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Abstract
Deep networks are prone to catastrophic forget-
ting during sequential task learning, i.e., losing
the knowledge about old tasks upon learning new
tasks. To this end, continual learning (CL) has
emerged, whose existing methods focus mostly
on regulating or protecting the parameters associ-
ated with the previous tasks. However, parameter
protection is often impractical, since the size of
parameters for storing the old-task knowledge in-
creases linearly with the number of tasks, other-
wise it is hard to preserve the parameters related
to the old-task knowledge. In this work, we bring
a dual opinion from neuroscience and physics to
CL: in the whole networks, the pathways matter
more than the parameters when concerning the
knowledge acquired from the old tasks. Follow-
ing this opinion, we propose a novel CL frame-
work, learning without isolation (LwI), where
model fusion is formulated as graph matching
and the pathways occupied by the old tasks are
protected without being isolated. Thanks to the
sparsity of activation channels in a deep network,
LwI can adaptively allocate available pathways
for a new task, realizing pathway protection and
addressing catastrophic forgetting in a parameter-
efficient manner. Experiments on popular bench-
mark datasets demonstrate the superiority of the
proposed LwI.

1. Introduction
Continual learning, a scenario that requires a model to han-
dle a continuous stream of tasks while preserving perfor-
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Figure 1. Left Figures: The illustrative comparison diagram be-
tween our method and the parameter-protective approach depicts
the key distinctions in our methodologies. Bottom Right Fig-
ure: The performance comparison between our method and the
WSN (Kang et al., 2022a) method. Top Right Figure: We show-
case the ability of our method to adapt even in task-agnostic scenar-
ios, whereas the parameter-protective approach requires knowledge
of task identifiers for effective recognition.

mance on all seen tasks, is pivotal for the advancement of
artificial general intelligence (Masana et al., 2022; Liang &
Li, 2024; Wang et al., 2024). The approach, mirroring the
human learning process of acquiring and retaining diverse
experiences about the real world, confronts a significant
challenge: catastrophic forgetting (McCloskey & Cohen,
1989). This phenomenon results in the diminished profi-
ciency of model in prior tasks after learning on new ones.

Various continual learning approaches have been proposed
to mitigate the issue of catastrophic forgetting, broadly
categorized into three types. Regularization-based ap-
proaches entail adding regularization terms that leverage
the weight information of previous tasks during the train-
ing of the current task. While this approach can mitigate
catastrophic forgetting to some extent by constraining pa-
rameter shifts and ensuring protection of model parame-
ters, it tends to result in relatively lower performance when
confronted with significant variations in data characteris-
tics. Rehearsal-based approaches preserve data segments
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from previous tasks or use synthesized pseudo-data to retain
previous knowledge while learning new tasks, which can
achieve a more unified output range for the classification
heads, leading to superior performance in scenarios of task
agnostic. However, from the perspective of data privacy
protection (Agarwal et al., 2018), this approach does not
suffice. Architecture-based approaches focus on protect-
ing parameters through techniques, achieving performance
that matches or exceeds that of previous network training.
However, they have two drawbacks, one is the requirement
to know the task to which the identified object belongs in or-
der to achieve accurate recognition, and another is that this
method leads to the isolation of tasks, hindering effective
communication and information sharing among them.

We argue that existing architecture-based continual learning
methods do not adequately leverage the overall considera-
tion of the sparsity of activation channels in deep networks.
As illustrated in Figure 1, We adopt a holistic perspective
on the deep network, allocating distinct activation pathways
for each task through pathway protection involves assigning
unique pathways for information transmission in the deep
network. Here, pathway (Kipf & Welling, 2016; Zoph & Le,
2016; Huang et al., 2017; Vaswani et al., 2017) refers to the
trajectories the data take through the deep network, travers-
ing from the input layer through intermediate layers to the
output layer. In this context, the concept of channel is akin
to a neuron. The parameter-protective approach primarily in-
volves pruning or masking operations on neurons maintains
performance when task is known, it lacks consideration
for the overall deep network structure. Consequently, in
subsequent tasks, the reducible number of learnable param-
eters hinders the achievement of optimal performance. As
depicted in the Figure 1, our approach is expected to outper-
form the latest parameter-protective methods WSN (Kang
et al., 2022a). Meanwhile, considering brain’s hierarchi-
cal, sparsity, and recurrent structure (Friston, 2008), brain
activity relies on sparsity connections, where only a few neu-
rons respond to any given stimulus (Babadi & Sompolinsky,
2014), brain learns and retains knowledge by re-configuring
existing neurons to create more efficient neural pathways.
Therefore, pathways protection is all you need.

Inspired by compensatory mechanisms observed in neuro-
science and based on the sparsity of activation channels in
neural networks, we propose a novel method to maintain the
overall stability of deep network channels while allocating
distinct pathways to different tasks across the network. The
proposed approach initiates with training a model on the first
task, followed by training a new model for each subsequent
task. Then, a matching procedure is employed to fuse the
new and old models, yielding a merged model. Conventional
model fusion methods involve straightforward weight aver-
aging (McMahan et al., 2017; Jiang et al., 2017), yet deep
network parameterizations are often highly redundant, lack-

ing one-to-one correspondence between channels (Singh &
Jaggi, 2020). Simple averaging may lead to interference
and even cancellation of effective components, a concern
exacerbated during continual learning. Hence, in this pa-
per, we align channels before model fusion. Several studies
(Zhou et al., 2022; Hu et al., 2022; Yang et al., 2023; Gao
et al., 2024) have highlighted the following characteristics
of neural networks, in the shallow layers of the deep net-
work, where tasks share more common features, we match
the channels with high similarity to enhance mutual com-
monality. In contrast, in deeper layers, where tasks exhibit
more specific characteristics, we match channels with low
similarity to facilitate the fusion of distinct task features
while preserving their distinctiveness, thus achieving path-
way protection.

Figure 2 intuitively demonstrates the effectiveness of our
approach. The concept of ”Activation level” refers to the
average magnitude of the weights obtained after activation
in the last layer of the feature extraction phase. We use
activation levels to measure whether pathways associated
with different tasks can be distinguished. We present the
activation output of data from different tasks in the last
convolution layer of the trained model. As depicted in the
left subplot of Figure 2, our method consistently exhibits a
distinctive prominence for each task. In other words, our
method adaptively allocates a set of pathways for each task,
preventing the knowledge of old tasks stored in deep net-
work parameters from being overwritten when learning new
tasks, which helps mitigate catastrophic forgetting. In con-
trast, the Learning without Forgetting (LwF) method (Li &
Hoiem, 2017) probably demonstrates nearly uniform chan-
nel activation levels for each task, leading to mixed channel
utilization among tasks. As the accuracy plot in the top
right corner illustrates, even after training on new tasks,
our method maintains consistent or better performance on
previous tasks.

It is worthwhile to summarize our key contributions as fol-
lows:

1. We explored a new direction, employing pathway pro-
tection approach for continual learning.

2. We proposed a novel data-free continual learning ap-
proach, learning without isolation (LwI), based on
graph matching.

3. Our experiments on both CIFAR-100 and Tiny-
Imagenet datasets demonstrate that our framework
outperforms other methods. The source code of
our framework is accessible at https://github.
com/chenzk202212/LwI.

2

https://github.com/chenzk202212/LwI
https://github.com/chenzk202212/LwI


Learning without Isolation: Pathway Protection for Continual Learning

Ours

LwF

Pathway index 0

Pathway index 79

: Ours : LwF

…
…

Task 1 Task 2 Task 3 Task 4

Figure 2. Left Figure: A comparison between our approach and
LwF (Li & Hoiem, 2017). The activation values in the last con-
volution layer of the models are displayed across channels. The
channels of the models have been rearranged along the horizontal
axis for clearer demonstration. Bottom Right Figure: An explana-
tory legend for the horizontal axis (channel index) in the left figure.
Top Right Figure: A comparative analysis under the condition of
task awareness between our method and LwF indicates that our
accuracy remains largely unchanged, contrasting with a substantial
decline observed in the case of LwF.

2. Related Work
Continual learning. Deep networks exhibit a static struc-
ture, implying that once a task is learned, network parame-
ters need to remain fixed to prevent catastrophic forgetting
(Wang et al., 2024; Zhao et al., 2024). However, contin-
ual learning addresses a more prevalent scenario in which
tasks arrive as a continuous data stream for the network
to learn. In this context, strategies like regularization-
based, rehearsal-based, and dynamic architecture-based
approaches are employed to mitigate catastrophic forget-
ting. Regularization-based methods apply constraints to
limit changes in weights or nodes from past tasks, thereby
reducing catastrophic forgetting. For instance, meth-
ods like EWC (Kirkpatrick et al., 2017) incorporate the
Fisher information matrix of previous task weights, while
RWalk (Chaudhry et al., 2018) merges this matrix’s approx-
imation with online path integration to gauge parameter
importance. LwF method, on the other hand, employs out-
put alignment to prevent the model weights from a large
shift. SPG (Konishi et al., 2023) employs the Fisher in-
formation matrix to control the updates of each parameter,
enabling more granular parameter protection. Rehearsal-
based approaches involve preserving portions of data from
previous tasks or using some techniques to generate pseudo-
data (Shin et al., 2017). This data is then combined with
the current dataset during the training for the next task,
alleviating catastrophic forgetting. For example, both ap-
proaches, LUCIR (Hou et al., 2019) and iCaRL (Rebuffi
et al., 2017), leverage the technique of preserving a portion
of previously acquired data along with knowledge distilla-
tion for incremental learning. Continual Prototype Evolu-

tion (CoPE) (De Lange et al., 2021) combines the principles
of the nearest-mean classifier with a reservoir-based sam-
pling strategy. Dynamic architecture-based methods encom-
pass expanding models and employing parameter isolation
techniques to retain previous knowledge while accommo-
dating new knowledge expansion.

Parameter isolation-based continual learning. This ap-
proach aims to safeguard parameters to preserve knowledge
acquired from previous tasks (Zhang et al., 2024b). The
Piggyback method (Mallya et al., 2018) involves learning a
series of masks over a post-pretrained model, correspond-
ing to various tasks, resulting in a series of task-specific
subnetworks. The PackNet method (Mallya & Lazebnik,
2018) uses pruning method to protect neurons, which are
important to previous tasks. CLNP method (Golkar et al.,
2019) divides neurons in the deep network into active, in-
active, and interference parts, utilizing previously learned
features and unused weights from the network to train new
tasks. Supsup method (Wortsman et al., 2020) employs
masking to protect specific parameters important for tasks.
Chen et al. (2020) prunes the model to obtain the optimal
subnetwork for the task, thus preserving knowledge and
achieves generalization for new tasks through re-growing.
GPM (Saha et al., 2021) utilizes gradient mapping to project
the knowledge from previous tasks into mutually orthogo-
nal gradient subspaces, thereby enabling continual learning.
The WSN algorithm (Kang et al., 2022a), based on the lot-
tery hypothesis, learns a compact subnetwork for each task
while maintaining the weights chosen for previous tasks un-
changed. SPU (Zhang et al., 2024a) employs causal tracking
to select model parameters for updates, thereby facilitating
knowledge protection. However, most of these methods
involve pruning or masking based on network weights, lead-
ing to non-structured modifications that risk compromising
the integrity of network. Our approach integrates the chan-
nel properties of network, which allows different tasks to
utilize distinct pathways for propagation and flow, preserv-
ing the overall integrity of the deep network without causing
disruption.

The sparsity of deep network. According to the mech-
anisms observed in neuroscience, in the brains of healthy
adults, the density of connections remains roughly constant.
Despite learning more tasks, the capacity of neurons in the
brain remains relatively unchanged. Meanwhile, within
deep networks, this phenomenon also manifests. Upon com-
pletion of training, deep networks typically exhibit sparse
activation, with a small proportion of effectively activated
neurons (Han et al., 2015; Liu et al., 2015; Fan et al., 2020;
Dai et al., 2021). According to the findings of Mao et al.
(2017), deep networks exhibit an inverse relationship be-
tween overall accuracy and granularity. Specifically, under
similar sparsity levels, increased granularity is associated
with improved accuracy. Under comparable sparsity con-
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ditions, finer granularity tends to yield optimal accuracy.
Concurrently, the MEMO method (Zhou et al., 2022) high-
lights similarities in the shallow layers of different models
while showcasing differences in the deeper layers. There-
fore, we hypothesized that within the coarser granularity
(shallow layers) of the deep network, a denser occupation
of channels occurs, while in the finer granularity (deeper
layers), channel occupation tends to be sparser.

3. Preliminary
In this section, we provide an elucidation of the problems
to be addressed and the prerequisite knowledge required for
subsequent methods. In Section 3.2, we present an exposi-
tion on continual learning. Sections 3.1 and 3.3 introduce
the foundational knowledge underpinning our approach,
which includes deep network sparsity and graph matching
algorithms.

Consider a supervised continual learning scenario where
learners need to solve T + 1 tasks in sequence without
catastrophically forgetting old tasks. At the same time,
due to data privacy restrictions, we cannot store data from
previous tasks. We use Dt+1 = {Xt+1;Yt+1} to denote a
dataset for task t + 1. Xt+1 = {x1, ..., xn} and Yt+1 =
{y1, ..., yn} represent that the dataset includes n data classes
along with their corresponding labels for task t + 1. And
we use Mt to denote a trained model for task t. Meanwhile,
D1:t = {X1, ..., Xt;Y1, ..., Yt} denotes datasets for all seen
tasks from task 1 to task t. We represent the deep network
model using the following formula:

Mt(x) = f(θ), (1)

and a standard continual learning scenario designed to learn
a series of tasks by minimizing optimization problems at
each step:

min
θ

L(f(Xt+1; θ), Yt+1), (2)

where L denotes the loss function used when training task
t + 1. It is well known that simply optimizing the loss
function can easily lead to catastrophic forgetting.

3.1. Graph matching for deep network fusion.

Recently, some studies have employed graph matching ap-
proaches for model fusion (Su et al., 2021). Graph match-
ing bears resemblance to a quadratic assignment prob-
lem (QAP) (Loiola et al., 2007), with the objective of estab-
lishing correspondences between the nodes in an image and
the edges connecting these nodes. The activation distribu-
tion of deep network channels is not fixed across training
iterations, resulting in some neurons exhibiting high acti-
vation for one task, but low activation for another. If a
straightforward averaging fusion is performed, it may lead
to interference and blending of effective components within

the deep network (Singh & Jaggi, 2020). Hence, aligning
the channels before fusion becomes a crucial step in the
integration process.

In this context, we conceptualize the matching process be-
tween deep networks as a graph matching problem. In our
framework, a deep network is conceptualized as an image.
This representation enables the alignment of two deep net-
works through the application of a graph matching algorithm.
At each layer, we interpret the channels within that layer as
nodes in an image, and the connections between adjacent
layer channels as edges. It is noteworthy that, within deep
networks, we assert that matching occurs exclusively within
each layer, as cross-layer matching holds no significant rel-
evance. This approach facilitates the effective application
of graph matching methods in deep networks, given their
large-scale neuron configuration. The specific formula for
graph matching is presented as follows:

max
P

N−1∑
a=0

N−1∑
b=0

N−1∑
c=0

N−1∑
d=0

Pa,bK[a,c,b,d]Pc,d,

s.t. P0 = I; PL = I;

N−1∑
a=0

P[a,c] = 1, ∀m ∈ [1, L− 1];

N−1∑
c=0

Pm[a,c] = 1, ∀m ∈ [1, L− 1].

(3)

where a and c represent node indices between adjacent
layers in modelX as shown in Figure 3.2, b and d represent
node indices between adjacent layers in modelY as shown
in Figure 3.2, L represents the index of the last layer in
the neural network, N =

∑L
m=0 Nm represents the sum of

the number of nodes across all layers, Nm represents the
number of nodes across layer m, K represents the similarity
matrix between adjacent layers in modelX and modelY ,
P0 represents the permutation matrix for the first layer,
PN represents the permutation matrix for the last layer,
Pm,m ∈ [1, N − 1] denotes the permutation matrix for
intermediate layers. We need to solve the assignment matrix
P , and according to the formula, we can find that the time
complexity of using the graph matching method is O(N4).
However, based on the above analysis, we use a layer-by-
layer calculation of the assignment matrix in this paper to
align the channels at each layer of the deep network, so
that N is not the number of all channels, but the number of
channels in each layer. More analysis could be found in the
appendix A.3.

3.2. Problem Statement

In practical applications, highly precise matching results are
not necessary, and the majority of current work focuses on
the approximate matching of nodes or edges. The previous

4



Learning without Isolation: Pathway Protection for Continual Learning

a

c

b

d

𝐿4

𝐿3

𝐿2

𝐿1

𝑀𝑜𝑑𝑒𝑙 𝑋 𝑀𝑜𝑑𝑒𝑙 𝑌

Task t Task t+1

𝑀𝑜𝑑𝑒𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝐺𝑟𝑎𝑝ℎ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

6

3
4

1

2

𝐺𝑟𝑎𝑝ℎ 𝑋 𝐺𝑟𝑎𝑝ℎ 𝑌

5

Node Correspondence

Edge Correspondence

B

A

C
D

F
E

𝐿1𝐿2

a

b

Deep Layers

Minimum Similarity

Shallow Layers

Maximum Similarity
Input Layer

𝐿3

c

d

Model  𝑌

Model  𝑌

𝑀𝑜𝑑𝑒𝑙 𝑋

𝑀𝑜𝑑𝑒𝑙 𝑋 𝑀𝑜𝑑𝑒𝑙 𝑋

Output Layer

Model  𝑌𝑀𝑜𝑑𝑒𝑙 𝑋

𝑀𝑜𝑑𝑒𝑙 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑚𝑎𝑡𝑟𝑖𝑥

Model  𝑌

Append operation
𝐿4

Figure 3. The overall structure of our proposed LwI algorithm. In the right diagram, we represent the deep network in four parts: L1
corresponds to the input layer, L2 to the shallow layers, L3 to the deeper layers, and L4 to the output layer. The channels in the deep
network can be analogous to nodes in a graph, and the connections between channels correspond to the edges in the graph. On the left
side, L1 requires no matching operation. L4 only needs to append operations for the output heads of different tasks. L2 matches the
channels with maximum similarity. Conversely, L3 undergoes minimization of similarity matching.

work can be divided into classical methods and deep graph
matching methods. In this paper, a more commonly used
method, Sinkhorn algorithm (Cuturi, 2013), is used. The
Sinkhorn algorithm, rooted in entropy regularization, trans-
forms a binary 0-1 matrix into a soft matching matrix with
a sum of 1 through a process of bi-directional relaxation.

3.3. The sparsity of deep network.

The primary rationale behind this approach stems from the
sparsity of deep networks. To accommodate future learning
tasks, continual learners often utilize over-parameterized
deep networks. The reason is that continual learning fre-
quently relies on over-parameterized deep deep networks to
allow flexibility for future tasks.

We believe that a deep network is composed of multiple
layers, and we use ℓ to represent the index of one layer
of the deep network. Meanwhile, it has been observed
in previous studies (Zhou et al., 2022) that shallow layers
across models of different tasks exhibit notable similarities,
whereas deeper layers demonstrate distinct characteristics.
The deep network model can be decoupled into a classifier,
denoted as G(·), and a feature extractor, represented as F (·).
The feature extractor further bifurcates into a shallow-layer
deep network S(·) and a deep-layer deep network D(·) in
Eq.(4):

M(x) = Gℓ (Fℓ(x)) = Gℓ (Dℓ (Sℓ(x)))) . (4)

The Lottery Ticket Hypothesis (Frankle & Carbin, 2018)
posits that within deep networks, there exist specific ”win-
ning tickets” generated during the training process. These
winning tickets, it suggests, enable comparable performance

with the entire network in different tasks while employing
fewer parameters and requiring shorter training times. Re-
garding the sparsity aspect of deep networks, the Lottery
Ticket Hypothesis asserts that only a small subset of con-
nections (weights) within the network is crucial for learning
and performance, while the remaining connections can be
pruned (set to zero) without significantly affecting the per-
formance of network.

Previous studies show that deep networks are sparse—not
all parameters need computation, as many are inactive. By
assigning different channels to different tasks, we can lever-
age this sparsity to match or even surpass performance while
mitigating catastrophic forgetting in continual learning.

4. Methodology
In this section, we delve into a comprehensive discussion
of our proposed continual learning structure based on graph
matching, along with its specific implementation. Section
4.1 outlines the framework of proposed method for contin-
ual learning based on graph matching. We fuse the model
trained on a new task with the one trained on previous tasks.
Rather than merely averaging the parameters of the two
models, we conduct pathway alignment based on graph
matching before fusion. To achieve the protection and shar-
ing of knowledge, we employ different similarity matrix
across different layers of the deep network. Section 4.2
provides a detailed account of the optimization process.
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4.1. Graph-not-Matching for Continual Learning

Unlike previous architecture-based methods, which usually
mask weights crucial for the previous task, our strategy
stems from the holistic nature and sparsity of neural net-
works. We believe that safeguarding previous tasks through
misaligned addition represents a matching approach. This
method not only protects the overall integrity of the deep
network, but also allocates different directional channels for
various tasks.

Overview. The overall structure of our proposed LwI algo-
rithm is shown in Figure 3. When a new task arrives, we
train a new model for it. We then employ graph matching
for channel alignment before model fusion, by analogizing
neural network nodes to nodes in graph matching and con-
nections between deep network channels to edges in graph
matching. The specific alignment operations, as illustrated
in the left diagram, involve matching the channels with high
similarity in shallow layers and low similarity in deep lay-
ers. Meanwhile, matching operations are not required in L1,
and in L4, only append operation is necessary. The overall
process of our proposed method is illustrated in Algorithm 3
in appendix.

Model Fusion Process. The fusion process of the new
and old models is illustrated in Algorithm 1. We use Eu-
clidean Distance in Eq.(5) to compute distances between
weights and subsequently employ specific graph matching
algorithms:

K[a,c,b,d] = ∥eac − ebd∥2, (5)

where K denoted the similarity matrix, eac and ebd denote
the similarity relationship between the channels of adjacent
layers in two models, specifically focusing on the edges
(a, c) and (b, d), respectively. We also utilize cosine simi-
larity for measurement, and specific details can be found
in the ablation study and the appendix C.6. In the shallow
layers, we need to maximize similarity matching for pro-
tecting old knowledge and promoting the collaboration of
different tasks. Hence, the similarity matrix between two
edges is itself. Conversely, in the deeper layers, we repeat a
similar process but utilize a minimizing similarity approach
for protecting the individuality of different tasks, facilitating
misaligned fusion of channels. Therefore, the similarity
matrix between two edges is represented by its negation.
The specific matching process can be found in Algorithm 2
in the appendix. This process yields a permutation matrix,
enabling us to perform matrix multiplication between the
old model and the permutation matrix. Subsequently, the
permutation matrix of similarity from the previous layer is
multiplied with the parameter matrix of the current layer,
ensuring the coherence of the connections between the chan-
nels. The matrix multiplication of the permutation matrix
for the current layer is performed with itself, positioning

Algorithm 1 Model Fusion Process
Input: the weight matrix between the layer l − 1 and l is
denoted as W (l−1,l), P (l−1,l) represents the corresponding
permutation matrix, fusion coefficient is k.
Output: the fusion model Wfusion.
for layer 1, ..., N do

Calculate the permutation matrix P (l−1,l) according to
the Algorithm 2 in appendix;
if layer == 1 then

Calculate Ŵ
(0,1)
o ← P (0,1)⊤W

(0,1)
o ;

end
else

Calculate W̃
(l−1,l)
o ←W

(l−1,l)
o P (l−2,l−1);

Calculate Ŵ
(l−1,l)
o ← P (l−1,l)⊤W̃

(l−1,l)
o ;

end
W

(l−1,l)
fusion = k ∗ Ŵ (l−1,l)

o + (1− k) ∗W (l−1,l)
n ;

end
Wo = Wfusion;

the most similar or dissimilar channels accordingly. This
process achieves channel alignment within the current layer.
Graph-Matching and Graph-not-Matching. We adopted
the combined approach of maximizing and minimizing sim-
ilarities for the following reasons: 1). To facilitate col-
laboration between tasks. 2). Considering the sparsity of
deep network channels, we allocate different channels for
different tasks in the sparse layer, thereby preserving the
characteristics of each task. The key to implementing soft
matching in our method lies in calculating the optimal trans-
port matrix, which is the matching matrix P . Here, we
provide a more detailed explanation of Algorithm 1. Our
goal is to use the similarity matrix K to obtain the matrix
P , where Pab represents the optimal amount of mass to
transport the a-th neuron in the l-th layer of modelX to the
b-th neuron in the l-th layer of modelY . The implementa-
tion process is that, in the shallow layers, we observe that
different tasks occupy denser channels with shared features.
Consequently, for these distinct tasks, we consolidate their
most similar channels, facilitating mutual reinforcement
of common features, for the collaboration of knowledge
among different tasks. Meanwhile, in the deeper layers, we
observe that different tasks occupy sparser channels, em-
phasizing distinct characteristics. Thus, for these tasks, we
consider the misaligned fusion of channels that represent
unique traits of each task, aiming to safeguard the individual
characteristics.

4.2. Optimization

Knowledge distillation aims to mitigate semantic discrep-
ancies between the new and old models, otherwise, model
fusion loses its significance. Additionally, in training a
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Table 1. Task-agnostic and Task-aware accuracy (%) of different methods. Our approach is based on data-free, but the results of exemplar-
based methods are also provided.

Dataset Architecture Method Exemplar Task-agnostic Task-aware
5 splits 10 splits 20 splits 5 splits 10 splits 20 splits

CIFAR-100 ResNet32

EWC

no

31.81 ± 1.45 21.14 ± 0.98 12.32 ± 0.56 64.22 ± 0.83 65.86 ± 1.55 63.43 ± 1.59
RWalk 21.40 ± 1.22 20.07 ± 1.91 12.49 ± 1.36 64.98 ± 0.97 69.16 ± 1.29 67.98 ± 1.38
LwF 37.54 ± 0.43 25.78 ± 0.43 15.86 ± 1.15 74.63 ± 0.72 75.98 ± 1.03 76.37 ± 1.44
SPG 30.74 ± 0.27 22.54 ± 1.23 11.28 ± 0.22 62.22 ± 1.54 70.34 ± 0.52 72.39 ± 0.05
SPU 34.56 ± 0.93 23.44 ± 0.36 17.33 ± 0.21 66.02 ± 0.47 73.31 ± 0.21 78.34 ± 0.47
GPM - - - 71.72 ± 0.35 78.74 ± 1.17 80.47 ± 0.33
WSN - - - 75.47 ± 0.48 80.12 ± 0.60 82.51 ± 0.50
Ours 43.42 ± 0.58 30.62 ± 1.08 20.31 ± 0.77 76.10 ± 0.33 81.12 ± 0.90 83.19 ± 0.35
iCaRL 2000 37.23 ± 0.74 36.88 ± 2.33 33.88 ± 3.03 62.98 ± 0.79 73.40 ± 1.46 81.74 ± 1.65
LUCIR 48.48 ± 1.16 41.10 ± 1.98 36.46 ± 1.83 75.40 ± 0.57 80.05 ± 1.00 84.95 ± 0.99

CIFAR-100 ResNet18

EWC

no

30.84 ± 0.27 18.66 ± 0.62 9.21 ± 0.25 61.25 ± 0.46 56.53 ± 1.84 51.34 ± 0.72
RWalk 38.81 ± 2.08 21.78 ± 0.53 7.82 ± 1.07 69.41 ± 1.70 61.91 ± 0.62 57.57 ± 1.16
LwF 44.66 ± 0.97 30.41 ± 0.82 16.66 ± 1.36 79.96 ± 0.52 81.35 ± 0.51 81.45 ± 0.67
SPG 26.32 ± 0.57 20.16 ± 1.51 10.54 ± 0.14 64.98 ± 0.97 69.16 ± 1.29 67.98 ± 1.38
SPU 43.79 ± 0.40 25.12 ± 0.48 16.08 ± 0.71 74.63 ± 0.72 75.98 ± 1.03 76.37 ± 1.44
GPM - - - 78.23 ± 1.13 81.42 ± 1.43 86.21 ± 0.46
WSN - - - 78.65 ± 1.33 83.08 ± 1.57 86.10 ± 0.25
Ours 51.95 ± 0.56 36.36 ± 1.06 22.99 ± 0.39 81.10 ± 0.80 84.90 ± 0.36 86.49 ± 0.55
iCaRL 2000 49.44 ± 0.78 39.27 ± 0.37 28.48 ± 1.57 73.84 ± 0.36 76.63 ± 0.62 78.49 ± 0.74
LUCIR 55.67 ± 1.04 42.56 ± 0.97 33.84 ± 1.95 81.22 ± 0.25 84.41 ± 0.22 86.19 ± 0.25

Tiny-Imagenet ResNet18

EWC

no

19.21 ± 0.31 10.32 ± 0.29 4.69 ± 0.39 42.84 ± 0.54 36.21 ± 1.07 30.82 ± 2.06
RWalk 21.69 ± 0.64 12.94 ± 0.38 7.84 ± 0.21 55.67 ± 1.27 56.14 ± 0.29 59.58 ± 0.40
LwF 26.76 ± 0.50 20.14 ± 0.28 13.09 ± 0.24 59.66 ± 0.47 63.52 ± 0.57 70.59 ± 0.47
SPG 22.80 ± 0.26 12.03 ± 0.73 7.86 ± 0.24 54.50 ± 0.47 57.81 ± 0.23 59.67 ± 0.44
SPU 25.50 ± 0.40 19.98 ± 0.06 13.44 ± 0.18 57.15 ± 0.31 59.93 ± 0.08 63.64 ± 0.38
GPM - - - 58.45 ± 0.38 63.17 ± 0.24 70.16 ± 0.42
WSN - - - 57.38 ± 0.51 64.12 ± 0.43 71.54 ± 0.43
Ours 34.33 ± 0.51 26.15 ± 0.22 15.59 ± 0.84 62.97 ± 0.14 68.67 ± 0.36 72.74 ± 0.27
iCaRL 2000 28.81 ± 0.14 23.37 ± 0.24 14.68 ± 0.35 56.17 ± 0.34 59.49 ± 0.91 61.00 ± 0.67
LUCIR 30.17 ± 0.37 20.15 ± 0.63 13.48 ± 0.60 60.25 ± 0.38 65.52 ± 0.16 66.56 ± 0.66

model for a new task, leveraging the universally applicable
knowledge from the old task model, such as shallow-level
enhances the efficiency of learning through distillation. To
leverage prior task knowledge, we employed previous mod-
els as pre-trained models, integrating their parameters into
the current model for subsequent task training. Simulta-
neously, throughout the entire training process, the feature
extractor of the classifier undergoes continuous modifica-
tions. If there is a noticeable drift in the feature space of
the classifier, the knowledge memorized by the model may
become outdated. Consequently, it is imperative to maintain
a relative consistency in the feature space of the classifier
during the training process. Further details can be found in
the appendix C.7 and C.8.

5. Results and Discussion
In the main text, we present the results of three experiments,
including the application of the ResNet32 architecture to the
CIFAR-100 dataset, and ResNet18 to both the CIFAR-100
and Tiny-ImageNet datasets. The remaining experimental
results are included in the appendix C.

5.1. Settings

Datasets. Following the work (Masana et al., 2022), we
evaluate different methods on benchmark datasets with set-
tings, including CIFAR-100 and Tiny-Imagenet datasets.
Under the condition of continual learning, we use three
task-splitting settings: 5 splits, 10 splits, and 20 splits.

Architecture. In order to verify our proposed method can
achieve knowledge protection for different tasks, we con-
ducted a large number of experiments to study the effect of
model size on performance. In this article, we use ResNet32
and ResNet18 architectures (He et al., 2016) for compari-
son(the sizes and parameter counts of the two models are
detailed in the appendix B.3).

Baselines. In order to demonstrate the effectiveness of
our approach, we conduct comparative tests against dif-
ferent continual learning methods. Specifically, baseline
methods include regularization-based frameworks, like
EWC (Kirkpatrick et al., 2017), LwF (Li & Hoiem, 2017),
RWalk (Chaudhry et al., 2018) and SPG (Konishi et al.,
2023), architecture-based framework, like GPM (Saha et al.,
2021), WSN (Kang et al., 2022a) and SPU (Zhang et al.,
2024a), which is inapplicable in scenarios where task is un-
known, and some classical rehearsal-base methods, such as
LUCIR (Hou et al., 2019) and iCaRL (Rebuffi et al., 2017).
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Implementation Details. We trained the model for 200
epoches and optimized it in conjunction with SGD, setting
the batch size of the dataset as 64. For rehearsal-based
methods, we set 2000 exemplars using the herding method
to select (Masana et al., 2022). In addition, we evaluate the
methods on task-aware and task-agnostic settings. More
experimental details could be found in the appendix B.

5.2. Different deep network architectures on CIFAR-100
dataset.

The performance of all methods on the same dataset, that is
CIFAR-100 dataset, is shown in the Table 1. Our approach
surpasses the baseline performance of all without exemplar
in the comparative experiments. Furthermore, when com-
pared to methods employing exemplar such as iCaRL and
LUCIR, our approach exhibits superior performance across
the majority of test results.

Table 2. Task-agnostic accuracy (%) of methods on using mini-
mum similarity matching on different layers.

Method Task-agnostic
5 splits 10 splits 20 splits

Ours 43.42 ± 0.58 30.62 ± 1.08 20.31 ± 0.77
Ours 2layers 26.84 ± 0.86 23.50 ± 0.30 16.05 ± 0.28
Ours 3layers 20.22 ± 1.08 19.71 ± 0.82 13.53 ± 0.50
Ours 4layers 15.91 ± 0.95 13.69 ± 0.58 10.42 ± 0.39

Table 3. Task-aware accuracy (%) of methods on using minimum
similarity matching on different layers.

Method Task-aware
5 splits 10 splits 20 splits

Ours 76.10 ± 0.33 81.12 ± 0.90 83.19 ± 0.35
Ours 2layers 61.92 ± 0.66 71.30 ± 0.83 75.42 ± 0.44
Ours 3layers 51.01 ± 0.92 66.49 ± 0.37 71.14 ± 0.85
Ours 4layers 42.09 ± 1.45 55.27 ± 0.41 67.48 ± 0.81

As the network capacity increases, our performance in task-
agnostic scenarios improves significantly. This is primarily
attributed to the fact that, under the conditions of smaller
network models, channels are more densely occupied by
various tasks. As the size of the network model increases,
the sparsity of the occupied channels increases.

5.3. Different datasets based on ResNet18 architecture.

The performance of all methods in the same deep network
architecture is shown in the latter two blocks in Table 1.
With the escalation of dataset complexity, channels within
the same structured deep network are more extensively lever-
aged. Consequently, judiciously preserving channels occu-
pied by different tasks becomes essential to achieve better
performance under task-agnostic conditions.

5.4. Experimental testing of forgetting rates for
different methods.

The experimental results for testing forgetting rates show
that we used the ResNet18 architecture to evaluate forgetting
rates on the CIFAR-100 dataset. The Figure 4 indicates
that we achieve lower forgetting rates, and our method also
demonstrates improved learning capabilities.
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Figure 4. Task-aware forgetting rates of different methods.

5.5. Ablation Studies

To validate the effectiveness of different modules in our
proposed method, LwI, we conducted ablation experiments
on the model. In this context, ”w/o task diversion” signifies
match the channels with high similarity for every layer of
the deep network, while ”Ours n layers” indicates apply-
ing minimization of similarity matching for the different
n layers. The term ”with cosine” indicates employing co-
sine similarity for channel similarity measurement. More
experimental details and results are available in appendix C.

Minimum similarity matching on different layers. The re-
sults show the effectiveness of minimizing similarity match-
ing in the final layer.

Table 4. Task-agnostic accuracy (%) of methods on the validation
of using task diversion module and similarity measurements.

Method Task-agnostic
5 splits 10 splits 20 splits

Ours 34.33 ± 0.51 26.15 ± 0.22 15.59 ± 0.84
Ours w/o task diversion 30.75 ± 0.43 21.29 ± 0.34 14.30 ± 0.26

Ours with cosine 34.17 ± 0.54 25.98 ± 0.25 15.48 ± 0.65

Effectiveness with task diversion module. Using mini-
mization of similarity matching in the final layer, facilitating
channel diversion for task segregation and consequently en-
suring protection across distinct tasks.

Different similarity measurement methods. When mea-
suring model similarity for the purpose of model fusion, the
use of Euclidean distance yields slightly higher performance
compared to cosine similarity.
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Table 5. Task-aware accuracy (%) of methods on the validation of
using task diversion module and similarity measurements.

Method Task-aware
5 splits 10 splits 20 splits

Ours 62.97 ± 0.14 68.67 ± 0.36 72.74 ± 0.27
Ours w/o task diversion 62.12 ± 0.26 66.94 ± 0.50 71.72 ± 0.60

Ours with cosine 62.69 ± 0.32 68.86 ± 0.24 72.30 ± 0.47

6. Conclusion
This paper proposes a framework for continual learning,
LwI, achieving pathway protection between different tasks
using model fusion approach. We validated our approach
using two network structures of different sizes, and further
validation can be performed on larger models. Our method
acknowledge some limitations, notably the lack of validation
of the proposed method using large models. Additionally,
the graph matching algorithm can be accelerated in future
work by employing sparse matrix techniques, we will in-
vestigate more effective and efficient matching processes in
future work. We hope this work opens the new direction for
future research, pathway protection for continual learning.

Impact Statement
We propose a novel pathway protection-based continual
learning approach. Our method is under the condition of
data-free, which has significant implications for data pri-
vacy protection. The introduction of a novel method in our
research represents a significant technological advancement.
In future work, this innovation can potentially improve the
performance of Large Language Model (LLM) under the
circumstance of streaming tasks.
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A. Theoretical Supports
A.1. Analysis

We analyze one layer of deep network channel, and first-order Taylor expansion is used for analysis (Kang et al., 2022b):

L (Gℓ (Z
′
ℓ) , y) ≈

L (Gℓ (Zℓ) , y) +

Cℓ∑
c=1

〈
∇Zℓ,c

L (Gℓ (Zℓ) , y) , Z
′
ℓ,c − Zℓ,c

〉
F
.

(6)

Based on the above , We find that the first-order term is a deviation due to the deviation of the channel c, so we need to use
some ways to reduce this deviation. Naturally, we think about whether we can make full use of the information of different
channels brought by different tasks, so that different tasks can occupy different channels to minimize inter-task interference.

A.2. Some methods related to graph matching

The classical methods mainly include the path-following strategy (Zaslavskiy et al., 2008), graduated assignment algo-
rithm (Gold & Rangarajan, 1996), spectral matching algorithm (Leordeanu & Hebert, 2005), random-walk algorithm (Cho
et al., 2010) and sequential Monte Carlo sampling (Leordeanu et al., 2012). The method of deep graph matching (Yu et al.,
2019) has also received more and more attention in recent years.

The specific implementation of graph matching is illustrated in the following diagram5. Assuming that the nodes in graph X
are labeled from 1 to 6, and the nodes in graph Y are labeled from A to F, the similarity matrix for pairwise nodes is shown
in the upper right corner. Meanwhile, nodes are interconnected, forming various edges, such as 1-2, 3-5 in graph X, and
A-B, C-E in graph Y, as indicated. The number of formed edges far exceeds the number of nodes, making node matching
a linear assignment problem, while graph matching poses a quadratic assignment problem. Aligning the matched graphs
allows the identification of the most similar parts.
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Figure 5. The illustration of graph matching. The two graphs to be matched, Graph X and Graph Y, are depicted on the left figure, each
annotated with corresponding nodes and partial connections. The diagrams on the right represent the similarity matrices between nodes
and between edges.

A.3. Adaptive algorithm

The specific calculation formula for Sinkhorn is as follows:

P = exp(M/τ),

Pij ←
Pij∑
j Pij

(the sum of each row is 1),

Pij ←
Pij∑
i Pij

(the sum of each column is 1).

(7)
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The second and third lines of the formula represent the process of enforcing bilateral constraints. The second line scales
each row to 1, while the third line scales each column to 1.

The delineation of the specific computational process is articulated in Algorithm 2. The diminished complexity results in
a notable reduction in computational requirements. Exploiting this attribute makes it particularly apt for mitigating the
heightened computational complexity that arises from sparsity or the expansive nature of the assignment matrix.

For the similarity matrices corresponding to two channels, denoted by R, in the shallow layers of the neural network, we use
the original R for the computation of the permutation matrix. Conversely, in the deep layers of the deep network, we employ
the inverse of R, which is −R, for the computation of the permutation matrix.

Through these two phases, we enable the extraction of richer information in the shallow layers upon task arrival, while
facilitating the divergence of different tasks in the deeper layers. This mechanism guarantees the preservation of task
distinctiveness by permitting them to traverse separate pathways.

In this paper, we employ the Sinkhorn algorithm; however, when τ ≤ τmin, the Sinkhorn algorithm and the Hungarian
algorithm (Kuhn, 1955) exhibit consistent trends.

The Earth Mover’s Distance (EMD) algorithm (Rubner et al., 2000) involves solving an optimization problem known as
the transportation problem. It is the manifestation of the Sinkhorn algorithm in a low-dimensional space, and the specific
algorithmic formula is as follows: Given two probability distributions P and Q, represented by histograms pi and qj for
i = 1, . . . ,m and j = 1, . . . , n respectively, the EMD can be calculated as follows:

EMD(P,Q) = min
γ∈Γ(p,q)

m∑
i=1

n∑
j=1

γij · d(ci, dj),

where Γ(p, q) is the set of all possible transportation plans (joint distributions) between P and Q. γij represents the amount
of mass to be transported from pi to qj . d(ci, dj) is the ground distance between the bin i in the source histogram and the
bin j in the target histogram. The EMD can be calculated using linear programming techniques:

EMD(P,Q) = min
γ

m∑
i=1

n∑
j=1

γij · d(ci, dj),

s.t.
n∑

j=1

γij = pi ∀i ∈ [1,m],

m∑
i=1

γij = qj ∀j ∈ [1, n],γij ≥ 0 ∀i ∈ [1,m], j ∈ [1, n].

A.4. The overall framework of LwI

The overarching framework of our algorithm operates in Algorithm 3: as tasks stream into the deep network, the new
model undergoes training with the input data. Upon completion of training, a fusion of models occurs through maximizing
similarity matching in the shallow layers and minimizing similarity matching in the deeper layers. We have observed that
our method excels in merging old and new models under data-free conditions, achieving superior task preservation across
different tasks. Additionally, our approach, employing misaligned fusion, provides distinct channels for different tasks,
better preserving the overall integrity of the deep network.

A.5. Analysis of time complexity

In the context of our hierarchical matching, the analysis of its time complexity is presented below. Assuming a deep network
with NL layers, each layer containing C channels, the conventional graph matching incurs a time complexity of O(N4),
where N represents the total number of nodes in the graph. However, by adopting a hierarchical matching strategy for deep
networks, we can compute the time complexity for each layer individually and subsequently sum them up. As a result, our
final time complexity is O( 1

N3
L
N4) determined by this summation:

O(

NL∑
1

C4) = O(

NL∑
1

(
N

NL
)4) = O(

1

N3
L

N4). (8)
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Algorithm 2 Adaptive algorithm
Input: Similarity Matrix R, Total number of iterations E, Parameter τ for control the difference between Hungarian
algorithm and Sinkhorn algorithm ;
for each round e = 1, ..., E do

if Pi not converged then
if τ <= τmin then

adaptive algorithm← Hungarian algorithm;
end
else

adaptive algorithm← Sinkhorn algorithm;
end
if layer is deep then

R = −R
end
else

R = R
end
P = adaptive algorithm(R, τ);

end
end
Output: the learned permutation metrics Pi.

B. Implementation Details
B.1. Evaluation

In this paper, we employ two measures, task-agnostic and task-aware, to simultaneously evaluate the performance of these
methods in scenarios of known tasks (such as task incremental learning) and unknown tasks (such as class incremental
learning). Task-agnostic refers to appending all of the classifier’s head to a given data and then taking the maximum value,
where the label corresponding to the maximum value is assigned to the category. Task-aware, on the other hand, involves
already knowing the task associated with a given data and directly obtaining the maximum value from the corresponding
classification head, where the label corresponding to the maximum value is assigned to the data’s category. Due to the lack
of uniformity in the output of the classification head in our framework, the final performance of Task-agnostic is generally
lower than that of Task-aware. Based on the findings in Table 1 and the results below, it is evident that our approach has
outperformed even the exemplar-based methods iCaRL and LUCIR in the majority of task-agnostic scenarios.

Assuming that learning has been conducted for T tasks, the model possesses T classification heads corresponding to the
tasks indicated as 1 to T , with each classification head containing the respective classes denoted as n1, ..., nT . Consequently,
for the two measurement methodologies mentioned above, we evaluate performance using the following formulas:

Accuracy =

∑N
k=1 yk
N

, yk =

{
1 Predictk == labelk.
0 else.

(9)

The formula for the task-agnostic method can be expressed as follows: the classification involves selecting the prediction
with the highest value from a total of n1 + . . . + nT classes to serve as the final output:

Predictk = argmax([o0, ..., o(n1+...+nT−1)]). (10)

The formula for the task-aware method is as follows: given that it is the f-th task, the classification involves selecting the
prediction with the highest value from a total of nf classes to serve as the final output:

Predictk = argmax([o0, ..., o(nf−1)]). (11)

where oi represents i-th output of the deep network.

In the coarser granularity layers of the neural network, we match the channels with high similarity to enhance mutual
common features. Conversely, in the finer granularity layers, we employ minimization of similarity matching to enable
misalignment fusion of distinct task features, thereby achieving a protective effect.
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Algorithm 3 LwI
Input: Sequential tasks T1, ..., TN , Sequential data {X1, Y1}, {X2, Y2}, ..., {XN , YN}, New Model for training
model new, Old model for fusion model old.
Randomly initialize model old and model new
for task t = T1, ..., TN do

/* The training process of model new */
for epoch i = 1, ..., n do

Initialize Total loss = 0;
if t == 1 then

Update model new wi
new ← w̃i

new;
model training: minimize loss function defined as Ltotal = Lce;

end
else

initialize model new Wnew ←Wfusion;
Update model new wi

new ← w̃i
new;

model training: minimize loss function defined as Ltotal = Lce + λ ∗ Lkd;
end

end
/* The training process of model old */
if t == 1 then

initialize model oldWold ←Wnew;
end
else

get model old according to Algorithm 1;
end

end

B.2. Experiments details

We now validate our method on several benchmark datasets against relevant continual learning baselines. We followed
similar experimental setups and framework described in (Masana et al., 2022). We utilized the SGD optimizer for training,
and batch sizes for the training, validation and testing sets were consistently set to 64 in all experiments. During network
training, the learning rate was initialized at 0.1. Furthermore, the learning rate was decreased by a factor of 0.1 in the
80th and 120th epochs, and the total number of training epochs was set to 200. The model architecture and training
hyperparameters are the same for different methods. When employing ResNet32, the momentum for the SGD optimizer was
set to 0.9, while, for ResNet18, the momentum for SGD optimizer was set to 0.0.

To gauge the distributional disparity between the new and old models, we introduce divergence as a measurement, and
derive the objective of knowledge distillation through the following theoretical deductions:

DKL(p∥q) = Ex∼p(x)

(
log

p(x)

q(x)

)
=

n∑
p (xi) · [log p (xi)− log q (xi) ]

=

n∑
[−p (xi) log q (xi)− (−p (xi) · log p (xi))] .

(12)

In order to measure the distribution difference between the new and old models, we introduce Kullback-Leibler(KL)
Divergence to measure, and get the optimal object of knowledge distillation through the theoretical equation. The last term in
Eq.(12)’s final line represents cross-entropy, while the subsequent term signifies entropy. Consequently, when dealing with
the same dataset, entropy remains constant, and the divergence between two distributions is determined by cross-entropy.
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B.3. Architecture details

ResNet32: The model utilized three convolution blocks, each block containing five convolution layers. The number of
output channels ranged from 16 to 32 and culminated in 64. In addition, a fully connected (FC) layer consisting of 64 units
was employed, and the output was divided into multiple heads based on task requirements.

ResNet18: The model utilized four convolution blocks, with each block containing two convolution layers. The number of
output channels ranged from 64 to 128, 256 and increased to 512. A single fully connected (FC) layer with 512 units was
employed, and the output was divided into multiple heads based on the task requirements.

Table 6. Comparison between different architecture of models.
Architecture Total parameters Model size

ResNet32 466,896 1.84MB
ResNet18 11,220,132 42.87MB

B.4. Datasets splits details

CIFAR-100 dataset contains 100 classes, each of which contains 600 32*32 color pictures, 500 are for training, and 100 are
for testing. The Tiny-Imagenet dataset contains 200 classes, each of which contains 500 64*64 color images, 400 images
among which were used for training, 50 used for validation, and 50 for testing.

CIFAR-100: If set to 5 splits, it corresponds to 20 classes per head. If set to 10 splits, it corresponds to 10 classes per
category. If set to 20 splits, it corresponds to 5 classes per category.

Tiny-Imagenet: If set to 5 splits, it corresponds to 40 classes per head. If set to 10 splits, it corresponds to 20 classes per
category. If set to 20 splits, it corresponds to 10 classes per category.

B.5. Baselines

We compared our method with three regularization-based methods, one architecture-based method, and two exemplar-based
methods. Regularization-based methods involve adding regularization terms to the loss function during training to protect
knowledge from previous tasks. The architecture-based method, specifically the WSN method used in this paper, identifies
the optimal subnetwork using masking to achieve continual learning, making it effective under task-aware conditions.
Exemplar-based methods involve saving some data from previous tasks, mixing it with the current task’s dataset for training,
which contributes to uniformity across different task heads and is beneficial for continuous learning in task-agnostic
scenarios.

EWC (Kirkpatrick et al., 2017): This is a regularization method aimed at protecting previously learned knowledge to
prevent forgetting of prior tasks during new task training. It uses the Bayesian formula to constrain the distribution of model
parameters, making the crucial parameters from prior tasks less susceptible to modification during new task learning. The
formula is shown below:

L(θ) = Lnew(θ) + λ
∑
i

1

2
Ωi(θi − θ∗i )

2,

where Ωi respresents the fisher information matrix about parameters.

SI: The Path Integral method (SI) (Zenke et al., 2017) accumulates changes in each parameter along the entire learning
trajectory in an online manner. The authors of this paper posit that batch updates to weights during parameter updates may
lead to an overestimation of importance, while commencing from a pre-trained model may result in its underestimation.

MAS: Memory aware synapses(MAS) (Aljundi et al., 2018) computes the regularization term online by accumulating the
sensitivity (gradient magnitude) of the learning function.

RWalk (Chaudhry et al., 2018): This method integrates the approximation of the Fisher information matrix and online path
integral into a single algorithm to compute the importance of each parameter. As the outcomes of this method typically
surpass those of SI and MAS methods, the comparative experiments in the main body of this paper employ this approach for
evaluation.

LwF (Li & Hoiem, 2017): The core concept is to retain the knowledge from previous tasks when learning a new task,
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ensuring that the model does not entirely forget the content it has already learned. By employing knowledge distillation, the
outputs are aligned to achieve the effect of knowledge preservation.

WSN (Kang et al., 2022a): The Lottery Ticket Hypothesis theory is employed, which posits that there exists an optimal path
within a neural network for a given task, and this is utilized to apply channel masking. Therefore, this method is typically
utilized for tasks with known training and testing processes.

iCaRL (Rebuffi et al., 2017): The model incorporates exemplars and employs knowledge distillation to preserve knowledge.
The formula is shown below:

ℓ(Θ) = −
∑

(xi,yi)∈D

[
t∑

y=s

δy=yi
log gy (xi) + δy ̸=yi

log(1− gy (xi))

+

s−1∑
y=1

qyi log gy (xi) + (1− qyi ) log(1− gy (xi))] .

LUCIR (Hou et al., 2019): The use of exemplars is accompanied by the application of several strategies to mitigate the
issue of the new class weight vector being larger than the old class, leading to catastrophic forgetting and the model’s
tendency to classify old class data as new class. In this study, we employed Cosine Normalization, Less-Forget Constraint,
and Inter-Class Separation as several methods to alleviate this issue.

Some work has explored the application of pruning methods in continual learning. However, such methods tend to disrupt the
overall deep network architecture. Non-structured pruning, in particular, can sometimes lead to more severe consequences.
Based on the analysis and experiments mentioned above, we opted to employ a method called ”maximizing similarity
matching” in the coarser granularity section. This method facilitates the fusion of different deep networks as different
tasks occupy denser channels that contain more common features. In the finer granularity section, we employ a method
called ”minimizing similarity matching” to perform a misalignment fusion of different deep network channels, thereby
safeguarding the distinct characteristics of different tasks.

C. More experiments
C.1. The performance of various methods when the number of tasks increases by an order of magnitude.

We increased the number of tasks by an order of magnitude for testing, dividing the Tiny-ImageNet dataset into 100 tasks,
each with two categories. The comparison methods primarily focus on the latest approaches to parameter protection and the
experimental results are shown in Figure 6. From the Figure, we can observe that our method achieves the best performance
when compared to other approaches, The analysis suggests that the use of isolation-based methods reduces the number of
learnable parameters in the network, leading to decreased learning ability for subsequent tasks and demonstrates that our
pathway protection approach can preserve knowledge of old tasks while generalizing to new task knowledge.
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Figure 6. Task-aware accuracy of methods when the number of tasks is 100.
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C.2. Discussion about Table 1

Through the comparison of results and analysis of the four experimental sets, we summarize the findings and elucidate the
underlying reasons.

Firstly, regarding the network model capacity, we posit that, under identical scenarios, the gradual increase in model capacity
leads to a sparser channel occupancy. This sparsity constitutes a key aspect of our proposed methodology. Thus, the
conclusions drawn from the experiments, particularly the higher performance gains achieved by ResNet18 over ResNet32
under task-agnostic conditions, validate the correctness of our proposed task diversification concept, as depicted in Figure 2.

Secondly, with respect to the dataset, our observations indicate that under equivalent deep network architectures, the
superiority of our method becomes more pronounced with increasing dataset complexity. This emphasizes the efficacy of
our approach in handling intricate datasets. EWC and RWalk methods are designed to address issues arising from significant
data variations, making it challenging for these regularizations to effectively constrain parameter shifts. LwF, primarily
employed for training different tasks, experiences the blending of task knowledge, as illustrated in Figure 2. This blending
is likely to result in outcomes inferior to our method. WSN requires a mask when dealing with various tasks, limiting its
applicability to task-aware testing. Additionally, as the number of tasks increases, the reduction in learnable parameters
diminishes its effectiveness. iCaRL and LUCIR methods benefit from partial datasets of all previous tasks during the training
of subsequent tasks, offering advantages for task-agnostic testing.

Thirdly, in the situation of task agnostic, our deep network exhibits lower performance compared to exemplar-based continual
learning (CL) methods on the CIFAR-100 dataset. We posit that, while our deep network learns each task individually, the
persistent setup of learning classification heads results in inconsistent output sizes for these task-specific heads, thereby
posing challenges in scenarios of task uncertainty. The utilization of exemplars involves incorporating partial data from
previous tasks into the current dataset during training, mitigating the inconsistency in classification heads. However, with
the complexity of datasets such as Tiny-Imagenet, the performance improvement derived from exemplar usage is surpassed
by the benefits brought about by our approach of task-specific streams.

C.3. Experiments analysis in Table 1

According to the experiment on dataset CIFAR-100, architecture ResNet32, our approach surpasses the baseline performance
of all non-replay pools in the comparative experiments. Compared to the best-performing regularization method LwF, our
approach demonstrates a maximum improvement of 5.88% under task-agnostic conditions. In scenarios of task awareness,
the performance is further enhanced, showing an improvement of 6.28%. In comparison to the WSN method, which
primarily designed for task incremental learning, hence not applicable to scenarios of task agnosticism. Under the task-aware
setting, our method achieves an approximately 1% improvement. When contrasted with exemplar-based approaches, our
method achieves its peak performance under task-aware 5/10 splits conditions.

With the increase in model size of deep network, the improvement of our method becomes more pronounced under task-
agnostic conditions. As shown in the second block, that is the experiment on dataset CIFAR-100, architecture ResNet18,
our method outperforms other comparative approaches under task-aware conditions. In all other conditions, our method
surpasses the performance of the methods employed in the comparative experiments. When compared to the best-performing
regularization method, LwF, our approach exhibits a maximum improvement of 5.04% under task-aware conditions and an
even more substantial improvement of 7.29% under task-agnostic conditions. In contrast to the WSN method, our approach
demonstrates a performance improvement of around 2.45% in task-aware scenarios. In comparison with exemplar-based
approaches, our method attains its peak performance under task-aware 10/20 splits conditions.

C.4. Experiments on Tiny-Imagenet dataset using ResNet32.

According to Table 7 and 8, our method surpasses almost all comparative results, except for iCaRL under task-agnostic
5-splits conditions. In comparison to the LwF method, our approach exhibits a maximum improvement of up to 3.1%
under task-agnostic conditions and 7.18% under task-aware conditions. When contrasted with the LUCIR method, our
performance surpasses by a maximum of 3.15% under task-agnostic conditions and 10.25% under task-aware conditions.

Under conditions of task-agnostic, analysis of the results in Table 7 reveals that our method, with the exception of a
slight underperformance compared to the iCaRL method in the 5-splits scenario, consistently outperforms the comparative
experiments in all other cases. In comparison to the LwF method, which exhibits the best performance among regularization
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methods, our approach demonstrates an improvement of up to 3.1%. Furthermore, when contrasted with the EWC method,
our method achieves a maximum improvement of 9.61%. Notably, when compared to exemplar-based methods on the
Tiny-Imagenet dataset, our approach even surpasses them, highlighting the advantages of our task-shifting methodology.
This is evident in the ability of our method to achieve higher activation levels for each channel corresponding to a specific
task, even without the unification of classification heads. Thus, task specialization is achieved, with the activation intensity
for each channel surpassing that of all other tasks, emphasizing the effectiveness of our task-shifting approach.

Table 7. Task-agnostic accuracy (%) of methods on the Tiny-Imagenet dataset based on the architecture of ResNet32.

Method Exemplar Task-agnostic
5 splits 10 splits 20 splits

EWC

no

7.76 ± 0.75 3.80 ± 0.32 2.60 ± 0.19
RWalk 11.10 ± 0.35 4.71 ± 0.21 4.54 ± 0.63
LwF 20.12 ± 0.63 13.72 ± 0.52 9.11 ± 0.40
Ours 22.21 ± 0.39 16.75 ± 0.21 12.21 ± 0.29

iCaRL 2000 22.45 ± 0.14 16.48 ± 0.84 9.94± 0.24
LUCIR 20.05 ± 0.16 13.60 ± 0.42 10.38 ± 0.40

Under conditions of task-aware, examination of the results in Table 8 reveals that our method consistently outperforms the
comparative experiments.

In comparison to the LwF method, which demonstrates the best performance among regularization methods, our approach
exhibits a maximum improvement of up to 7.18%. Furthermore, when contrasted with the RWalk method, our approach
surpasses it even more significantly, reaching up to 25.71%. In comparison to the architecture-based method WSN, the
advantages of our method under conditions of task knowledge are not particularly pronounced, with the highest improvement
being 2.36%. However, when compared to exemplar-based methods, the superiority of our approach becomes notably
evident.

Table 8. Task-aware accuracy (%) of methods on the Tiny-Imagenet dataset based on the architecture of ResNet32.

Method Exemplar Task-aware
5 splits 10 splits 20 splits

EWC

no

31.97 ± 1.18 36.71 ± 1.23 42.91 ± 0.31
RWalk 43.75 ± 2.08 43.22 ± 2.11 37.66 ± 1.74
LwF 47.78 ± 0.98 52.39 ± 0.60 56.19 ± 0.54
WSN 50.06 ± 0.37 56.29 ± 0.75 63.24 ± 0.87
Ours 52.42 ± 0.59 57.84 ± 1.15 63.37 ± 0.44

iCaRL 2000 44.87 ± 0.61 49.42 ± 1.29 54.43 ± 0.73
LUCIR 44.53 ± 0.68 46.86 ± 1.29 53.12 ± 0.73

Based on the above experimental results, we observe that our method not only accomplishes task channel specialization
under conditions of task agnostic without the need for deliberate unification of classification heads but also, under conditions
of task awareness, exhibits a comparative advantage. In contrast to other methods, our approach shows minimal catastrophic
forgetting of previously acquired knowledge and, in certain instances, even demonstrates a facilitating effect. This observed
promotion of cooperation among tasks is a notable outcome of our method.

C.5. Experiments on CIFAR-100 dataset using AlexNet.

According to Table 9 and 10, our method surpasses all comparative results.

Under conditions of task-agnostic, analysis of the results in Table 9 reveals that our method consistently outperforms the
comparative experiments in all cases. In comparison to the LwF method, which exhibits the best performance among
regularization methods, our approach demonstrates an improvement of up to 2.0%. Furthermore, when contrasted with the
EWC method, our method achieves a maximum improvement of 16.1%. Thus, this is evident that task specialization is
achieved, with the activation intensity for each channel surpassing that of all other tasks, emphasizing the effectiveness of
our task-shifting approach.

Under conditions of task-aware, examination of the results in Table 10 reveals that our method consistently outperforms the
comparative experiments. In comparison to the LwF method, which demonstrates the best performance among regularization
methods, our approach exhibits a maximum improvement of up to 1.8%. Furthermore, when contrasted with the SI method,
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Table 9. Task-agnostic accuracy (%) of methods on the CIFAR-100 dataset based on the architecture of AlexNet.

Method Exemplar Task-agnostic
5 splits 10 splits 20 splits

EWC

no

13.8 ± 1.4 6.9 ± 2.0 4.5 ± 0.8
SI 14.2 ± 1.4 6.8 ± 2.0 3.8± 0.3

RWalk 14.0 ± 1.7 8.4 ± 1.4 3.7 ± 1.4
MAS 14.3 ± 1.1 8.2 ± 0.9 5.3 ± 0.9
LwF 27.9 ± 1.7 19.5 ± 1.6 10.7 ± 1.1
Ours 29.9 ± 0.6 20.4 ± 0.9 11.2 ± 1.1

our approach surpasses it even more significantly, reaching up to 27.8%. In comparison to EWC method, the advantages of
our method, with the highest improvement being 26.6%.

Table 10. Task-aware accuracy (%) of methods on the CIFAR-100 dataset based on the architecture of AlexNet.

Method Exemplar Task-aware
5 splits 10 splits 20 splits

EWC

no

34.6 ± 2.0 38.9 ± 2.7 45.5 ± 3.2
SI 35.9 ± 1.2 37.7 ± 1.2 43.7 ± 3.2

RWalk 37.2 ± 1.7 38.5 ± 1.1 43.9 ± 2.9
MAS 37.1 ± 1.3 42.1 ± 1.9 50.5 ± 4.0
LwF 58.8 ± 1.1 64.8 ± 1.8 68.6 ± 0.8
Ours 60.6 ± 0.5 65.5 ± 0.8 68.8 ± 1.0

Based on the above experimental results, we observe that our method not only accomplishes task channel specialization
under conditions of task agnostic without the need for deliberate unification of classification heads but also, under conditions
of task awareness, exhibits a comparative advantage. In contrast to other methods, our approach shows minimal catastrophic
forgetting of previously acquired knowledge and, in certain instances, even demonstrates a facilitating effect. This observed
promotion of cooperation among tasks is a notable outcome of our method.

C.6. Experiments on different similarity measurement formulas.

In this study, the Euclidean distance and cosine similarity were employed to measure the distance between two model
channels.

The Euclidean distance primarily quantifies the distance between two vectors in space, with smaller absolute values
indicating closer proximity. It is a commonly used distance measurement formula. On the other hand,

Cosine similarity gauges the angle between two vectors within the same sphere, mainly reflecting directional differences.
Larger numerical values denote smaller angle discrepancies, indicating closer proximity in space. It is a widely used formula
for measuring similarity.

This section compared and validated the use of Euclidean distance and cosine similarity to measure channel proximity and
revealed that, in most cases, using distance measurement is preferable to using cosine similarity.

Euclidean Distance = ∥a− b∥2 (13)

Cosine Similarity =
a · b
∥a∥ · ∥b∥

(14)

where a and b represent two vectors.

According to Table 11 and 12, it is observed that under two different testing conditions, when measuring model similarity
for the purpose of model fusion, the use of Euclidean distance consistently yields slightly higher performance compared to
cosine similarity. This trend holds true across various scenarios, with the notable exception of the task-agnostic 10-splits
condition, where results obtained using Euclidean distance are recorded at 30.62%, while those using cosine similarity are
slightly higher at 31.16%. Consequently, based on the comparative experimental outcomes presented in this paper, the choice
is made to employ Euclidean distance for model fusion, facilitating a comprehensive evaluation of testing effectiveness.
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Table 11. Task-agnostic accuracy (%) of methods between different similarity measurement formulas.

Dataset Architecture Method Task-agnostic
5 splits 10 splits 20 splits

CIFAR-100 ResNet32 Ours 43.42 ± 0.58 30.62 ± 1.08 20.31 ± 0.77
Ours with cosine 43.09 ± 0.95 31.16 ± 0.78 20.03 ± 0.93

CIFAR-100 ResNet18 Ours 51.95 ± 0.56 36.36 ± 1.06 22.99 ± 0.39
Ours with cosine 51.78 ± 0.92 37.06 ± 1.12 22.77 ± 0.57

Tiny-Imagenet ResNet32 Ours 22.21 ± 0.39 16.75 ± 0.21 12.21 ± 0.29
Ours with cosine 22.26 ± 0.60 16.96 ± 0.16 11.94 ± 0.41

Table 12. Task-aware accuracy (%) of methods between different similarity measurement formulas.

Dataset Architecture Method Task-aware
5 splits 10 splits 20 splits

CIFAR-100 ResNet32 Ours 76.10 ± 0.33 81.12 ± 0.90 83.19 ± 0.35
Ours with cosine 75.63 ± 0.46 79.35 ± 0.86 83.05 ± 0.36

CIFAR-100 ResNet18 Ours 81.10 ± 0.80 84.90 ± 0.36 86.49 ± 0.55
Ours with cosine 80.72 ± 1.09 84.01 ± 1.02 85.91 ± 0.85

Tiny-Imagenet ResNet32 Ours 52.42 ± 0.59 57.84 ± 1.15 63.37 ± 0.44
Ours with cosine 52.68 ± 0.53 58.37 ± 0.90 62.59 ± 0.81

C.7. Experiments on without using knowledge distillation module.

According to Table 13, in order to verify the effectiveness of our method, we also carried out ablation experiments on the
knowledge distillation module, and the results showed that in this case, the knowledge generation would be shifted to a large
extent, thus reducing the effect.

Table 13. Task-aware accuracy (%) of our methods without using knowledge distillation module.

Dataset Architecture Method Task-aware
5 splits 10 splits 20 splits

CIFAR-100 ResNet18 Ours 81.10 ± 0.80 84.90 ± 0.36 86.49 ± 0.55
Ours w/o KD 75.91 ± 0.85 73.91 ± 0.51 71.98 ± 1.24

C.8. An example of whether to use knowledge distillation module.

According to Table 14, Table 15 and Table 16, applying knowledge distillation to each layer method results in minimal
changes in the model’s parameter space. Conversely, without using knowledge distillation method leads to significant
differences. The following three tables depict the accuracy(%) obtained from utilizing the ResNet32 model under the
same conditions for five tasks on the CIFAR-100 dataset. It can be observed that our method sometimes achieves better
performance after training on new tasks than after the initial training.

Table 14. Task-aware accuracy (%) of our method using knowledge distillation module for every layer.
Task-ID Task1 Task2 Task3 Task4 Task5 Overall
Task1 78.2 0 0 0 0 78.2
Task2 78.0 68.1 0 0 0 73.1
Task3 77.6 63.1 68.7 0 0 69.8
Task4 74.4 59.8 62.0 64.7 0 65.2
Task5 74.2 60.9 53.5 65.0 63.0 63.3
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Table 15. Task-aware accuracy (%) of our method.
Task-ID Task1 Task2 Task3 Task4 Task5 Overall
Task1 78.2 0 0 0 0 78.2
Task2 75.3 74.2 0 0 0 74.8
Task3 74.8 76.6 75.2 0 0 75.5
Task4 75.3 76.3 75.7 76.0 0 75.8
Task5 74.2 75.3 75.5 77.2 76.1 75.7

Table 16. Task-aware accuracy (%) of our method without using knowledge distillation module.
Task-ID Task1 Task2 Task3 Task4 Task5 Overall
Task1 78.2 0 0 0 0 78.2
Task2 70.1 77.7 0 0 0 73.9
Task3 61.0 73.0 72.7 0 0 68.9
Task4 54.8 69.0 65.8 84.6 0 68.5
Task5 52.3 59.5 58.9 78.4 81.7 66.2

C.9. Experiments on the validation of effectiveness with task diversion module.

In order to validate the effectiveness of our proposed task diversion method, we compared it with an approach that does not
perform deep-level minimization of similarity. This approach involves using maximization of similarity at all layers for
model fusion. Our findings indicate that our method yields better results as the complexity of the task increases.

The entry labeled ”Ours w/o task diversion” in the Table 17 and 18 signifies that each layer of the deep network model
employs maximization of similarity matching, signifying the absence of task-specific parameter diversion during model
fusion. As evidenced by the results, our approach incorporates the minimization of similarity matching in the final layer,
facilitating channel diversion for task segregation and consequently ensuring protection across distinct tasks. Consequently,
under equivalent conditions, our method consistently outperforms approaches solely relying on matching the channels with
high similarity.

Table 17. Task-agnostic accuracy (%) of methods on the validation of effectiveness with task diversion module.

Dataset Architecture Method Task-agnostic
5 splits 10 splits 20 splits

CIFAR-100 ResNet32 Ours 43.42 ± 0.58 30.62 ± 1.08 20.31 ± 0.77
Ours w/o task diversion 41.73 ± 0.41 29.94 ± 0.89 18.02 ± 0.97

CIFAR-100 ResNet18 Ours 51.95 ± 0.56 36.36 ± 1.06 22.99 ± 0.39
Ours w/o task diversion 51.13 ± 0.43 35.70 ± 0.88 21.49 ± 0.54

Tiny-Imagenet ResNet32 Ours 22.21 ± 0.39 16.75 ± 0.21 12.21 ± 0.29
Ours w/o task diversion 20.80 ± 0.46 15.31 ± 0.75 10.68 ± 0.53

Table 18. Task-aware accuracy (%) of methods on the validation of effectiveness with task diversion module.

Dataset Architecture Method Task-aware
5 splits 10 splits 20 splits

CIFAR-100 ResNet32 Ours 76.10 ± 0.33 81.12 ± 0.90 83.19 ± 0.35
Ours w/o task diversion 75.54 ± 1.37 79.38 ± 1.02 81.43 ± 1.51

CIFAR-100 ResNet18 Ours 81.10 ± 0.80 84.90 ± 0.36 86.49 ± 0.55
Ours w/o task diversion 80.17 ± 0.35 83.60 ± 0.86 84.15 ± 0.96

Tiny-Imagenet ResNet32 Ours 52.42 ± 0.59 57.84 ± 1.15 63.37 ± 0.44
Ours w/o task diversion 50.26 ± 0.66 55.07 ± 1.18 60.98 ± 1.15
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C.10. Experiments on using minimum similarity matching on different layers.

In order to determine the most effective layers for performance improvement through minimizing similarity matching, we
conducted extensive comparative experiments with the ResNet32 model. Specifically, we tested the impact of the final
layer, last two layers, last three layers, and last four layers. Remarkably, we observe very similar results across these
configurations.

According to Table 19 and 20, we observe that when minimizing similarity matching for the final two, three, and four layers,
the ultimate results are comparable to those obtained by minimizing similarity matching for a single layer. However, in the
majority of cases, the performance is lower than when minimizing similarity matching for just one layer. Therefore, based
on the results of our previous comparative experiments, we opted to minimize similarity matching for the final layer.

Table 19. Task-agnostic accuracy (%) of methods on using minimum similarity matching on different layers.

Dataset Architecture Method Task-agnostic
5 splits 10 splits 20 splits

Tiny-Imagenet ResNet32

Ours 22.21 ± 0.39 16.75 ± 0.21 12.21 ± 0.29
Ours 2layers 22.05 ± 0.60 16.43 ± 0.38 11.40 ± 0.21
Ours 3layers 21.65 ± 0.87 16.65 ± 0.37 11.44 ± 0.31
Ours 4layers 21.61 ± 0.79 16.66 ± 0.17 11.54 ± 0.27

Table 20. Task-aware accuracy (%) of methods on using minimum similarity matching on different layers.

Dataset Architecture Method Task-aware
5 splits 10 splits 20 splits

Tiny-Imagenet ResNet32

Ours 52.42 ± 0.59 57.84 ± 1.15 63.37 ± 0.44
Ours 2layers 52.41 ± 0.58 56.10 ± 0.59 61.01 ± 0.58
Ours 3layers 51.80 ± 0.81 56.60 ± 0.31 60.85 ± 1.07
Ours 4layers 52.20 ± 0.53 56.84 ± 0.22 61.33 ± 0.67

According to Table 19 and 20, we observe that when minimizing similarity matching for the final two, three, and four layers,
the ultimate results are comparable to those obtained by minimizing similarity matching for a single layer. However, in the
majority of cases, the performance is lower than when minimizing similarity matching for just one layer. Therefore, based
on the results of our previous comparative experiments, we opted to minimize similarity matching for the final layer.

C.11. Devices

In the experiments, we conduct all methods on a local Linux server that has two physical CPU chips (Intel(R) Xeon(R) CPU
E5-2640 v4 @ 2.40GHz) and 32 logical kernels. All methods are implemented using Pytorch framework and all models are
trained on GeForce RTX 2080 Ti GPUs.
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