
Published as a conference paper at ICLR 2023

CONDITIONAL POSITIONAL ENCODINGS FOR VISION
TRANSFORMERS

Xiangxiang Chu1, Zhi Tian1, Bo Zhang1, Xinlong Wang2, Chunhua Shen3∗
1 Meituan Inc. 2 Beijing Academy of AI 3 Zhejiang University, China
{chuxiangxiang, tianzhi02, zhangbo97}@meituan.com,
xinlong.wang96@gmail.com, chunhua@me.com

ABSTRACT

We propose a conditional positional encoding (CPE) scheme for vision Trans-
formers (Dosovitskiy et al., 2021; Touvron et al., 2020). Unlike previous fixed
or learnable positional encodings that are predefined and independent of input to-
kens, CPE is dynamically generated and conditioned on the local neighborhood of
the input tokens. As a result, CPE can easily generalize to the input sequences that
are longer than what the model has ever seen during the training. Besides, CPE can
keep the desired translation equivalence in vision tasks, resulting in improved per-
formance. We implement CPE with a simple Position Encoding Generator (PEG)
to get seamlessly incorporated into the current Transformer framework. Built on
PEG, we present Conditional Position encoding Vision Transformer (CPVT). We
demonstrate that CPVT has visually similar attention maps compared to those
with learned positional encodings and delivers outperforming results. Our Code
is available at: https://git.io/CPVT.

1 INTRODUCTION

Recently, Transformers (Vaswani et al., 2017) have been viewed as a strong alternative to Convolu-
tional Neural Networks (CNNs) in visual recognition tasks such as classification (Dosovitskiy et al.,
2021) and detection (Carion et al., 2020; Zhu et al., 2021). Unlike the convolution operation in
CNNs, which has a limited receptive field, the self-attention mechanism in the Transformers can
capture the long-distance information and dynamically adapt the receptive field according to the
image content. Consequently, Transformers are considered more flexible and powerful than CNNs,
being promising to achieve more progress in visual recognition.

However, the self-attention operation in Transformers is permutation-invariant, which discards the
order of the tokens in an input sequence. To mitigate this issue, previous works (Vaswani et al.,
2017; Dosovitskiy et al., 2021) add the absolute positional encodings to each input token (see Fig-
ure 1a), which enables order-awareness. The positional encoding can either be learnable or fixed
with sinusoidal functions of different frequencies. Despite being effective, these positional encod-
ings seriously harm the flexibility of the Transformers, hampering their broader applications. Taking
the learnable version as an example, the encodings are often a vector of equal length to the input
sequence, which are jointly updated with the network weights during training. As a result, the length
and the value of the positional encodings are fixed once trained. During testing, it causes difficulties
of handling the sequences longer than the ones in the training data.

The inability to adapt to longer input sequences during testing greatly limits the range of general-
ization. For instance, in vision tasks like object detection, we expect the model can be applied to the
images of any size during inference, which might be much larger than the training images. A possi-
ble remedy is to use bicubic interpolation to upsample the positional encodings to the target length,
but it degrades the performance without fine-tuning as later shown in our experiments. For vision
in general, we expect that the models be translation-equivariant. For example, the output feature
maps of CNNs shift accordingly as the target objects are moved in the input images. However, the
absolute positional encoding scheme might break the translation equivalence because it adds unique

∗Corresponding author.

1

https://github.com/Meituan-AutoML/CPVT

Published as a conference paper at ICLR 2023

Embeddingcls

PE

L × Encoders

MLP

Encoder

(L-1) × Encoders

Embeddingcls

Encoder

PEG

(L-1) × Encoders

Embedding

GAP

PEG

MLP
MLP

(a) ViT

Embeddingcls

PE

L × Encoders

MLP

Encoder

(L-1) × Encoders

Embeddingcls

Encoder

PEG

(L-1) × Encoders

Embedding

GAP

PEG

MLP
MLP

(b) CPVT

Embeddingcls

PE

L × Encoders

MLP

Encoder

(L-1) × Encoders

Embeddingcls

Encoder

PEG

(L-1) × Encoders

Embedding

GAP

PEG

MLP
MLP

(c) CPVT-GAP

Figure 1. Vision Transformers: (a) ViT (Dosovitskiy et al., 2021) with explicit 1D learnable posi-
tional encodings (PE) (b) CPVT with conditional positional encoding from the proposed Position
Encoding Generator (PEG) plugin, which is the default choice. (c) CPVT-GAP without class token
(cls), but with global average pooling (GAP) over all items in the sequence. Note that GAP is a
bonus version which has boosted performance.

positional encodings to each token (or each image patch). One may overcome the issue with rela-
tive positional encodings as in (Shaw et al., 2018). However, relative positional encodings not only
come with extra computational costs, but also require modifying the implementation of the standard
Transformers. Last but not least, the relative positional encodings cannot work equally well as the
absolute ones, because the image recognition task still requires absolute position information (Islam
et al., 2020), which the relative positional encodings fail to provide.

In this work, we advocate a novel positional encoding (PE) scheme to incorporate the position
information into Transformers. Unlike the predefined and input-agnostic positional encodings used
in previous works (Dosovitskiy et al., 2021; Vaswani et al., 2017; Shaw et al., 2018), the proposed
PE is dynamically generated and conditioned on the local neighborhood of input tokens. Thus, our
positional encodings can change along with the input size and try to keep translation equivalence. We
demonstrate that the vision transformers (Dosovitskiy et al., 2021; Touvron et al., 2020) with our new
PE (i.e. CPVT, see Figure 1c) achieve even better performance. We summarize our contributions as,

• We propose a novel positional encoding (PE) scheme, termed conditional position encod-
ings (CPE). CPE is dynamically generated with Positional Encoding Generators (PEG) and
can be effortlessly implemented by the modern deep learning frameworks (Paszke et al.,
2019; Abadi et al., 2016; Chen et al., 2015), requiring no changes to the current Trans-
former APIs. Through an in-depth analysis and thorough experimentations, we unveil that
this design affords both absolute and relative encoding yet it goes above and beyond.

• As opposed to widely-used absolute positional encodings, CPE can provide a kind of
stronger explicit bias towards the translation equivalence which is important to improve
the performance of Transformers.

• Built on CPE, we propose Conditional Position encoding Vision Transformer (CPVT). It
achieves better performance than previous vison transformers (Dosovitskiy et al., 2021;
Touvron et al., 2020).

• CPE can well generalize to arbitrary input resolutions, which are required in many impor-
tant downstream tasks such as segmentation and detection. Through experiments we show
that CPE can boost the segmentation and detection performance for pyramid transformers
like (Wang et al., 2021) by a clear margin.

2

Published as a conference paper at ICLR 2023

2 RELATED WORK

Since self-attention itself is permutation-equivariant (see A), positional encodings are commonly
employed to incorporate the order of sequences (Vaswani et al., 2017). The positional encodings
can either be fixed or learnable, while either being absolute or relative. Vision transformers follow
the same fashion to imbue the network with positional information.

Absolute Positional Encoding. The absolute positional encoding is the most widely used. In
the original transformer (Vaswani et al., 2017), the encodings are generated with the sinusoidal
functions of different frequencies and then they are added to the inputs. Alternatively, the positional
encodings can be learnable, where they are implemented with a fixed-dimension matrix/tensor and
jointly updated with the model’s parameters with SGD.

Relative Positional Encoding. The relative position encoding (Shaw et al., 2018) considers dis-
tances between the tokens in the input sequence. Compared to the absolute ones, the relative posi-
tional encodings can be translation-equivariant and can naturally handle the sequences longer than
the longest sequences during training (i.e., being inductive). A 2-D relative position encoding is
proposed for image classification in (Bello et al., 2019), showing superiority to 2D sinusoidal em-
beddings. The relative positional encoding is further improved in XLNet (Yang et al., 2019b) and
DeBERTa (He et al., 2020), showing better performance.

Other forms. Complex-value embeddings (Wang et al., 2019) are an extension to model global
absolute encodings and show improvement. RoFormer (Su et al., 2021) utilizes a rotary position em-
bedding to encode both absolute and relative position information for text classification. FLOATER
(Liu et al., 2020) proposes a novel continuous dynamical model to capture position encodings. It is
not limited by the maximum sequence length during training, meanwhile being parameter-efficient.

Similar designs to CPE. Convolutions are used to model local relations in ASR and machine
translation (Gulati et al., 2020; Mohamed et al., 2019; Yang et al., 2019a; Yu et al., 2018). However,
they are mainly limited to 1D signals. We instead process 2D vision images.

3 VISION TRANSFORMER WITH CONDITIONAL POSITION ENCODINGS

3.1 MOTIVATION

In vision transformers, an input image of size H × W is split into patches with size S × S, the
number of patches is N = HW

S2
1. The patches are added with the same number of learnable absolute

positional encoding vectors. In this work, we argue that the positional encodings used here have
two issues. First, it prevents the model from handling the sequences longer than the learnable PE.
Second, it makes the model not translation-equivariant because a unique positional encoding vector
is added to every one patch. The translation equivalence plays an important role in classification
because we hope the networks’ responses changes accordingly as the object moves in the image.

One may note that the first issue can be remedied by removing the positional encodings since except
for the positional encodings, all other components (e.g., MHSA and FFN) of the vision transformer
can directly be applied to longer sequences. However, this solution severely deteriorates the perfor-
mance. This is understandable because the order of the input sequence is an important clue and the
model has no way to extract the order without the positional encodings. The experiment results on
ImageNet are shown in Table 1. By removing the positional encodings, DeiT-tiny’s performance on
ImageNet dramatically degrades from 72.2% to 68.2%.

Second, in DeiT (Touvron et al., 2020), they show that we can interpolate the position encodings
to make them have the same length of the longer sequences. However, this method requires fine-
tuning the model a few more epochs, otherwise the performance will remarkably drop, as shown
in Table 1. This goes contrary to what we would expect. With the higher-resolution inputs, we
often expect a remarkable performance improvement without any fine-tuning. Finally, the relative
position encodings (Shaw et al., 2018; Bello et al., 2019) can cope with both the aforementioned

1H and W shall be divisible by S, respectively.

3

Published as a conference paper at ICLR 2023

Table 1. Comparison of various positional encoding (PE) strategies tested on ImageNet valida-
tion set in terms of the top-1 accuracy. Removing the positional encodings greatly damages the
performance. The relative positional encodings have inferior performance to the absolute ones

Model Encoding Top-1@224(%) Top-1@384(%)
DeiT-tiny (Touvron et al., 2020) 7 68.2 68.6
DeiT-tiny (Touvron et al., 2020) learnable 72.2 71.2
DeiT-tiny (Touvron et al., 2020) sin-cos 72.3 70.8
DeiT-tiny 2D RPE (Shaw et al., 2018) 70.5 69.8

issues. However, the relative positional encoding cannot provide absolute position information,
which is also important to the classification performance (Islam et al., 2020). As shown in Table 1,
the model with relative position encodings has inferior performance (70.5% vs. 72.2%).

3.2 CONDITIONAL POSITIONAL ENCODINGS

We argue that a successful positional encoding for vision tasks should meet these requirements,

(1) Making the input sequence permutation-variant and providing stronger explicit bias to-
wards translation-equivariance.

(2) Being inductive and able to handle the sequences longer than the ones during training.
(3) Having the ability to provide the absolute position to a certain degree. This is important to

the performance as shown in (Islam et al., 2020).

In this work, we find that characterizing the local relationship by positional encodings is sufficient
to meet all of the above. First, it is permutation-variant because the permutation of input sequences
also affects the order in some local neighborhoods. However, translation of an object in an input im-
age does not change the order in its local neighborhood, i.e., translation-equivariant (see Section A).
Second, the model can easily generalize to longer sequences since only the local neighborhoods of a
token are involved. Besides, if the absolute position of any input token is known, the absolute posi-
tion of all the other tokens can be inferred by the mutual relation between input tokens. We will show
that the tokens on the borders can be aware of their absolute positions due to the commonly-used
zero paddings.

H

W

...

d

N

...

class token

feature tokens position encodings

reshape F reshape

PEG

Figure 2. Schematic illustration of Positional Encoding Generator
(PEG). Note d is the embedding size, N is the number of tokens.

Therefore, we propose
positional encoding gen-
erators (PEG) to dynam-
ically produce the posi-
tional encodings condi-
tioned on the local neigh-
borhood of an input to-
ken.

Positional Encoding
Generator. PEG is
illustrated in Figure 2.
To condition on the
local neighbors, we first
reshape the flattened input sequence X ∈ RB×N×C of DeiT back to X ′ ∈ RB×H×W×C in the
2-D image space. Then, a function (denoted by F in Figure 2) is repeatedly applied to the local
patch in X ′ to produce the conditional positional encodings EB×H×W×C . PEG can be efficiently
implemented with a 2-D convolution with kernel k (k ≥ 3) and k−1

2 zero paddings. Note that the
zero paddings here are important to make the model be aware of the absolute positions, and F can
be of various forms such as various types of convolutions and many others.

3.3 CONDITIONAL POSITIONAL ENCODING VISION TRANSFORMERS

Built on the conditional positional encodings, we propose our Conditional Positional Encoding Vi-
sion Transformers (CPVT). Except that our positional encodings are conditional, we exactly follow

4

Published as a conference paper at ICLR 2023

ViT and DeiT to design our vision transformers and we also have three sizes CPVT-Ti, CPVT-S and
CPVT-B. Similar to the original positional encodings in DeiT, the conditional positional encodings
are also added to the input sequence, as shown in Figure 1 (b). In CPVT, the position where PEG is
applied is also important to the performance, which will be studied in the experiments.

In addition, both DeiT and ViT utilize an extra learnable class token to perform classification (i.e.,
cls token shown in Figure 1 (a) and (b)). By design, the class token is not translation-invariant,
although it can learn to be so. A simple alternative is to directly replace it with a global average
pooling (GAP), which is inherently translation-invariant, resulting in our CVPT-GAP. Together with
CPE, CVPT-GAP achieves much better image classification performance.

4 EXPERIMENTS

4.1 SETUP

Datasets. Following DeiT (Touvron et al., 2020), we use ILSVRC-2012 ImageNet dataset (Deng
et al., 2009) with 1K classes and 1.3M images to train all our models. We report the results on the
validation set with 50K images. Unlike ViT (Dosovitskiy et al., 2021), we do not use the much
larger undisclosed JFT-300M dataset (Sun et al., 2017).

Model variants. We have three models with various sizes to adapt to various computing scenarios.
The detailed settings are shown in Table 9 (see B.1). All experiments in this paper are performed on
Tesla V100 machines. Training the tiny model for 300 epochs takes about 1.3 days on a single node
with 8 V100 GPU cards. CPVT-S and CPVT-B take about 1.6 and 2.5 days, respectively.

Training details All the models (except for CPVT-B) are trained for 300 epochs with a global batch
size of 2048 on Tesla V100 machines using AdamW optimizer (Loshchilov & Hutter, 2019). We
do not tune the hyper-parameters and strictly comply with the settings in DeiT (Touvron et al.,
2020). The learning rate is scaled with this formula lrscale = 0.0005·BatchSizeglobal/512. The detailed
hyperparameters are in the B.2.

4.2 GENERALIZATION TO HIGHER RESOLUTIONS

As mentioned before, our proposed PEG can directly generalize to larger image sizes without any
fine-tuning. We confirm this here by evaluating the models trained with 224 × 224 images on the
384 × 384, 448 × 448, 512 × 512 images, respectively. The results are shown in Table 2. With the
384 × 384 input images, the DeiT-tiny with learnable positional encodings degrades from 72.2%
to 71.2%. When equipped with sine encoding, the tiny model degrades from 72.2% to 70.8%. In
constrat, our CPVT model with the proposed PEG can directly process the larger input images, and
CPVT-Ti’s performance is boosted from 73.4% to 74.2% when applied to 384 × 384 images. Our
CPVT-Ti outperforms DeiT-tiny by 3.0%. This gap continues to increase as the input resolution
enlarges.

Table 2. Direct evaluation on other resolutions without fine-tuning. The models are trained on
224×224. A simple PEG of a single layer of 3×3 depth-wise convolution is used here

Model Params 160(%) 224(%) 384(%) 448(%) 512(%)
DeiT-tiny 6M 65.6 72.2 71.2 68.8 65.9
DeiT-tiny (sin) 6M 65.2 72.3 70.8 68.2 65.1
DeiT-tiny (no pos) 6M 62.1 68.2 68.6 68.4 65.0
CPVT-Ti 6M 66.8(+1.2) 72.4(+0.2) 73.2(+2.0) 71.8(+3.0) 70.3(+4.4)
CPVT-Ti ‡ 6M 67.7 (+2.1) 73.4(+1.2) 74.2(+3.0) 72.6(+3.8) 70.8(+4.9)
DeiT-small 22M 75.6 79.9 78.1 75.9 72.6
CPVT-S 22M 76.1(+0.5) 79.9 80.4(+1.5) 78.6(+2.7) 76.8(+4.2)
DeiT-base 86M 79.1 81.8 79.7 79.8 78.2
CPVT-B 86M 80.5(+1.4) 81.9(+0.1) 82.3(+2.6) 82.4(+2.6) 81.0(+2.8)

‡: Insert one PEG each after the first encoder till the fifth encoder

5

Published as a conference paper at ICLR 2023

4.3 CPVT WITH GLOBAL AVERAGE POOLING

By design, the proposed PEG is translation-equivariant (ignore paddings). Thus, if we further use
the translation-invariant global average pooling (GAP) instead of the cls token before the final
classification layer of CPVT. CPVT can be translation-invariant, which should be beneficial to the
ImageNet classification task. Note the using GAP here results in even less computation complexity
because we do not need to compute the attention interaction between the class token and the image
patches. As shown in Table 3, using GAP here can boost CPVT by more than 1%. For example,
equipping CPVT-Ti with GAP obtains 74.9% top-1 accuracy on the ImageNet validation dataset,
which outperforms DeiT-tiny by a large margin (+2.7%). Moreover, it even exceeds DeiT-tiny model
with distillation (74.5%). In contrast, DeiT with GAP cannot gain so much improvement (only 0.4%
as shown in Table 3) because the original learnable absolute PE is not translation-equivariant and
thus GAP with the PE is not translation-invariant. Given the superior performance, we hope our
model can be a strong PE alternative in vision transformers.

Table 3. Performance comparison of Class Token (CLT) and global average pooling (GAP) on
ImageNet. CPVT’s can be further boosted with GAP

Model Head Params Top-1 Acc Top-5 Acc
(%) (%)

DeiT-tiny (Touvron et al., 2020) CLT 6M 72.2 91.0
DeiT-tiny GAP 6M 72.6 91.2
CPVT-Ti ‡ CLT 6M 73.4 91.8
CPVT-Ti ‡ GAP 6M 74.9 92.6
DeiT-small (Touvron et al., 2020) CLT 22M 79.9 95.0
DeiT-small GAP 22M 80.2 95.2
CPVT-S ‡ CLT 23M 80.5 95.2
CPVT-S ‡ GAP 23M 81.5 95.7

‡: Insert one PEG each after the first encoder till the fifth encoder

4.4 COMPLEXITY OF PEG

Few Parameters. Given the model dimension d, the extra number of parameters introduced by PEG
is d×l×k2 if we choose l depth-wise convolutions with kernel k. If we use l separable convolutions,
this value becomes l(d2 + k2d). When k = 3 and l = 1, CPVT-Ti (d = 192) brings about 1, 728
parameters. Note that DeiT-tiny utilizes learnable position encodings with 192× 14× 14 = 37632
parameters. Therefore, CPVT-Ti has 35, 904 fewer number of parameters than DeiT-tiny. Even
using 4 layers of separable convolutions, CPVT-Ti introduces only 38952 − 37632 = 960 more
parameters, which is negelectable compared to the 5.7M model parameters of DeiT-tiny.

FLOPs. As for FLOPs, l layers of k × k depth-wise convolutions possesses 14 × 14 × d × l × k2

FLOPS. Taking the tiny model for example, it involves 196 × 192 × 9 = 0.34M FLOPS for the
simple case k = 3 and l = 1, which is neglectable because the model has 2.1G FLOPs in total.

4.5 PERFORMANCE COMPARISON

20 40 60 80
Params (M)

72

74

76

78

80

82

To
p-

1
Ac

cu
ra

cy
 (%

)

DeiT
DeiT @384
CPVT (Single PEG)
CPVT (0-5)
CPVT @384
CPVT-GAP

Figure 3. Comparison of CPVT and DeiT models
under various configurations. Note CPVT@384
has improved performance. More PEGs can result
in better performance. CPVT-GAP is the best.

We evaluate the performance of CPVT models
on the ImageNet validation dataset and report
the results in Table 4. Compared with DeiT,
CPVT models have much better top-1 accuracy
with similar throughputs. Our models can en-
joy performance improvement when inputs are
upscaled without fine-tuning, while DeiT de-
grades as discussed in Table 2, see also Fig-
ure 3 for a clear comparison. Noticeably, Our
model with GAP marked a new state-of-the-art
for vision Transformers.

6

Published as a conference paper at ICLR 2023

Table 4. Comparison with ConvNets and Transformers on ImageNet and ImageNet Real (Beyer
et al., 2020). CPVT have much better performance compared with prior Transformers

Models Params(M) Input throughput? ImNet Real
top-1 % top-1 %

ResNet-50 (He et al., 2016) 25 2242 1226.1 76.2 82.5
ResNet-101 (He et al., 2016) 45 2242 753.6 77.4 83.7
ResNet-152 (He et al., 2016) 60 2242 526.4 78.3 84.1
RegNetY-4GF (Radosavovic et al., 2020) 21 2242 1156.7 80.0 86.4
EfficientNet-B0 (Tan & Le, 2019) 5 2242 2694.3 77.1 83.5
EfficientNet-B1 (Tan & Le, 2019) 8 2402 1662.5 79.1 84.9
EfficientNet-B2 (Tan & Le, 2019) 9 2602 1255.7 80.1 85.9
EfficientNet-B3 (Tan & Le, 2019) 12 3002 732.1 81.6 86.8
EfficientNet-B4 (Tan & Le, 2019) 19 3802 349.4 82.9 88.0
ViT-B/16 (Dosovitskiy et al., 2021) 86 3842 85.9 77.9 -
ViT-L/16 307 3842 27.3 76.5 -
DeiT-tiny w/o PE (Touvron et al., 2020) 6 2242 2536.5 68.2 -
DeiT-tiny (Touvron et al., 2020) 6 2242 2536.5 72.2 80.1
DeiT-tiny (sine) 6 2242 2536.5 72.3 80.3
CPVT-Ti ‡ 6 2242 2500.7 73.4 81.3
CPVT-Ti-GAP‡ 6 2242 2520.1 74.9 82.5
DeiT-tiny (Touvron et al., 2020)⚗ 6 2242 2536.5 74.5 82.1
CPVT-Ti⚗ 6 2242 2500.7 75.9 83.0
DeiT-small (Touvron et al., 2020) 22 2242 940.4 79.9 85.7
CPVT-S ‡ 23 2242 930.5 80.5 86.0
CPVT-S-GAP‡ 23 2242 942.3 81.5 86.6
DeiT-base (Touvron et al., 2020) 86 2242 292.3 81.8 86.7
CPVT-B ‡ 88 2242 285.5 82.3 87.0
CPVT-B-GAP‡ 88 2242 290.2 82.7 87.7

?: Measured in img/s on a 16GB V100 GPU as in (Touvron et al., 2020).
‡: Insert one PEG each after the first encoder till the fifth encoder
⚗: trained with hard distillation using RegNetY-160 as the teacher.

We further train CPVT-Ti and DeiT-tiny using the aforementioned training settings plus the hard
distillation proposed in (Touvron et al., 2020). Specifically, we use RegNetY-160 (Radosavovic
et al., 2020) as the teacher. CPVT obtains 75.9%, exceeding DeiT-tiny by 1.4%.

4.6 PEG ON PYRAMID TRANSFORMER ARCHITECTURES

PVT (Wang et al., 2021) is a vision transformer with the multi-stage design like ResNet (He et al.,
2016). Swin (Liu et al., 2021) is a follow-up work and comes with higher performance. We apply
our method on both to demonstrate its generalization ability.

ImageNet classification. Specifically, we remove its learnable PE and apply our PEG in position
0 of each stage with a GAP head. We use the same training settings to make a fair comparison and
show the results in Table 13. Our method can significantly boost PVT-tiny by 3.1% and Swin-tiny
by 1.15% on ImageNet (c.f. B.5). We also evaluate the performance of PEG on some downstream
semantic segmentation and object detection tasks (see B.6). Note these tasks usually handle the
various input resolutions as the training because multi-scale data augmentation is extensively used.

5 ABLATION STUDY

5.1 POSITIONAL ENCODING OR MERELY A HYBRID?

One might suspect that the PEG’s improvement comes from the extra learnable parameters intro-
duced by the convolutional layers in PEG, instead of the local relationship retained by PEG. One

7

Published as a conference paper at ICLR 2023

way to test the function of PEG is only adding it when calculating Q and K in the attention layer,
so that only the positional information of PEG is passed through. We can achieve 71.3% top-1 ac-
curacy on ImageNet with DeiT-tiny. This is significantly better than DeiT-tiny w/o PE (68.2%) and
is similar to the one with PEG on Q, K and V (72.4%), which suggests that PEG mainly serves as a
positional encoding scheme.

Table 5. Positional encoding rather than added pa-
rameters gives the most improvement

Kernel Style Params Top-1 Acc
(M) (%)

none - 5.68 68.2
3 fixed (random init) 5.68 71.3
3 fixed (learned init) 5.68 72.3

1 (12 ×) learnable 6.13 68.6
3 learnable 5.68 72.4

We also design another experiment to remove
this concern. By randomly-initializing a 3×3
PEG and fixing its weights during the train-
ing, we can obtain 71.3% accuracy (Table 5),
which is much higher (3.1%↑) than DeiT with-
out any PE (68.2%). Since the weights of PEG
are fixed and the performance improvement can
only be due to the introduced position informa-
tion. On the contrary, when we exhaustively
use 12 convolutional layers (kernel size being
1, i.e., not producing local relationship) to re-
place the PEG, these layers have much more
learnable parameters than PEG. However, it only boosts the performance by 0.4% to 68.6%.

Another interesting finding is that fixing a learned PEG also helps training. When we initialize with
a learned PEG instead of the random values and train the tiny version of the model from scratch
while keeping the PEG fixed, the model can also achieve 72.3% top-1 accuracy on ImageNet. This
is very close to the learnable PEG (72.4%).

5.2 PEG POSITION IN CPVT

We also experiment by varying the position of the PEG in the model. Table 6 (left) presents the
ablations for variable positions (denoted as PosIdx) based on the tiny model. We consider the input
of the first encoder by index -1. Therefore, position 0 is the output of the first encoder block. PEG
shows strong performance (∼72.4%) when it is placed at [0, 3].

Note that positioning the PEG at 0 can have much better performance than positioning it at -1 (i.e.,
before the first encoder), as shown in Table 6 (left). We observe that the difference between the two
situations is they have different receptive fields. Specifically, the former has a global field while the
latter can only see a local area. Hence, they are supposed to work similarly well if we enlarge the
convolution’s kernel size. To verify our hypothesis, we use a quite large kernel size 27 with a padding
size 13 at position -1, whose result is reported in Table 6 (right). It achieves similar performance to
the one positioning the PEG at 0 (72.5%), which verifies our assumption.

Table 6. Comparison of different plugin positions (left) and kernels (right) using DeiT-tiny

PosIdx Top-1 (%) Top-5 (%)
none 68.2 88.7
−1 70.6 90.2

0 72.4 91.2
3 72.3 91.1
6 71.7 90.8

10 69.0 89.1

PosIdx kernel Params Top-1 (%) Top-5 (%)
-1 3×3 5.7M 70.6 90.2
-1 27×27 5.8M 72.5 91.3

5.3 COMPARISONS WITH OTHER POSITIONAL ENCODINGS

We compare PEG with other commonly used encodings: absolute positional encoding (e.g. sinu-
soidal (Vaswani et al., 2017)), relative positional encoding (RPE) (Shaw et al., 2018) and learnable
encoding (LE) (Devlin et al., 2019; Radford et al., 2018), as shown in Table 7.

DeiT-tiny obtains 72.2% with the learnable absolute PE. We experiment with the 2-D sinusoidal
encodings and it achieves on-par performance. For RPE, we follow (Shaw et al., 2018) and set the

8

Published as a conference paper at ICLR 2023

Table 7. Comparison of various positional encoding strategies. LE: learnable positional encoding.
RPE: relative positional encoding

Model PEG Pos Encoding Top-1 Top-5
(%) (%)

DeiT-tiny (2020) - LE 72.2 91.0
DeiT-tiny - 2D sin-cos 72.3 91.0
DeiT-tiny - 2D RPE 70.5 90.0
CPVT-Ti 0-1 PEG 72.4 91.2
CPVT-Ti 0-1 PEG + LE 72.9 91.4
CPVT-Ti 0-1 4×PEG + LE 72.9 91.4
CPVT-Ti 0-5 PEG 73.4 91.8

local range hyper-parameter K as 8, with which we obtain 70.5%. RPE here does not encode any
absolute position information, see discussion in D.1 and B.3.

Moreover, we combine the learnable absolute PE with a single-layer PEG. This boosts the baseline
CPVT-Ti (0-1) by 0.5%. If we use 4-layer PEG, it can achieve 72.9%. If we add a PEG to each of
the first five blocks, we can obtain 73.4%, which is better than stacking them within one block.

CPE is not a simple combination of APE and RPE. We further compare our method with a
baseline with combination of APE and RPE. Specifically, we use learnable positional encoding
(LE) as DeiT at the beginning of the model and supply 2D RPE for every transformer block. This
setting achieves 72.4% top-1 accuracy on ImageNet, which is comparable to a single PEG (72.4%).
Nevertheless, this experiment does not necessarily indicate that our CPE is a simple combination
of APE and RPE. When tested on different resolutions, this baseline cannot scale well compared to
ours (Table 8). RPE is not able to adequately mitigate the performance degradation on top of LE.
This shall be seen as a major difference.

Table 8. Direct evaluation on other resolutions without fine-tuning. The models are trained on
224×224. CPE outperforms LE+RPE combination on untrained resolutions.

Model Positional Params 160(%) 224(%) 384(%) 448(%) 512(%)
DeiT-tiny (LE+RPE) 40011 65.6 72.4 70.8 68.4 65.6
DeiT-tiny (PEG at Pos 0) 1920 66.8 72.4 73.2 71.8 70.3

PEG can continuously improve the performance if stacked more. We use LE not only at the
beginning but also in the next 5 layers to have a similar thing as 0-5 PEG configuration.This setting
achieves 72.7% top-1 accuracy on ImageNet, which is 0.7% lower than PEG (0-5). This setting
suggests that it is also beneficial to have more of LEs, but not as good as ours. It is expected since
we exploit relative information via PEGs at the same time.

6 CONCLUSION

We introduced CPVT, a novel method to provide the position information in vision transformers,
which dynamically generates the position encodings based on the local neighbors of each input
token. Through extensive experimental studies, we demonstrate that our proposed positional en-
codings can achieve stronger performance than the previous positional encodings. The transformer
models with our positional encodings can naturally process longer input sequences and keep the
desired translation equivalence in vision tasks. Moreover, our positional encodings are easy to im-
plement and come with negligible cost. We look forward to a broader application of our method in
transformer-driven vision tasks like segmentation and video processing.

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-

9

Published as a conference paper at ICLR 2023

scale machine learning. In 12th {USENIX} symposium on operating systems design and imple-
mentation ({OSDI} 16), pp. 265–283, 2016.

Irwan Bello. Lambdanetworks: Modeling long-range interactions without attention. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=xTJEN-ggl1b.

Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. Attention augmented
convolutional networks. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 3286–3295, 2019.

Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are
we done with imagenet? arXiv preprint arXiv:2006.07159, 2020.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference
on Computer Vision, pp. 213–229. Springer, 2020.

Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chun-
jing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. arXiv preprint
arXiv:2012.00364, 2020.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and
Chunhua Shen. Twins: Revisiting the design of spatial attention in vision transformers. In
NeurIPS 2021, 2021.

Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-
attention and convolutional layers. In International Conference on Learning Representations,
2020.

Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. Randaugment: Practical automated data
augmentation with a reduced search space. Advances in Neural Information Processing Systems,
33, 2020.

Zihang Dai, Hanxiao Liu, Quoc Le, and Mingxing Tan. Coatnet: Marrying convolution and attention
for all data sizes. Advances in Neural Information Processing Systems, 34, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent
Sagun. Convit: Improving vision transformers with soft convolutional inductive biases. In Inter-
national Conference on Machine Learning, pp. 2286–2296. PMLR, 2021.

10

https://openreview.net/forum?id=xTJEN-ggl1b
https://openreview.net/forum?id=xTJEN-ggl1b
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Published as a conference paper at ICLR 2023

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented transformer
for speech recognition. arXiv preprint arXiv:2005.08100, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel Soudry. Aug-
ment your batch: Improving generalization through instance repetition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8129–8138, 2020.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis
Hawthorne, Andrew M Dai, Matthew D Hoffman, Monica Dinculescu, and Douglas Eck. Music
transformer. In Advances in Neural Processing Systems, 2018.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, pp. 646–661. Springer, 2016.

Md Amirul Islam, Sen Jia, and Neil DB Bruce. How much position information do convolutional
neural networks encode? In International Conference on Learning Representations, 2020.

Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6399–6408, 2019.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Xuanqing Liu, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Learning to encode position for
transformer with continuous dynamical model. In International Conference on Machine Learn-
ing, pp. 6327–6335. PMLR, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Abdelrahman Mohamed, Dmytro Okhonko, and Luke Zettlemoyer. Transformers with convolutional
context for asr. arXiv preprint arXiv:1904.11660, 2019.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4055–4064, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32:
8026–8037, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

11

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Published as a conference paper at ICLR 2023

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10428–10436, 2020.

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya,
and Jon Shlens. Stand-alone self-attention in vision models. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32, pp. 68–80. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
3416a75f4cea9109507cacd8e2f2aefc-Paper.pdf.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2, pp. 464–468, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable ef-
fectiveness of data in deep learning era. In Proceedings of the IEEE international conference on
computer vision, pp. 843–852, 2017.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International Conference on Machine Learning, pp. 6105–6114. PMLR, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. arXiv
preprint arXiv:2012.12877, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems, pp. 6000–6010, 2017.

Benyou Wang, Donghao Zhao, Christina Lioma, Qiuchi Li, Peng Zhang, and Jakob Grue Simonsen.
Encoding word order in complex embeddings. arXiv preprint arXiv:1912.12333, 2019.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. arXiv preprint arXiv:2102.12122, 2021.

Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao Shen, and
Huaxia Xia. End-to-end video instance segmentation with transformers. arXiv preprint
arXiv:2011.14503, 2020.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808, 2021.

Baosong Yang, Longyue Wang, Derek Wong, Lidia S Chao, and Zhaopeng Tu. Convolutional self-
attention networks. arXiv preprint arXiv:1904.03107, 2019a.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019b.

12

https://proceedings.neurips.cc/paper/2019/file/3416a75f4cea9109507cacd8e2f2aefc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3416a75f4cea9109507cacd8e2f2aefc-Paper.pdf

Published as a conference paper at ICLR 2023

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, and
Quoc V Le. Qanet: Combining local convolution with global self-attention for reading compre-
hension. arXiv preprint arXiv:1804.09541, 2018.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond em-
pirical risk minimization. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=r1Ddp1-Rb.

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei
Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking semantic segmentation from
a sequence-to-sequence perspective with transformers. arXiv preprint arXiv:2012.15840, 2020.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data aug-
mentation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
13001–13008, 2020.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 633–641, 2017.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: De-
formable transformers for end-to-end object detection. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=gZ9hCDWe6ke.

13

https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=gZ9hCDWe6ke

Published as a conference paper at ICLR 2023

A TRANSLATION EQUIVARIANCE

The term translation-equivariance means the output feature maps can be equally translated with
the input signal. Imagine there is a person in the left-top of an image, if the person is moved to
the right-bottom, the output feature maps will change accordingly. This property is very important
to the success of convolution network. Convolution (ignoring paddings), RPE, and self-attention
are all translation-equivariant operations (regardless of their receptive field). It’s nontrivial to make
absolute positional encodings like DeiT (using learnable positional encoding) translation-equivariant
since different absolute positions will be added if the input signal is translated. Note that our method
is not strictly translation-equivariant because of the zero padding. Instead, it provides a kind of
stronger explicit bias towards the translation-equivariant property.

B EXPERIMENT DETAILS

B.1 ARCHITECTURE VARIANTS OF CPVT

Table 9. CPVT architecture variants. The larger model, CPVT-B, has the same architecture as ViT-
B (Dosovitskiy et al., 2021) and DeiT-B (Touvron et al., 2020). CPVT-S and CPVT-Ti have the
same architecture as DeiT-small and DeiT-tiny respectively

Model #channels #heads #layers #params
CPVT-Ti 192 3 12 6M
CPVT-S 384 6 12 22M
CPVT-B 768 12 12 86M

B.2 THE HYPERPARAMETERS OF CPVT

As for the ImageNet classification task, we use exactly the same hyperparameters as DeiT except for
the base model because it is not always stably trained using AdamW. The detailed setting is shown
in Table 10.

Table 10. Hyper-parameters for ViT, DeiT and CPVT

Methods ViT DeiT CPVT
Epochs 300 300 300
Batch size 4096 1024 1024
Optimizer AdamW AdamW LAMB
Learning rate decay cosine cosine cosine
Weight decay 0.3 0.05 0.05
Warmup epochs 3.4 5 5
Label smoothing ε (Szegedy et al., 2016) 7 0.1 0.1
Dropout (Srivastava et al., 2014) 0.1 7 7
Stoch. Depth (Huang et al., 2016) 7 0.1 0.1
Repeated Aug (Hoffer et al., 2020) 7 3 3
Gradient Clip. 3 7 7
Rand Augment (Cubuk et al., 2020) 7 9/0.5 9/0.5
Mixup prob. (Zhang et al., 2018) 7 0.8 0.8
Cutmix prob. (Yun et al., 2019) 7 1.0 1.0
Erasing prob. (Zhong et al., 2020) 7 0.25 0.25

B.3 IMPORTANCE OF ZERO PADDINGS

We design an experiment to verify the importance of the zero paddings, which can help the model
infer the absolute positional information. Specifically, we use CPVT-S and simply remove the zero
paddings from CPVT while keeping all other settings unchanged. Table 11 shows that this can
only obtain 70.5%, which indicates that the zero paddings and absolute positional information play
important roles in classifying objects.

14

Published as a conference paper at ICLR 2023

Table 11. Ablation study on ImageNet performance w/ or w/o zero paddings

Model Padding Top-1 Acc(%) Top-5 Acc(%)

CPVT-Ti X 72.4 91.2
7 70.5 89.8

B.4 SINGLE PEG VS. MULTIPLE PEGS

We further evaluate whether or not using multi-position encodings can benefit the performance in
Table 12. Notice we denote by i-j the inserted positions of PEG which start from the i-th encoder
and end at the j−1-th one (inclusion). By inserting PEGs to five positions, the top-1 accuracy of the
tiny model can achieve 73.4%, which surpasses DeiT-tiny by 1.2%. Similarly, CPVT-S can achieve
80.5%. It turns out more PEGs do help, but up to a level where more PEGs become incremental (0-5
vs. 0-11).

Table 12. CPVT’s sensitivity to number of plugin positions

Positions Model Params Top-1 Acc Top-5 Acc
(M) (%) (%)

0-1 tiny 5.7 72.4 91.2
0-5 tiny 5.9 73.4 91.8

0-11 tiny 6.1 73.4 91.8
0-1 small 22.0 79.9 95.0
0-5 small 22.9 80.5 95.2

0-11 small 23.8 80.6 95.2

B.5 CLASSFICATION EVALUATION OF SWIN WITH PEG

We show the validation curves when training Swin (Liu et al., 2021) equipped with PEG in Figure 4.
It can boost Swin-tiny from 81.10% to 82.25% (+1.15%↑) on ImageNet.

0 50 100 150 200 250 300
Epochs

70

75

80

85

To
p-

1
Va

l A
cc

ur
ac

y
(%

)

Swin Tiny
Swin Tiny + CPE

Figure 4. CPE boosts Swin Tiny on ImageNet by 1.15% top-1 Acc.

B.6 EVALUATION ON SEGMENTATION AND DETECTION

Semantic segmentation on ADE20K. We evaluate the performance of PEG on the ADE20K
(Zhou et al., 2017) segmentation task. Based on the Semantic FPN framework (Kirillov et al.,
2019), PVT achieves much better results than ResNet (He et al., 2016) baselines. Under carefully
controlled settings, PEG further boosts PVT-tiny by 3.1% mIoU.

Object detection on COCO. We also perform controlled experiments with the RetinaNet (Lin
et al., 2017) framework on the COCO detection task. The results are shown in Table 13. In the
standard 1× schedule, PEG improves PVT-tiny by 2.0% mAP. PEG brings 2.4% higher mAP under
the 3 × schedule.

15

Published as a conference paper at ICLR 2023

Table 13. Our method boosts the performance of PVT on ImageNet classification, ADE20K seg-
mentation and COCO detection

Backbone ImageNet Semantic FPN on ADE20K RetinaNet on COCO
Params Top-1 Params mIoU Params mAP mAP

(M) (%) (M) (%) (M) (%, 1×) (%, 3×, +MS)
ResNet-18 (He et al., 2016) 12 69.8 16 32.9 21 31.8 35.4
PVT-tiny (Wang et al., 2021) 13 75.0 17 35.7 23 36.7 39.4
PVT-tiny+PEG 13 77.3 17 38.0 23 38.0 41.8
PVT-tiny+GAP 13 75.9 17 36.0 23 36.9 39.7
PVT-tiny+PEG+GAP 13 78.1 17 38.8 23 38.7 41.8
PVT-small (Wang et al., 2021) 25 79.8 28 39.8 34 40.4 42.2
PVT-small+PEG+GAP 25 81.2 28 44.3 34 43.0 45.2
PVT-Medium (Wang et al., 2021) 44 81.2 48 41.6 54 41.9 43.2
PVT-Medium+PEG+GAP 44 82.7 48 44.9 54 44.3 46.4

B.7 ABLATION ON OTHER FORMS OF PEG

We explore several forms of PEG based on the tiny model, which change the type of convolution,
kernel size and layers. The inserted position is 0. The result is shown in Table 14. When we use large
kernel of 7×7 or dense convolution, the performance improvement is limited. Stacking more layers
of depth-wise convolution doesn’t bring significant improvement. Therefore, we use the simplest
form as our default implementation. It indicates that this design is enough to provide good position
information.

Table 14. Other forms of PEG. The simple form of a single depth-wise 3×3 is good enough.

Variants Model Top-1 Acc (%)
1 Depthwise Conv 3×3 tiny 72.4
1 Depthwise Conv 7×7 tiny 72.5

4 * (Depthwise Conv 3×3 +BN+ReLU) tiny 72.4
1 Dense Conv 3×3 tiny 72.3

4 * (Dense Conv 3×3+BN+ReLU) tiny 72.5

C EXAMPLE CODE

C.1 PEG

In the simplest form, we use a single depth-wise convolution and show its usage in Transformer by
the following PyTorch snippet. Through experiments, we find that such a simple design (i.e., depth-
wise 3×3) readily achieves on par or even better performance than the recent SOTAs. We give the
torch implementation example in Alg. 1.

D MORE DISCUSSIONS

D.1 WHY RPE WORKS LESS WELL THAN ABSOLUTE PE?

As mentioned in Section 5.3 (main text), RPE is inferior to the absolute positional encoding. It
is because RPE does not encode any absolute position information. Also discussed in Section B.3
(main text), absolute position information is also important even for ImageNet classification as it is
needed to determine which object is at the center of the image. Note that there might be multiple
objects in an image, and the label of an image is the category of the object at the center.

Additionally, although RPE becomes popular recently, it is often jointly used with absolute posi-
tional encodings (e.g., in ConViT (d’Ascoli et al., 2021)), or the absolute position information is
leaked in other ways (e.g., convolution paddings in CoAtNet (Dai et al., 2021)). This further sug-
gests absolute position information is crucial.

16

Published as a conference paper at ICLR 2023

Algorithm 1 PyTorch snippet of PEG.

import torch
import torch.nn as nn
class VisionTransformer:
def __init__(layers=12, dim=192, nhead=3, img_size=224, patch_size=16):
self.pos_block = PEG(dim)
self.blocks = nn.ModuleList([TransformerEncoderLayer(dim, nhead, dim*4) for _ in range(

layers)])
self.patch_embed = PatchEmbed(img_size, patch_size, dim*4)

def forward_features(self, x):
B, C, H, W = x.shape
x, patch_size = self.patch_embed(x)
_H, _W = H // patch_size, W // patch_size
x = torch.cat((self.cls_tokens, x), dim=1)
for i, blk in enumerate(self.blocks):
x = blk(x)
if i == 0:
x = self.pos_block(x, _H, _W)

return x[:, 0]

class PEG(nn.Module):
def __init__(self, dim=2\textsc{56}, k=3):
self.pos = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim) # Only for demo use, more

complicated functions are effective too.
def forward(self, x, H, W):
B, N, C = x.shape
cls_token, feat_tokens = x[:, 0], x[:, 1:]
feat_tokens = feat_tokens.transpose(1, 2).view(B, C, H, W)
x = self.pos(feat_tokens) + feat_tokens
x = x.flatten(2).transpose(1, 2)
x = torch.cat((cls_token.unsqueeze(1), x), dim=1)
return x

D.2 COMPARISON TO LAMBDA NETWORKS

Our work is also related to Lambda Networks (Bello, 2021) which uses 2D relative positional encod-
ings. We evaluate its lambda module with an embedding size of 128, where we denote its encoding
scheme as RPE2D-d128. Noticeably, this configuration has about 5.9M parameters (comparable to
DeiT-tiny) but only obtains 68.7%. We attribute its failure to the limited ability in capturing the
correct positional information. After all, lambda layers are designed with the help of many CNN
backbones components such as down-sampling to form various stages, to replace ordinary convolu-
tions in ResNet (He et al., 2016). In contrast, CPVT is transformer-based.

D.3 QUALITATIVE ANALYSIS OF CPVT

Thus far, we have shown that PEG can have better performance than the original positional encod-
ings. However, because PEG provides the position in an implicit way, it is interesting to see if PEG
can indeed provide the position information as the original positional encodings. Here we inves-
tigate this by visualizing the attention weights of the transformers. Specifically, given a 224×224
image (i.e. 14×14 patches), the score matrix within a single head is 196×196. We visualize the
normalized self-attention score matrix of the second encoder block.

We first visualize the attention weights of DeiT with the original positional encodings. As shown in
Figure 5 (middle), the diagonal element interacts strongly with its local neighbors but weakly with
those far-away elements, which suggests that DeiT with the original positional encodings learn to
attend the local neighbors of each patch. After the positional encodings are removed (denoted by
DeiT w/o PE), all the patches produce similar attention weights and fail to attend to the patches near
themselves, see Figure 5 (left).

Finally, we show the attention weights of our CPVT model with PEG. As shown in Figure 5 (right),
like the original positional encodings, the model with PEG can also learn a similar attention pattern,
which indicates that the proposed PEG can provide the position information as well.

We illustrate the attention scores in several encoder blocks of DeiT (Touvron et al., 2020) and CPVT
in the Fig. 6. It shows both methods learn similar locality patterns. As attention scores are computed
over the tokens projected in different subspaces (Q and K), they do not necessarily show a strict
diagonal pattern, where some may have slight shift, see DeiT in Fig. 6c and CPVT of Fig. 5 right.

17

Published as a conference paper at ICLR 2023

0 50 100 150

0

25

50

75

100

125

150

175

DeiT w/o PE

0.005

0.010

0.015

0.020

0.025

0.030

0 50 100 150

0

25

50

75

100

125

150

175

DeiT

0.1

0.2

0.3

0.4

0 50 100 150

0

25

50

75

100

125

150

175

CPVT

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5. Normalized attention scores (first head) of the second encoder block of DeiT without po-
sition encoding (DeiT w/o PE), DeiT (Touvron et al., 2020), and CPVT on the same input sequence.
Position encodings are key to developing a schema of locality in lower layers of DeiT. Meantime,
CPVT profits from conditional encodings and follows a similar locality pattern.

0 50 100 150

0

25

50

75

100

125

150

175

DeiT

0.05

0.10

0.15

0.20

0.25

0.30

0 50 100 150

0

25

50

75

100

125

150

175

CPVT

0.05

0.10

0.15

0.20

0.25

(a) The second head (encoder 2)

0 50 100 150

0

25

50

75

100

125

150

175

DeiT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150

0

25

50

75

100

125

150

175

CPVT

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(b) The third head (encoder 2)

0 50 100 150

0

25

50

75

100

125

150

175

DeiT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150

0

25

50

75

100

125

150

175

CPVT

0.025

0.050

0.075

0.100

0.125

0.150

0.175

(c) The first head (encoder 3)

0 50 100 150

0

25

50

75

100

125

150

175

DeiT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150

0

25

50

75

100

125

150

175

CPVT

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(d) The second head (encoder 3)

Figure 6. Normalized attention scores (the second and third head) of the second and third encoder
block of DeiT (Touvron et al., 2020), and CPVT on the same input sequence. DeiT and CPVT share
similar locality patterns that are aligned diagonally (some might shift).

D.4 COMPARISON WITH OTHER APPROACHES

We further compare our method with other approaches such as CvT (Wu et al., 2021), ConViT
(d’Ascoli et al., 2021) and CoAtNet (Dai et al., 2021) on ImageNet validation set in Table 15. To
make fair comparisons, we categorize these methods into two groups: plain and pyramid models.
Since our models are primarily for plain models, we adapt our methods on two popular pyramid
frameworks PVT and Swin. Our CPVT-S-GAP slightly outperforms ConViT-S by 0.2% with 4M
fewer parameters and 0.8G fewer FLOPs. When equipped with pyramid designs, our methods are
still comparable to CvT and CoAtNet.

Comparison with DeiT w/ Convolutional Projection. Note CvT uses a depth-wise convolution
in q-k-v projection which they call it Convolutional Projection. Instead of using it in all layers, we
put only one of such design into DeiT-tiny and train such a model from scratch under strictly con-
trolled settings. We insert it in the position 0 as in our method. The result is shown in Table 16. This
CvT-flavored DeiT achieves 70.6% top-1 accuracy on ImageNet validation set, which is lower than
ours (72.4%). Note that q-k-v projections in CvT utilize three depthwise convolutions, therefore,
this setting has more parameters than ours. This attests the difference of CvT and CPVT, verifying
our advantage by learning better position encodings other than inserting them in all layers to have
the ability to capture local context and to remove ambiguity in attention.

18

Published as a conference paper at ICLR 2023

Table 15. Performance comparison with other approaches such as CvT (Wu et al., 2021), ConViT
(d’Ascoli et al., 2021) and CoAtNet (Dai et al., 2021) on ImageNet validation set. All the models
are trained on ImageNet-1k dataset and tested on the validation set using 224×224 resolution.

Model Type Params FLOPs Top-1 Acc
(%)

DeiT-small (Touvron et al., 2020) Plain 22M 4.6G 79.9
ConViT-S (d’Ascoli et al., 2021) Plain 27M 5.4G 81.3
CPVT-S-GAP (ours) Plain 23M 4.6G 81.5
CoAtNet-0 (Dai et al., 2021) Pyramid 25M 4.2G 81.6
CvT-13 (Wu et al., 2021) Pyramid 20M 4.5G 81.6
PVT-small (Wang et al., 2021) Pyramid 25M 3.8G 79.8
PVT-small+PEG+GAP Pyramid 25M 3.8G 81.2
Swin-tiny (Liu et al., 2021) Pyramid 29M 4.5G 81.3
Swin-tiny+PEG+GAP Pyramid 29M 4.5G 82.3

Table 16. Comparison with positional encoding in CvT (Wu et al., 2021) on ImageNet validation set.
All the models are trained on ImageNet-1k dataset and tested on the validation set using 224×224
resolution.

Model Params Insert Position Top-1 Acc
(%)

CPVT-Ti 5681320 0 72.4
DeiT+ Convolutional Projection 5685352 0 70.6

19

	Introduction
	Related Work
	Vision Transformer with Conditional Position Encodings
	Motivation
	Conditional Positional Encodings
	Conditional Positional Encoding Vision Transformers

	Experiments
	Setup
	Generalization to Higher Resolutions
	CPVT with Global Average Pooling
	Complexity of PEG
	Performance Comparison
	PEG on Pyramid Transformer Architectures

	Ablation Study
	Positional encoding or merely a hybrid?
	PEG Position in CPVT
	Comparisons with other positional encodings

	Conclusion
	Translation Equivariance
	Experiment Details
	Architecture variants of CPVT
	The Hyperparameters of CPVT
	Importance of Zero Paddings
	Single PEG vs. Multiple PEGs
	Classfication Evaluation of Swin with PEG
	Evaluation on Segmentation and Detection
	Ablation on Other Forms of PEG

	Example Code
	PEG

	More discussions
	Why RPE works less well than absolute PE?
	Comparison to Lambda Networks
	Qualitative Analysis of CPVT
	Comparison with Other Approaches

