng 2016; Jiang et al. 2023).
Methods such EM and Variational Autoencoders (VAEs)
offer alternative techniques to infer latent features from
observed data. However, EM algorithms, while estimating
latent variable assignments and updating model parameters
to maximize data likelihood, often produce results that
are difficult to interpret and require strong parametric
assumptions. Similarly, VAEs use probabilistic approaches
to describe data distribution with latent variables, but the
learned mappings can also be hard to interpret. Another
related approach is dimension reduction such as Principal
Component Analysis, which reduces the size of the feature
space while preserving the most important information.
However, dimension reduction is less effective when the
input feature set is already limited.

We summarize a comparison in Table 1 to further
distinguish the difference between FLAME and existing ap-
proaches for enhancing predictive model from data/features
perspective.

Supervised Fine-tuning with Synthetic Training Data
Supervised Fine-tuning (SFT) is an effective method for
LLMs to reduce hallucinations and better align outputs with
real-world data and human preferences (Tonmoy et al. 2024;
Qiao et al. 2022; Hu et al. 2021). Synthetic data offers a low-
cost way to enhance LLM reasoning across domains (Liu
et al. 2024; Zelikman et al. 2022; Wang et al. 2022). In
this work, FLAME generates synthetic “rationales” in a self-
instruct fashion for the reasoning process to infer latent fea-
tures, followed by SFT to enhance alignment and reduce hal-
lucinations.

Note that we distinguish between augmenting the feature
space and augmenting training data. Our primary goal is
to enrich the feature space by inferring and adding latent
features to improve downstream predictions. As part of the
steps in FLAME to achieve this goal, we also augment train-
ing data with synthetic samples during the fine-tuning pro-
cess for LLMs.

The Problem Setting
In this section we formally describe our problem setting that
leverages latent features to enhance downstream tasks. The
downstream task we focus on is a multi-class classification
problem, but the framework can easily extend to other down-
stream prediction tasks such as regression problems.

In a standard multi-class classification prob-
lem setting, suppose we have a dataset D =
(x1, y1), (x2, y2), . . . , (xn, yn), where xi is a d-dimensional
vector representing the input features X ∈ X and
yi ∈ Y = {1, 2, . . . , C} denotes the corresponding class
label Y for individual i = 1, . . . , n. The goal is to learn
a classifier f : X → Y that accurately predicts the
class labels. Consider the following scenarios in which
f struggles to capture the relationship between X and
Y : (1) The number of input features X is small relative
to the complexity of the classification task. (2) When X
are weakly correlated with class labels Y , they may not
provide discriminating information to accurately predict the
corresponding class labels.

To address these challenges, we can use additional infor-
mative features to enhance the classifier’s ability to capture
the relationship between X and Y . Latent features can serve
such a purpose: Latent features, denoted as Z, represent un-
derlying attributes that are not directly observed within the
dataset but are correlated with both the observed features X
and the class labels Y . We use a function g with Z = g(X)
to denote the correlations between the latent features and the
observed features X . Latent features Z are correlated with
X and Y . One can learn the latent features from the original
features X and augment the features f(X,Z) to learn the
classifier Y .

While this approach seems beneficial intuitively, it is
important to note that adding more features is not always



Approach Additional Features
Creation Capability Interpretability Contextual Information

Integration Capability
Data Augmentation (GANs, VAEs) × × ×
Latent Feature Mining (EM Algorithm) ✓ × ×
Dimension Reduction ✓ × ×
FLAME ✓ ✓ ✓

Table 1: Comparison of FLAME and related methods: Unlike data augmentation, which increases sample size, FLAME expands
the feature space by training LLMs to infer latent variables from existing features. Compared to traditional latent feature mining
methods, FLAME mimics human expert reasoning and incorporates domain-specific context, offering improved interpretability.
Unlike dimension reduction methods, FLAME enriches the dataset by adding latent features that capture key aspects of the
underlying phenomena.

helpful if the extracted features are not meaningful and
introduce noise. In the following lemma, we show in a
simple logistic regression setting that while adding features
can reduce in-sample loss, it does not always reduce
out-of-sample loss if the added features are not informative.
We use the log-loss (the cross-entropy loss) of the logistics
regression for binary outcome Y ∈ {0, 1}. We denote the
optimal coefficients that minimize the in-sample log-loss
function as β∗ for the original features and β̃∗ for the
augmented features.

Lemma 1. The in-sample log-loss always follows
Lin(D̃, β̃∗) ≤ Lin(D,β∗). When the added features
are non-informative, there exist instances such that the
out-of-sample log-loss Lout(D̃, β̃∗) > Lout(D,β∗).

The results in the lemma can be generalized to multi-class
labels. Since augmenting the feature space is not necessarily
beneficial unless the added features are meaningful, a major
part of our case study is to empirically test whether the ex-
tracted features from our framework indeed improve down-
stream prediction. If the added features significantly en-
hance downstream prediction accuracy, this provides strong
evidence that the inferred latent features are meaningful.

Latent Feature Mining with LLMs
We propose a new approach, FLAME , to efficiently and accu-
rately extract latent features and augment observed features
to enhance the downstream prediction accuracy. It extracts
the latent features Z from the original features X to capture
complex patterns and relationships that individual features
may overlook, especially when some of the X’s are weakly
correlated with the outcome Y . At a high level, our approach
transform this latent feature extraction process as a text-to-
text propositional reasoning task, i.e., infer the relationship
Z = g(X) through logical reasoning with natural language.
Figure 1 provides an example of the extract process with the
steps elaborated on below.

Following the framework established in previous work
(Zhang et al. 2022), we denote the predicates related to the
observed features as P1, P2, . . . , Pm. Consider a proposi-
tional theory S that contains rules that connect P ’s to the

latent feature Z. We say Z can be deduced from S if the
logic implication (P1 ∧ P2 ∧ . . . ∧ Pm) → Z is covered in
S. For potentially complicated logical connections between
P ’s and Z, we also introduce intermediate predicates
O’s and formulate a logical chain (a sequence of logical
implications) that connects X to the latent features Z as
follows:

X → (P1∧P2∧. . .∧Pm) → (O1∧O2∧. . .∧Oℓ) → Z. (1)

Our approach formulates this logical chain as a multi-stage
Chain of Thoughts (CoT) prompt template, and then guide
LLMs to infer Z from X using the prompt template. Specif-
ically, we first extract predicates P ’s from X . Then we infer
intermediate predicates with a rule (P1∧P2∧. . .∧Pm) → Ol

for l = 1, . . . , ℓ−1, and forward the intermediate predicates
into the next stage to infer Ol+1. Finally, we infer latent
features with (O1 ∧ O2 ∧ . . . ∧ Oℓ) → Z. With the for-
mulated multi-stage CoT prompt template, we then gener-
ate synthetic training data to fine-tune LLMs to enhance the
logical reasoning ability of LLMs in the self-instruct man-
ner (Wang et al. 2022).

Age:    68 Race:  White

Gender:   Male

Insurance:  Not Enrolled

Arrival Location: Emergency Room

Number of ER Visit Records:  6

Arrival Type:  Emergency

Social Support

Household Support

Lacks regular care support Weak

Marriage:   Single

Height: 62 Weight: 113

Latest Diagnosis : Portal hypertension

Finicial Support
Low

Limited

Healthcare Support

Figure 1: Example of latent feature mining through chain
of reasoning. The latent feature “Social Supports” (Z) is in-
ferred from the observed input features (X) via intermediate
predicates (O), and is then used alongside X to improve the
prediction for outcome (Y ).

We use a hypothetical example from our healthcare case
study setting to illustrate the formulation of the logic chain.
The blue (leftmost) box in Figure 1 shows the observed



feature X for one individual. Examples for the predicates
P ’s formulated from X could be:

P1 : “the patient is uninsured”, P2 : “the patient
arrived through emergency room”, P3 : “the patient
is single”, P4 : “the patient has portal hypertension”,
P5 : “the patient has multiple ER visits (10 records)”,
P6 : “the patient is 68 years old”, P7 : “the patient
has no listed emergency contacts”, ...

To infer the latent feature Z – in this example, the level
of support available at home/community after being dis-
charged – we go through a multi-stage reasoning to infer the
intermediate predicates O’s; see the white (middle) boxes in
Figure 1. One example logic that connects P ’s to O’s could
be:

P6 = ”The patient is 68 years old”
P3 = ”The patient is single”
P2 = ”The patient arrived through emergency room”
O1 = ”The patient has limited home support”
If (P6 ∧ P3 ∧ P2 → O1) ∈ S, then O1 is True.

Finally, with P ’s and O’s, we can connect X with Z
through the logic chains:

“The patient’s age of 68 and single status, combined
with ER presentation, indicates limited support at
home. Additionally, being uninsured and having
multiple ER visits (6 records) for portal hypertension
demonstrates lacks of regular care support. The
combination of no insurance and repeated emergency
visits suggests low financial support. Given these cir-
cumstances, the patient shows significant gaps across
all support dimensions - household, healthcare,
and financial resources - indicating weak overall
social support that will likely impact post-discharge
outcomes.”

Here, being 68 years old and single status” and being
uninsured with 6 ER visits and portal hypertension” are
P ’s extracted from the features X , while limited household
support” and lacks regular care support” and low financial
support” are O’s. Finally, the rationales the patient shows
significant gaps across all support dimensions - household,
healthcare, and financial resources - indicating weak
overall social support that will likely impact post-discharge
outcomes” connect the intermediate predicates to the latent
variable Z we want to infer, i.e., Z=‘weak social support’.

Figure 2 illustrates the full process of of FLAME with four
steps.

(1) Formulate baseline rationales: The first step is to
formulate baseline rationales, whic serve as guidelines for
LLMs to infer latent features from observed ones. This in-
volves two sub-steps:

X → (O1 ∧ O2 ∧ . . . ∧ Oℓ ) → Z
Rationales derived from Domain Knowledge

Human
Expert

Self-instructed Synthetic CoT Training Data

O’X’ Z’

Step 1 : Formulate Rationales

Step 2: Augment Synthetic Data

formulate

verify
generate

LLMs

Step 3: Model Training

Inference 
Model

Step 4: Latent Feature Mining

Inference 
Model

Observed Features (X ) Latent Features (Z)correlated

Prediction 
Target (Y )

causally 
related

Figure 2: Overview of latent feature inference framework.

– The first sub-step is to develop some baseline ratio-
nales, i.e., identify observed features potentially correlated
with latent features and formulate their relationships – the
logic chain that connects X to Z. Sources to help formu-
late these baseline rationales include established correlations
(e.g., readmission risk score formulas), expert input, and
other contextual information like socio-economic status in
the neighborhood. This is also a critical step in our frame-
work that allows the integration of domain-specific con-
textual information in the format of natural language.

– In the second sub-step, we craft prompts with interactive
alignment. This is a critical component to establish correct
reasoning steps for prompts used in Step 2 to generate
synthetic rationales. We involve experienced human in the
domain to provide a prompt template for LLMs to generate
rationales aligned with the baseline rationales, then test the
prompt template on a few examples using zero-shot. If the
LLM fails to certain example, we provide the ground truth
back to the LLM, allowing it to revise the prompt template
(Miao, Teh, and Rainforth 2023). This process iteratively
refines the template until LLMs consistently generate the
desired output for all selected examples.

(2) Enlarge data with synthetic rationales for fine-
tuning: We generate synthetic training data in self-instruct
fashion (Wang et al. 2022). With a handful of examples
of the baseline rationales as a reference, we guide the
LLMs via in-context learning to generate similar rationales
to enlarge the training data samples. To ensure the qual-
ity and diversity of the generated dataset, we introduce
human-in-the-loop interventions to filter out low-quality or
invalid data based on heuristics. We also leverage automatic
evaluation metrics for quality control, e.g., removing data
that lack essential keywords.

(3) Fine-tuning LLMs: To enhance the reasoning ca-
pabilities of the LLMs and better align their outputs in
specific domains, we leverage the fine-tuning process with
processed dataset from the previous step (Qiao et al. 2022).



Fine-tuning not only boosts the accuracy and reliability
of the LLMs, but also significantly improves their ability
to reason with complex inputs and reduce hallucination
(Tonmoy et al. 2024).

(4) Latent feature inference: The fine-tuned model mirrors
the nuanced reasoning process of human experts. We use it
to infer latent features, which are then fed into downstream
prediction tasks to improve accuracy.

Experiments Setup
We test the efficacy of FLAME on the discharge location
prediction task in the healthcare domain.

Task Description. The discharge location prediction task
involves using individual patient-level data to predict the
most likely discharge destination for patients upon their
discharge from the hospital inpatient units. We apply FLAME
to extract (new) latent features to enhance the prediction
accuracy for this discharge location task. Specifically, we
create a new feature, “social support,” which captures
the extent of healthcare, familial, and community support
available to the patient after being discharged.

Dataset. MIMIC (Medical Information Mart for Inten-
sive Care) dataset (Johnson et al. 2016) is a comprehensive
dataset containing detailed de-identified patient clinical data
and is widely used for various prediction tasks in the ma-
chine learning literature.

Implementation Details. We implement our proposed
framework as follows 1. All prompt templates are available
in Appendix C.

- Step 0. Profile writing: In this pre-processing step, we
translate structured data X into text that can be better han-
dled by LLMs, i.e., formulating predicates P ’s from the fea-
tures X . Then we formulate the intermediate predicates O’s,
where we prompt LLMs to extract and summarize under-
lying information such as background and socio-economic
status in two or three sentences. We then merge these sen-
tences into the patient’s profile. We use zero-shot prompting
with GPT-4.

- Step 1. Formulating rationales: Using human input, es-
tablished risk score calculations, and auxiliary information
available publicly, we establish the logic chains from P ’s
and O’s to Z.

- Step 2. Enlarge fine-tuning data: With the 40 baseline
rationales, we generate additional synthetic rationales. We
sample patient features and corresponding ground truth risk
scores from the dataset, using one of the 40 rationales as
an example, to prompt LLMs to produce similar narratives
with CoT prompts. In total, we got 3000 rationales for the
training data.

- Step 3. Fine-tune LLMs: Our framework is designed
to be plug-and-play, allowing the synthetic data generated

1Code and Implementations are available here:
https://bit.ly/3XMi8QN

Variable Categories Percentage

Discharge Location Home 40.19
Other 40.19
Died 19.62

Gender Female 51.53
Male 48.47

Race White 61.09
Black/African American 11.70
Other 11.45
Asian 2.49
Hispanic or Latino 1.89
White - Other European 1.69

Marital Status Married 43.05
Single 35.29
Widowed 11.01
Other 10.65

Insurance Other 58.24
Medicare 34.53
Medicaid 7.23

Language English 90.84
Other 9.16

Admit Type Emergency 56.95
Other 41.60
Elective 1.45

Table 2: Categorical Variables Summary Statistics of
MIMIC dataset

in the previous step to be used across different language
models. We fine-tune two pre-trained language models for
cross-validation purposes: GPT-3.5 and Llama2-13b (Ope-
nAI 2021). We use OpenAI API to fine-tune GPT-3.5-turbo-
0125 (Touvron et al. 2023; OpenAI). We fine-tune Llama2-
13b-chat using LoRA (Hu et al. 2021).

- Step 4. Inference with LLMs: We prompt fine-tuned
LLMs to infer Ẑi from features Xi for each patient i in the
test data.

Evaluation. We train an ML classifier to predict outcomes
with and without the inferred latent features, i.e., Ŷi ∼
f(Xi, Ẑi) versus Ŷi ∼ f(Xi) and then evaluate their out-
of-sample accuracy. The dataset is split into a 7:3 ratio for
training and testing, respectively. We use five different ran-
dom seeds to run each experiment five times and then aver-
age the results to ensure the reliability of our findings.

Experiments Result
In this section, we demonstrates the experiment result of dis-
charge location prediction task. We also conduct ablation
experiments to further investigate our advantage and limi-
tations (Please see Appendix B).

Table 3 demonstrates the result of discharge location pre-
diction task. The results show an average improvement of
approximately 8.64% in accuracy and 8.64% in F1 score
when latent features are added to the models. This is similar
to the percentage increase reported in Table 5(a). Specifi-
cally, the GBT model achieves the highest accuracy after in-



Model Accuracy (std.) F1 score (std.)

LR 65.22% (0.01) 65.46% (0.01)
MLP 63.19% (0.02) 63.19% (0.02)
GBT 64.84% (0.01) 65.09% (0.01)
RF 65.11% (0.01) 65.44% (0.01)

LR w/ Latent Feature 71.22% (0.01) 71.26% (0.01)
MLP w/ Latent Feature 74.40% (0.01) 74.50% (0.01)
GBT w/ Latent Feature 75.56% (0.02) 75.38% (0.02)
RF w/ Latent Feature 75.31% (0.01) 75.22% (0.01)

Table 3: The experiment result. We use five different random
seeds to run experiment five times and report the average.

corporating the latent features. The results demonstrate an-
other strong evidence of using our framework to improve
downstream prediction power with the addition of latent fea-
tures.

Furthermore, the inferred variable “Social Support”
shows strong correlation with the discharge location. This
finding suggests that FLAME can uncover meaningful latent
variables that might otherwise be overlooked in traditional
data collection methods in the healthcare settings. More im-
portantly, this experiment on a different dataset from a dif-
ferent domain demonstrates the effectiveness and generaliz-
ability of FLAME .

Discussion
What is required to generalize FLAME for each new ap-
plication? FLAME has broad potential across various do-
mains, particularly those with limited observed features and
ethical constraints. Steps 2-4 primarily rely on the adapt-
ability of LLMs and allow flexible application across dif-
ferent domains. However, Step 1 – identifying and formu-
lating baseline domain-specific rationales – requires domain
expertise and involves additional manual effort. This effort is
worthwhile because our framework is intentionally designed
to be domain-specific. We believe this is actually the criti-
cal step that drives the improved downstream prediction ac-
curacy demonstrated in Section . By leveraging contextual
information that traditional methods cannot, FLAME signifi-
cantly enhances model performance.

Future work. As we continue to refine our FLAME frame-
work, we are actively pursuing avenues to enhance its fi-
delity and reliability. First, we are streamlining the process
to reduce the need for human intervention and increase the
scalability of our approach, thus minimizing the potential for
subjective influences and increasing the scalability of our
approach. This involves automating feature selection and
validation processes, leveraging the LLM’s capabilities to
self-verify and iterate on its outputs. Second, we acknowl-
edge that LLMs can inadvertently perpetuate existing biases
present in their training data, and how to mitigate such bias
remains an open question in the field (Wan et al. 2023; Galle-
gos et al. 2024). FLAME attempts to minimize such biases by
leveraging domain-specific data and expert input during the
fine-tuning process. Furthermore, the training dataset is cu-

rated to include a diverse range of scenarios, and the model’s
inferences are continually tested against ground truth data
where available. Nevertheless, we are implementing more
sophisticated error control mechanisms to diminish the im-
pact of potential inaccuracies in the generated features. For
example, we are in the process of hiring human annotators
to verify the output from the LLMs reasoning. Other possi-
ble options include developing confidence scoring systems
for generated features (Detommaso et al. 2024).

Conclusion
In conclusion, FLAME provides a novel solution to the chal-
lenges of limited feature availability in high-stakes do-
mains by using LLMs to augment observed data with in-
terpretable latent features. This framework improves down-
stream prediction accuracy while enhancing explainability,
which makes it valuable for sensitive decision-making in ar-
eas like healthcare.
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Appendix
A. Proof of Lemma 1

We use the log-loss, defined as

L(D,β) = − 1

n

n∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (2)

for given data D = {(xi, yi)}ni=1 and pi = 1/
(
1 + e−(β0+β1xi)

)
. When using the augmented feature x̃i = (xi, zi), we denote

the data as D̃ = {
(
(xi, zi), yi

)
}ni=1.

For the first part of the lemma, we note that the in-sample log-loss for the original features follows

Lin(D,β) = − 1

n

n∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] , (3)

and the in-sample log-loss for the augmented features follows

Lin(D̃, β) = − 1

n

n∑
i=1

[yi log(p̃i) + (1− yi) log(1− p̃i)] , (4)

where pi = 1/
(
1 + e−(β0+β1xi)

)
and p̃i = 1/

(
1 + e−(β0+β1xi+β2zi)

)
.

We denote the optimal coefficients that minimize the log-loss in (3) as β∗ = (β∗
0 , β

∗
1), and the coefficients that minimize the

log-loss in (4) as β̃∗ = (β̃∗
0 , β̃

∗
1 , β̃

∗
2). Note that β̌ = (β∗

0 , β
∗
1 , 0) is a feasible solution for the log-loss in (4). Therefore, using the

optimization property, we have
Lin(D̃, β̃∗) ≤ Lin(D̃, β̌) = Lin(D,β∗),

which completes the first part of the lemma.
For the second part of the lemma, we first assume that for the given data D, Lin(D̃, β̃∗) = Lin(D,β∗) − ϵ/n where ϵ ≥ 0

from the first part of the lemma. We now construct an instance with an out-of-sample dataset D′ that contains n + 1 samples,
where D′ consists of (i) the n data points that exactly match with D (or D̃) for the first n samples, and (ii) one additional sample
(xi+1, yi+1) (or ((xi+1, zi+1), yi+1) when using the augmented features). Without loss of generality, assume that yi+1 = 1.
Then we have

Lout(D′, β∗) =
1

n+ 1

(
nLin(D,β∗)− log(pi+1)

))
and

Lout(D̃′, β̃∗) =
1

n+ 1

(
nLin(D̃, β̃∗)− log(p̃i+1)

))
.

When the added features Z’s are non-informative, we consider the scenarios that they are noise and the additional term β̃∗
2Z

also contributes noise to the predictions. In other words, the coefficients β̃∗ do not generalize well to the test data. Therefore,
there exists an instance where the realization of Z, zi+1 deviates from the predicted probability significantly, such that

p̃i+1 < pi+1/ exp(ϵ) ≤ pi+1.

Note that this instance exists since the noise terms do not correspond to any actual pattern in the test data, causing incorrect
predictions, and in our construction, a smaller predicted probability would be less accurate as the label yi+1 = 1. Therefore,

− log(p̃i+1) > − log(pi+1) + ϵ,

and

Lout(D̃′, β̃∗) =
1

n+ 1

(
nLin(D,β∗)− ϵ− log(p̃i+1)

))
>

1

n+ 1

(
nLin(D,β∗)− log(pi+1)

))
= Lout(D′, β∗).



B. Ablation Study
Do the inherent biases of LLMs influence the inference process of latent features? To assess whether the reasoning
processes within generated texts exhibit biases, we conducted the following experiments. First, we utilized the pretrained
keyword extraction model YAKE (Campos et al. 2020) to search for racial terms within the reasoning steps of the generated
text. The analysis showed that such keywords were absent, indicating no explicit racial bias in this context. Second, we closely
examined the race distribution in the ground-truth data versus the distribution in the predictions made by the model. The analysis
revealed that the race distributions between the ground-truth and the predicted outcomes were similar. This similarity suggests
that the model does not introduce additional racial biases in its predictions and accurately reflects the distributions present in
the input data. Both results validate that the LLMs’ inherent biases are not carried into the inference process. Other types of
bias, such as bias in lexical context, are beyond the scope of this paper and are left for future research.

How sensitive is our approach to the quality of human guidelines? FLAME is sensitive to human guidelines, specifically
the baseline rationales and prompt templates formulated in Step 1. We have conducted an ablation study to determine the
optimal level of details required in the prompts. As shown in Figure 3 (b), the best performance was achieved with the most
reasoning steps and a sentence length of two per step. In other words, increasing the number of reasoning steps allows us
to decompose the task into simpler components and enhances the performance of LLMs. More importantly, while human
guidelines are important, the interactive self-revise alignment strategy can significantly help during the sub-step of Step 1
(prompt crafting). By providing ground truth and encouraging self-reflection, GPT-4 can revise the prompt template to include
crucial details, ensuring a more accurate evaluation.

How important is the fine-tuning step in FLAME? We have conducted another ablation study, where we repeated the risk-
level prediction task with zero-shot, one-shot, and three-shot prompting to compare with our fine-tuned model. In zero-shot,
we provided only the task description. In one-shot and three-shot, we included randomly selected human-verified examples.
Accuracy rankings from lowest to highest were: three-shot (40%), zero-shot (55%), one-shot (60%), and the fine-tuned model
(75%); see Figure 3 (a). The three-shot’s poor performance may be due to information loss from long inputs. Zero-shot
responses are highly variable and not well-suited for downstream tasks. Although one-shot showed improvement, the fine-tuned
model significantly outperformed all others. Hence, the answer to the question is that fine-tuning is necessary. Additionally,
the fine-tuning process incorporates feedback loops with domain experts to adjust and correct the model’s reasoning pathways,
ensuring that the latent features inferred, such as the need for substance abuse treatment, are aligned with nuanced real-world
outcomes rather than broad statistical correlations.

Setting Accuracy
Zero-shot 55%

One-shot 60%

Three-shot 40%

Fine-tune 75%

(a) Risk level prediction results
across different setting

(b) Risk level prediction results across different strategy

Figure 3: Ablation study results: (a) Experiments on risk level prediction task using GPT4 with different prompting setting. (b)
Experiments using GPT4 with different prompting setting different prompting strategies.

How does FLAME perform compared to the baseline? We implemented a baseline approach using an MLP classifier on
embeddings from a text summarization model, and repeat the risk level prediction experiment: We use few-shot to generate a
profile that contains all information related to the client ( See Figure ?? for more detail on prompt template ), then we extract
the embedding from the encoder of Pegasus (Zhang et al. 2019). These embeddings serve as input to an MLP classifier for
risk level prediction. We evaluated on a balanced validation set of 50 samples per class, and this baseline achieved only 52%
accuracy on the three-class classification task, while our proposed approach is able to reach over 75% accuracy.



C. Compute Resources
For all experiments, we split data into training and testing
dataset with ratio of 8:2.

We use OpenAI offical API to finetune GPT3.5 model,
which requires no GPUs. Each finetune job takes about 2
hours. We repeat 6 times for different sub tasks. Addition-
ally, we also run Machine Learning baseline model on CPU
(Intel i7). We run grid search for each classifier.

All other experiments (e.g. sensitive experiment) are con-
ducted on ChatGPT, which requires no GPU.

D. Prompts
Inference Prompt Template

[System Prompt] You are a healthcare
professional assessing a patient’s
social support to understand their
overall well-being and potential
factors influencing their final
discharge plan.

[User Prompt]
Here are principles of social support
assesment: <principles>
---
Here are questions to consider when
assessing social support: <questions>
---
Given patient profile:
<profile>

Now, please assess the social support
for the this patient, return in the
required format of response:

Self-Instruct Prompt Template
Please generate similiar response as
the example below. Follow the exact
same format of example response.

---

Here is an example input:

Age: 67
Marital Status: Widowed
Number of Previous Visits: 12 visits
Arrival Type: Emergency
Arrival Way: Emergency Room

---

Here is an example response:

Assessment:
1. How can this patient’s age

impact support?
At 67, the patient is a
senior, which might indicate decreased
social support due to retirement,
potential loss of peers, and
a possible reduction in physical
ability. Seniors often rely on
family or community services, and
being widowed can further reduce
their social network.

2. How might marital status
impact social support?
Being widowed likely indicates a
significant loss of close social
support, particularly the loss of
a primary caregiver. This could
mean the patient has fewer people
to rely on for emotional support,
which might contribute to increased
hospital visits and emergency
situations.

3. How might previous visits
impact social support?
With 12 visits in the past
year, this patient appears to
have frequent health issues that
require medical attention. This
frequency might suggest insufficient
social support to manage their
health.

4. How might arrival type
impact social support?
The emergency arrival type indicates
that the patient likely faced
an urgent health issue. This
might suggest that their social
support system is inadequate.

5. How might arrival way
impact social support?
Arriving through the emergency
room indicates an immediate need
for medical attention, possibly
pointing to a lack of social
support to manage their health.

Summary:
This patient, a 67-year-old widowed
individual with 12 visits in
the past year, arriving via
emergency room, likely has limited
social support. The combination of
age, marital status, and frequent
visits suggests they may lack
adequate support.



Result (Only choose from Weak
or Strong. Force to choose one): Weak

----

Now, please follow the EXACT
same format and generate rationales
assessing social support for the
following patient with discharge
location of <<DISCHARG>>:

Age: <<AGE>>
Marital Status: <<MaritalStatus>>
Number of Previous Visits: <<Number>>
Arrival Type: <<ArrivalType>>
Arrival Way: <<ArrivalWay>>


