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Abstract
Discovering causal relationships from observa-
tional data, particularly in the presence of latent
variables, poses a challenging problem. While cur-
rent local structure learning methods have proven
effective and efficient when the focus lies solely
on the local relationships of a target variable,
they operate under the assumption of causal suf-
ficiency. This assumption implies that all the
common causes of the measured variables are
observed, leaving no room for latent variables.
Such a premise can be easily violated in various
real-world applications, resulting in inaccurate
structures that may adversely impact downstream
tasks. In light of this, our paper delves into the
primary investigation of locally identifying po-
tential parents and children of a target from ob-
servational data that may include latent variables.
Specifically, we harness the causal information
from m-separation and V-structures to derive the-
oretical consistency results, effectively bridging
the gap between global and local structure learn-
ing. Together with the newly developed stop rules,
we present a principled method for determining
whether a variable is a direct cause or effect of
a target. Further, we theoretically demonstrate
the correctness of our approach under the stan-
dard causal Markov and faithfulness conditions,
with infinite samples. Experimental results on
both synthetic and real-world data validate the
effectiveness and efficiency of our approach.

1. Introduction
Inferring causal relations, known as causal discovery, has
drawn much attention in several fields, such as computer
science (Jonas et al., 2017; Pearl, 2018; Schölkopf, 2022),
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social science (Spirtes et al., 2000), epidemiology (Hernán
& Robins, 2010), biology (Glymour et al., 2019), and neu-
roscience (Smith et al., 2011; Sanchez-Romero et al., 2019).
The discovered causal relationships are useful for predicting
the behavior of a system under external interventions, which
is a crucial step in both understanding and manipulating that
system (Pearl, 2009). Learning such relations from purely
observational data is challenging, especially when latent
confounders can be present (Spirtes & Zhang, 2016).

There exists work in the literature that has attempted to
recover causal structure among observed variables in the
presence of latent variables. Spirtes et al. (2000) proposed
the seminal FCI (Fast Causal Inference) algorithm that can
learn a partial ancestral graph (PAG) 1 in the presence of la-
tent variables by performing conditional independence tests.
Later, a faster algorithm, called Really Fast Causal Infer-
ence (RFCI), was developed (Colombo et al., 2012). Other
interesting developments along this line include (Claassen
& Heskes, 2011; Claassen et al., 2013; Raghu et al., 2018;
Akbari et al., 2021; Mokhtarian et al., 2023). These works
focus on learning the whole causal graph rather than the
local causal graph. However, in many real-world scenarios,
researchers are usually interested in the local causal rela-
tionships (Walters et al., 2007; Peter & Davidson, 2011; Ma
et al., 2023).

Several contributions have been made to learn the local
causal structure other than the global causal structure. For
instance, the Local Causal Discovery (LCD) algorithm
(Cooper, 1997) and its variants (Silverstein et al., 2000;
Mani & Cooper, 2004) are proposed to find causal edges
among every four-variable set in a causal graph. Although
these algorithms primarily aim to identify a subset of causal
edges through specific structures among all variables, our
focus is on discovering all causal edges adjacent to a single
target variable. Yin et al. (2008) and Zhou et al. (2010)
designed the PCD-by-PCD to find sets of parents, children,
and maybe some of the descendants (PCD) of variables of
the target variable. Later, Wang et al. (2014) proposed a
more efficient approach, called MB-by-MB, for discovering
direct cause and effect variables of the target. Additional

1A PAG represents a Markov equivalence class of maximal
ancestral graphs (MAGs) which encode the causal relations among
the observed variables. See the example in Figure 1 or Section 3.1
for more details.
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Figure 1. (a) Underlying causal DAG from a selected part of ANDES network (Conati et al., 1997), where V1 and V6 are hidden and V5 is
the target variable of interest. (b) The corresponding MAG of the DAG in (a). (c) The inferred PAG from observed variables .

significant contributions to this field have been made, in-
cluding the Causal Markov Blanket (CMB) algorithm (Gao
& Ji, 2015), the Efficient Local Causal Structure (ELCS)
algorithm (Yang et al., 2021), and the GradieNt-based LCS
(GraN-LCS) algorithm (Liang et al., 2023). Although these
methods have been used in a range of fields, they usually
assume the assumption of causal sufficiency, i.e., we have
measured all the common causes of the measured variables
in the system. However, in various real-world scenarios,
including Gene Expression network (Wille et al., 2004), ,
etc, this assumption is usually violated.

In this paper, we address the challenge of locally learning the
causes and effects of a given target variable in a more com-
plex scenario where certain variables may be unmeasured.
Specifically, our primary contributions can be summarized
in three key aspects:

1. We propose a novel MMB-by-MMB algorithm for learn-
ing the direct causes and effects of a target variable
based only on the estimated local structure, allowing for
the existence of latent variables.

2. We theoretically demonstrate that the proposed algo-
rithm is a complete local discovery algorithm and can
identify the same direct causes and effects for a target
variable as global methods under standard assumptions.

3. We conduct extensive experiments and demonstrate the
efficacy of our algorithm on both benchmark network
structures and real-world data.

2. Related Works
This paper focuses on local causal structure (LCS) learning.
Our investigation intersects with broader themes, such as
global causal structure (GCS) learning and Markov Blan-
ket (MB) learning. In this context, we here provide a brief
review of these three interconnected areas. For a compre-
hensive review of causal structure learning or MB learning,
see (Spirtes & Zhang, 2016; Heinze-Deml et al., 2018; Yu
et al., 2020; Kitson et al., 2023)

LCS learning. Existing LCS learning methods can be
roughly divided into two categories, namely Y-structure-
based methods including LCD algorithm (Cooper, 1997)

and its variants (Silverstein et al., 2000; Mani & Cooper,
2004; Versteeg et al., 2022), and constraint-based ones such
as PCD-by-PCD (Yin et al., 2008; Zhou et al., 2010), MB-
by-MB (Wang et al., 2014), CMB (Gao & Ji, 2015), ELCS
(Yang et al., 2021), and GraN-LCS algorithm (Liang et al.,
2023). Methods in the first category typically focus on learn-
ing causal edges among sets of four variables, while our
approach targets all causal edges related to a specific vari-
able. Moreover, methods in the second category generally
assume that all common causes of the measured variables
are observed, an assumption not required by our method.

GCS learning. When latent confounding is present, well-
known algorithms along this line include the seminal FCI
algorithm (Spirtes et al., 2000), RFCI (Colombo et al., 2012),
FCI+ (Claassen et al., 2013), and its variants (Claassen
& Heskes, 2011; Ogarrio et al., 2016; Raghu et al., 2018;
Akbari et al., 2021). Some further studies are also conducted
by introducing the data-generating mechanism (Chen et al.,
2023; Kaltenpoth & Vreeken, 2023; Chen et al., 2021) or
distribution of data (Hoyer et al., 2008; Salehkaleybar et al.,
2020; Maeda & Shimizu, 2020; Cai et al., 2023). While
these algorithms are efficient in their operation, identifying
the global structure can be unnecessary and wasteful when
our primary interest lies in understanding the local structure
surrounding a single target variable, which can be clearly
observed in the nTest in our experimental results.

MB learning. MB learning algorithm aims to learn parents,
children, and spouses of target T simultaneously. Along
this line include GSMB (Margaritis & Thrun, 1999), IAMB
(Tsamardinos & Aliferis, 2003), Fast-IAMB (Yaramakala
& Margaritis, 2005), and Total Conditioning (TC)(Pellet &
Elisseeff, 2008), and other variants (Aliferis et al., 2003;
Pena et al., 2007; Gao & Ji, 2016; Wu et al., 2019). Recently,
Yu et al. (2018) proposed an algorithm, M3B to mine the
MAG MB (MMB) of a target variable in MAGs. However,
the above methods do not distinguish parents from children.
In contrast, our method has to differentiate the direct parents
(cause) and children (effect).

To the best of our knowledge, there is currently no method
for learning the local causal structure in the presence of
latent confounders that can effectively identify the direct
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causes and effects of a target variable under standard as-
sumptions.

3. Preliminaries
3.1. Graph Terminology and Notations

Ancestral Graphs. A mixed graph G over the set of vertices
V containing three types of edges between pairs of nodes:
directed edges (→), bi-directed edges (↔), and undirected
edges (−). A is a spouse of B if A ↔ B is in G. A
mixed graph is ancestral if it doesn’t contain a directed or
almost directed cycle 2. Let V be any subset of vertices in
G. An inducing path relative to V is a path on which every
vertex not in V (except for the endpoints) is a collider on
the path and every collider is an ancestor of an endpoint
of the path. An ancestral graph is a Maximal Ancestral
Graph (MAG)M if there is no inducing path between any
two non-adjacent vertices. A MAG is called a directed
acyclic graph (DAG) if it has only directed edges. A causal
MAG represents a set of causal models with the same set
of observed variables that entail the same independence
and ancestral relations among the observed variables. Two
MAGs are called Markov equivalent if they impose the
same independence model. A Partial Ancestral Graph
(PAG)P represents an equivalence class of MAGs [M]. A
partial ancestral graph for [M] is a graph P with possible
three kinds of marks (◦, >, −)3, such that 1) P has the
same adjacencies asM (and hence any member of [M])
does, and every non-circle mark in P is an invariant mark
in [M]. For convenience, we use an asterisk (*) to denote
any possible mark of a PAG (◦, >,−) or a MAG (>,−).

Definition 1 (m-separation). In a mixed graph G, a path p
between vertices X and Y is active (m-connecting) relative
to a (possibly empty) set of vertices Z (X,Y /∈ Z) if 1)
every non-collider on p is not a member of Z, and 2) every
collider on p has a descendant in Z.

A set Z m-separates X and Y in G, denoted by (X ⊥⊥
Y|Z)G , if there is no active path between any vertices in
X and any vertices in Y relative to Z. The criterion of
m-separation is a generalization of Pearl’s d-separation cri-
terion in DAG to ancestral graphs. Two MAGs are called
Markov equivalent if they impose the same m-separations.

Related concepts used here can be found in sources (Richard-
son & Spirtes, 2002; Zhang, 2008b).

Markov Blanket. In a DAG, the Markov blanket of a
vertice T , noted MB(T ), is the set of parents, children, and
children’s parents (spouses) of T . In a MAG, the Markov
blanket of a vertice T , noted as MMB(T ), consists of 1)

2An almost directed cycle happens when A is both a spouse
and an ancestor of B.

3◦ represents undetermined edge marks.

parents of T ; 2) children of T ; and 3) a set of variables that
for ∀Vi within the set, Vi is not adjacent to T and has a
collider path to T . See the example in the Definition 2.

Notations. Given a graph G, two vertices are said to be
adjacent in G if there is an edge between them. We use
Adj (T ) to denote the set of adjacent vertices of T . X
is called an ancestor of Y and Y a descendant of X if
there is a directed path from X to Y or X = Y . We use
Pa(T ), Ch(T ), Sp(T ), An(T ), De(T ) to denote the set
of parents, children, spouses, ancestors, and descendants
of vertex T in G, respectively. We use the notation (X ⊥⊥
Y|Z)P for “X is statistically independent of Y given Z”,
and (X ⊥̸⊥ Y|Z)P for the negation of the same sentence
(Dawid, 1979). We drop the subscript P whenever it is
clear from context. We use MMB+(T ) to denote the set of
{MMB(T ) ∪ T}.

Standard Assumption. In terms of m-separation, the
causal Markov condition says that m-separation in a graph
G implies conditional independence in the population dis-
tribution. The causal Faithfulness condition says that m-
connection in a graph G implies conditional dependence in
the population distribution (Zhang, 2008a). Under the above
two conditions, conditional independence relations among
the observed variables correspond exactly to m-separation
in the MAG G, i.e., (X ⊥⊥ Y|Z)P ⇔ (X ⊥⊥ Y|Z)G .

Identification of Global Learning for PAG. Assuming the
causal Markov condition and the causal Faithfulness condi-
tion, the PAG (that represents an equivalence class of MAGs)
can be uniquely identified by using the independence-
constraint-based algorithm, such as FCI (Spirtes et al., 2000;
Zhang, 2008b), from an oracle of conditional independence
relations.

3.2. Problem Definition

We consider a Structural Causal Model (SCM) (Pearl, 2009)
with the set of variables V = O ∪ L, and the joint distri-
bution P (V), where O and L denote the set of observed
variables and latent variables, respectively. We here assume
that there is no selection bias in the system. Thus, the SCM
is associated with a DAG where each node is a variable in
V and each edge is a function f . That is to say, each vari-
able Vi ∈ V is generated as Vi = fi(Pa(Vi), ui), where ui

represent errors (or “disturbances”) due to omitted factors,
and all errors are independent from each other.

Goal. Given a target variable T ∈ O, we are interested
in the local structure of the target variable. In particular,
our goal is to establish the local criteria for identifying the
potential direct causes and effects of a target based only on
the local structure instead of the entire graph.
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4. MMB-by-MMB Algorithm
In this section, we propose a sequential algorithm, MMB-
by-MMB, for discovering the direct causes and effects of
a target variable T . We use Waitlist to store nodes that
are potentially relevant for identifying the direct causes
and effects of T . Let Donelist store nodes removed from
Waitlist and P store valid causal information.

Basic idea. The process proceeds through a series of se-
quential repeats. Initially, Waitlist = {T} and Donlist
is empty. In each iteration, we focus on the first variable
VX in the Waitlist. Specifically, we first learn the MMB
of VX and a local causal structure LMMB+(VX) based on
this MMB. Subsequently, employing m-separation (see The-
orem 1) and V-structure (see Theorem 2), we select true
causal information from LMMB+(VX) and store them in P .
Next, P is oriented using standard orientation criteria. Fi-
nally, we update Waitlist and Donlist. When the stop
rules are met (see Theorem 3), the algorithm stops running.
The specific pseudocode is provided in Algorithm 1 and 2.

We outline the principle of the algorithm in Section 4.1.
Furthermore, we present the detailed steps of the algorithm
in Section 4.2. Under standard assumptions, we show that
the proposed algorithm can locally identify the same direct
causes and effects for a target variable as global learning
methods. Finally, in Section 4.3, we analyze the complexity
of the algorithm. To improve readability, we defer all proofs
to Appendix C.

4.1. Principle of the Algorithm

In this section, we present the theoretical results that serve
as the principle for our sequential approach. Specifically,
we answer the following 3 questions:

Q1. What causal information of m-separation in local struc-
ture learning is consistent with those in global learning?

Q2. What causal information of V-structures in local struc-
ture learning is consistent with those in global learning?

Q3. How to design a stop criteria to ensure that our local
learning structure is consistent with the global one?

We first give the following theorem about m-separation in
both local and global learning, which answers question Q1.

Theorem 1 (M-separation). Let T be any node in O, and
X be a node in MMB(T ). Then T and X are m-separated
by a subset of O\{T,X} if and only if they are m-separated
by a subset of MMB(T ) \ {X}.

Theorem 1 implies that the existence of an edge connecting
T to any other node X ∈ MMB(T ) can be equivalently
determined through both the full distribution of O and the
marginal distribution of MMB+(T ). Consequently, it be-
comes feasible to accurately assess the presence of these
connecting edges to T by utilizing the observed data from

MMB+(T ).

Example 1. Consider the MAG shown in Figure 1(b).
Let V5 be the target variable T . Suppose that we
can correctly check conditional independencies from
data and thus find the MMB(V5 ), i.e., MMB(V5 ) =
{V3, V4, V7, V8, V10, V12}. According to Theorem 1, we de-
duce the existence of edges V5◦−◦V4, V5◦−◦V8 and V5◦−◦V10 ,
while there are no connecting edges between V5 and V3, V7,
or V12. These results are consistent with the conclusions of
global learning.

Remark 1. It is noteworthy that the connecting edges be-
tween nodes in MMB(T ) through the marginal distribution
of MMB+(T ) do not align with those identified through
the full distribution of O. For instance, considering the
connection between V4 and V7, we will obtain the spuri-
ous edge V4 ◦−◦ V7 from MMB+(T ). However, because
V4 ⊥⊥ V7| V2, we know there is no direct edge between V4

and V7 in the ground-truth MAG.

Next, we discuss the solution for the question Q2, and the
illustrative examples are given accordingly. Let V be a
subset of V. We say that a V-structure X → Z ← Y can
be identified or found by the marginal distribution P (V)
if the conditional independence and dependence of the V-
structure can be checked in the P (V), i.e., X ⊥⊥ Y |S and
X ⊥̸⊥ Y |S ∪ {Z} for {X,Y, Z} ∪ S ⊆ V .

Theorem 2 (Fully Correct V-structures). Consider a sub-
MAG ofM′ over MMB+(T ). Let Va, Vb be two nodes in
MMB(T ). The following statements hold.

S1. The V-structure Va∗→ T ←∗Vb that identified by
the marginal distribution of MMB+(T ) are true V-
structures in the ground-truth MAGM.

S2. The V-structure T∗→ Va ←∗Vb can be successfully
identified by the marginal distribution of MMB+(T ).

Statement S1 shows that if T is a collider in the identified
V-structures using the observational data of MMB+(T ),
then these V-structures are equivalent determined by the full
observational data of O. Statement S2 says that a special
type of V-structure, in which the collider Va within the V-
structure is not an ancestor of T , can certainly be identified
from the observational data of MMB+(T ).

Example 2 (Statements S1 and S2). Continue to consider
the causal diagram shown in Figure 1(b). We have known
MMB+(V5 ) = {V5, V3, V4, V7, V8, V10, V12}. According
to Statement S1, we can determine the V-structure V4∗→
V5 ←∗V8 form the marginal distribution of MMB+(V5 ),
since V4 ⊥⊥ V8|V7 and V4 ⊥̸⊥ V8|{V7, V5}. Further-
more, according to Statement S2, we can obtain the V-
structure V5∗→ V8 ←∗V7 from the marginal distribution of
MMB+(V5 ), since V5 ⊥⊥ V7|V4 and V5 ⊥̸⊥ V7|{V4, V8}.
Remark 2. Theorem 2 merely states that the locally iden-
tified V-structures containing T are correct. That is to say,
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during the orientation of local structures, some V-structures
may be incorrect or missing, as stated in the following two
examples.

1. V-structures identified that do not include T cannot be
guaranteed to be correct from the observational data of
MMB+(T ). For instance, consider the graph shown in
Figure 1.(b), one may obtain V3∗→ V4 ←∗V7 from the
observational data of MMB+(V5 ) since V3 ⊥⊥ V7| ∅
and V3 ⊥̸⊥ V7| V4. However, the V-structure V3∗→
V4 ←∗V7 is not entirely accurate. In global structural
learning, the identified V-structure is V3∗→ V4 ←∗V2.

2. Not all V-structures that include collider T can be
identified from the observational data of MMB+(T ).
For instance, let V10 be the target variable in Fig-
ure 1(b). Then we have MMB(V10) = {V3, V5}. The
V-structure V3∗→ V10 ←∗V5 is unidentifiable within
MMB+(V10 ), as the separating set for V3 and V5 (i.e.,
V4) is not encompassed in MMB(V10 ).

We now address the last question Q3 about the criteria for
stopping rules.

Theorem 3 (Stop Rules). Let T be the target node of in-
terest within O and Waitlist represent the collection of
nodes that need to be checked by Theorem 1 and Theorem 2.
If any of the subsequent rules are met, the local structure
identified for T , encompassing its direct causes and effects,
will be equivalent to the structure identified through global
learning methods.

R1. The structures around the target T are all determined.
R2. The Waitlist is empty.
R3. All paths from the target T , which include undirected

edges (connected to the target T ), are blocked by edges
∗→.

RulesR1 andR2 are both direct stopping criteria, meaning
that all causal information of interest has been identified,
or all nodes have been fully utilized. Roughly speaking,
R3 states that when the paths connecting the surrounding
undirected edges of T are blocked by directed edges (∗→),
integrating the joint distribution of the remaining nodes con-
nected on these paths is equivalent to omitting these nodes
(see Lemma 2 in the appendix). In other words, continuing
to learn the local structure of the remaining nodes connected
on these paths will not help determine the direction of the
undirected edges around T .

Below, we give an example to illustrate the rule R3 in
Theorem 3.

Example 3 (R3). Consider the graph shown in Figure 2(a),
where T is the target variable. Assuming that we have
already checked nodes T according to Theorem 1 and Theo-
rem 2, we then obtain subgraph (b). Note that the left tail
of edge T◦→ V1 is not directed. However, we can find that

T V1

V2 V4

V3

(a) Underlying MAG

T V1

V2

(b) The final local PAG around T

Figure 2. The illustrative example for R3 in Theorem 3.

the path T◦→ V1 is blocked by the edge ◦→. According to
R3 of Theorem 3, we will stop the learning process, even
though nodes V3 and V4 have not yet been checked.

Algorithm 1 MMB-by-MMB

Input: Target T , observed data O of V
1: Initialize : Waitlist := {T}, Donelist = ∅, P = ∅.
2: repeat
3: VX ← the head node of Waitlist;
4: MMB+(VX )← MMBalg(VX ) ;
5: if ∃VY ∈Donelist,MMB+(VX) ⊆ MMB+(VY )

then
6: LX ← the substructure of LY over MMB+(X);
7: else if MMB(VX ) ⊆ Donelist then
8: LX ← the substructure of P over MMB+(X );
9: else

10: Learn LX over MMB+(X ).
11: end if
12: P ← select the edges connected to VX and the V-

structures containing VX .
13: P ← orient maximally the edge marks using the

orientation rules of Zhang (2008b).
14: Add VX to Donelist, and remove VX from the

Waitlist.
15: Add {Adj (VX ) \ (Waitlist ∪ Donelist)} to

Waitlist
16: until One of the stop RulesR1 ∼ R3 is met
Output: The local structure P around T

Algorithm 2 MMBalg(Pellet & Elisseeff, 2008)

Input: Target Vx, observed data O of V
1: Initialize : MMB(VX) := ∅.
2: for each VY ∈ O \ VX do
3: if VX ⊥̸⊥ VY | O \ {VX , VY } then
4: Add VY to MMB(VX)
5: end if
6: end for
7: MMB+(VX ) = {VX ∪MMB(VX)}
Output: MMB+(VX )

4.2. Our Sequential Approach

In this section, we leverage the above theoretical results
and propose a sequential algorithm to learn the potential
parents and children of a target node in models that include
latent variables. We use LV to denote the local structure
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V10 V5 V8 V12

V3 V4 V7 V9

V11 V2

(a) Underlying MAG

V10 V5 V8 V12

V3 V4 V7

(b) LMMB+(V5)

V10 V5 V8 V12

V3 V4 V7

(c) Updated P after learning LMMB+(V5)

V11

V5 V8 V12

V3 V4 V7

V2

(d) LMMB+(V4)

V11

V10 V5 V8 V12

V3 V4 V7

V2

(e) Updated P after learning LMMB+(V4)

V11

V10 V5 V8 V12

V3 V4 V7

V2

(f) The Final local P

Figure 3. The sequential process for finding the parents and children of the target V5 in the graph of Figure 1 (a), where the red edges
indicate that the current local results cannot be guaranteed to be consistent with the global learning results.

learned from a subset V of V, utilizing the test of conditional
independence and orientation of V-structures. We use P to
store the local causal structure around T , where the causal
information preserved in this structure is consistent with the
global learning structure. Roughly speaking, for target T ,
our method contains the following key steps:

S1. Finding a MAG Markov blanket MMB(T ) of the target
T and learning the local structure LMMB+(T ).

S2. Putting the edges connected to T and the V-structures
containing T in LMMB+(T ) to P , according to Theo-
rem 1 and Theorem 2.

S3. Orienting maximally the edge marks in P using the
standard orientation rules of Zhang (2008b).

Three steps S1 ∼ S3 are repeated sequentially until any one
of the stop rules is met in Theorem 3. For notational conve-
nience, let WaitList be the list of nodes to be checked by
Theorem 1 and Theorem 2. Let DoneList denote the list of
nodes whose local structures have been found. Additionally,
MMBalg refers to the algorithm used for learning MMB .
The complete procedure is summarized in Algorithm 1 and
2, and a complete example is given in Example 4.

Example 4. We illustrate our MMB-by-MMB algorithm
with the causal MAG in Figure 3(a). We assume Oracle
tests for conditional independence tests. In this structure,
There are latent variables between nodes V3 and V4, V5 and
V8. We here are interested in the local structure around V5.
The learning process is as follows:

• It first initializes sets Waitlist = {V5}, Donelist = ∅,
and graph P = ∅ (Line 1).

• After initialization, it runs MMBalg(V5 ) and obtain
MMB(V5 )={V3, V4, V7, V8, V10, V12} (Lines 3 ∼ 4).

• It then learns LMMB+(V5 ) over MMB+(V5 ), as de-
picted in Figure 3(b) (Line 10).

• Next, it updates P by selecting the edges connected to

V5 and the V-structures containing V5 (Line 12).
• It now orients V5◦→ V10 as V5 → V10 by orientation

rules (Line 13). Consequently, it obtains P as shown in
Figure 3(c).

• Then, it updates Donelist= {V5}, and Waitlist=
{V4, V8, V10} (Lines 14 ∼ 15).

• Sequentially, it runs MMBalg(V4 ) and obtain
MMB(V4)={V2, V3, V5, V7, V8, V11, V12}.

• It then learns the local structure LMMB+(V4 ) as shown
in Figure 3(d) (Line 10).

• Next, it pools the determined edges together and orients
V4◦→ V5 as V4 → V5 (Lines 12 ∼ 13). Following
this, it derives the local structure P , as illustrated in
Figure 3(e).

• Next, it updates sets Waitlist = {V8, V10, V2, V3},
Donelist={V5, V4} (Lines 14 ∼ 15).

• Finally, the algorithm terminates because stop R1 is
satisfied. Output the resulting local structure P , which
is depicted in Figure 3(f).

More details of the example are given in the Appendix D.

Theorem 4. The Correctness of MMB-by-MMB Algo-
rithm. We assume Oracle tests for conditional independence
tests and accurately obtain the MMB of the target variable
T through the MMB discovery algorithm, MMB-by-MMB
will identify the direct causes and effects of the target under
causal faithfulness and no selection bias assumptions.

Theorem 4 shows that the local P obtained through the
MMB-by-MMB algorithm is correct, meaning that the edges
connected to the target node T and their directions in the
output P are identical to those in the Markov equivalence
class of the underlying causal MAGM.
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4.3. Complexity of MMB-by-MMB Algorithm

This algorithm’s complexity can be divided into two parts:
the first part involves finding the MAG Markov blanket, and
the second part involves learning the local structure. Let r
denote the number of local structures to be learned sequen-
tially in our algorithm. In our experiment, we used the TC
algorithm(Pellet & Elisseeff, 2008) to search for MMB. The
time complexity of finding MMB among r nodes out of n
total nodes is O

(
r(2n−r−1)

2

)
, where n denotes the size of

observed node set O. When learning local structure, we
apply the logic of the PC algorithm to identify the adjacent
edges in MMB+(T ). In the worst case, the complexity
of the PC algorithm for learning a local structure over n
nodes is O

(
2
(
n
2

)∑k
i=0

(
n−1
i

))
. Let k be the maximal de-

gree of any variable and let |MMB+| denote the size of
MMB+(VX ). The complexity of the MMB-by-MMB algo-
rithm is the total complexity of finding MAG Markov blan-
kets plus constructing local structures. In the worst case, this
is, O

[
r(2n−r−1)

2 + 2r
(|MMB+|

2

)∑k
i=0

(|MMB+|−1
i

)]
.

5. Experimental Result
To demonstrate the accuracy and efficiency of our al-
gorithm, we compared the proposed MMB-by-MMB
algorithm with global learning methods, such as PC-
stable (Colombo & Maathuis, 2014), FCI (Spirtes et al.,
2000), and RFCI (Colombo et al., 2012) 4. We also com-
pared with local learning methods, such as the MB-by-MB
algorithm (Wang et al., 2014), the Causal Markov Blanket
(CMB) algorithm (Gao & Ji, 2015), and the GradieNt-based
LCS (GraN-LCS) algorithm (Liang et al., 2023) 5.

We here use the existing implementation (Pellet & Elis-
seeff, 2008) of the Total Conditioning (TC) discovery
algorithm to find the MB of a target variable. Our
source code is available from https://github.com/
fengxie009/MMB-by-MMB.

5.1. Synthetic Data Generated from Benchmark
Network Structures

Experimental setup: We select four networks ranging
from low to high dimensionality: MILDEW, ALARM,
WIN95PTS, and ANDES, containing 35, 37, 76, and

4For PC-stable algorithms, we used the implementations
in the MATLAB package at https://github.com/kuiy/
CausalLearner. FCI algorithm is from Python-package
causallearn (Zheng et al., 2023). RFCI algorithm is from R-
package pcalg (Kalisch et al., 2012).

5We utilized the Python pyCausalFS package (Yu et al.,
2020) for MB-by-MB and CMB algorithms. The source code
is available at https://github.com/kuiy/pyCausalFS,
and the GraN-LCS algorithm from https://www.sdu-idea.
cn/codes.php?name=GraN-LCS.

223 nodes, respectively6. The network structures are pa-
rameterized as a linear Gaussian structural causal model.
The causal strength of each edge is drawn from Uniform
([−1,−0.5] ∪ [0.5, 1]). For each graph, we randomly select
4, 4, 6,10 nodes as latent variables, and others as observed
variables. We here choose nodes with more adjacent nodes
as target nodes. Each experiment was repeated 100 times
with randomly generated data, and the reported results were
averaged. The best results are highlighted in boldface.

Metrics: We evaluate the performance of the algorithms
using the following typical metrics: Precision: the ratio of
true edges 7 in the output to the total number of edges in
the algorithm’s output. Recall: the ratio of true edges in
the output to the total number of edges in the ground-truth
structure of a target. F1: the harmonic average of Precision
and Recall, calculated as
F1 = 2 ∗ Precision ∗ Recall/(Prescision + Recall).

Distance: the Euclidean distance between Recall and Preci-
sion, computed as

Distance =
√

(1− Recall)2 + (1− Precision)2.

nTest: the number of conditional independence tests imple-
mented by an algorithm.

Results: Due to space constraints, we here present only
partial results for each network with two targets. These
results are shown in Tables 1 ∼ 4. The complete results
are given in the Appendix E. From the tables, we can see
that our proposed MMB-by-MMB algorithm outperforms
other methods with almost all evaluation metrics in all four
structures and in all sample sizes, indicating the effective-
ness of our method. As expected, the number of conditional
independence tests in our method is far less than that in the
methods FCI and RFCI, which are used for global learning
structures involving latent variables. It is worth noting that
although the nTest of CMB method is fewer than our method
in the WIN95PTS network when Size = 5000, the other
four metrics of our method outperform CMB. Furthermore,
the results of local learning methods, i.e., the MB-by-MB,
CMB, and GraN-LCS, are not satisfactory, indicating that
these methods cannot address situations involving latent
variable structures.

5.2. Gene Expression Data

In this section, we apply our method on the gene expression
data from Wille et al. (2004), which comprises gene expres-
sion measurements of Arabidopsis thaliana grown under
118 different conditions, such as variations in light and dark-
ness, and exposure to growth hormones. Wille et al. (2004)
focused particularly on the genes involved in isoprenoid

6The details of those networks can be found at https://
www.bnlearn.com/bnrepository/.

7A true edge implies the correct estimation of tails on both
sides.
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Table 1. Performance Comparisons on MILDEW.Net
Size=1000 Size=5000

Target Algorithm Precision↑ Recall↑ F1↑ Distance↓ nTest↓ Precision↑ Recall↑ F1↑ Distance↓ nTest↓
PC-stable 0.28±0.08 0.28±0.09 0.28±0.08 1.02±0.12 5032.70 0.27±0.07 0.27±0.07 0.27±0.07 1.04±0.10 8930.25

FCI 0.83±0.27 0.83±0.27 0.83±0.27 0.24±0.39 10260.86 0.85±0.27 0.85±0.26 0.85±0.27 0.21±0.38 16637.09
RFCI 0.81±0.28 0.81±0.28 0.81±0.28 0.27±0.39 5032.70 0.84±0.26 0.84±0.27 0.84±0.27 0.22±0.38 8930.25

dm-1 MB-by-MB 0.51±0.13 0.57±0.18 0.52±0.14 0.67±0.20 4596.90 0.50±0.12 0.58±0.18 0.51±0.13 0.68±0.19 15864.89
CMB 0.49±0.15 0.52±0.17 0.50±0.15 0.71±0.22 3440.64 0.50±0.13 0.54±0.16 0.51±0.14 0.69±0.20 3661.29

GraN-LCS 0.70±0.22 0.78±0.20 0.73±0.22 0.39±0.30 - 0.67±0.21 0.74±0.20 0.69±0.20 0.43±0.29 -
MMB-by-MMB 0.95±0.15 0.95±0.15 0.95±0.15 0.07±0.22 392.95 0.97±0.13 0.97±0.13 0.97±0.13 0.04±0.18 613.61

PC-stable 0.33±0.18 0.33±0.18 0.33±0.18 0.94±0.26 5071.66 0.33±0.18 0.33±0.18 0.33±0.18 0.95±0.25 8972.31
FCI 0.77±0.20 0.70±0.20 0.72±0.20 0.39±0.29 10338.28 0.84±0.15 0.77±0.20 0.80±0.18 0.29±0.26 16762.44

RFCI 0.72±0.21 0.64±0.19 0.67±0.20 0.47±0.28 5071.66 0.81±0.15 0.73±0.20 0.76±0.18 0.35±0.26 8972.31
dm-4 MB-by-MB 0.59±0.14 0.69±0.18 0.62±0.14 0.53±0.20 7075.49 0.60±0.15 0.71±0.18 0.63±0.16 0.51±0.22 28815.65

CMB 0.60±0.15 0.63±0.16 0.61±0.15 0.55±0.22 2325.96 0.58±0.15 0.63±0.15 0.60±0.15 0.57±0.21 3638.17
GraN-LCS 0.57±0.17 0.59±0.19 0.56±0.16 0.62±0.23 - 0.60±0.20 0.61±0.21 0.59±0.19 0.58±0.26 -

MMB-by-MMB 0.95±0.13 0.91±0.16 0.92±0.15 0.11±0.21 527.14 0.99±0.05 0.98±0.09 0.98±0.08 0.03±0.11 690.57

Note: The symbol ’-’ indicates that GraN-LCS does not output this information. MMB-by-MMB with the second best result is underlined. ↑ means a higher value is better,
and vice versa.

Table 2. Performance Comparisons on ALARM.Net
Size=1000 Size=5000

Target Algorithm Precision↑ Recall↑ F1↑ Distance↓ nTest↓ Precision↑ Recall↑ F1↑ Distance↓ nTest↓
PC-stable 0.56±0.16 0.55±0.14 0.56±0.15 0.63±0.20 3515.85 0.56±0.16 0.55±0.14 0.56±0.15 0.63±0.20 4878.73

FCI 0.78±0.25 0.77±0.25 0.77±0.25 0.32±0.35 7552.66 0.84±0.24 0.83±0.24 0.83±0.24 0.24±0.34 10173.30
RFCI 0.78±0.25 0.77±0.24 0.77±0.24 0.32±0.34 3515.85 0.83±0.23 0.83±0.24 0.83±0.24 0.24±0.33 4878.73

LVEDVOLUME MB-by-MB 0.46±0.18 0.46±0.18 0.45±0.17 0.77±0.25 1531.45 0.44±0.15 0.44±0.16 0.43±0.14 0.81±0.20 4196.87
CMB 0.44±0.21 0.43±0.19 0.43±0.20 0.80±0.28 1471.71 0.44±0.20 0.43±0.18 0.43±0.18 0.81±0.26 1992.32

GraN-LCS 0.58±0.15 0.57±0.14 0.57±0.14 0.61±0.20 - 0.58±0.13 0.58±0.13 0.58±0.13 0.60±0.18 -
MMB-by-MMB 0.97±0.12 0.96±0.12 0.96±0.12 0.05±0.16 324.09 0.98±0.09 0.98±0.09 0.98±0.09 0.03±0.12 344.51

PC-stable 0.57±0.17 0.56±0.13 0.56±0.14 0.62±0.20 3470.71 0.57±0.17 0.56±0.13 0.56±0.14 0.62±0.20 4840.23
FCI 0.78±0.25 0.77±0.25 0.77±0.25 0.33±0.35 7483.00 0.84±0.23 0.84±0.23 0.84±0.23 0.23±0.33 10171.28

RFCI 0.72±0.25 0.71±0.24 0.71±0.25 0.41±0.35 3470.71 0.83±0.24 0.83±0.24 0.83±0.24 0.24±0.34 4840.23
STROKEVOLUME MB-by-MB 0.43±0.18 0.48±0.21 0.43±0.18 0.79±0.25 2076.76 0.37±0.15 0.41±0.17 0.38±0.15 0.88±0.21 6377.99

CMB 0.44±0.20 0.45±0.20 0.44±0.19 0.79±0.27 2197.08 0.37±0.19 0.37±0.19 0.37±0.19 0.89±0.26 2597.72
GraN-LCS 0.42±0.13 0.46±0.16 0.43±0.14 0.80±0.20 - 0.42±0.13 0.46±0.16 0.43±0.14 0.80±0.20 -

MMB-by-MMB 0.95±0.15 0.95±0.16 0.95±0.16 0.08±0.22 566.39 0.98±0.09 0.98±0.09 0.98±0.09 0.02±0.12 698.17

Note: The symbol ’-’ indicates that GraN-LCS does not output this information. MMB-by-MMB with the second best result is underlined. ↑ means a higher value is better,
and vice versa.

Table 3. Performance Comparisons on WIN95PTS.Net
Size=1000 Size=5000

Target Algorithm Precision↑ Recall↑ F1↑ Distance↓ nTest↓ Precision↑ Recall↑ F1↑ Distance↓ nTest↓
Pc-stable 0.52±0.07 0.52±0.07 0.52±0.07 0.68±0.10 12657.62 0.53±0.07 0.53±0.08 0.53±0.07 0.67±0.10 26398.40

FCI 0.69±0.24 0.69±0.24 0.68±0.24 0.45±0.34 25417.23 0.77±0.27 0.76±0.27 0.76±0.27 0.34±0.38 43850.55
RFCI 0.67±0.23 0.66±0.23 0.66±0.23 0.48±0.33 12657.62 0.77±0.27 0.75±0.28 0.76±0.28 0.35±0.39 26398.40

Problem5 MB-by-MB 0.46±0.19 0.50±0.22 0.47±0.20 0.75±0.28 13633.52 NA NA NA NA NA
CMB 0.57±0.16 0.60±0.18 0.58±0.17 0.59±0.23 4757.95 0.54±0.15 0.58±0.17 0.56±0.16 0.63±0.22 5413.78

GraN-LCS 0.48±0.14 0.50±0.15 0.48±0.14 0.73±0.20 - 0.48±0.16 0.48±0.17 0.48±0.16 0.74±0.22 -
MMB-by-MMB 0.90±0.20 0.90±0.20 0.89±0.20 0.15±0.29 3907.42 0.93±0.18 0.92±0.19 0.92±0.19 0.11±0.27 12372.20

PC-stable 0.78±0.08 0.77±0.06 0.78±0.07 0.32±0.10 12637.44 0.77±0.06 0.76±0.04 0.76±0.05 0.34±0.07 25058.00
FCI 0.80±0.24 0.80±0.24 0.80±0.24 0.28±0.34 25651.52 0.83±0.24 0.83±0.25 0.83±0.25 0.24±0.35 42604.71

RFCI 0.81±0.24 0.81±0.24 0.81±0.24 0.27±0.34 12637.44 0.82±0.25 0.82±0.25 0.82±0.25 0.25±0.35 25058.00
HrglssDrtnAftrPrnt MB-by-MB 0.46±0.09 0.46±0.09 0.46±0.09 0.77±0.13 14169.84 0.45±0.11 0.45±0.11 0.45±0.11 0.78±0.15 45118.80

CMB 0.48±0.23 0.48±0.23 0.48±0.23 0.73±0.33 7933.74 0.42±0.19 0.42±0.19 0.42±0.19 0.82±0.26 11783.44
GraN-LCS 0.39±0.14 0.39±0.14 0.39±0.14 0.86±0.20 - 0.43±0.13 0.43±0.13 0.43±0.13 0.80±0.18 -

MMB-by-MMB 0.92±0.18 0.92±0.18 0.92±0.18 0.11±0.25 1054.52 0.92±0.20 0.92±0.20 0.92±0.20 0.11±0.29 2029.79

Note: The symbol ’-’ indicates that GraN-LCS does not output this information. MMB-by-MMB with the second best result is underlined. ↑ means a higher value is better,
and vice versa. NA entries for MB-by-MB demonstrate that the runtime exceeds a certain threshold.

Table 4. Performance Comparisons on ANDES.Net
Size=1000 Size=5000

Target Algorithm Precision↑ Recall↑ F1↑ Distance↓ nTest↓ Precision↑ Recall↑ F1↑ Distance↓ nTest↓
PC-stable 0.23±0.07 0.23±0.07 0.23±0.07 1.09±0.10 234677.37 0.23±0.07 0.23±0.07 0.23±0.07 1.09±0.10 439483.08

FCI 0.70±0.24 0.68±0.25 0.68±0.24 0.45±0.34 901063.34 0.79±0.24 0.78±0.25 0.79±0.24 0.30±0.34 1584682.77
RFCI 0.66±0.24 0.64±0.24 0.65±0.24 0.50±0.34 234677.37 0.78±0.24 0.77±0.25 0.77±0.25 0.32±0.35 439483.08

RApp3(V5) MB-by-MB 0.34±0.07 0.43±0.12 0.36±0.08 0.89±0.12 24239.83 0.39±0.08 0.56±0.12 0.43±0.09 0.78±0.12 44225.00
CMB 0.33±0.06 0.38±0.09 0.34±0.07 0.92±0.09 79932.47 0.32±0.05 0.39±0.09 0.34±0.07 0.93±0.09 145631.64

GraN-LCS 0.39±0.12 0.46±0.16 0.40±0.12 0.84±0.17 - 0.38±0.13 0.42±0.16 0.39±0.13 0.86±0.19 -
MMB-by-MMB 0.91±0.15 0.90±0.17 0.89±0.17 0.16±0.24 5043.44 0.98±0.07 0.98±0.07 0.98±0.07 0.03±0.10 4595.15

PC-stable 0.46±0.09 0.46±0.09 0.46±0.09 0.77±0.13 234677.37 0.46±0.09 0.46±0.09 0.46±0.09 0.77±0.13 439483.08
FCI 0.79±0.24 0.78±0.24 0.78±0.24 0.32±0.34 901063.34 0.84±0.23 0.84±0.23 0.84±0.24 0.23±0.33 1584682.77

RFCI 0.79±0.24 0.79±0.24 0.79±0.24 0.32±0.34 234677.37 0.84±0.23 0.83±0.23 0.83±0.24 0.24±0.33 439483.08
RApp4 MB-by-MB 0.26±0.14 0.29±0.16 0.26±0.14 1.04±0.20 18761.00 NA NA NA NA NA

CMB 0.25±0.16 0.26±0.17 0.25±0.16 1.06±0.23 87956.70 0.23±0.12 0.23±0.12 0.23±0.12 1.09±0.17 212387.71
GraN-LCS 0.36±0.16 0.45±0.19 0.38±0.16 0.87±0.23 - 0.38±0.17 0.48±0.22 0.40±0.18 0.84±0.26 -

MMB-by-MMB 0.91±0.22 0.93±0.19 0.91±0.21 0.12±0.30 3153.11 0.97±0.12 0.98±0.09 0.97±0.11 0.04±0.15 1430.12

Note: The symbol ’-’ indicates that GraN-LCS does not output this information. MMB-by-MMB with the second best result is underlined. ↑ means a higher value is better,
and vice versa. NA entries for MB-by-MB demonstrate that the runtime exceeds a certain threshold.
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synthesis. In Arabidopsis thaliana, isoprenoid synthesis is
carried out by two distinct pathways in separate organs: the
mevalonate pathway (MVA) and the nonmevalonate path-
way (MEP). The dataset we used contains 33 genes. We
here employ the model in Wille et al. (2004) as a baseline
(See Figure 3 of Wille et al. (2004)). It should be noted that
in this model, some edges are undirected. We selected two
genes, DXR and MECPS, as target nodes, respectively. The
findings are as follows:

Target=DXR. Our method obtains that Pa(DXR) =
{HMGS} and Ch(DXR)={DXPS2, CMK, MECPS, HDS}.
We found that the connections among four genes DXPS2,
CMK, MECPS, and HDS, as well as the information that
DXR is the ancestral node of CMK, MECPS, and HDS,
are consistent with the conclusions in Wille et al. (2004).
In the baseline, the nodes with edge connections to DXR
are: {DXPS1, DXPS2, DXPS3, MCT, CMK, MECPS, HDS,
UPPS1}. The nodes connected by directed edges point-
ing to DXR are {DXPS1, DXPS2, DXPS3}, and the node
MCT is connected by directed edges pointing from DXR.
Undirected edges connect other nodes.

Target=PPDS1. Our method gets Pa(PPDS1 ) = {HDR},
and Ch(PPDS1 )={PPDS2, DPPS2}. We found that the
connections among three genes HDR, PPDS2, and DPPS2
are consistent with the conclusions in Wille et al. (2004).
In the baseline, the nodes with edge connections to PPDS1
are: {HDR, IPPI1, PPDS2, DPPS2}. And the node IPPI1
is connected by directed edges pointing from PPDS1. Other
nodes are connected by undirected edges.

Target=MECPS. Our method gets Pa(MECPS )={DXR,
FPPS2}, and Ch(MECPS )={MCT}. We found that the
connections among two genes DXR and MCT, as well as
the information that DXR is the ancestral node of MECPS,
are consistent with the conclusions in Wille et al. (2004). In
the baseline, the nodes with edge connections to MECPS
are: {DXR, MCT, CMK, HDS, ACCT1, HMGR2}. The node
HDS is connected by directed edges pointing to MECPS,
and the node CMK is connected by directed edges pointing
from MECPS. Undirected edges connect other nodes.

6. Conclusion and and Further Work
We introduce a novel local causal discovery algorithm,
MMB-by-MMB, designed to be effective in models with
the presence of latent variables. Unlike existing global algo-
rithms, MMB-by-MMB method demonstrates the capability
to identify causal structures under equivalent identification
conditions, yet it accomplishes this with significantly lower
computational expense. Furthermore, we provide proof
validating the correctness of the MMB-by-MMB algorithm.

It should be noted that due to the presence of latent vari-
ables, the results of the proposed method still include some

instances where it is challenging to determine the causes and
effects from purely observational data without any further as-
sumptions. Therefore, exploring how to utilize background
knowledge, such as leveraging data generation mechanisms
(Kaltenpoth & Vreeken, 2023) or expert knowledge (Wang
et al., 2023), to further aid in identifying causes and effects
within local structures remains a future research direction.
Additionally, leveraging theories on combining interven-
tional and observational data (Hauser & Bühlmann, 2015)
to learn the local causal structure in the presence of latent
variables is interesting for future work.
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A. Notations and Definitions

Symbol Description

G A mixed graph
M A Maximal Ancestral Graph (MAG)
ML A local Maximal Ancestral Graph (MAG)
P A Partial Ancestral Graph (PAG)
V The set of all variables
O The set of observed variables
L The set of latent variables
Pa(T ),Ch(T ) The set of all parents and children of T , respectively
Sp(T ) The set of all spouses of T
An(T ), De(T ) The set of all ancestors and descendants of T , respectively
Adj (T ) The set of adjacent vertices of T
MB(T ) The Markov blanket of a vertice T in a DAG
MMB(T ) The Markov blanket of a vertice T in a MAG
MMB+(T ) The set of {MMB(T ) ∪ T}
SX,Y The set of m-separates X and Y
(X ⊥⊥ Y|Z)G A set Z m-separates X and Y in G
(X ⊥⊥ Y|Z)P X is statistically independent of Y given Z. We drop the subscript P whenever it is clear from context.
(X ⊥̸⊥ Y|Z)P X is not statistically independent of Y given Z
A → B in G A is a cause of B, but B is not a cause of A
A ↔ B in G A is not a cause of B, and B is not a cause of A
A B in P A and B are not adjacent
A◦→ B in P B is not an ancestor of A
A ◦−◦B in P No set m-separates A and B
A → B in P A is a cause of B
A ↔ B in P There is a latent common cause of A and B
LV The local structure learned from a subset V of V, utilizing the test of conditional independence and

orientation of V-structures
MMBalg The algorithm used for learning MMB
WaitList The list of nodes to be checked by Theorem 1 and Theorem 2
DoneList The list of nodes whose local structures have been found

Table 5. The list of main symbols used in this paper

Definition 2. MAG Markov Blanket (MMB) (Pellet & Elisseeff, 2008) In a MAG, the Markov blanket of a vertice T , noted
as MMB(T ), consists of the set of parents, children, children’s parents of T , as well as the district of T and of the children
of T , and the parents of each node of these districts, where the district of a node X is the set of all nodes reachable from X
using only bidirected edges.

In Figure 4, the MAG Markov Blanket of T is specifically illustrated.

F

A B C D

E T G H I M

N K J

Figure 4. The illustrative example for MMB, where T is the target of interest and the blue nodes belong to MMB(T ).
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B. Discussion of violating the faithfulness assumption
First, we would like to mention that classical causal discovery, such as PC, FCI, and RFCI, is usually dependent on the
causal faithfulness assumption, and these methods have been used in a range of fields (Spirtes & Zhang, 2016).

Second, reducing unnecessary conditional independence tests can mitigate statistically weak violations of the causal
faithfulness assumption (Isozaki, 2014), which is precisely the focus of our paper. Moreover, experimental results also
validate this point (nTest is minimal, and other metrics are superior to existing methods).

Lastly, incorporating elements of the Greedy Equivalence Search (GES) algorithm (Chickering, 2002), a representative
score-based method, could be made more robust against violation of faithfulness (Zhalama et al., 2017), which is the
direction of our future work.

C. Proofs
C.1. Proof of Theorem 1

Before presenting the proof, we quote the Theorem 1 of Xie & Geng (2008).

Lemma 1. Suppose that A ⊥⊥ B|C. Let u ∈ A and v ∈ A ∪C. Then u and v are m-separated by a subset of A ∪B ∪C if
and only if they are m-separated by a subset of A ∪ C.

We begin to utilize Lemma 1 to prove Theorem 1.

Proof. From the property of MMB, we know T ⊥⊥ {O \ MMB+(T )}|MMB(T ). Let X be a node in MMB(T ).
According to Lemma 1, we directly obtain that T and X are m-separated by a subset of O if and only if they are m-separated
by a subset of MMB(T ) \ {X}.

C.2. Proof of Theorem 2

Proof. We prove statements S1 and S2 in Theorem 2 separately below. For notational convenience, let SX,Y denote the set
of nodes that m-separates X and Y .

Statement S1. Without loss of generality, we assume that Va∗→ T ←∗Vb is a V-structure in the ground-truth MAGM
over O. Because Va and Vb are two nodes in MMB(T ) and according to Theorem 1, we can ascertain the presence of direct
edges Va − T and T − Vb by the marginal distribution of MMB+(T ). Next, we need to discuss the following two cases:

• SVa,Vb
⊂ MMB(T ). Because SVa,Vb

⊂ MMB(T ) in the sub-MAGM′, we can directly verify the condition Va ⊥⊥
Vb|SVa,Vb

from the marginal distribution of MMB+(T ). Due to T ∈ MMB+(T ), we obtain Va ⊥̸⊥ Vb|SVa,Vb
∪ {T}.

This will imply that the Va∗→ T ←∗Vb identified by the marginal distribution of MMB+(T ) is exactly the V-structure
in the ground-truth MAGM.

• SVa,Vb
⊈ MMB(T ). Because SVa,Vb

⊈ MMB(T ) in the sub-MAGM′, we can directly deduce that it is impossible to
find a separating set for Va and Vb in MMB+(T ), implying that we are unable to identify such V-structures, even if they
exist in the ground-truth MAGM.

Based on the above analysis, the V-structures we identify from the marginal distribution of MMB+(T ) must be consistent
with those in the ground-truth MAGM.

Statement S2. Without loss of generality, we assume that T∗→ Va ←∗Vb is a V-structure in the ground-truth MAGM
over O. To identify this V-structure from the marginal distribution of MMB+(T ), we need to verify the following four
conditions:

• 1. ∀S ⊆ MMB(T ), T ⊥̸⊥ Va | S
• 2. ∃ST,Vb

⊆ MMB(T ), T ⊥⊥ Vb | ST,Vb

• 3. Va /∈ ST,Vb

• 4. ∀S ⊆ MMB+(T ), Va ⊥̸⊥ Vb | S

According to Theorem 1, we can directly conclude that there exists the direct edge T − Va, and the direct edge T − Vb

does not exist, by the marginal distribution of MMB+(T ). These results will imply that the above two conditions hold,
i.e., ∀S ⊆ MMB(T ), T ⊥̸⊥ Va | S and ∃ST,Vb

⊆ MMB(T ), T ⊥⊥ Vb | ST,Vb
. Because of the property of V-structure, we
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obtain the third condition hold, i.e., Va /∈ ST,Vb
.

We next show that condition 4 can be verified by the marginal distribution of MMB+(T ). Let’s consider the scenario of a
spurious edge between Va and Vb, meaning there is no direct edge between them, but for any subset ∀S ⊆ MMB+(T ), Va ⊥̸⊥
Vb | S. Our objective is to demonstrate that if it is an active path connecting Va and Vb instead of a direct edge, then
∃S ⊆ MMB+(T ), Va ⊥⊥ Vb | S. We can examine active paths in the following three cases:

• 1. Va ← · · ·Vb

• 2. Va ↔ Vx → · · ·Vb

• 3. Va → · · ·Vb

Given that T∗→ Va, we have Pa(Va),Sp(Va),Pa(Sp(Va)) ⊂ MMB+(T ). Each path in case 1 is blocked by Pa(Va)
and, consequently, by a subset of MMB+(T ). For case 2, all paths are obstructed by Sp(Va), which is also a subset
of MMB+(T ). Thus, we only need to demonstrate that there exists a subset of MMB+(T ) that blocks each path
Va → Vx · · ·Vb. By conditions 2 and 3, ST,Vb

blocks each path Va → Vx · · ·Vb since Va /∈ ST,Vb
. In summary, in the

absence of a direct edge between Va and Vb, we can obtain that ∃S ⊆ MMB+(T ), Va ⊥⊥ Vb | S. This will imply that
condition 4 can be verified by the marginal distribution of MMB+(T ).

In conclusion, the V-structure T∗→ Va ←∗Vb we identify from the marginal distribution of MMB+(T ) must be consistent
with those in the ground-truth MAGM.

C.3. Proof of Theorem 3

RuleR1 implies that all the causal information of interest, i.e., the edges and directions connected to the target, has been
found. RuleR2 asserts that all nodes have been effectively utilized, leaving no node for sequential learning. Both rulesR1
andR2 are self-evident. Therefore, our task is to establish the validity ofR3. Before that, we quote the following lemma
since it is used to prove Theorem 3.

Lemma 2. In a MAGM with a set of vertices X, consider Y as a leaf node (i.e., Y is not an ancestor of any node in
X). LetM′ be the new MAG obtained by removing Y fromM, and X′ be the set of all nodes inM′, then the following
condition holds:

PM(X′) = PM′(X′) (1)

Lemma 2 implies that the joint probability distribution of the remaining node set X′ in the new MAGM′ is equivalent to
the joint probability distribution of the same node set X′ in the original MAGM. In other words, removing the leaf node Y
fromM does not alter the joint probability distribution of the remaining node set X′.

We now prove Lemma 2.

Proof.
PM(X′) =

∑
Y

PM(X′, Y )

=
∑
Y

∏
X∈X′

P (X | Pa(X))P (Y | Pa(Y ))

=
∏

X∈X′

P (X | Pa(X))
∑
Y

P (Y | Pa(Y ))

(Because Y is a leaf node, then ∀X ∈ X′, Y /∈ Pa (X))

=
∏

X∈X′

P (X | Pa(X))

= PM′(X′)

(2)

Remark 3. Lemma 2 inspires us the following facts:
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• Firstly, let O be a set of observed data,M be the MAG graph over O, and X′ = {O \Y}. Y represents the set of leaf
nodes relative to X′ inM. According to Lemma 2, we can deduce that PM(X′) = PM′(X′), whereM′ is the new
MAG obtained by removing Y fromM.

• Secondly, let X′′ = {O \Y ∪Y′}, and Y′ denote the set of leaf nodes relative to X′′ inM′. Subsequently, we can
infer PM′(X′′) = PM′′(X′′) using Lemma 2, whereM′′ is the new MAG obtained by removing Y′ fromM′.

• Finally, by repeating the above steps multiple times, we can obtain a local MAGML, and PM(X) = PM′(X) =
PM′′(X) = PML

(X), where X = {O \ Y}, and Y denotes the leaf nodes that are removed during the repetition
process.

Based on the above analysis, we now prove the ruleR3 of Theorem 3.

Proof. Based on the above description of Remark 3 and relying on the faithfulness assumption, it can be inferred that after
iteratively deleting all leaf nodes in the MAG, the relationship among the remaining nodes will remain unchanged.

First, let’s provide a more detailed explanation ofR3. In our sequential approach, assuming the sequential learning process
terminates due to satisfying R3, the result we learn is a local MAG’s PAG P . Assuming that we have identified a node
set O′ around T in the sequential learning process, and there exists a path between each node in the set Waitlist and T .
Suppose Y ∈Waitlist, let Vi represent the nodes excluding T and Y in the path, where i ∈ [1, n] and Vi ∈ Donelist.
Let V1 denote the node closest to T on the path, and Vn denote the node closest to Y . If we identify that all paths connected
by undirected edges around T possess the following characteristics: the edges between T and V1 on the path are undirected,
while the edges between Vn and Y are either Vn → Y or Vn◦→ Y . Hence, upon satisfaction ofR3, we can conclude the
sequential learning algorithm.

Then, We proceed to demonstrate why the sequential learning algorithm can be halted whenR3 is satisfied. In our learning
process, we identify that the edges between T and V1 on the paths are undirected, while Y are not ancestors of Vn. These
paths from T to Y in underlyingML can be considered in the following two cases:

• 1. T · · ·V1 · · ·Vn ↔ Y

• 2. T · · ·V1 · · ·Vn → Y

Since we have identified ∗→ Y , we can infer that these Y nodes belong to the leaf nodes of the underlyingML. Combining
these Y nodes into a set Y, according to Lemma 2, we can deduce that PM′

L
(O′′) = PML

(O′′), where O′′ = {O′ \Y} is
the new MAG obtained by removing Y fromML.

This implies that the joint probability distribution of the remaining nodes set O′′ inM′
L is equivalent to the joint probability

distribution of the same node set O′′ in theML. Then, through PM(X) = PM′(X) = PM′′(X) = PML
(X) in Remark 3,

we can get PM′
L
(O′′) = PM(O′′).

However, we failed to identify, based on the marginal distribution of O′′, that all paths involving undirected edges connected
to T are blocked by ∗→. Therefore, we continue the learning process until all paths involving undirected edges connected to
T are blocked by ∗→ through the marginal distribution of O′. To summarize, when the situation satisfyingR3 is identified,
we can get PML

(O′) = PM(O′) which implies that continuing this algorithm will not contribute to orienting the undirected
edges in P . Hence, upon satisfaction ofR3, we can conclude the sequential learning algorithm.

C.4. Proof of Theorem 4

Proof. To establish the correctness of the MMB-by-MMB approach, it is imperative to demonstrate the correctness of all
edges and orientations in the resulting graph P . Additionally, it is crucial to assert that the undirected edges linked to the
target node T remain unaltered, defying further orientation even as the algorithm progresses.

Following Theorem 1, it is established that all edges connected to nodes in the Donelist are accurate. Given that T is
encompassed within the Donelist, the edges linked to T are deemed correct.

Subsequently, relying on Theorem 2, it can be inferred that all v-structures in P are correct, and those v-structures having at
least one node that does not belong to the ancestors of the collider within the Donelist are correctly identified. Following
Zhang’s orientation methodology, the undirected edges in P are oriented by checking the presence of edges in P .

Ultimately, we demonstrate that continuing the algorithm cannot orient the undirected edges connected to T in the output
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P if they are present. As outlined earlier, we accurately ascertain all edges and v-structures along with their orientations.
Thus, a PAG P representing the Markov equivalence class of the underlying MAG is obtained when the Donelist equals the
complete set O of all nodes. In cases where the Donelist is a subset of O, the algorithm stops, as nodes in the Donelist do
not establish connections with nodes outside P , or their paths to nodes outside P are all blocked by ∗ →. In such instances,
the edges and orientations identified through the continuing algorithm do not contribute to orienting the undirected edges in
P , as these undirected edges have already been enveloped by previously determined directed edges.

Hence, the correctness of the MMB-by-MMB algorithm is proven.

D. Illustration of MMB-by-MMB Algorithm
In this section, we illustrate our MMB-by-MMB with the graph in Figure 3(a). We assume Oracle tests for conditional
independence conditions.

• It first initializes sets Waitlist = {V5}, Donelist = ∅, and graph P = ∅ (Line 1).
• After initialization, it runs MMBalg(V5 ) and obtain MMB(V5 )={V3, V4, V7, V8, V10, V12} (Lines 3 ∼ 4).
• It then learns LMMB+(V5 ) over MMB+(V5 ): V4◦→ V5◦→ V10 ←◦V3◦→ V4 and V12◦→ V8 ↔ V5 ←◦V4 ←◦V7◦→
V8, as depicted in Figure 3(b) (Line 10).

• Next, it updates P by selecting the edges connected to VX and the V-structures containing VX (Line 12). According to
Theorem 1 and Theorem 2, these edges can be determined :V3◦→ V10 ←◦V5 ←◦V4, V5 ↔ V8 ←◦V12 and V7◦→ V8.

• It now orients V5◦→ V10 as V5 → V10 by orientation rules (Line 13). Consequently, it obtains P as shown in Figure 3(c).
• Then, it updates Donelist={V5}, and Waitlist={V4, V8, V10} (Lines 14 ∼ 15).
• Sequentially, it runs MMBalg(V4 ) and obtain MMB(V4)={V2, V3, V5, V7, V8, V11, V12}.
• It then learns the local structure LMMB+(V4 ) : V11◦→ V3 ↔ V4◦→ V5 ↔ V8 and V4 ←◦V2 ◦−◦ V7◦→ V8 ←◦V12, as

shown in Figure 3 (Line 10).
• According to Theorem 1 and Theorem 2, these edges can be determined : V11◦→ V3 ↔ V4◦→ V5 ↔ V8 ←◦V12,
V2◦→ V4 and V12◦→ V8. Next, it pools the determined edges together and orients V4◦→ V5 as V4 → V5 (Lines
12 ∼ 13). Following this, it derives the local structure P , as illustrated in Figure 3(e).

• Next, it updates sets Waitlist={V8, V10, V2, V3}, Donelist={V5, V4} (Lines 14 ∼ 15).
• Finally, the algorithm terminates because stopR1 is satisfied. Output the resulting local structure P , which is depicted

in Figure 3(f).

The ultimate local P , acquired through orienting rules, is presented in Figure 3.(f). As all edges connected to the target V5

have been oriented (i.e., satisfying stopR1), the learning process can be concluded.

E. More Results on Experiments
All experiments were performed with Intel 2.90GHz and 2.89 GHz CPUs and 128 GB of memory. We give more experimental
results here.

Table 6 provides a detailed overview of the network statistics used in this paper.

Table 6. Statistics on the Networks.
Networks Num.Variables Avg degree Max in-degree
MILDEW 35 2.63 3
ALARM 37 2.49 4

WIN95PTS 76 2.95 7
ANDES 223 3.03 6

Tables 7 ∼ 10 provide the complete results in Section 5.1.
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Table 7. Performance Comparisons on MILDEW.Net
Size=1000 Size=5000

Target Algorithm Precision↑ Recall↑ F1↑ Distance↓ nTest↓ Precision↑ Recall↑ F1↑ Distance↓ nTest↓
PC-stable 0.28±0.09 0.28±0.09 0.28±0.09 1.02±0.13 5066.55 0.27±0.07 0.27±0.07 0.27±0.07 1.04±0.10 8917.40

FCI 0.70±0.25 0.64±0.29 0.66±0.28 0.48±0.39 10307.75 0.77±0.25 0.72±0.29 0.73±0.28 0.38±0.39 16663.83
RFCI 0.69±0.26 0.62±0.29 0.64±0.28 0.51±0.39 5066.55 0.73±0.25 0.68±0.28 0.70±0.27 0.43±0.38 8917.40

dm-2 MB-by-MB 0.55±0.11 0.62±0.14 0.57±0.12 0.61±0.17 6085.94 0.55±0.11 0.63±0.15 0.57±0.11 0.60±0.16 21849.32
CMB 0.55±0.13 0.58±0.14 0.56±0.13 0.62±0.18 2169.34 0.56±0.12 0.60±0.13 0.57±0.12 0.60±0.17 2573.37

GraN-LCS 0.68±0.17 0.72±0.18 0.68±0.16 0.46±0.22 - 0.69±0.18 0.72±0.19 0.68±0.17 0.46±0.24 -
MMB-by-MMB 0.94±0.15 0.93±0.17 0.93±0.17 0.10±0.24 732.89 0.98±0.08 0.97±0.11 0.97±0.10 0.04±0.15 1064.33

PC-stable 0.28±0.08 0.28±0.09 0.28±0.08 1.02±0.12 5032.70 0.27±0.07 0.27±0.07 0.27±0.07 1.04±0.10 8930.25
FCI 0.83±0.27 0.83±0.27 0.83±0.27 0.24±0.39 10260.86 0.85±0.27 0.85±0.26 0.85±0.27 0.21±0.38 16637.09

RFCI 0.81±0.28 0.81±0.28 0.81±0.28 0.27±0.39 5032.70 0.84±0.26 0.84±0.27 0.84±0.27 0.22±0.38 8930.25
dm-1 MB-by-MB 0.51±0.13 0.57±0.18 0.52±0.14 0.67±0.20 4596.90 0.50±0.12 0.58±0.18 0.51±0.13 0.68±0.19 15864.89

CMB 0.49±0.15 0.52±0.17 0.50±0.15 0.71±0.22 3440.64 0.50±0.13 0.54±0.16 0.51±0.14 0.69±0.20 3661.29
GraN-LCS 0.70±0.22 0.78±0.20 0.73±0.22 0.39±0.30 - 0.67±0.21 0.74±0.20 0.69±0.20 0.43±0.29 -

MMB-by-MMB 0.95±0.15 0.95±0.15 0.95±0.15 0.07±0.22 392.95 0.97±0.13 0.97±0.13 0.97±0.13 0.04±0.18 613.61
Pc-stable 0.25±0.04 0.25±0.04 0.25±0.04 1.06±0.06 4983.90 0.25±0.04 0.25±0.04 0.25±0.04 1.06±0.06 8852.61

FCI 0.71±0.27 0.70±0.27 0.70±0.27 0.43±0.39 10187.20 0.77±0.30 0.77±0.30 0.77±0.30 0.33±0.43 16496.33
RFCI 0.62±0.28 0.61±0.28 0.61±0.28 0.56±0.40 4983.90 0.74±0.30 0.74±0.30 0.74±0.30 0.37±0.43 8852.61

foto-4 MB-by-MB 0.29±0.07 0.37±0.14 0.30±0.08 0.97±0.13 6715.11 0.27±0.04 0.34±0.13 0.28±0.05 1.00±0.09 23781.90
CMB 0.30±0.09 0.35±0.13 0.31±0.09 0.97±0.13 2335.02 0.29±0.07 0.34±0.12 0.30±0.08 0.99±0.11 3097.41

GraN-LCS 0.32±0.12 0.40±0.18 0.34±0.13 0.92±0.19 - 0.33±0.12 0.40±0.18 0.34±0.14 0.92±0.19 -
MMB-by-MMB 0.93±0.12 0.92±0.14 0.92±0.14 0.11±0.20 820.24 0.95±0.15 0.95±0.15 0.95±0.15 0.07±0.22 1207.26

Pc-stable 0.33±0.18 0.33±0.18 0.33±0.18 0.94±0.26 5071.66 0.33±0.18 0.33±0.18 0.33±0.18 0.95±0.25 8972.31
FCI 0.77±0.20 0.70±0.20 0.72±0.20 0.39±0.29 10338.28 0.84±0.15 0.77±0.20 0.80±0.18 0.29±0.26 16762.44

RFCI 0.72±0.21 0.64±0.19 0.67±0.20 0.47±0.28 5071.66 0.81±0.15 0.73±0.20 0.76±0.18 0.35±0.26 8972.31
dm-4 MB-by-MB 0.59±0.14 0.69±0.18 0.62±0.14 0.53±0.20 7075.49 0.60±0.15 0.71±0.18 0.63±0.16 0.51±0.22 28815.65

CMB 0.60±0.15 0.63±0.16 0.61±0.15 0.55±0.22 2325.96 0.58±0.15 0.63±0.15 0.60±0.15 0.57±0.21 3638.17
GraN-LCS 0.57±0.17 0.59±0.19 0.56±0.16 0.62±0.23 - 0.60±0.20 0.61±0.21 0.59±0.19 0.58±0.26 -

MMB-by-MMB 0.95±0.13 0.91±0.16 0.92±0.15 0.11±0.21 527.14 0.99±0.05 0.98±0.09 0.98±0.08 0.03±0.11 690.57

Note: The symbol ’-’ indicates that GraN-LCS does not output this information. MMB-by-MMB with the second best result is underlined. ↑ means a higher value is better,
and vice versa.

Table 8. Performance Comparisons on ALARM.Net
Size=1000 Size=5000

Target Algorithm Precision↑ Recall↑ F1↑ Distance↓ nTest↓ Precision↑ Recall↑ F1↑ Distance↓ nTest↓
PC-stable 0.56±0.16 0.55±0.14 0.56±0.15 0.63±0.20 3515.85 0.56±0.16 0.55±0.14 0.56±0.15 0.63±0.20 4878.73

FCI 0.78±0.25 0.77±0.25 0.77±0.25 0.32±0.35 7552.66 0.84±0.24 0.83±0.24 0.83±0.24 0.24±0.34 10173.30
RFCI 0.78±0.25 0.77±0.24 0.77±0.24 0.32±0.34 3515.85 0.83±0.23 0.83±0.24 0.83±0.24 0.24±0.33 4878.73

LVEDVOLUME MB-by-MB 0.46±0.18 0.46±0.18 0.45±0.17 0.77±0.25 1531.45 0.44±0.15 0.44±0.16 0.43±0.14 0.81±0.20 4196.87
CMB 0.44±0.21 0.43±0.19 0.43±0.20 0.80±0.28 1471.71 0.44±0.20 0.43±0.18 0.43±0.18 0.81±0.26 1992.32

GraN-LCS 0.58±0.15 0.57±0.14 0.57±0.14 0.61±0.20 - 0.58±0.13 0.58±0.13 0.58±0.13 0.60±0.18 -
MMB-by-MMB 0.97±0.12 0.96±0.12 0.96±0.12 0.05±0.16 324.09 0.98±0.09 0.98±0.09 0.98±0.09 0.03±0.12 344.51

PC-stable 0.58±0.18 0.56±0.15 0.57±0.16 0.61±0.22 3529.88 0.58±0.18 0.57±0.15 0.57±0.16 0.61±0.22 4846.68
FCI 0.76±0.27 0.75±0.26 0.74±0.26 0.36±0.37 7629.62 0.80±0.25 0.78±0.26 0.79±0.26 0.30±0.36 10199.60

RFCI 0.74±0.27 0.73±0.27 0.73±0.27 0.39±0.38 3529.88 0.76±0.26 0.74±0.27 0.74±0.26 0.37±0.37 4846.68
VENTTUBE MB-by-MB 0.36±0.12 0.37±0.14 0.36±0.12 0.90±0.17 3081.04 0.32±0.11 0.32±0.11 0.32±0.11 0.97±0.15 8077.43

CMB 0.32±0.13 0.31±0.11 0.31±0.12 0.97±0.17 3537.93 0.29±0.10 0.29±0.10 0.29±0.09 1.00±0.13 4630.07
GraN-LCS 0.43±0.13 0.46±0.16 0.44±0.14 0.80±0.20 - 0.44±0.13 0.47±0.15 0.45±0.13 0.79±0.18 -

MMB-by-MMB 0.87±0.24 0.85±0.24 0.85±0.24 0.21±0.34 570.23 0.89±0.21 0.87±0.22 0.87±0.22 0.18±0.31 736.22
PC-stable 0.24±0.05 0.24±0.05 0.24±0.05 1.07±0.07 3482.37 0.24±0.05 0.24±0.05 0.24±0.05 1.07±0.07 4758.09

FCI 0.63±0.22 0.52±0.18 0.55±0.19 0.64±0.27 7565.43 0.76±0.17 0.66±0.19 0.69±0.17 0.44±0.25 10110.46
RFCI 0.59±0.20 0.47±0.16 0.51±0.17 0.70±0.23 3482.37 0.73±0.17 0.63±0.18 0.66±0.17 0.49±0.24 4758.09

CATECHOL MB-by-MB 0.31±0.09 0.38±0.13 0.33±0.10 0.94±0.14 6336.96 0.30±0.08 0.38±0.12 0.32±0.09 0.95±0.13 20601.93
CMB 0.29±0.07 0.35±0.11 0.30±0.08 0.97±0.11 5036.08 0.30±0.07 0.36±0.10 0.32±0.08 0.96±0.11 4204.28

GraN-LCS 0.26±0.07 0.26±0.09 0.26±0.08 1.05±0.11 - 0.25±0.07 0.25±0.06 0.25±0.06 1.06±0.09 -
MMB-by-MMB 0.92±0.15 0.87±0.17 0.88±0.16 0.17±0.23 936.64 0.95±0.11 0.94±0.13 0.94±0.13 0.09±0.18 1128.77

PC-stable 0.57±0.17 0.56±0.13 0.56±0.14 0.62±0.20 3470.71 0.57±0.17 0.56±0.13 0.56±0.14 0.62±0.20 4840.23
FCI 0.78±0.25 0.77±0.25 0.77±0.25 0.33±0.35 7483.00 0.84±0.23 0.84±0.23 0.84±0.23 0.23±0.33 10171.28

RFCI 0.72±0.25 0.71±0.24 0.71±0.25 0.41±0.35 3470.71 0.83±0.24 0.83±0.24 0.83±0.24 0.24±0.34 4840.23
STROKEVOLUME MB-by-MB 0.43±0.18 0.48±0.21 0.43±0.18 0.79±0.25 2076.76 0.37±0.15 0.41±0.17 0.38±0.15 0.88±0.21 6377.99

CMB 0.44±0.20 0.45±0.20 0.44±0.19 0.79±0.27 2197.08 0.37±0.19 0.37±0.19 0.37±0.19 0.89±0.26 2597.72
GraN-LCS 0.42±0.13 0.46±0.16 0.43±0.14 0.80±0.20 - 0.42±0.13 0.46±0.16 0.43±0.14 0.80±0.20 -

MMB-by-MMB 0.95±0.15 0.95±0.16 0.95±0.16 0.08±0.22 566.39 0.98±0.09 0.98±0.09 0.98±0.09 0.02±0.12 698.17

Note: The symbol ’-’ indicates that GraN-LCS does not output this information. MMB-by-MMB with the second best result is underlined. ↑ means a higher value is better,
and vice versa.

18



Local Causal Structure Learning in the Presence of Latent Variables

Table 9. Performance Comparisons on WIN95PTS.Net
Size=1000 Size=5000

Target Algorithm Precision↑ Recall↑ F1↑ Distance↓ nTest↓ Precision↑ Recall↑ F1↑ Distance↓ nTest↓
Pc-stable 0.52±0.07 0.52±0.07 0.52±0.07 0.68±0.10 12657.62 0.53±0.07 0.53±0.08 0.53±0.07 0.67±0.10 26398.40

FCI 0.69±0.24 0.69±0.24 0.68±0.24 0.45±0.34 25417.23 0.77±0.27 0.76±0.27 0.76±0.27 0.34±0.38 43850.55
RFCI 0.67±0.23 0.66±0.23 0.66±0.23 0.48±0.33 12657.62 0.77±0.27 0.75±0.28 0.76±0.28 0.35±0.39 26398.40

Problem5 MB-by-MB 0.46±0.19 0.50±0.22 0.47±0.20 0.75±0.28 13633.52 NA NA NA NA NA
CMB 0.57±0.16 0.60±0.18 0.58±0.17 0.59±0.23 4757.95 0.54±0.15 0.58±0.17 0.56±0.16 0.63±0.22 5413.78

GraN-LCS 0.48±0.14 0.50±0.15 0.48±0.14 0.73±0.20 - 0.48±0.16 0.48±0.17 0.48±0.16 0.74±0.22 -
MMB-by-MMB 0.90±0.20 0.90±0.20 0.89±0.20 0.15±0.29 3907.42 0.93±0.18 0.92±0.19 0.92±0.19 0.11±0.27 12372.20

PC-stable 0.78±0.08 0.77±0.06 0.78±0.07 0.32±0.10 12637.44 0.77±0.06 0.76±0.04 0.76±0.05 0.34±0.07 25058.00
FCI 0.80±0.24 0.80±0.24 0.80±0.24 0.28±0.34 25651.52 0.83±0.24 0.83±0.25 0.83±0.25 0.24±0.35 42604.71

RFCI 0.81±0.24 0.81±0.24 0.81±0.24 0.27±0.34 12637.44 0.82±0.25 0.82±0.25 0.82±0.25 0.25±0.35 25058.00
HrglssDrtnAftrPrnt MB-by-MB 0.46±0.09 0.46±0.09 0.46±0.09 0.77±0.13 14169.84 0.45±0.11 0.45±0.11 0.45±0.11 0.78±0.15 45118.80

CMB 0.48±0.23 0.48±0.23 0.48±0.23 0.73±0.33 7933.74 0.42±0.19 0.42±0.19 0.42±0.19 0.82±0.26 11783.44
GraN-LCS 0.39±0.14 0.39±0.14 0.39±0.14 0.86±0.20 - 0.43±0.13 0.43±0.13 0.43±0.13 0.80±0.18 -

MMB-by-MMB 0.92±0.18 0.92±0.18 0.92±0.18 0.11±0.25 1054.52 0.92±0.20 0.92±0.20 0.92±0.20 0.11±0.29 2029.79
PC-stable 0.72±0.08 0.72±0.08 0.72±0.08 0.40±0.12 12629.93 0.73±0.07 0.73±0.07 0.73±0.07 0.39±0.10 25137.35

FCI 0.97±0.10 0.97±0.12 0.97±0.11 0.05±0.15 25540.04 0.97±0.11 0.97±0.12 0.97±0.11 0.04±0.16 42790.89
RFCI 0.94±0.15 0.93±0.17 0.94±0.16 0.09±0.23 12629.93 0.97±0.11 0.96±0.12 0.96±0.12 0.05±0.17 25137.35

Problem1 MB-by-MB 0.72±0.22 0.78±0.24 0.73±0.22 0.37±0.31 16082.27 NA NA NA NA NA
CMB 0.62±0.13 0.63±0.14 0.62±0.13 0.54±0.19 11702.02 0.63±0.13 0.63±0.13 0.63±0.13 0.53±0.18 103663.78

GraN-LCS 0.57±0.15 0.57±0.16 0.57±0.15 0.61±0.21 - 0.65±0.21 0.66±0.22 0.65±0.21 0.49±0.30 -
MMB-by-MMB 0.97±0.11 0.97±0.14 0.97±0.13 0.05±0.19 2895.81 0.99±0.06 0.99±0.07 0.99±0.07 0.02±0.10 6931.07

PC-stable 0.23±0.06 0.23±0.06 0.23±0.06 1.08±0.08 12715.64 0.23±0.06 0.23±0.06 0.23±0.06 1.08±0.08 26274.96
FCI 0.79±0.16 0.70±0.19 0.73±0.18 0.39±0.25 25501.34 0.78±0.21 0.73±0.22 0.74±0.22 0.37±0.31 43773.13

RFCI 0.71±0.19 0.62±0.20 0.65±0.19 0.50±0.27 12715.64 0.75±0.23 0.70±0.24 0.71±0.23 0.41±0.33 26274.96
GDIOUT MB-by-MB 0.31±0.12 0.44±0.18 0.34±0.13 0.92±0.19 14327.88 NA NA NA NA NA

CMB 0.27±0.09 0.37±0.15 0.29±0.10 0.99±0.15 6279.86 0.26±0.07 0.33±0.14 0.27±0.08 1.02±0.13 6850.83
GraN-LCS 0.24±0.08 0.26±0.11 0.25±0.08 1.06±0.12 - 0.25±0.10 0.28±0.14 0.26±0.10 1.05±0.15 -

MMB-by-MMB 0.87±0.17 0.87±0.19 0.85±0.18 0.22±0.26 5514.87 0.87±0.25 0.87±0.26 0.86±0.25 0.20±0.36 14635.54
PC-stable 0.24±0.10 0.24±0.10 0.24±0.10 1.07±0.14 12566.90 0.24±0.10 0.24±0.10 0.24±0.10 1.07±0.14 26315.51

FCI 0.80±0.18 0.68±0.17 0.71±0.17 0.40±0.24 25398.65 0.77±0.12 0.71±0.14 0.73±0.13 0.39±0.18 44028.39
RFCI 0.72±0.22 0.61±0.20 0.64±0.20 0.51±0.29 12566.90 0.76±0.13 0.69±0.14 0.71±0.13 0.41±0.19 26315.51

PrData MB-by-MB 0.32±0.14 0.47±0.20 0.35±0.15 0.90±0.22 69692.41 NA NA NA NA NA
CMB 0.30±0.15 0.39±0.19 0.31±0.15 0.96±0.22 11953.29 0.27±0.11 0.37±0.17 0.28±0.11 0.99±0.17 69763.20

GraN-LCS 0.24±0.08 0.25±0.09 0.24±0.08 1.07±0.11 - 0.25±0.10 0.26±0.11 0.25±0.10 1.06±0.14 -
MMB-by-MMB 0.84±0.15 0.77±0.15 0.77±0.14 0.32±0.19 6833.29 0.90±0.13 0.90±0.14 0.88±0.14 0.18±0.19 15581.97

Note: The symbol ’-’ indicates that GraN-LCS does not output this information. MMB-by-MMB with the second best result is underlined. ↑ means a higher value is better,
and vice versa. NA entries for MB-by-MB demonstrate that the runtime exceeds a certain threshold.
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Table 10. Performance Comparisons on ANDES.Net
Size=1000 Size=5000

Target Algorithm Precision↑ Recall↑ F1↑ Distance↓ nTest↓ Precision↑ Recall↑ F1↑ Distance↓ nTest↓
PC-stable 0.23±0.07 0.23±0.07 0.23±0.07 1.09±0.10 234677.37 0.23±0.07 0.23±0.07 0.23±0.07 1.09±0.10 439483.08

FCI 0.70±0.24 0.68±0.25 0.68±0.24 0.45±0.34 901063.34 0.79±0.24 0.78±0.25 0.79±0.24 0.30±0.34 1584682.77
RFCI 0.66±0.24 0.64±0.24 0.65±0.24 0.50±0.34 234677.37 0.78±0.24 0.77±0.25 0.77±0.25 0.32±0.35 439483.08

RApp3(V5) MB-by-MB 0.34±0.07 0.43±0.12 0.36±0.08 0.89±0.12 24239.83 0.39±0.08 0.56±0.12 0.43±0.09 0.78±0.12 44225.00
CMB 0.33±0.06 0.38±0.09 0.34±0.07 0.92±0.09 79932.47 0.32±0.05 0.39±0.09 0.34±0.07 0.93±0.09 145631.64

GraN-LCS 0.39±0.12 0.46±0.16 0.40±0.12 0.84±0.17 - 0.38±0.13 0.42±0.16 0.39±0.13 0.86±0.19 -
MMB-by-MMB 0.91±0.15 0.90±0.17 0.89±0.17 0.16±0.24 5043.44 0.98±0.07 0.98±0.07 0.98±0.07 0.03±0.10 4595.15

PC-stable 0.26±0.04 0.26±0.04 0.26±0.04 1.05±0.06 234677.37 0.25±0.00 0.25±0.00 0.25±0.00 1.06±0.00 439483.08
FCI 0.87±0.16 0.80±0.21 0.82±0.19 0.25±0.27 901063.34 0.90±0.16 0.87±0.19 0.88±0.18 0.17±0.25 1584682.77

RFCI 0.85±0.18 0.79±0.22 0.81±0.21 0.28±0.29 234677.37 0.88±0.17 0.85±0.20 0.86±0.19 0.20±0.27 439483.08
SNode-27 MB-by-MB 0.57±0.08 0.63±0.12 0.58±0.08 0.58±0.12 34010.75 NA NA NA NA NA

CMB 0.56±0.06 0.61±0.10 0.58±0.08 0.60±0.11 126675.88 0.56±0.07 0.61±0.09 0.57±0.07 0.60±0.10 257776.30
GraN-LCS 0.67±0.14 0.70±0.16 0.66±0.13 0.47±0.19 - 0.71±0.15 0.71±0.16 0.69±0.14 0.44±0.20 -

MMB-by-MMB 0.95±0.15 0.93±0.18 0.94±0.17 0.09±0.24 4794.07 0.95±0.16 0.95±0.17 0.95±0.17 0.07±0.24 7104.74
PC-stable 0.25±0.00 0.25±0.00 0.25±0.00 1.06±0.00 234677.37 0.25±0.00 0.25±0.00 0.25±0.00 1.06±0.00 439483.08

FCI 0.83±0.22 0.84±0.21 0.83±0.22 0.24±0.31 901063.34 0.87±0.22 0.87±0.22 0.87±0.22 0.19±0.31 1584682.77
RFCI 0.80±0.24 0.81±0.24 0.80±0.24 0.28±0.34 234677.37 0.87±0.23 0.86±0.23 0.86±0.23 0.19±0.32 439483.08

SNode-21 MB-by-MB 0.31±0.12 0.42±0.20 0.33±0.14 0.93±0.20 18424.49 0.33±0.10 0.49±0.13 0.36±0.11 0.88±0.15 82493.83
CMB 0.31±0.14 0.36±0.17 0.32±0.14 0.96±0.20 94615.12 0.30±0.13 0.35±0.16 0.31±0.13 0.97±0.19 232544.08

GraN-LCS 0.47±0.16 0.57±0.19 0.50±0.17 0.71±0.24 - 0.47±0.18 0.56±0.21 0.50±0.18 0.71±0.26 -
MMB-by-MMB 0.90±0.19 0.92±0.16 0.90±0.18 0.14±0.26 5086.75 0.96±0.10 0.97±0.09 0.96±0.10 0.05±0.14 7601.29

PC-stable 0.46±0.09 0.46±0.09 0.46±0.09 0.77±0.13 234677.37 0.46±0.09 0.46±0.09 0.46±0.09 0.77±0.13 439483.08
FCI 0.79±0.24 0.78±0.24 0.78±0.24 0.32±0.34 901063.34 0.84±0.23 0.84±0.23 0.84±0.24 0.23±0.33 1584682.77

RFCI 0.79±0.24 0.79±0.24 0.79±0.24 0.32±0.34 234677.37 0.84±0.23 0.83±0.23 0.83±0.24 0.24±0.33 439483.08
RApp4 MB-by-MB 0.26±0.14 0.29±0.16 0.26±0.14 1.04±0.20 18761.00 NA NA NA NA NA

CMB 0.25±0.16 0.26±0.17 0.25±0.16 1.06±0.23 87956.70 0.23±0.12 0.23±0.12 0.23±0.12 1.09±0.17 212387.71
GraN-LCS 0.36±0.16 0.45±0.19 0.38±0.16 0.87±0.23 - 0.38±0.17 0.48±0.22 0.40±0.18 0.84±0.26 -

MMB-by-MMB 0.91±0.22 0.93±0.19 0.91±0.21 0.12±0.30 3153.11 0.97±0.12 0.98±0.09 0.97±0.11 0.04±0.15 1430.12
Pc-stable 0.46±0.09 0.46±0.09 0.46±0.09 0.76±0.13 234677.37 0.46±0.09 0.46±0.09 0.46±0.09 0.76±0.13 439483.08

FCI 0.89±0.17 0.88±0.18 0.88±0.18 0.17±0.26 901063.34 0.93±0.15 0.91±0.18 0.91±0.17 0.12±0.24 1584682.77
RFCI 0.87±0.20 0.86±0.20 0.86±0.20 0.19±0.29 234677.37 0.92±0.16 0.91±0.18 0.91±0.17 0.13±0.25 439483.08

SNode-4 MB-by-MB 0.23±0.12 0.24±0.13 0.23±0.12 1.08±0.18 21378.94 0.27±0.03 0.31±0.10 0.28±0.05 1.02±0.08 55156.33
CMB 0.25±0.16 0.26±0.17 0.26±0.16 1.05±0.23 120151.52 0.24±0.17 0.25±0.17 0.24±0.16 1.07±0.23 248697.33

GraN-LCS 0.35±0.12 0.47±0.14 0.37±0.12 0.87±0.17 - 0.37±0.15 0.45±0.18 0.38±0.15 0.86±0.22 -
MMB-by-MMB 0.90±0.22 0.92±0.17 0.90±0.21 0.14±0.29 3125.87 0.98±0.07 0.98±0.07 0.98±0.07 0.03±0.11 1913.94

PC-stable 0.47±0.08 0.47±0.08 0.47±0.08 0.75±0.12 234677.37 0.47±0.08 0.47±0.08 0.47±0.08 0.75±0.12 439483.08
FCI 0.91±0.15 0.89±0.17 0.90±0.16 0.15±0.24 901063.34 0.94±0.12 0.92±0.16 0.93±0.14 0.10±0.21 1584682.77

RFCI 0.91±0.15 0.89±0.17 0.90±0.16 0.15±0.24 234677.37 0.94±0.12 0.92±0.16 0.93±0.14 0.10±0.21 439483.08
SNode-47 MB-by-MB 0.27±0.12 0.30±0.14 0.28±0.12 1.01±0.18 14689.66 0.23±0.13 0.26±0.14 0.24±0.13 1.07±0.18 55457.00

CMB 0.26±0.13 0.26±0.13 0.26±0.13 1.04±0.19 124314.84 0.25±0.12 0.25±0.13 0.25±0.12 1.06±0.17 247077.40
GraN-LCS 0.32±0.13 0.41±0.18 0.34±0.14 0.92±0.20 - 0.32±0.15 0.38±0.21 0.33±0.16 0.94±0.24 -

MMB-by-MMB 0.94±0.18 0.95±0.13 0.94±0.16 0.08±0.23 1693.23 1.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 1590.80
PC-stable 0.47±0.08 0.47±0.08 0.47±0.08 0.75±0.11 234677.37 0.47±0.08 0.47±0.08 0.47±0.08 0.75±0.12 439483.08

FCI 0.65±0.17 0.70±0.16 0.66±0.16 0.48±0.23 901063.34 0.72±0.19 0.79±0.15 0.74±0.17 0.37±0.25 1584682.77
RFCI 0.63±0.18 0.68±0.17 0.65±0.17 0.50±0.24 234677.37 0.71±0.19 0.79±0.16 0.74±0.18 0.37±0.25 439483.08

SNode-24 MB-by-MB 0.40±0.16 0.48±0.23 0.42±0.17 0.82±0.25 20934.91 NA NA NA NA NA
CMB 0.52±0.11 0.58±0.17 0.54±0.13 0.65±0.18 54165.45 0.54±0.09 0.61±0.15 0.56±0.10 0.62±0.14 69412.77

GraN-LCS 0.51±0.12 0.60±0.13 0.53±0.12 0.66±0.17 - 0.56±0.11 0.63±0.15 0.58±0.12 0.60±0.17 -
MMB-by-MMB 0.88±0.20 0.90±0.18 0.88±0.20 0.17±0.28 7202.50 0.99±0.06 0.99±0.06 0.99±0.07 0.02±0.09 15345.62

Note: The symbol ’-’ indicates that GraN-LCS does not output this information. MMB-by-MMB with the second best result is underlined. ↑ means a higher value is better,
and vice versa. NA entries for MB-by-MB demonstrate that the runtime exceeds a certain threshold.
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