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ABSTRACT

Mamba, a recently proposed linear-time sequence model, has attracted significant
attention for its computational efficiency and strong empirical performance. How-
ever, a rigorous theoretical understanding of its underlying mechanisms remains
limited. In this work, we provide a theoretical analysis of Mamba’s in-context
learning (ICL) capability by focusing on tasks defined by low-dimensional nonlin-
ear target functions. Specifically, we study in-context learning of a single-index
model y ~ ¢.((83,x)), which depends on only a single relevant direction 3, re-
ferred to as feature. We prove that Mamba, pretrained by gradient-based methods,
can achieve efficient ICL via test-time feature learning, extracting the relevant
direction directly from context examples. Consequently, we establish a test-time
sample complexity that improves upon linear Transformers—analyzed to behave
like kernel methods—and is comparable to nonlinear Transformers, which have
been shown to surpass the Correlational Statistical Query (CSQ) lower bound and
achieve near information-theoretically optimal rate in previous works. Our analysis
reveals the crucial role of the nonlinear gating mechanism in Mamba for feature
extraction, highlighting it as the fundamental driver behind Mamba’s ability to
achieve both computational efficiency and high performance.

1 INTRODUCTION

Mamba (Gu & Dao, 2024), a recently proposed state space model, has rapidly gained attention
for its remarkable balance of computational efficiency and empirical performance. By replacing
the quadratic-time attention mechanism of Transformers (Vaswani et al., 2017) with a selective
state-space recurrence with nonlinear gating, Mamba enables scalable modeling of long sequences
while maintaining competitive accuracy across a variety of tasks (Dao & Gu, 2024; Waleffe et al.,
2024; Wang et al., 2024; Patro & Agneeswaran, 2025). Despite Mamba’s remarkable computational
efficiency, it remains unknown whether it can exhibit strong adaptability (often referred to as feature
learning), a property widely recognized as critical to the success of deep learning neural networks
(Girshick et al., 2014; Suzuki, 2019; Damian et al., 2022).

A key benchmark for test-time adaptability is in-context learning (ICL) (Brown et al., 2020), which
has emerged as a canonical paradigm for understanding the adaptability of large language models and
sequence architectures. By conditioning on context examples provided in the input prompt, a model
can achieve strong performance on new tasks at test time without explicit parameter updates. While
the empirical effectiveness of ICL is well documented, theoretical understanding of when and how
different architectures exhibit this behavior remains limited (Xie et al., 2022; Garg et al., 2022; Zhou
et al., 2024). In particular, most existing theoretical analyses focus on Transformers (Ahn et al., 2023;
Zhang et al., 2024; Mahankali et al., 2024; Huang et al., 2024; Kim & Suzuki, 2024), whose quadratic
attention mechanisms make them both powerful and computationally demanding. It remains unclear
whether alternative architectures such as Mamba can offer comparable adaptability.

Recent works have investigated Mamba’s ICL capabilities, empirically demonstrating that Mamba
performs competitively across various ICL benchmarks (Grazzi et al., 2024; Park et al., 2024; Li
et al., 2024c). However, our understanding of Mamba’s ICL capabilities remains lacking. This is due
to its distinct inductive bias from the Transformer. The recurrent state-space model with nonlinear
gating processes inputs through recurrent updates that maintain and transform hidden states over
time, rather than relying on global attention over the entire context. This distinction motivates new
theoretical questions:
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Can Mamba provably achieve strong test-time adaptability like Transformers
with its recurrent state-space updates and nonlinear gating?

1.1 SUMMARY OF CONTRIBUTIONS

In this paper, we study the ICL capabilities of Mamba, focusing on a single-index model—a widely
adopted theoretical tool for studying adaptability. We summarize our contributions as follows:

* We introduce a theoretical framework for analyzing Mamba’s ICL of single-index models, including
input embeddings, the Mamba architecture, and a gradient-based pretraining algorithm. Under
this framework, we characterize the optimization dynamics and establish the sample complexity in
terms of the number of pretraining tasks and the number of context examples at pretraining and test
time required to achieve strong performance (Theorem 3.3).

* Our analysis reveals that pretrained Mamba is capable of test-time feature learning, enabling it to
extract task-relevant features directly from context examples (Proposition 4.1). This result implies
that Mamba can surpass the performance of kernel regression baselines and achieve adaptation at
test time. Specifically, the gating mechanism enables Mamba to achieve test-time feature learning,
thereby overcoming the limitations inherent to purely linear recurrent updates.

* We provide a comparative analysis between Mamba and Transformer architectures, highlighting
similarities and differences in their ICL mechanisms. Our results reveal that Mamba can achieve
test-time feature learning via a qualitatively different mechanism—recurrent state-space updates
with nonlinear gating—thus extending the theoretical landscape of in-context learning beyond
attention-based models.

1.2 RELATED WORKS

Theory of In-Context Learning. Theoretical investigations of ICL have predominantly centered
on Transformers. Beyond initial results showing that Transformers trained on regression tasks can
reproduce ordinary least squares solutions in-context (Akyiirek et al., 2023; Zhang et al., 2024;
Mahankali et al., 2024; Han et al., 2025), subsequent analyses reveal their ability to emulate more
complex procedures such as multi-step gradient descent (Ahn et al., 2023; Saunshi et al., 2025),
functional gradient descent (Cheng et al., 2024), and sparse regression (Bai et al., 2023). Parallel
works extend this line of inquiry to classification, where recent studies provide provable insights into
how Transformers implement in-context classification (Li et al., 2024a; Bu et al., 2025).

While the theoretical literature on ICL has dominantly focused on Transformers, a growing body of
work is extending this theoretical analysis to linear-time sequence models. Recent works (Li et al.,
2024b; 2025b) prove that H3-like model (Fu et al., 2023) and gated linear attention (Yang et al.,
2024) can implement weighted preconditioned gradient descent based on loss landscape analysis.
Bondaschi et al. (2025) study ICL of Mamba on Markov chains and show that it learns a Laplacian
smoothing estimator in-context. However, these works do not provide optimization or generalization
guarantees. A recent work by Li et al. (2025a) provides such guarantees for in-context learning of
Mamba on classification tasks with outliers, as we also do in this work.

Learning Low-Dimensional Target Function. Low-dimensional target function classes, such as
sparse parities (Barak et al., 2022; Suzuki et al., 2023; Glasgow, 2024), signal-noise models (Allen-
Zhu & Li, 2020; Cao et al., 2022), are widely adopted as theoretical benchmarks for studying a neural
network’s ability to perform feature learning. This work specifically focuses on the single-index
model. A line of theoretical work has analyzed the learning of these models and has established key
results on sample complexity. The required sample complexity is governed by either the information
exponent (for algorithms utilizing correlational information (Arous et al., 2021; Bietti et al., 2022;
Damian et al., 2023; Mousavi-Hosseini et al., 2023)) or the generative exponent (for algorithms that
employ suitable label transformations (Damian et al., 2024; Lee et al., 2024; Arnaboldi et al., 2024;
Joshi et al., 2024)). We discuss these sample complexity results in more detail in Section 3.1.

Our work is most closely related to Oko et al. (2024); Nishikawa et al. (2025), which lie at the
intersection of ICL and the single-index model. Specifically, Oko et al. (2024) show that a pretrained
linear Transformer can effectively learn a single-index model in-context. More recent work by
Nishikawa et al. (2025) establish an even smaller sample complexity and reveal that the nonlinear
Transformer can perform test-time feature learning. A detailed comparison with these works is
provided in Section 3.2.
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2 PROBLEM SETTING

In this section, we provide a formal description of the key components we focus on: the ICL data
distribution, the Mamba model, and the gradient-based pretraining algorithm.

Notation. We denote the i-th coordinate of a vector v as v[i], and the (i, j)-th coordinate of a
matrix M as M[i, j]. The matrix diag(v) represents a diagonal matrix with a vector v on its main
diagonal. We use © for the element-wise product. For any & € N, we denote the vectors with all
entries equal to one and zero as 1; and Oy, respectively. We omit the subscript £ when the dimension
is clear from the context.

2.1 DATA DISTRIBUTION FOR IN-CONTEXT LEARNING

In-context learning aims to solve the task of predicting the label y of a query x by leveraging
a sequence of input-label pairs {(x;,y;) }icn], Which are referred to as context examples. The
model then utilizes a prompt, which is a sequence (€1, y1, ..., TN, YN, ) consisting of the context
examples and the query, as its input. We focus on the case where prompts are constructed from the
Gaussian single-index model, which is defined as follows.

Definition 2.1 (Gaussian Single-Index Model). Given a feature vector 3 € R?, we draw input-label
pairs (z,y) ~ Dg as

xNN(OvId)’ yzg*((,@,@)—i—éj, (NUnif({_T’T})7

where g, is a polynomial link function and 7 > 0 represents the noise level. For simplicity, we
assume that ;. ar(0,1)[9x(2)] = 0, Ezonr0,1)[(9+ (z))?] = 1 and 7 is a small enough constant.

For each task, a prompt is constructed with a random choice of feature vectors.

Definition 2.2 (ICL Data Distribution). For given a context length N, we define a data distribution
D(N) such that (8, { (x4, y:) }ic[n], &, y) ~ D(IV) is constructed as follows.

1. We draw the feature vector 3 € R uniformly from the unit sphere S, of a low-dimensional
intrinsic feature space with dimension r, defined as:

S.:={0eR: |6 =1,0[j]=0forall j ¢ T},

for some unknown feature index set Z with |Z| = 7.

2. We sample N context examples {(z;, ¥;) }ic[n] and a query-label pair (x,y) from Dg.

Our task distribution exhibits a low-dimensional structure in two key aspects: (1) the label depends
solely on the projection of the input onto the feature vector, and (2) feature vectors are supported on
an r-dimensional subspace. We note that to achieve low prediction errors, it is crucial to extract both
of these structures and estimate the link function g.,.

2.2 PREDICTION MODEL ARCHITECTURE

Our prediction model for ICL is composed of three parts: input embedding, one-layer Mamba,
multi-layer perceptron (MLP).

Input Embedding. Given a prompt (a:l, Y1,---, LN, YN, ) with context length N and label y,
we construct an input embedding Z € R4+ (N+1) a5

Z:{ﬁb(ﬂh) p(z2) ... olxzn) o(x) iy
(1 Y2 YN 0

where d = 44 4 1 and ¢:RY— R is defined as

2 2
3(6) = [1,0[1},...,9[61],‘9“1@ 1,...,‘9[% 1

An input embedding similar to ours was also considered in the recent work by Sun et al. (2025),
who studied the in-context learning of high-order polynomial target functions. They showed this
embedding can be implemented with a simple version of Gated Linear Unit (GLU) and demonstrated
its efficacy for enabling linear Transformers to learn these functions in-context. Unlike Sun et al.
(2025), who repeatedly stacked a linear Transformer and a GLU layer, in our work, a single GLU-
based embedding is sufficient due to the nonlinearity in Mamba and MLP layers. We discuss the
efficacy of this input embedding in more detail in Section 4.1.

21,... 2N, 2n41) € REOFDXNFL,

,0[110[2], ...,0/d— 1]6]d]| .
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Remark 2.3. Our input embedding is based on a basis for degree-2 polynomials in R?. Specifically,
we use the standard basis of R for the construction of both the input embedding and the intrinsic
feature space S,. While extending our results to a general choice of .S, with an arbitrary basis may
require additional techniques, our setting remains valuable for studying Mamba’s ability to learn
low-dimensional structure. Furthermore, we emphasize that our result also holds with the standard
choice of input embedding ¢(x) = @ with d = d, as considered in prior works including Von Oswald
et al. (2023), for the case where link function g, is not an even function. We refer to Section 4 for a
more detailed discussion.

One-Layer Mamba. Given an input embedding Z = (21, ..., zn4+1) € RETDX(N+D) 4 one-
layer Mamba model Mamba(-; ®) with parameters ® has sequential outputs o1, ..., 0n,1 € R4+
and hidden states for ¢-th channel hgl), e hgf,) € R defined as below:

) = AnY | + Bzl eR™, oi] = C/ b €R,
A} =exp(AA) e R X By = (AJA) ! (exp (ALA) — I, ) A B € R,

where h(()i) =04, and A € R <dr_Here, the components of the selection algorithm A, B;, C;, A,
is chosen as

A=-1I;,, B =Wpz, C=Wcz, A =softplus(w'z+b),

with parameters Wy, We € Rdhx(‘i+1), w e R‘i“, b € R. Then, the [-th output can be expressed
as

l
o, = Z Giu(Z)z;2] Wi Wez, 1)
j=1

where G;(Z) = o (w'z; +b) HZ:]»_H (1 -0 (w" 2z, +b)) with sigmoid function o (-). It im-
plies that Mamba involves two key mechanisms: nonlinear gating G ;(Z) and linear attention with
projection matrices W and We. Yang et al. (2024) refer the combination of these mechanisms as

gated linear attention and recent recurrent models including Mamba, mLSTM (Beck et al., 2024),
and RWKV-6 (Peng et al., 2024) can be viewed within this framework.

To ensure a tractable optimization guarantee, we further introduce the following simplifications to
our model:
Wi We = diag(v,0), w = [p“d;] :

where v € R is a learnable parameter, while w € R and b € R are fixed. Our approach
of merging the product of two learnable matrices into a single matrix and using sparse learnable
parameters is a technique also adopted in the theoretical literature on optimization of attention
mechanisms (Ahn et al., 2023; Zhang et al., 2024; Mahankali et al., 2024; Kim & Suzuki, 2024).
Under this simplification, the last coordinate of the final output which serves as the input to the MLP
can be expressed as follows:

N
Mamba(Z;~)[d +1,N +1] = Z Gin+1(2)y;o(x;)" (v © d(=)).

Multi-Layer Perceptron. We use a two-layer MLP with ReLU activation, width m and parameters
u,v,a € R™ defined as follows:

MLP(z;u,v,a) := Y u[k]ReLU (v[k]z + a[k]).
k=1
We apply this MLP to the output of the Mamba layer, after normalizing it by its context length N.
Then, the final output is given by

f(Z;v,u,v,a) := MLP (N_lMamba(Z;'y)[cZ—l— 1, N + 1];u,v,a)

m N
=Y ulkReLU [ w[KIN"' Y Gjni1(Z)yié(x;) " (v © ¢(@)) + alk]
k=1 Jj=1
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Remark 2.4. A similar structure to our models, which combines a sequence model with a MLP, has
also been utilized in two closely related prior works. For example, Nishikawa et al. (2025) follow a
similar structure but use a softmax Transformer in place of Mamba. In contrast, Oko et al. (2024) use
a different architectural design, applying the MLP to the input embedding before a linear Transformer,
rather than after the sequence model.

Our goal for ICL is to find parameters v € R‘z, u,v,a € R™, and context length N, achieving a
small ICL test error, which is defined as

RN(77 u,v, CL) = IE(Z,y)ND(N) Hf(Za Y, U, , a’) - y”

Here, we abuse notation and use (Z, ) to denote the input embedding and label for a prompt sampled
from the ICL data distribution D(NN'). More precisely, we are interested in the sample complexity
of context examples required for the parameters learned from pretraining to achieve a low ICL test
error.

2.3 PRETRAINING ALGORITHM

Our prediction model is pretrained on a set of T}, = T + T5 tasks with context length NV,; drawn
from D(Nyy). For each task ¢ € [T},¢], let we have input embedding Z* constructed from context
examples { (], y!)}ic(n,,] and a query-label pair (', y*) with a feature vector 3°. Then, our training
losses can be written as

Ti—1+Ty

1
Ll(77u’7vaa) ::fl Z (.f (Zt;77u7vaa')_yt)27
t=T;_1+1

for[ = 1,2 and Ty = 0. We employ a two-stage training procedure, as described in Algorithm 1,
using these objectives.

1. In Stage I, we only train the Mamba layer parameter -, starting from proper initialization. Our
training objective is (y-regularized loss Li(v,u,v,a) + 3¢ [¥||*. Due to the non-linearity
introduced by the MLP, this objective is non-convex. To make the training dynamics tractable,
we apply one-step gradient descent, following the approaches studied in the literature of feature
learning (Ba et al., 2022; Damian et al., 2022). As we describe in Section 4.1, a single step update
is sufficient to capture the low-dimensional structure of the feature vectors.

2. In Stage II, we fix the Mamba layer parameter v* obtained from Stage I and optimize the outer
layer u of MLP on £>-regularized loss L (v*, u, v*, a*) + 22 ||w|* with reinitialized inner layer
parameters v*, a*. This induces a convex problem that gradient-based methods can solve. As we
show in Section 4.2, the optimized MLP is capable of estimating the link function g..

Algorithm 1: Gradient-based Pretraining of the Mamba Model

Input :Learning rate 77, weight decay A\, A2, context length /V,,¢, the number of tasks 71, 15,
initialization scale v, p, b.

Stage I: Gradient descent on Mamba layer

Initialize v = (72, 1,..., 1,7, -+ ,7),u(0) = m™11,,,v(0) = 1,,,a(0) = 0,,.

e O =0V (La(v(0),4(0), 0(0),a(0)) + 3 ).

tage I1: Optimization of MLP Layer
Initialize v* ~ Unif ({£1}™), a* ~ Unif([—1, 1]™).

u* < argmin,, (Lo(v*, u,v*,a*) + 22 Hu|\2)

|72]

Output : Prediction function f(-;~v*, u*, v*, a*).

3 MAMBA EFFICIENTLY LEARNS SINGLE-INDEX MODELS IN-CONTEXT

In this section, we present our theoretical results on the ICL performance of our model. Our analysis
focuses on the asymptotic dependencies on the input dimension d, with the assumption that the
feature dimension 7 can scale with d, while the link function g, is fixed. For our analysis, we let N*
and 7™ be the maximum admissible context length and the number of pretraining tasks, respectively.
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We assume that N*, T* < d°" for some large constant C* > 0. We use the standard asymptotic
notation O(-), 2(+), O(+), o(-) to express dependencies on d, and O(+), (), O(+) to hide logarithmic
factors of d.

3.1 PRELIMINARIES

We first provide backgrounds on learning Gaussian single-index models, which are essential for
;22 gl 22 o1 .

understanding our main result. Let He;(z) = (—1)’e™ {-e~ = denote the probabilist’s Hermite

polynomials. Then, the set {He;(2)/v/i};enuoy forms an orthonormal basis of the L? space with
respect to the Gaussian measure and serves as a key technical tool for the analysis of Gaussian single-

index models. We now introduce two key terms relevant to the sample complexity of learning.

Definition 3.1. For any function h : R — R which is L2-integrable with respect to the Gaussian
measure, we express its Hermite expansion as

h(z) = ——=He;(z), H(h,i):=E,n0,1)[h(z)He;(z)].

— H(h,i)
1!

i=0
We also define the following quantities:
» We define deg(h) as the degree of h, if it is a polynomial.
* The information exponent (Arous et al., 2021; Damian et al., 2023) of h is defined as
ie(h) := min{i € N: H(h,3) # 0}.
It implies that E,.n0,1)[h(2z)Her(z)] = 0 for any k € N with k& < ie(h).

* The generative exponent (Damian et al., 2024) of h is defined as the lowest possible information
exponent after an L? transformation. It is formally defined as:

ge(h) := Terg;{lﬂ)mm{z € N: H(T o h,i) # 0},

where L?(IPy,) is the set of L?-integrable functions with respect to IP;,. Here, IP}, is the push-forward
measure of the Gaussian measure by h.

While the definition of the generative exponent may seem difficult to apply at first glance, Lee et al.
(2024) provides a characterization of the generative exponent for polynomials.

Lemma 3.2 (Proposition 6 in Lee et al. (2024)). For a polynomial link function g., the generative
exponent is characterized as ge(g.) = 2 if g« is an even function, and ge(g.) = 1 otherwise.

From the definition, ge(g.) < ie(g«) < deg(g.) and Lemma 3.2 implies that the gap between these
three terms can be arbitrarily large depending on the choice of g.!. With a slight abuse of notation,
we use O(deg(g.)) to denote a quantity that is bounded by a universal constant multiple of deg(g.).
We also use O(ie(g.)) and ©(ge(g.)), in similar manners.

Sample Complexity of Learning Single-Index Models. Previous works have established the
sample complexity of various methods for learning a Gaussian single-index model. For example,
kernel methods, which lack an adaptive basis, require at least ddes(gx) samples (Ghorbani et al., 2021;
Donhauser et al., 2021). In contrast, adaptive methods such as gradient-based methods on two-layer
neural networks can achieve a sample complexity of o (de(ie(g *))) by learning an adaptive feature
map (Arous et al., 2021; Ba et al., 2022; Damian et al., 2022; 2023; Dandi et al., 2024). These
approaches fall under the category of CSQ algorithms, and in this category, a sample complexity that
depends on the information exponent is inevitable (Damian et al., 2022). However, recent works
show that a nonlinear transformation introduced by data reuse (Arnaboldi et al., 2024; Lee et al.,
2024) enables the algorithm to move into the broader class of Statistical Query (SQ) algorithms. This
transformation allows the “effective” information exponent to be lowered to the generative exponent,
thereby achieving a sample complexity of o (d@(ge(g*))).

"For example, consider g.(z) = He,(z) + He,(2) with 1 < ¢ < p.
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3.2 MAIN RESULT

We now present our main result, which provides a theoretical characterization of the pretraining and
test-time sample complexities for achieving low ICL errors.

Theorem 3.3. Let f(-;v*,u*,v*, a*) be the Mamba model pretrained using Algorithm 1. We
assume the following conditions hold for its hyperparameters:

* The context length is Ny = Q (max {7»3g'3(9*)d87 de4})_
o The number of pretraining tasks are Ty = Q (r3ge(9*)d6) and Ty = Q (r?’ge(g*)).
* The MLP width is m = Q (r1&°(9-).

o The fixed weights are p = © ((log d)cﬂ) and b = Cylogd, and the initialization scale is v =
O((log d) =) for sufficiently large constants C-,,C,, Cj, > 0.

Then, there exist hyperparameters \1, A2, and n such that with probability at least 0.99 over the
training data and random initialization, the following holds: If the test prompt length satisfies
Niest = Q (r38(9)), then the test error Ry, (v*, u*,v*, a*) is bounded by T + o(1).

We discuss our sample complexity results in comparison with other methods, including regression on
test prompts and prior theoretical works (Oko et al., 2024; Nishikawa et al., 2025). We summarize
these results in Table 1 and highlight the following key points:

Adaptation to Low-Dimensional Structure. Our sample complexity depends on the intrinsic
dimension of the feature vectors r, rather than the ambient dimension d. This is consistent with prior
works (Oko et al., 2024; Nishikawa et al., 2025) that also demonstrate a dependence on intrinsic
dimensionality. In contrast, the sample complexities of various regression algorithms we have
discussed depend on the full input dimension d. This difference arises because pretrained models can
learn the low-dimensional structure of the intrinsic feature space during pretraining.

Test-Time Feature Learning. The dependence of the sample complexity on the intrinsic dimension
r in the work of Oko et al. (2024) is controlled by the degree of the link function g.. This means
that while their approach is more efficient than simple regression on full dimensions, its performance
remains close to that of kernel methods on intrinsic dimensions. In contrast, our result depends on
the generative exponent ge(g. ), instead of its degree. This implies that Mamba’s efficient in-context
learning is enabled not just by its ability to learn an intrinsic feature space, but also by a process
called fest-time feature learning, which allows the model to extract features directly from the context.
The same process also works for the softmax Transformers considered in Nishikawa et al. (2025)
and thus achieved a similar sample complexity. However, these models perform test-time feature
learning through different mechanisms: Mamba relies on nonlinear gating, while the Transformer
uses softmax attention.

Improvement in Pretraining Sample Complexity. The conditions for the pretraining in our
theorem can be satisfied with a pretraining sample complexity of Ny = © (de(ge(g *))). In contrast,
the pretraining sample complexities in previous works (Oko et al., 2024; Nishikawa et al., 2025) are
governed by the information exponent, which can lead to a suboptimal rate in the worst case. This
improvement is due to the nonlinearity of the MLP, as we discuss in detail in Section 4.

Regression on Test Prompt
Kernel CSQ SQ
4©(deg(g+)) 4©ie(g+)) 4©(ge(g-))

In-context learning

Linear Transformer  Softmax Transformer Mamba
Oko et al. (2024)  Nishikawa et al. (2025) This Work
Pretrain: d®(e(g+)) Pretrain: d®(i¢(9+)) Pretrain: d©(&°(9+))
Test: ©(des(g-)) Test: O(&(9-) Test: rO(geg-)

Table 1: Summary of sample complexity results for regression algorithms on test prompt and prior
works on in-context learning (Oko et al., 2024; Nishikawa et al., 2025).



Under review as a conference paper at ICLR 2026

4 PROOF OVERVIEW

In this section, we provide an overview of the proof for our theorem. The proof consists of three main
parts: an analysis of one-step gradient descent on the Mamba layer, the optimization of the MLP, and
a test error analysis. The formal proofs for each of these steps are provided in Appendices B, C, and
D, respectively. In the following, we introduce the key ideas behind each step.

4.1 ONE-STEP GRADIENT DESCENT ON THE MAMBA LAYER

We show that the pretrained parameter ~* recovers the intrinsic feature space S, by attaining
significantly larger components within the feature index set Z than in other indices. Furthermore,
we show that pretrained Mamba performs test-time feature learning by establishing the following
proposition (formally stated in Proposition B.5):

Proposition 4.1 (Informal). For a sampled ICL input embedding Z with context length N =
Q (r3ge(9*)), query x, and feature vector (3, the following holds with high probability:

ge(g+)

r

where Py and P, are independent of the data.

Assuming a negative bias b with sufficiently large absolute value, and a large enough number of tasks
T and context length Ny, the updated parameter v* can be approximated as follows:

v 277E(Z,y)~D(Npt) [yv'yf(Z; '7(0)7 u(0)7 ’U(O)7 a(O))]

~ 2Eg~unit(s,) Y1 [{eg,¥(0) © ¢(x)) > 0] cg © o(x)],
(z,y)~Dp
where cg = E(g )~y [y (y/p + b)d(x)] corresponds to a simplified expectation over context
examples, neglecting the effect of “forgetting” in the gating mechanism.

The Role of Gating and Input Embedding. For the proof of Proposition 4.1 and our test-time
sample complexity, nonlinear transformation introduced by gating mechanism plays a crucial role.
In the absence of a gating mechanism and with only a linear attention, the term cg is replaced by
E(z,y)~Ds [y¢(x)] and this term vanishes when ie(g.) > 2. This is a consequence of our input
embedding using Hermite polynomials only up to the second degree, in combination with Stein’s
lemma. As a result, pretraining in this case is unable to learn useful information. However, we
prove that the gating mechanism ensures cg is non-zero, thereby enabling the model to extract
information. This is because the nonlinear transformation introduced by the gating mechanism
reduces the information exponent to the generative exponent: ie(g.o(g«/p + b)) = ge(gs). This
reduction, combined with Lemma 3.2 and our input embedding, makes information extraction
possible. When g, is a non-even function, our result can also be shown to hold with the standard
input embedding ¢(x) = x, as can be seen from this intuition. Reducing the information exponent to
the generative exponent crucially affects the achievement of a test-time sample complexity below
the CSQ lower bounds. Nishikawa et al. (2025) shows that the softmax operator in the Transformer
can also perform a nonlinear transformation on the label, which reduces the information exponent.
This highlights a key difference in the mechanisms used by Mamba and the softmax Transformer to
achieve this result.

Improved Sample Complexity of Pretraining. The nonlinearity of the MLP is crucial for
our analysis of the pretraining sample complexity. If the indicator 1[-] inside the expecta-
tion is 1 with high probability, then the updated parameter v* can be approximated as v* ~
2nE g Unit(s,) |E(z,y~Dg)[ycs © ¢(x)]] and this close to zero when ie(g,) > 2, leading to less
information gain. However, we show that the indicator deviates significantly from a constant value.
We formally prove that this deviation allows the indicator to reduce the information exponent when
multiplied by the label y, thereby inducing a pretraining sample complexity not governed by ie(g. ).
While Nishikawa et al. (2025) employ an architecture with a similar structure to ours—an MLP
following a Softmax Transformer—they do not achieve the same improvement. This is because their
use of Softmax places the model in a regime where a key indicator function is 1 with high probability,
which is sufficient in their case as Softmax generates the necessary higher-order functions of the
input, while our analysis only uses up to second-order functions. In addition, our observation for this
improvement cannot be directly applied to the work of Oko et al. (2024) due to a key architectural
difference: applying the MLP layer in the input embedding rather than at the output layer.
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4.2  OPTIMIZATION OF THE MLP AND TEST ERROR ANALYSIS

In our analysis of Stage II pretraining, we show that the MLP can fit the link function g,. We first
construct an outer layer parameter w’ such that the loss Lo(v*, u’, v, a) is sufficiently small and the
norm ||| is well-bounded. Our construction is based on the techniques in Damian et al. (2022),
which constructed a ReLU network approximating monomials. This allows our model to learn
high-order polynomials with a few layers, in contrast to the multi-layer approach in Sun et al. (2025).
This is possible because Lemma 3.2 implies that g.(z) is a polynomial of 22°(9+) allowing us to
construct an MLP that approximates g. ({3, x)), when the input is provided in the form of (2).

From the equivalence between {5-regularization and ¢, norm-constraints in convex problems, we
show that for a proper Ag > 0, the minimizer u* satisfies Lo (v*, u*, v*, a*) < Lo(v*, v/, v*, a*)
and ||u*|| < ||u’|]. Next, we show that the trained model achieves a small test error with context
length N by applying a standard generalization bound based on Rademacher complexity, which is
applicable due to a well-bounded norm ||w*||. Lastly, we extend this error bound to a general context
length Niesy = Q (r?’ge(g*)). It is possible because (2) implies that prompts with Nyes context
examples and [V,;context examples give similar outputs, given the same query.

5 EXPERIMENTS

To support our theoretical findings, we pretrain and evaluate both Transformer and Mamba models on
our data distribution. Our base configuration uses a link function g.(z) = Hes(2)/+/6, an intrinsic
dimension of » = 8, and an ambient dimension d = 32. We employ a 6-layer GPT-2 model (Radford
et al., 2019) with 8 attention heads and a 12-layer Mamba model. To ensure a fair comparison,
both models have an embedding dimension of 256 and a similar number of parameters. The overall
experimental settings for pretraining follow those of prior works (Garg et al., 2022; Park et al., 2024)
including a pretraining context length N, = 64. We also conduct kernel ridge regression on the
intrinsic feature space to serve as a baseline for understanding the effect of feature learning. For this,
we use a Gaussian RBF kernel with a bandwidth of 1 and a ridge parameter of 1. For evaluation, we
measure the prediction error using squared error, with the number of context examples ranging from
1 to 40. We estimate the test error on 1024 randomly sampled tasks, using 2048 independent prompts
for each task, and represent the results with the mean and standard deviation over these tasks.

To validate our theoretical results on how problem parameters influence performance, we then analyze
trends by varying parameters from our base configuration: the ambient dimension to d = 16, the
intrinsic dimension to = 16, and the pretraining context length to Ny, = 16. Figure 1a demonstrates
the influence of the ambient dimension d. Both Transformer and Mamba models exhibit comparable
performance that is rarely affected by the ambient dimension d. In contrast, when the intrinsic
dimension r is increased, both models exhibit performance degradation, while their performance
remains comparable (Figure 1b). This suggests that both models mainly utilize information from the
intrinsic feature space. In addition, these methods outperform kernel methods, even when we restrict
the input of the kernel method to the intrinsic feature space. This observation aligns with our finding
that Mamba, similar to Transformers, not only benefits from its adaptation to the intrinsic feature
space but also performs test-time feature learning. Lastly, we observe different behavior when using
a small pretraining context length Ny, = 16. In this case, the Transformer’s performance deteriorates
significantly, while Mamba’s performance remains comparable to its performance with N, = 64.
This observation aligns with our pretraining sample complexity result, which is lower than that of the
Transformer established by Nishikawa et al. (2025).
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Figure 1: Comparison of prediction error for in-context learning with Transformer and Mamba
models, and kernel regression across different problem parameter settings.
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6 CONCLUSION

We investigated Mamba’s capability for in-context learning by focusing on a Gaussian single-index
model. We proved that Mamba, when pretrained with gradient-based optimization, can efficiently
learn in-context through a mechanism we termed test-time feature learning. Our derived test-time
sample complexity is comparable to that of the softmax Transformer model, a result established by
Nishikawa et al. (2025) and also surpasses the CSQ lower bound. Our analysis reveals that Mamba’s
gating mechanism is a key factor in enabling feature learning and strong performance. We also
presented experimental results to support our findings.

We suggest several directions for future research. First, a valuable direction is to investigate whether
our results can be extended to more general input embeddings by considering additional layers, which
could help overcome our current limitations. Second, while our analysis considers the case where
“forgetting” in the gating mechanism is negligible, recent work by Li et al. (2025a) reveals that this
effect can be beneficial for tasks with outliers. Investigating the combination of this effect with our
insight could be an interesting direction. Finally, studying how different choices of gating functions
within the gated linear attention framework (Yang et al., 2024) lead to different behaviors is a possible
direction for future work.
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A PROOF PRELIMINARIES

Notation. We introduce the following additional notation for ease of presentation. We use 1] to
represent indicator function. We write a < b, a 2 b, and a =< b to denote that a = O(b), a = Q(b),
and a = O(b), respectively. We also use poly(d) and polylog(d) to represent a sufficiently large
polynomial in d and log d, respectively. Lastly, we use o(1/polylog(d)) to represent a quantity that
decreases faster than (log d) ¢ for any constant C' > 0. Lastly, with a slight abuse of notation, we use
the asymptotic notation we introduced to represent a vector when its norm satisfies the corresponding
bound.

A.1 SIMPLIFICATION OF MAMBA OUTPUT
The following lemma immediately implies (1).

Lemma A.1l. Given a prompt (x1,y1,...,ZN,YN,x) and its input embedding Z € R (N+1),
Let Mamba(Z;©) = (04, ...,0x4+1) € REFTDVXWNFY be outputs and hl(l) ’s be hidden states. For
eachi € [d+ 1] andl € [N + 1], we have

h{) = Z Gi(Z)(2)iWsz;, ollil =Y G;i(Z)(z)iz] W5 Wez,

Jj=1

where Gj(Z) = o (w'z; +b) Hk:jJrl (1—0(w 2z +1b)).

Proof of Lemma A.1. Foreachl € [N + 1], we have
1 ,
1 +exp(wTz +b) 4+

A; =exp (—softplus(szl + b)Id+1> = = (1 -0 (szl + b)) I;

and

B, =— (A] — I(ZJrl) Wgpz =0 (szl + b) Wgpz;.
We fix any i € [d + 1] and we will prove by applying induction on [ € [N + 1]. Let us first consider
the case [ = 1. We have

hgl) =(1-o0 (szl + b)) h(()z) +0 ('szl +b) Wiz (z1)i

=0 (’szl + b) Wpgz121 [’L]

= Glﬁl(Z>Zl [’L], WBZ1
and

o1i] = (Wczl) hgl) =0 (szl + b) zl[i]zIW;WCzl = Gl,l(Z)zl[i]z;rW;Wczl.
Therefore, desired conclusions hold for the case [ = 1.
Next, we assume that our conclusion holds for [ < d+1.
h’l(fk)l = (1 -0 ('szlH + b)) h(i) +o (szl+1 + b) Wgpzip1(zi41)i
l

= (1 — 0 (szH-l + b Z WBZ] + Gl+1 l+1(Z)Zl+1[i]WBZl+1
I+1
= Z G] l+1 ]WBZJ
and
or1li] = (Wezin) TR,
I+1
= (Wozn) ' Y G (2)z[i|Wez,
j=1
I+1
Ol+1 Z G] l+1 ]Z WB Wczl+1.
Therefore, we have the desired conclusmns. ]

16



Under review as a conference paper at ICLR 2026

A.2 HIGH PROBABILITY EVENTS
Throughout the proof, we use the term “with high probability” which is defined as follows.
Definition A.2. We call that an event E occurs with high probability, when
P[E] > 1 —d Cwwe
with a large enough Cy1,p > 0.

For example, z = O(+/log d) for z ~ N (0, 1), with high probability, which is a direct consequence
of Hoeffding’s inequality. In addition, the intersection of a poly(d) events also occurs with high
probability. We use these property frequently throughout our proof.

The following lemma is useful when we bound some quantities with high probability.
Lemma A.3 (Corollary 17 in Oko et al. (2024), adapted). Let P be a polynomial with degree deg(P).
If 18]l = 1 and x ~ N(0,1,), then |P((3,z))| < (log d)2°8(")/2 holds with high probability.

This lemma implies that 3¢ = O(1), ||¢(x})]||, |p(x")|| = O(d) holds for any i € [Npi],t € [Tpils
with high probability. We utilize these properties frequently in our proof.

The following lemma provides a high-probability guarantee regarding our input embedding, which is
crucial for our analysis.

Lemma Ad4. Letxq,...,xy ~ N(0,1) and let z1,...,zN be i.i.d.~ random variables such that
|z;| < C with high probability where z; might depend on x;. If N = Q(C?) and N < N*, then for
eachk =0,1,2,

N
1 ~
+ 2 zaHer(x;) — Elz ey (x1)]| < O (CN_1/2> ’
i=1
with high probability. In addition, let ', . .., x'y ~ N (0, 1), then under the same condition,
1 & i
23z~ Elmxx)]| < 0 (eN772),
i=1
with high probability.
Proof of Lemma A4. Let z, := 1[|z;] < Clz;. Then, z},2z}x;, 2z Hes(x;),2z,x;x; are C-

subexponential. Since N = Q(CQ), for each k = 0, 1, 2, we have

N

1

N Z z;Hey(x;) — E[z]Hex(x;)]
i=1

<0 (CN—W) :

with probability and Zfil zHey(x;) = Zivzl z;Hey(x1) with high probability. In addition, we
have

|E[ziHey (x;)] — E[z'Hey,(x;)]| = E[L[|z1] > C]Hey(x;)]

[SE

< Bl1l}ar] > CIE [(Hew(x1))?]
1
= poly(d)’

Therefore, by combining the two bounds above, we have the desired conclusion for the case k =
0, 1, 2. Using the same argument, we can also obtain the last conclusion. O

A.3 REDUCING THE INFORMATION EXPONENT WITH LABEL TRANSFORMATION
For any function h which is L? integrable with respect to Gaussian measure and p € N U {0}, we

define e, (h) == min{i € N: H(f*,p) # 0}. If this minimum does not exist (i.e., the set is empty),
we set e, (f) = oo. In addition, we define
g(2)

9x(2) if
g (2) == { P ' r

1
< logd .

0 otherwise

17
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From our choice of p, g. (y!) = g. (y!) /p forall i € [Np],t € [Tp], with high probability. We use
this frequently in our proof. We also define the following function, which naturally appears in our
analysis:

A(z) =2 5 [(p9:(2) + 7)o (9:(2) +7/p = b) + (pgu(2) = 7)o (g:(2) — 7/p — V)]

Let A(z) = Zo o rHey(2) be the Hermite expansion. The following lemma characterizes its
Hermite coefficients.

Lemma A.5. For any p € NU {0}, ife,(g+) < oo, we have
dcbap -0 ((10g d)—C,,(ep(g*)—l)) ,

where hidden constants depend on g, and p. In addition, if e,(g.) = oo, then d°* |a,| < 1/poly(d).
The following two lemmas are crucial for our proof of Lemma A.5.

Lemma A.6 (Proposition 6 in Lee et al. (2024)). For any polynomial P, there exist Cp, Dp > 0
depending only on P such that the following holds.

e If P is not an even function, then there exists i < C'p such that |H(fi, 1)| > Dp.
» If P is an even function, then there exists i < Cp such that ’H(]”7 2)’ > Dp.

Lemma A.7. Forany k € NU{0} and z < —k — 2, we have % <o (z) < 2¢%.

Proof of Lemma A.7. For any x < 0, we have

1 oo
= =1 j 1
o(z) 1+ exp(—z) 1+ exp(z) Z

Therefore, we have

U(k)('z):i( 1)i-1 kejz:e7+§: )i1; ki,
j=1 j=2
For each j > 2, since (”1]):# < 2%e* and 2% < 1, we have
‘U(k)(z) e*l < i ikeiz < oke2? i (2kez)j = 72]6622 < e
—j=2] = par T 12k = 2
Hence, we have a desired conclusion. [

We now prove Lemma A.S.

Proof of Lemma A.5. By applying Taylor’s theorem for o (-) at points +7/p + b, for any z € R, we
have

2p7 A(2)
= (9+(2) +7/p)0 (§:(2) + 7/p = b) + (9:(2) = 7/p)o (§«(2) —T/p — b)
ep(g«)—1
= Z (SL + S )gi+1( )+ (R(Z) +R( ))gip(q*)+l( )
=0
ep(g:)—1

+7 Z (Si - §1)gi(2) + (R(Z) — R(Z))g:p(g*)(z)

1=0

where s; = U“)(_;!//H'b) .5 = g<i>(—;/p+b) fori=0,...,e,(9+) — 1 and
(ep(g+)) b+1
~ maXte[p—1,b+1] |O (t) 2e
[R(2)|,|R(z)| < | , | < -
(ep(gx))! (ep(gx))!

18
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From the definition of g, we have

ep(g<)—1 ep(gx)—1 .
Z si+5)3 " (2) + 7 Z (8 — 8i)g.(2)
1=0 1=0
ep(gx)—1 _ ep(ge)=1 '
= p~ (s + 509 () A1 Y pT (s — 8i)gl(z)
1=0 1=0
€p(g*)—1 ep(g*)—l g (Z) 1
_ —(4D) (4 )it Sife 2\ .
I A C RS SIVAEATIC 1|28 < o).
Forany i =0,...,e,(g«), we have
i g+(2) 1 2 \1% 9+(2) 1
E,. 1 < <E,. o P, <
2~ N(0,1) [9*(Z) [ o | = logd”‘ < E,on0,) [92(2)] v |17, Togd

Combining this with additivity of H (-, p) and the fact that E,xr(9,1)[g+(z)] = 0, we have
zpila'p = piep(g*)(sep(g*)*l + §€p(g*)*1)H (g:p(g*)7p>

((R+R) ger(a+1 ) +7H ((R R) - gt ,p) to <p01y]10g(d)> '

From our choice of b and p, the first term is ©(d~* (log d)~“»¢»(9-)). Next, we bound the second
term. For any z € R, we have
B ((R+R)- g p)]

E,n0,1) [Hep(z)(R(z) + R(Z))gip(g*)-'rl(z)

< Eznvio) HHep(z)(R(z) + R(z))ger @) (2) }
26b+1 i ] )
: WEZNN(OJ) [He,(2)%]* Eponon) {g*(z)2 P(g*)“}
2eb+1 p=(en(g)+1)
(ep(gs) +1)!

where we apply the Cauchy—Schwarz inequality for the second inequality. Hence, the absolute value
of the second term is O(d~ " (log d) ~Cr(¢r(9-)+1))  Using a similar argument, we can know that

the absolute value of the third term is © (d = (log d)~C»¢#(9-)). Combining with the fact that T is
small enough, we have our desired conclusion.

N|=

N 1
Ean(0,1) [Hep(2)2] 7 Bponrionny [g.(2) 2000 2] 7

Using similar arguments, we can also obtain our conclusion for the case e, (g.) = co. O

B ONE-STEP GRADIENT DESCENT ON THE MAMBA LAYER

Let us define the function 7 : R4+3 — R<, which we use repeatedly in our proof. It is defined
as

T T
(8, co,c1,00) = | 0,107, 62(9\%0),@0[1]0[2], ..., c20[d —1]0]d]
Note that for any vector 8 € R?,
c3)0
||1/)(0500501702)H2 - CO 1 ||0H + 2 ||2 H . (3)
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If we choose A\; = i1, the updated parameter v* can be expressed as

v =257 [(u = £ (Z259(0),u(0). 0(0),a(0)) ) T f (249(0),u(0),0(0). a(0))]

tE [T4]
:fp—’j S° VL f (2549(0), u(0), v(0), a(0))
tE[Tl]
23" F(259(0),u(0),0(0),a(0)) ) V- f (27(0), w(0),v(0). a(0)).
te [T4]

The initial output evaluated at Z? can be bounded as

£ (Z":74(0),u(0),v(0), a(0))|

= ReLU | N3;! Z Gini1(Z)yto (28) " (v(0) © ¢ (2))

Npt
Ne' 22 Gintr(2) [y 16 (=) [|o ()]
h=1

=0 (d*?),
with high probability.
The gradient of + of output evaluated at Z¢ can be calculated as

Vo f (2'574(0),u(0),v(0), a(0))
Npy
=1 (3 Gin (2 620 (&) T (10) 06 (&) > 0

Npe
x| Nt 2 Gt (29 w0 (25) © 6 (')
j=1

and its norm can be bounded as

Nps

19+f (Z":7(0), u(0),v(0), a(0)) || < Ny Y Ginta(2) [y5] [l () || | (=")]]

h=1
=6 (a),

with high probability. Therefore, with high probability, we have
* 277 % —
¥ = 23T YV (259(0),u(0),0(0), a(0)) + O (5d 2 +).
1 tE[Tl]
Hence, we will focus on estimating the first term.

B.1 ESTIMATION OF LABEL-GRADIENT CORRELATION
We first establish a high-probability guarantee for the term containing context examples.

Lemma B.1. Let (z1,y1,...,ZN,YN, ) be a prompt with context length N < N* and feature
vector B € R% and its embedding Z € RUTDX(N+D) " Thep, the following holds with high
probability:

N
NN G (2)350 () = v (B.an, ar,az) + O (4= FINT2).
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Proof of Lemma B.1. Note that with high probability, v;/p = g. ((8,x,)) + (;/p with ¢; ~
Unif({—7,7}) for all j € [N]. Condition on this event, we have

N

N7t Zyja(yj/P +b)¢ (x))
N

=N (03 ((B,25)) + G) 0 (G ((B,m) + (i/p+b) b ()] -
j=1
From Stein’s lemma, we have

N
N7 (05 (B, 2) + ) o (9 (B, ) + (/o +b) 6(a5)]

= Ezno.ry [A (8" 2)) ¢(2)]

= w (6ta Qo, a1, Clg) .
By Lemma A.4, with high probability, we have

N
N_1 Zng(yj/p + b)¢($J) - ¢ (ﬂa ap,ai, a2) S (7) (d_Cb+1N_1/2) .
j=1

In addition, with high probability, we have

N N
Nt Z Gint1(Z)y;o (x;) = NV yio(y;/p+b)o (x)

j=1
N N

=[VX |wetwerty 1= 0 =o®) T (1 =alw/o+) | o)
j=1 i=j+1
N N i

<N Hwelw/p 0l | 1= (1=o@) [T (1 =otu/o+0) |6
j=1 i=j+1 ]
N

<N [lwo (/o + 0] (1- (1= o)) o (@)1l

< @(d—ch-‘rC* )
From a large enough choice of C}, and the triangular inequality, we have the desired conclusion. [

Corollary B.2. For eacht € [T], the following holds with high probability:
Ny

Nyt D Gt (29 who () (4(0) @ 6 (=)
=1
= aofy2 + aq <5t, mt> + asyHes (<,6't, mt>) +0 (diC’)Jerp_tl/z) .

Proof of Corollary B.2. From Lemma B.1, for each ¢ € [T}], with high probability, we have
Npt

Nit' 3 Civeet (2°) o (5) " (v(0) © 6 ("))

j=1
=+ ay (B2t + axyHes ((8,21)) + O (4N o (&)

_ ao’72 +ay <16t’:ct> + agyHes (<ﬁt’mt>) + O (dbe+2Np—tl/2) ,

where we use Lemma A.3 and (3) for the last equality. [
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Next, let us estimate the expectation of the first term that appears in the label-gradient correlation.
The following lemma is useful for this purpose.

Lemma B.3. Forany d > 0 withd = @(d_CS) for some constant C' > 0, the following holds:
P, n0,1) [|a072 + a1z + asyHes (z)| < dfcbd] <0 (dfcfs) .

Proof of Lemma B.3. For simplicity, let ' = d—C%§. Note that €o(g«) = 2. Then, from Lemma A.5,
we know that d“*ag = © ((log d)~2#). In addition, for p = 1,2, d“*a, = © ((logd)~Crer(9-)) if

ep(g«) < oo and d° otherwise.

1
"p S oly(@)
Case 1: a> = 0.

In this case, g, is not an even function and then dcbal, dCv ag = &} (1). Without loss of generality,
we assume a; > 0. Then, we have

P, n(0,1) [|a072 + a1z + asyHes (z)| < dfcbcs]
=P, v [~ (6 + a0y’ —a2y) Jar <z < (6" — apy” + azv) /ai]

< 2 o).
~ V2ray

Case 2: ay # 0.

Without loss of generality, we assume ay > 0. Then, we have

P,n(0.1) [|a07” + a1z + azyHes(z)| < d=g]
—ay — /a3 + dazy(agy — agy? + 0')

= ]PZNN(O,l) 2012/7 <z
[0 — 249 _ 2 _ T
Py a1 — \/a? + dagy(agy — agy ) <z
(0.2) S0y
(a1 + \/a? + dazy(azy — a2 —0) |
+ Pzon0,1) Ve 2y <z
_ 24 a2 Lo ]
Py a1 + /a} + 4agy(agy — agy? + ) <z
(0.2) 20y
< Va3 + daxy(azy — apy? + ') — v/a? + dagy(asy — agy? — ')
o V2Tagy
40’

V2r (\/af + dazy(azy — apy? + ') + /a3 + dagy(azy — apy? — 5'))

For the case g, is not an even function, then d»ag, d“*a; = ©(1) and d° |as| < 1/poly(d). If
g« is an even function, then d“*agy, d“»as = ©(1) and d®*a; < 1/poly(d). In both cases, we can

~

check that the term above is O(d~*). O

For each t € [T}], define an event E; such that

Nyt
1Ny S Ghnern (29 yto (22) " 7(0)6 (') > 0
j=1

#1 [ao'y2 + a1 (B'x") + asyHe, ((B',2")) > 0] .

From Corollary B.2 and Lemma B.3, we have
1
poly(d)

Pz [Ey] <Pz “%72 + a1 (B, ") + axyHes ((B',2"))| < O <d70b+2Np—t1/2)} n
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=0 (N

Combining with Corollary B.2, with probability at least 1 — O (d2T1 Np_tl/ 2) the following holds:
For any ¢ € [T}], we have
Y'Vaf (Z%7(0),u(0),v(0),a(0))
Nyt
_ T
= NS G (2 310 () (410) @16 (2)) > 0

j=1

x| Mot D Givenn (2) wi0 (25) © ¢ ()

j=1
! [aovz + aq <,@t, :):t> + asyHes (<ﬁt,wt>) > O] d(x') © (ﬁt, ao,al,ag)
+n (Zt) y'l [aofyz + aq <,@t, a:t> + asyHes (<ﬂt, a:*>) > O] d(x') O (ﬂf’, ao, a1, ag) ,
where |n(Z)|| = O (d’cb“Np_tl/ 2) with high probability. With high probability, the following
holds for all ¢ € [T}]:
571 [a02? + a1 (8,2%) + azyes ((8.2%) > 0] (o) © n(2)|
< |yl (2] [|o ()
-0 (d—cb“z\rp;l/?) .

~ _1

Estimation of label-gradient correlation. With probability at least 1 — O (dQTlet2), the
following holds for all ¢ € [T1]:

ytv'vf (Zt; 7(0)7 u(O), 'U(O), G(O))

=y'1 [ao7? + a1 (B, ") + azyHes ((B',2")) > 0] ¢(z") © ¥ (B, a0, a1, a2)
+0 (4N
b .

B.2 CHARACTERIZATION OF UPDATED PARAMETER
In this step, we characterize the updated parameter by establishing concentration results.

Note that every entry of ¢ (8¢, ag, a1, az) are @(d’cb)-bounded by Lemma A.S. From Lemma A .4,
with high probability, we have

T
Til Zytll [a0’y2 + aq <,6t, :ct> + axyHeg (<,6t, $t>)] 0] (:Ut) ©P (,@t,ao,al,ag) —c

t=1

) (dbeJrlTl*l/?) :

c:=FE [yIIL [a(wQ + a; <,61,m1> + agyHes (<ﬁ17w1>) > 0] 0] (:Bl) oY (ﬁl,ao,al,ag)] .

Define B : R — R as B(z2) = g.(2)1[apy? + a1z + azyz? > 0] and denote its Hermite expansion
as B(z) = Y p” %Hey(z). Then, we have

¢ =Eg unit(s,) [¢ (B,a0,a1,a2) ® Eguno,1,) [B(B)()]]
= Eg~unit(s,) [V (B, ao, a1,a2) © ¥ (B, bo, b1, bz)] .

Therefore, we conclude that

T
D0V (253(0),u(0). v(0). a(0)
t=1
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= ]EﬁNUnif(Sr) [1/} (/67 Qp, a1, a2) © /¢ (/67 bOa blu bQ)]
+ @ (d706+2Np_t1/2) + @ (dfchrlTl—l/Q) ,

with probability at least 1 — O (dleNp_tl/ 2).

The remaining step is to characterize the Hermite coefficients by, b1, b2, and the following lemma is
useful.

Lemma B.4. For any non zero polynomial P independent of r and d, the following holds except for
the cases g. is even function and P is an odd function.:

1
|Ez~/\/(0,1) [P(z)]l[am2 + a1z + axyHes(z) > 0]]| 2 m'

Here, dependency of g. appears in ag, a1, as.

Proof of Lemma B.4. Note that ey(g.) = 2. Then, from Lemma A.5, we know that day =
© ((logd)~2¢). In addition, for p = 1,2, d“a, = O ((logd)~C»¢»(9)) if e,(g.) < oo and
da, < m otherwise.

Case 1: g, is not an even function and a; = 0.
In this case, a; # 0. We assume a1 > 0, and we can also prove the case a; < 0 similarly. We have
Ezn0,1) [P(z)]l[aony + a1z > OH

z

aoy?/a1
= Eueon [P(2)] ~ Buoy P@1z < 0) - —= [ P Fae

From our choice of 7, agy?/a; = 1/polylog(d) and we have

a072/a1 22
/ P(z)e”2dz
0

and this provides desired conclusion for the case E,xr(0,1) [P(2)] # Ezonr0,1) [P(2)1[z < 0]]. For
the case E,nr0,1) [P(2)] = Ezwnr(0,1) [P(2)1]z < 0]}, it suffices to show that

aoy? /a1 2
/ P(z)e”7dz| 2
0

2
aop”y 1

< P < ——

- zeH[l—al}f1]| P polylog(d)

1
polylog(d)”

Since agy?/a; = 1/polylog(d), P(z) is monotone and does not change its sign in [0, agy?/a1].
Let @ be the degree of P and ¢ be the smallest degree that has non zero coefficient in P and let
P(z) = Z,;Q:q pr2*. Then, we have

00’72/&1 L2
/ P(z)e” 7 dz
0

_ (e’ q+1> 1
T\ a ™~ polylog(d)

Case 2: g, is not an even function and as # 0.

Hence, we have the desired conclusion.
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In this case, aj, ag # 0. We assume ay > 0 and we can prove the case ay < 0 using similar argument.
Note that

|E.n(0,1) [P(2)1 [a07? + a1z + azyHes(z) > 0] ] |

> (Ezon0,1) [P(z)]l {aO’yQ + a1z + agyHes(z) > 0 Az > —y/log d” ‘
—Epnon[|P(2)] 1z < —logd]]
> |Eznr(o,1) [P(Z)Jl [aony + a1z + asyHey(z) > 0 Az > —+/log H ‘

~ (Bawon) [P(2)2])* (Pawvion |2 < —\/@D% :

Since P, ar(0,1)[2 < —logd] = o(1/polylog(d)), it suffices to show that

1
]EZNN(O,].) |:P(Z)]]. |:a072 + a1z + (IQ'YHGQ(Z) >0ANz > — \/ log d:|:| ‘ Z m
From our choice of 7 and Lemma A.5, we have = := ——~—V a%;i(:i(aw_azhz < —/logd. In
addition, define
gt~ Vol — das(a0y — a2)7? _ 2(ay — a2)y ’
2a27y a1 + /a3 — daz(apy — az)
then |07 | < 1/polylog(d). Therefore, we have
Eznr0,1) {P(z)][[aov2 + a1z + asyHes(z) > 0 Az > —+/logd }
=E,n0,1) [P(2)1[0F < z]]
17 2
=E,- P(z)] —E,. P(z)l|z < 0])] - — P(z)e” 2 dz.
N [P(2)] N1 [P(z)1[z < 0])] el (2)
Note that
ot 1
P - d < lot P <
0 (2)e™ = dz ’ ’zen[lalxl] PGS polylog(d)

and this provides desired conclusion for the case E,zr(0,1) [P(2)] # Eznr0,1) [P(2)1[z < 0]]. For

the case E,xr(0,1) [P(2)] = E,onr0,1) [P(2)1[z < 0]], it suffices to show that

ot 5 1

P BN P —
(2)e i polylog(d)

0

Since 61 < 1/polylog(d), P(z) is monotone and does not change its sign in [0, 07]. Let Q be the
degree of P and ¢ be the smallest degree that has non zero coefficient in P and let P(z) = ZEZ q prz”.
Then, we have

ot

/0 P(z)e” T dz

ot

| PeleFa:

Q
_1 P k
>t g )
k=q

< (09)" 2 ——L .
™~ polylog(d)
Hence, we have desired conclusion.
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Case 3: g, is an even function.

In this case, since e1(g.) = 00, |a1]| < 1/poly(d). We assume ay > 0 and we can prove the case
as < 0 using similar arguments. Let Py, denote the even part of P. Then, we have

E, A 0,1) [P(2z)1[aoy? + a1z + axyHey(z) > 0]
=E,.nvon [PZ)1[z>0"vz<—67]]

=E,n0,1) [P(z)]l [z > /1 —apy/azaVz< —mﬂ

1 U«O’Y/az L2 ;
P(z)e"7dz+ P(z)e” 7dz

1
= 2K, A(0,1) {Pcvcn(z)]]- {Z > mﬂ

1- 0«0’7/‘12 L2
P(z)e 77dz+ —/ P(z)e”7dz
’\/ 2 /9+ \/27‘[’ 1— ag'y/a2
= Ez~/\/(0,1) [Peven(z)} - 2Ez~/\/(0,1) [Peven( ) [O <z < 1]]
) v/ 1—aov/az L2
- — Poen(z)e” 2dz
m eve: ( )
ca N S ()%
Pzedeer—/ P(z)e” 2 dz.
21 Jo+ Vo )\ /T-apv/az

From our choice of v, we have

/\/11107/@2 .2

Peyen(z)e” 7dz| <

v/ 1—aov/az
/ | Prven(2)| dz

1

1

IN

1—a a—l‘max Peyen(z
VT = a0 fa =1 max [ Poven(2)]

<

™ polylog(d)
Since |a1| < 1/poly(d), we have '\/1 —agy/as — 9*‘ ‘—\/1 —agy/as — 9" < 1/poly(d) and
using the same argument above, we obtain that |(x)| < 1/poly(d).
Hence, we obtain the conclusion if B, ar(0,1)[Peven(2)] # 2Ezar(0,1)[Peven(2)1[0 < z < 1]]. For
the case E,nr(0,1)[Peven(2)] = 2E,nr(0,1) [Peven(2z)1[0 < z < 1]}, it is enough to show that

/\/l—aU'y/Q 2

1

Peven _7d BUREE PN
(2)e”7dz 2 polylog(d)

1

From our small choice of v, Peyen is monotone and does not change its sign in [1, /1 — agy/az|(or
[v/1— apy/az,1]. Let Poyen(2) = Z]?:q, pj(z — 1)¥ with p/,, pf, # 0. Then, we have

V1—aov/az 2 V1—aov/az2 2
/ Peven(z)e_sz / |Peven(z)|e_7dz

1 1

/

i k1 (m_l)k

= |V1-— — 1‘ —_—
‘ a0y /az polylog (d)’

Therefore, we have our desired conclusion. ]
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By Lemma B.4 with g.(2), g.(2)2, g.(z)Hey(2), we have bg, by = ©(1) and by = O(1) if g, is not
an even function. We will show that b; = 1/poly(d) if g. is an even function. In this case, az # 0.
Without loss of generality, we assume as > 0. Then, we have

2 }EZNN(O,l) [g*(z)z]l[ao'y2 + a1z + asyHes(z) > OH ’
Eznr(0,1) [g*(z)z]l[aofy2 + a1z + asyHeq(z) > OH

—Esno,1) [g*(z)zll[aony — a1z + axyHea(z) > 0]] ‘

< L [T [Tl
«(2)z| dz «(2)z|dz,
T V2w Jot g 2w Jo- g

where 07, 67, 0, and 6_ are defined as follows:
g dal (e N ey e el e ) e
T 2a9y 2a27 az’ T 2agy 2a27 as
|a| ar \’ ary |as| ar \’ ary
0 = — IO e L0 LY (e I
2a27y 2a27y as 2a27y 2a27y as

From Lemma A.5 and our choice of v, [0, 67] C [0, 2]. Hence, we have

oF a 1
2z dz < (07 — 61) ma *zz:—lma «(2)z] = ———.
[ laa@)e1az < (07 = 07) s (2121 = 2 [0 =
Applying a similar argument, we have the same bound for the second term, and we conclude
b1 = 1/poly(d).
Updated Parameter v*. With probability at least 1 — o <d2T1 Np_tl/ 2), the updated parameter ~v*
is given by:
¥ = 2nEgunit(s,) [V (B, ao, a1, az) © Y(B, by, b1, ba)]

+ 10 (max {d‘20b+4, d=Cv2N MR G 2}) ,
with ag, bo, by = O(1) and age(g,) = O(1), az_ge(g.) = O(1). Furthermore, b; = O(1) if ge(g.) =
1, and b; < 1/poly(d) otherwise.

“

B.3 OuTPUT OF UPDATED MAMBA LAYER

Lastly, we characterize the output of the Mamba layer with the updated parameter v*, which serves
as the input to the MLP layer. This characterization is given in the following proposition, which is a
formal statement of Proposition 4.1.

Proposition B.5. Let (x1,y1,..., TN, YN, az) be a prompt with context length N < N* and feature
vector B € R% and its embedding Z € RUTDXWNTY_[f N = Q (r®&¢(9)), updated parameter
v* satisfies (4), and n = ©(d*“*(log d)~") with some large enough constant C,, > 0, then the
following holds with high probability:

- ge(gx)
N~"Mamba (Z;7") [d4+1, N+1] = PPy (M) o (Par~3500-)2log o) ~20e5(0:)+2) |
T

where P; and Py are independent of data and satisfies Py = o(1) and P, = O((logd)~72) with
some constant C'p, > 0.

Proof of Proposition B.5. Recall that ¢ := Eg.unit(s,) [¥(8, ao, a1, a2) ® (B, by, b1, b2)]. From
(4), we have

(2n)"'N~'Mamba (Z;~*)[d+ 1,N + 1]

N
=N Gini (Z) o (@) (cOé(a))

j=1
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+0 (max {d*3cb+4, d*20b+4Np—t1/2’ d720b+3T1—1/2})

=N yioly/p+b)é () (coo (@)

N N
NS yoy/o+b) (1= (1—o®) J[ (1 -ot/o+0) | é(h) (o)
j=1 i=j+1

+0 (max {d_3cb+4, d_20b+4N};1/2’ d_20b+3Tfl/2}) .

Note that for each j € [N], with high probability, y; = pg.(8, ;) + {; where {; ~ Unif({—7, 7}).
It implies that

N

yio(y/p+b) [1- (1 —o®) T W—o@i/o+b)]¢() (co b))

i=j+1
N

Ny [lyiowi/p+0)1 (1= (1= o(@)™ )i @] llel lo(@)]
=1

-0 (d (—3Cy+C* +2)) .
In addition, with high probability, we have

¢(x;)" (coo(x))
= Egumit(s,) [ (¥(B, a0, a1,a2) ® ¢(x;), (B, by, br, ba) © ¢(x)) |
= apbo + a1b1Egunit(s,)[(B; i) (B, T)]

asby

+ 2B s,y [(Hea (8, 2)) — 1) (Hea (8, 2,)) — )]

In addition, combining with Lemma A.3, we have

¢(z;) (cod(z)) =0 (d),

with high probability. Therefore, from our choice of 7 = © (d?“* (log d) ~“), with high probability,
we have
Inyjo(y;/p+b)d(x;) " (c® p(x))| < 1.

Therefore, with high probability, we have

N
N1 Znyja(yj/p + b)¢(mj)T(C ©¢(x)) =N~" sza

Jj=1 Jj=1

where
z; = 1y;o(y;/p+ 0)o(x;)  (cO d(@)), 2 =21 lz] <1].
By Hoeffding’s inequality, with high probability, we have

N
N Z Zj = Eﬂlhyl [il] + @ (N_l/Q)

J=1
= Exl,yl [Zl} + IEx1,y1 [Zl]l [|Z1| > 7’2]] + (7) (N_l/Q)

= By, 2] + O (N—1/2) ,

where the last inequality holds since
B 1
poly(d)’

[N

B, gn 211 [|21] > 72]]| < Exy s [22]7 P [|2a] > 2]
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Therefore, with high probability, we have
N~'Mamba (Z;~7*)[d+1,N + 1]
=21E [y10(y1/p + 0)¢(z1) " (c © d(2))]
+0 (N712) + 0 (max {a=C 40, N, 2, 2T 7Y )
Lastly, the expectation can be calculated as
¥ (B,a0,a1,a2) " (c® ¢ ()
= Eg/ ~unif(s,) {W(ﬁ, ag,a1,a2) © (B, a0, a1,a2), (8, bo, b1, b2) © ¢(33)>}
d
= agbo + aib1Eg unit(s,) [Z 5[1]35[2]5/[2]21

i=1

2 4
WQ(Zﬂ ﬁ—ipwm#

_<b0 fﬂ+ﬁMC@”)+%”C@”f.

Hence, we have

N~*Mamba (Z;~v*)[d+1,N +1]

ashy\ | oy ((B.x)) , adbs ((B.x))’
2n<( fto = “22) oy (1220 22 (1222
+0 (N_%> +0 (max {d_cb+6, d4N;tl/2, d3Tf1/2}) .
Our conclusion is reached by defining P, = 2n(a3by — a3bs/4) and

~ [2naiby  ifge(gi) =1
2T na3by/2 ifge(g.) =2

C OPTIMIZING MLP LAYER
In this section, we analyze the second stage of pretraining, which focuses on the MLP layer.

C.1 CONSTRUCTION OF APPROXIMATING MLP LAYER
First, we construct the infinite-width MLP layer approximating the link function g..

Lemma C.1. For given 3 € R% with || 3| = 1, suppose there exists a function h : R — R such that

mmza+g<wf»mw+mm

where P = o(1), P, = © ((logd)~C72), and |n(x)| = o (Pyr—38°9:)/2(log d) ~24ee(9:)+2) with

high probability over & ~ N(0, I;). Then, there exists a function 7(-,-) : R* — R such that
|Ev~Unif({i1}),a~Unif([—1,1])[¢(Uaa)ReLU(Uh(w) +a] — g.((B,x)) | = o(1),

with high probability over & ~ N (0, I,). In addition, sup, , |7(v,a)| = O(r2eel9-)),

Proof of Lemma C.1. Since ge(g.) = 2 implies g, is even function, there exists a polynomial g,
such that g, (2) = §. (28°9))). Let §.(z) = 26_‘(5(9*) skz". For any k € Ny, from Lemma 17 in
Damian et al. (2022), there exists 7 (-, -) : R* — R such that for any |2| < 1

1. (v,a)ReLU(vz 4 a)] = 2* and sup |7, (v, a)| = O(1).

v,a

EyUnit({£1}),a~Unif([=1,1]) [T
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Let us define 7/(+,-) : R> — R as
deg(g-) / —1 -2
, 7}, (v, ap~ (log d)~2) ok
7' (v, a) E Sk p(log d)2 (log d)*¥,

where p := Ppr—#¢(9-). Note that sup, ., [7'(v,a)] = O (p~(log d)?de(9-)=2) and if || <
(log d)2, then we have

E v~Unif({+1}) [77/(1}7 G)RQLU (U(pz) + Cl)]
a~Unif([—p(log d)?,p(log d)?])
deg(gx) / -1 —2
. (v,ap™ (logd
= Z spE o~Unif({£1}) il (o (d)g2 ) )(10gd)2kReLU (v(pz) +a)
k=0 a~Unif([~p(log ) p(log d)?)) pliog
deg(gx)
= Z sk (log d)ZkIEENUnif({ﬂ})7aNUnif([,1’1])[71';6(1), a)ReLU(vz(logd) ™2 + a)]
k=0
deg(gx)
= sp2® = Gu(2).
k=0

Lastly, we define (-, -) : R> — R as
1[v=—-1Aa€ [P, — p(logd)?, P + p(logd)?]]x’'(—1,b — P)
2p(log d)?
I[v=1Aa € [P — p(logd)? —Py + p(logd)?|]='(1,b+ Py)
+ )
2p(log d)?

then we have sup,, , = O(r?2°(9-) ) With high probability, | (3, z)| < (log d)? and thus we have
2E Uit ({£1}),a~Unif (1,1 [T (v, a)ReLU (vh () + b)]
= IEaNUnif([Plfp(log d)2,P1+p(log d)?]) |:7TI(_17 b— Pl)ReLU(_Pl - p(<ﬂ7 w>>ge(g*)> - n(w) + ai|

+ anUnif([Pl —p(log d)2,P1+p(log d)?]) |:7T/(1; b— Pl)ReLU(Pl + p(</67 w>)ge(g*) + TL((B) + a)i|

m(v,a) =

&)

= 2Ev~Unif({i1}),aNUnif([—p(log d)?,p(log d)?]) [71',(1}7 Q)RGLU (Up</87 m>ge(g*) + a>:| + 0(1)
= 29.((8, z)) + o(1).

Here, the second equality holds from the fact that sup, , |7’ (v, a)| = O (p~*(log d)?3°(9-)=2) and
[n(x)| = o (p(log d)~24°5(9-)+2),

Therefore, we have the desired conclusion. O

Next, we prove that we can approximate the link function with a finite-width MLP.

Lemma C.2. Let v ~ Unif({£1}™) and a ~ Unif([—1,1]™). Under the same condition of
Lemma C.1, there exists u' € R™ such that

m

> W/ [jIReLU(v[j](2) + alj]) — g.((B. 2))| = o(1)

j=1

u|P=0 (r®&e(9)m=1) holds with high

with high probability over © ~ N'(0, 1). Furthermore,
probability.

Proof of Lemma C.2. We choose u’ as u'[j] = w(v[j], a[j])/m where 7(-,-) : R? — R is obtained

from Lemma C.1. We will show that this choice satisfies the desired conclusions. Since |h(x)| < 1
with high probability and sup,, ,, [7(v, a)| = O(r?2°(9+)), we can apply Hoeffding’s inequality:

>~ wliIReLU(vlj)hz) + alj)
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m

% ( J])ReLU(v[j]h(z) + alj])

= ]EUNUnif({il}),aNUnif([—l,1])[71'('U, a)ReLU(vh(x) + a)] + O(r?89-)m=1/2)

= g:((B. @) + O(r@)m=1/2) 4+ o(1).
In addition, by applying Hoeffding’s inequality, the following holds with high probability:

o'l = m=* 3 w(wlj], bfi)’

= mil]EUNUnif({il}),aNUnif([—1,1]) [r(v,a)®] + @(T4ge(g*)m73/2)~
From (5), m(v,a) is nonzero with probability O(r—8¢(¢9-)), Combining with sup,, . |7(v,a)| =
O(r?e°(9-)), we have desired conclusion. O

C.2 CHARACTERIZATION OF ESTIMATION ERROR ON THE TRAINING SET

The following lemma characterizes estimation on the training set after pretraining.

Lemma C.3. There exists Ay > 0 such that the following holds with probability at least 0.999:

1 T +T>
B3 S @) = o) and | = O (56 )
t=T1+1

Proof of Lemma C.3. From Proposition B.5, the condition in Lemma C.1 is satisfied with probability
at least 0.999. Under this, let u’ be the output layer parameter obtained from Lemma C.2. From the
equivalence between {»-regularization and norm-constrained optimization, there exists Ay > 0 such

that optimized parameter u* satisfies ||u*|| < ||u/|| = O(r38°(9-)/2m~1/2) and
| Dt 2 D ,
(T Z |yt - f(Zt77*7U*7'U*7a*) ) < F Z (yt - f(Zt,'y*7u*,'v*,a*))
2 =T 41 2 =141
1 T +T> )
S E Z (yt_f(Zt’7*7u/av*7a'*)>
t=T1+1
< (r+ol1))2,

D TEST ERROR ANALYSIS
In this section, we analyze the test-time estimation error:
RNtest (’Y*a U*a ’U*, a'*) = E’(Z,y)N’D(NtCst) “f(Za 7*7 ’U,*, ’U*a (I*) - yH

D.1 TEST ERROR FOR PROMPTS WITH PRETRAINING CONTEXT LENGTH

We first prove our conclusion for the case Nyes, = N by establishing a generalization bound using
Rademacher complexity.

We define a family of functions F7; on inputs with context length Nes; = Np as follows:
Fu = ) = Y w[j]ReLU (v*[j]Ny; ' Mamba(Z;v*) + a*[j]) |||ul| < U
j=1

In addition, the Rademacher complexity of F; for sample size T5 is defined as
T>

1 -
Radg, (Fu) = E(zt yy~D(vp) | SUP 7o Zf[ﬂf(zt,yt)
e~Unif({+1}72) Lf€Fu 72 1=1

In the following lemma, we characterize the Rademacher complexity of Fi;.
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Lemma D.1. It holds that .
Rady, (Fy) = O (Uml/QTQ_I/Q) .

Proof of Lemma D.1. By sequentially applying Cauchy-Schwarz inequality and Jensen’s inequality,
we have

RadT2 (]:U)
m 1 T>
=E (7t y)up(Nye) | SUD Z ( T > et ReLU( [j] N, Mamba(Z,v*) + a* [j]))
ewUnif({:I:l}TZ) HuH<U t=1
m 1 Ts 2 %
1 * %7 -
< AE (7t ) D(Ny0) Z (T €lt ReLU( [/]Ny'Mamba(Z*,v*) + a []]))
e~Unif ({£1}72) j=1 t=1
m 1 Ts 27] %
SA|E (2t y)~D(Ny0) Z( T €l ReLU( N, lMamba( *)+a*[j])>
e~Unif({£1}72) | j=1 t=1 |
1 m Ts 0 2
=A E(Z‘,yt)N'D(Npt) ﬁ Z (RQLU( N Mamba( ) + a* [j]))
j=1t=1
In addition, we have
m  Ts 9
E(Zt yt)~D(Npy) Z (RQLU( [ ] lMamba(Z ) + a* []}))
j=1t=1
m T )
< E(Zt y )ND(Npt) Z 1Mamba(Z ) —+ a* [j])
j=1 t=1
m T
< ZE(Zt,yt)N’D(NN) Z (v*[j]sz_tzMamba(Zt,’y*)2 + a* [j]Q)
j=1t=1

<2 (ng + ngE(Z’y)ND(NPt) [N;tzMamba(Z,'y*)QD .

Let (Z,y) ~ D(Ny) and 3, x be their feature vector and query data, respectively. From Lemma A.1,
with high probability over (Z,y) ~ D(Npy), we have

1 . (8,z)\ ) —ge(g.) —2deg(g.) 2
Ny Mamba(Z,v*) =P+ P2 | —— +o <P2r 8649-) (log d) ~ =819~ ) = O(1).
T
Itimplies E(z )~ p(n,.) [Ny Mamba(Z,~v*)?] = O(1) and it leads to our desired conclusion. [J

Next, we obtain the following result on test error.

Lemma D.2. With probability at least 0.995, it holds that Ry, (v*,u*,v*,a*) — 7 = o(1).

Proof of Lemma D.2. From Lemma C.3, with probability at least 0.999, we can choose U =
O(r38(9+)/2,~1/2) such that u* < U and we have

Ry, (v, u*,v",a") — 7

Ly
T ly' = £ (2" ut 0" a)|
I (=T1+1
1 T1+T2
! (RNPt(ﬂy*’u*7v*7a*)T Z |ytf(Zt77*7u*7'U*,a,*)’> -T
2 =T 41
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1 T +T>
S -SLIP (RNpt(’y*?'U'*av*aa*) - F Z ’yt - f (Zt77*aU*7v*7a*)|) +0(1)7
feFu 2 =T +1

where F; := Fiy U{(Z,y) — y}. Using the standard symmetrization argument (Proposition 4.2 in
Bach (2024)), we have

1 T +T>
E ~Sllp (RNM(’Y*7U*,U*7G*)_T Z |yt_f(Zt7’y*7U*7U*7a*>|>‘|
feru 2 t=Ti+1

< 2Radr, (]‘N—U)
2 <

< 2Radr, (Fu) + ?E(Zt,y”)wD(Npt) lz |6[t]yt|] ,
2 e~Unif ({£1}72) Lt=1

where the second inequality holds since JF;; contains zero function. By the Cauchy-Schwarz inequal-
ity, we can also bound the second term as

IN

7 27\ 3
E (2t y)~D(Ny0) (Zf[t]yt>

e~Unif ({£1}"2) t=1

VI (Ezp~p(vp) [(yt)QD% :

T>
]E(Zt,yt)ND(Npt) [Z le[ﬁ]yt |‘|

e~Unif ({£1}72) Lt=1

Combining with Lemma D.1, we have
1 T +T>
Elsup (RNpt(7*7u*7v*’a*)_T Z ’yt_f(zt77*aU*av*7a*>‘>]
7 2
feFu t=T) +1

=0 (nge(g*)ﬂTQ—l/Q) =o(1).

Note that sup 7 7, (RNpt (v, u, v, a%) = ZtT;{,lle lyt — f(Ztv*, u*, v, a*)|> is always

non-negative due to (Z,y) — y € Fu. Therefore, by applying Markov’s inequality, we conclude
that with probability at least 0.995,

Ry, (¥, u",v*,a") — 1 = o(1).

D.2 TEST ERROR FOR PROMPTS WITH GENERAL LENGTH

For the last step, we extend the result of the test error to a general test time context length Niegy =
Q (T3ge(g*))‘
Proof of Theorem 3.3. To use the result of Lemma D.2, we bound the following quantity:
’RNtest (7*» U'*a U*v a*) - RNpt (7*a U*a ’U*7 a*)|

= ’E(Z,y)ND(N*) HZ/ - f(ZNpm’Y*a U*a 'U*, a’*)‘ - |y - f(ZNtest’fy*’ u*7 0*7 a*)H ’

<Ezypve [[f(Zn, 75w v a") = (2.7 w05 ab)]] .
Here, Zy,, and Zy,,,, are input embeddings consisting of the first Ny and Nyesy context examples,
respectively, along with the same query x, when given an prompt Z. From Lemma A.1, the following
holds with high probability:

Nr;ﬁlMamba(Zpﬁ ¥*) = NiosyMamba(Zies; 'Y*)| =0 (ngge(g*)/z(log d)izdeg(g*HszP?)) )

Combining with Lipschitz continuity of ReLU, this implies

|f(ZNpca7*aU*vv*>a*) - f(ZNcesta7*7u*7v*va*)|
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m

IN

[u*[4]| !N;thamba(Zpt;'Y*) - Nt;sltMamba(Ztest§7*)}
j=1
< JJul] mt/? |Np_thamba(Zpt;’y*) — thsltMamba(ZteSt;'y*ﬂ
_ @(r3gc(9x)/2m—1/2) ml/2 ., (,’,—Bgc(g*)/Q(log d)—Qng(g*)+2—Cp2))
= o(1),

where we apply the Cauchy-Schwarz inequality for the last inequality, and the last equality holds
since we can make C'p, arbitrarily large. Therefore, we have

|RNtest (7*7'”*’ ’U*, a*) - RNp(’, (’Y*a u*v ’U*, a*)| = 0(1)’

and this implies that our desired conclusion holds with probability at least 0.99. O
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