
Under review as submission to TMLR

Bridging Efficiency and Adaptability: Continual Learning of
MLPs on Class-Incremental Graphs

Anonymous authors
Paper under double-blind review

Abstract

Compared to static graphs, class-incremental graphs place higher demands on inference
latency to support timely predictions for newly emerged node classes, especially in latency-
sensitive applications. However, the high inference cost of Graph Neural Networks (GNNs)
limits their scalability and motivates GNN-to-MLP distillation, which transfers knowledge
from a GNN to a Multi-Layer Perceptron (MLP) to enable graph-free, low-latency infer-
ence. Yet, existing efforts focus on static graphs. When directly applied to class-incremental
graphs, they inevitably suffer from the high computational cost of frequent GNN updates
and the MLP’s inability to retain knowledge of previously learned classes. To bridge effi-
ciency and adaptability, we propose a novel framework featuring an asynchronous update
paradigm between GNN and MLPs, allowing rapid adaptation to evolving data. The MLPs
employ a progressive expansion strategy for continual adaptation and an energy-based rout-
ing mechanism for test-time inference. During GNN updates, knowledge from MLPs trained
in the current cycle is distilled back into the GNN to preserve long-term knowledge. Experi-
ments on real-world datasets demonstrate that our framework achieves superior performance
on class-incremental graphs, effectively balancing adaptability to new data and inference ef-
ficiency.

1 Introduction

Graph Neural Networks (GNNs) (Veličković et al., 2018a; Kipf & Welling, 2017) have demonstrated
remarkable success in modeling graph-structured data by leveraging message passing mechanisms (Wu
et al., 2020) to capture relational dependencies. However, the reliance on message passing incurs sig-
nificant inference latency due to recursive aggregation (Zhang et al., 2022b). This limits the scalabil-
ity of GNNs, making them impractical for large-scale applications where rapid inferences are essential,
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Figure 1: Conceptual comparison of (a) GNN-
to-MLP distillation, (b) continual GNN-to-MLP
distillation, (c) the proposed continual learning
of MLPs. CG and C denote the update cycle for
the GNN and MLP, respectively.

such as real-time recommendation systems (Huang et al.,
2025) and online search (Zhang et al., 2022a). To address
this, GNN-to-MLP distillation (Zhang et al., 2022b; Wang
et al., 2023) has emerged as an effective solution, transfer-
ring knowledge from a GNN to a graph-free Multi-Layer
Perceptron (MLP), as illustrated in Figure 1(a). By re-
placing GNN-based inference with an MLP, this approach
enables efficient, low-latency predictions without requir-
ing access to the original graph structure.

While GNN-to-MLP distillation has been widely explored
in static settings, real-world applications often involve
graph class-incremental scenarios (Zhang et al., 2024; Tan
et al., 2022; Lu et al., 2022), where new node classes
continuously emerge as the graph evolves. The adop-
tion of GNN-to-MLP distillation in such scenarios re-
mains unexplored. To enable low-latency inference on
class-incremental graphs, a straightforward approach is
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Figure 2: Two issues of continual distillation.

to frequently retrain the GNN and distill it into an MLP at each time step, as Figure 1(b) shows. However,
frequent GNN updates are computationally expensive, as message passing over large-scale graphs incurs
significant overhead, making fast adaptation impractical. Meanwhile, the deployed MLP remains static until
the ongoing GNN update is completed, failing to rapidly produce reliable inferences on newly emerging node
classes. For instance, as shown in Figure 2(a), when nodes with new classes emerge at t1, the GNN will be
updated to adapt to these new classes. Assuming the update takes one day, the previous MLP, which has
not been exposed to the new data, remains in use for inference during this period. As a result, it cannot
provide accurate predictions for new classes, making inference on the new data infeasible.

Although recent methods (Zhang et al., 2024; Liu et al., 2023) based on continual learning have been explored
in the graph domain to adapt to new data and avoid retraining GNNs from scratch, these methods still focus
on incrementally updating a single GNN model and have to rely on isolated distillation at each time step
when pursuing low-latency inference, preventing MLPs from leveraging previously learned knowledge. Since
each new MLP is initialized with the parameters of the previous one but undergoes significant updates
during optimization, the retained knowledge is often overwritten, as illustrated in Figure 2(b), which leads
to catastrophic forgetting and inefficient knowledge transfer, hampering generalization across previously seen
node classes.

These challenges highlight the need for a framework that bridges the gap between efficiency and adaptability.
The framework should enable low-latency MLPs to remain effective on class-incremental graphs, while miti-
gating catastrophic forgetting and preserving fast and accurate inference. To enable rapid inference on newly
emerging nodes and reduce the high computational cost associated with GNN updates, it is impractical to
frequently retrain or continually update the GNN model. Instead, to ensure that the MLP adapts to new
graph data in a timely manner, it should be updated more frequently than GNN, as illustrated in Figure
1(c). This allows the MLP to directly learn from newly emerging nodes and classes and provide accurate
inference, while GNN is updated at a lower frequency to reduce computational costs without sacrificing
long-term structural learning. However, as the MLP is continually updated at a high frequency, it risks
forgetting earlier learned knowledge, leading to inference performance degradation on previously seen node
classes. Without an effective mechanism for knowledge retention, the inference model tends to prioritize
newly arriving data at the cost of past information. Existing methods for mitigating forgetting face limita-
tions in GNN-to-MLP distillation. Replay-based approaches (Zhou & Cao, 2021; Liu et al., 2023) require
identifying which past data to retain, while regularization-based methods (Kirkpatrick et al., 2017; Zhang
et al., 2022d) increase complexity and computational cost, often causing class representation drift. The
necessity of maintaining low-latency inference for MLP imposes a strict constraint on designing an effective
MLP learning strategy on class-incremental graphs.

Our work. To develop a solution that enables the MLP to effectively retain past class knowledge while still
rapidly adapting to newly emerging graph data with new classes, all while maintaining low-latency inference,
in this paper, we propose a framework called CMLP, built on a novel paradigm of asynchronously updating
the GNN and MLPs. To avoid complex designs that could increase inference latency, we propose a simple yet
effective progressive MLP expansion strategy to address the challenges of graph class-incremental learning
while maintaining low-latency inference. The progressively enlarged MLPs preserve both past and current
knowledge without overwriting earlier model parameters. As time progresses and MLPs from subsequent
stages are trained, rather than treating them as independent models, we ensemble them as a mixture of
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Table 1: Model Comparisons
Model Types Efficiency Adaptability
GNN ✗ ✗
GNN-to-MLP ✓ ✗
Graph Incremental Learning ✗ ✓
CMLP (Our Model) ✓ ✓

experts, where each MLP expert specializes in different learning phases, adapting to distinct emerging
classes. To effectively utilize these experts during inference, we introduce an energy-based test-time routing
mechanism that selects the most suitable expert for a given input node. Unlike traditional gating mechanisms
(Zhou et al., 2022) that require training, our approach allows expert selection to be guided by the energy-
based confidence scores (LeCun et al., 2007) during test time. Furthermore, these learned experts can
serve as teacher models for distillation back into the GNN during its update phase, helping to mitigate the
forgetting issue that occurs as the GNN continuously adapts to new data and ensuring a more robust and
efficient continual learning process. Once GNN is updated, all previous MLPs are To summarize, our main
contributions are as follows:

• To the best of our knowledge, we are the first to investigate GNN-to-MLP distillation on class-incremental
graphs, addressing the challenge of adapting to evolving graph data while maintaining inference efficiency.

• We design an asynchronous update paradigm for GNN and MLPs to enable rapid adaptation to evolving
graph data.

• We propose a progressive MLP expansion strategy to mitigate forgetting, ensure low-latency inference,
and support fast updates without access to past data.

• We formulate the expanded MLPs as a mixture of experts to leverage knowledge from different stages and
introduce an energy-based test-time routing mechanism to efficiently select the best expert for inference.

• We conduct extensive experiments on real-world graph datasets, demonstrating that our method effectively
balances adaptability to new data and inference efficiency.

2 Related Work

GNN-to-MLP Distillation. It has emerged as a promising approach (Zhang et al., 2022b; Wang et al.,
2023) to enable graph-free inference by training a lightweight MLP to mimic the predictions of a GNN.
This paradigm is particularly appealing in scenarios where low-latency inference is critical. GLNN (Zhang
et al., 2022b) pioneered distilling GNN outputs into structure-independent MLPs. Follow-up work (Wang
et al., 2023; Tian et al., 2022; Yang et al., 2021) explored injecting structural biases during distillation, while
others (Xiao et al.; Dong et al., 2022; Hu et al., 2021; Liu et al., 2022) focused on aligning MLPs with GNNs
at the subgraph level. Recent advances include structural discretization (Yang et al., 2024) and ensemble-
based frameworks (Lu et al., 2024). Despite these advances, existing methods are confined to static graphs.
In contrast, real-world graphs are dynamic in nature with new nodes and classes emerging continuously,
requiring models that enable fast inference and continual adaptation without forgetting. However, current
approaches overlook the challenge of combining efficient inference with adaptability in the class-incremental
graph setting.

Graph Class-incremental Learning. It extends traditional continual learning to graphs, where models
must learn from emerging classes while avoiding catastrophic forgetting. Existing methods mainly follow
three lines: regularization-based approaches constrain parameter updates to retain prior knowledge (Li &
Hoiem, 2017; Kirkpatrick et al., 2017; Liu et al., 2021); memory-based methods replay stored or synthesized
data (Zhou & Cao, 2021; Zhang et al., 2022e; Liu et al., 2023); and architectural methods dynamically expand
models to handle new tasks (Zhang et al., 2022d; Niu et al., 2024). Despite these advances, existing methods
focus on updating a single GNN model, which differs significantly from our problem setting. Applying
GNN-to-MLP distillation on class-incremental graph remains unexplored.
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3 Preliminaries

Definition 1 (Graph Class-incremental Learning) In the setting, a model learns from an evolving se-
quence of graph data where new node classes emerge over time. Given an initial training phase on a graph
G0 = (V0, E0, X0, Y0), where V0 represents the set of nodes, E0 denotes the edges, X0 ∈ R|V0|×d is the node
feature matrix, and Y0 corresponds to the class labels, the model then encounters a sequence of incremen-
tal learning data {Gt = (Vt, Et, Xt, Yt)}T

t=1, where each Gt introduces a disjoint set of novel classes Yt. In
each learning phase t, Gt serves as training data for updating the model while the model should retain past
knowledge from previous graphs G0, ..., Gt−1 without accessing previous graph data from any previous time
step t′ < t. It means that the model only uses the most recent graph Gt for training without direct access
to historical graph instances, posing challenges in mitigating catastrophic forgetting and ensuring discrimi-
nation across seen and unseen classes. The model’s overall performance is evaluated across all encountered
classes throughout the learning process.

Definition 2 (Update Cycles in Incremental Learning) The update cycle determines how frequently
models adjust to newly arriving data while maintaining efficiency and performance. Let CG and C denote
the update cycles for the GNN and MLP, respectively. Due to the computational overhead of GNNs, GNN
updates occur less frequently (e.g., every 5 days), while MLP is updated more frequently (e.g., daily) to rapidly
adapt to new data and provide fast, timely inference. To balance efficiency and adaptability, we restrict the
ratio of CG/C to remain below 10. This setup ensures that MLP quickly captures short-term variations,
while the GNN periodically integrates structural information at a larger time scale. In this work, we focus on
the incremental learning process of MLP within each GNN update cycle, ensuring that the inference model
rapidly adapts to evolving data distributions while leveraging previously acquired knowledge.

Definition 3 (Problem Definition) We study the problem of GNN-to-MLP distillation on class-
incremental graphs, where the inference model incrementally learns new node classes while ensuring effi-
cient inference and effective adaptation. Given a sequence of evolving graphs G0, G1, ..., GT , where each graph
is represented as Gt = (Vt, Et, Xt, Yt), our goal is to incrementally learn MLPs that can classify both past
and newly introduced classes while maintaining low inference latency. Formally, given an evolving dataset
{Gt}T

t=0, CG = T , and C = 1, the objective is to learn a sequence of inference models {f t
MLP}T

t=0 that adapt
to new class distributions while preserving knowledge from previous graphs. The problem is constrained by
the need for graph-free inference, continual adaptation, and knowledge retention, making it distinct from
conventional static graph learning approaches.

4 The Proposed Method

This section details the components of the proposed CMLP framework. The optimization process is dis-
cussed in Appendix C. Figure 3 provides an overview of CMLP.

4.1 GNN-to-MLP Distillation

At the initial time step t0, given a graph G0 = (V0, E0, X0, Y0), a GNN model fGNN(·) is trained to learn
structure-aware node embeddings as H0 = fGNN(G0), where H0 denotes the representations of nodes learned
by the GNN. The goal of GNN-to-MLP distillation is to transfer knowledge into an MLP model fMLP(·),
enabling it to approximate fGNN(·) without requiring explicit graph connectivity. The MLP takes as input
the node feature matrix X0 and maps it to the embedding space by Ĥ0 = fMLP(X0), where Ĥ0 represents
the node embeddings produced by the MLP using only the feature matrix X0. A prediction head g0(·) is
then applied to map embeddings to class logits by Ŷ0 = g0(Ĥ0). To ensure that the distilled MLP effectively
mimics the pre-trained GNN, we optimize the following knowledge distillation loss function defined as:

LKD = LCE(Ŷ0, Y0) + αLKL(Ĥ0, H0) (1)

where LCE is the cross-entropy loss ensuring supervised classification performance, LKL is the KL-divergence
loss aligning the representations learned by the MLP with those of the GNN, and α is a tradeoff hyperpa-
rameter. Once trained, the distilled MLP enables graph-free inference, classifying nodes without requiring
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Figure 3: Overview of the CMLP framework. During the training stage, progressive MLP expansion enlarges
MLPs through key-value expansion over time, enabling them to learn from newly emerging classes. When
the GNN update cycle is reached, GNN incorporates both the data from the current cycle and the guidance
of experts for updating. During the testing stage, an energy-based test-time routing mechanism selects the
most suitable expert for inference.

access to E0. Note that our work focuses on continual learning of MLPs for class-incremental graphs rather
than designing advanced GNN-to-MLP distillation strategies. Any GNN-to-MLP distillation strategy can
be adopted and we leverage the canonical GNN-to-MLP distillation approach (Zhang et al., 2022b).

4.2 Progressive MLP Expansion

Since class-incremental graphs involve a sequence of graphs {Gt}T
t=0, the MLP should be continually updated

as new graphs emerge to quickly adapt to the emerging graph and ensure rapid and accurate inference. To
accumulate new knowledge while minimizing interference with previously learned information, and to ensure
that the MLP remains efficient for inference, we design a progressive expansion strategy with a key-value
expansion mechanism. Rather than introducing complex learning components that could increase inference
latency, this approach incrementally expands the MLP without altering previously learned parameters, also
maintaining a lightweight structure suitable for real-time large-scale applications.

Specifically, at each time step t, the MLP consists of two layers. Formally, the forward propagation of the
MLP at time t is given by:

H
(1)
t = σ(XtW

(t)
1 + b

(t)
1 ), W

(t)
1 ∈ Rd×h, b

(t)
1 ∈ Rh (2)

H
(2)
t = σ(H(1)

t W
(t)
2 + b

(t)
2 ), W

(t)
2 ∈ Rh×h′

, b
(t)
2 ∈ Rh′

(3)

where Xt denotes the feature matrix, and W
(t)
1 , W

(t)
2 are the layer-wise weight matrices, and b

(t)
1 , b

(t)
2 are bias

vectors. σ(·) represents the activation function.

At time step t + 1, the first-layer weight matrix is expanded to accommodate new feature representations.
Instead of overwriting or directly appending weights, we introduce a key-value expansion mechanism with a
trainable key K

(t)
1 and a value V

(t)
1 , which dynamically generates additional weight components by:

W
(t+1)
1 =

[
W

(t)
1 K

(t)
1 V

(t)
1

]
, K

(t)
1 ∈ Rd×k, V

(t)
1 ∈ Rk×∆h (4)

b
(t+1)
1 =

[
b

(t)
1

bnew
1

]
, bnew

1 ∈ R∆h (5)

where K
(t)
1 serves as an adaptive low-rank project of the input space, and V

(t)
1 projects it into the newly

allocated hidden units ∆h. This allows the model to expand its capacity while keeping previously learned
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parameters intact, ensuring that new information does not alter existing knowledge. Also, the low-rank
projection can effectively capture meaningful information in the input by compressing it into a compact and
task-relevant subspace. Similarly, the second-layer weight matrix is expanded to incorporate the additional
hidden neurons by:

W
(t+1)
2 =

[
W

(t)
2

K
(t)
2 V

(t)
2

]
, K

(t)
2 ∈ R∆h×k′

, V
(t)

2 ∈ Rk′×h′
(6)

where the second-layer bias term remains unchanged as b
(t+1)
2 = b

(t)
2 , since we preserve the previously learned

representation space. Notably, previous parameters W
(t)
1 , W

(t)
2 , b

(t)
1 , b

(t)
2 remain fixed and are not updated to

preserve past knowledge. Only the added parameters K
(t)
1 , V

(t)
1 , K

(t)
2 , V

(t)
2 , and bnew

1 are trainable at t + 1.

This formulation ensures that the MLP’s capacity increases gradually without disrupting previously opti-
mized parameters. The forward pass at time t + 1 now follows:

H
(1)
t+1 = σ(Xt+1W

(t+1)
1 + b

(t+1)
1 ) (7)

H
(2)
t+1 = σ(H(1)

t+1W
(t+1)
2 + b

(t+1)
2 ) (8)

By incorporating key-value expansion, the model dynamically adapts to new emerging graphs while pre-
serving prior knowledge. The additional parameters are designed to prevent unnecessary redundancy, as the
keys and values remain lightweight, introducing minimal computational overhead and ensuring efficient and
scalable inference. This progressive expansion approach balances the need for adaptation and inference effi-
ciency. It ensures that the model grows in a controlled and efficient manner, allowing for smooth adaptation
without sacrificing computational efficiency.

Apart from the MLPs, each newly expanded MLP at time step t is attached with a prediction head gt, which
maps the learned representation to the class space. Specifically, the output representation H

(2)
t is passed

through gt to generate class logits as Ŷt = gt(H(2)
t ). To optimize the corresponding MLPs, we apply the

cross-entropy loss as:
Lt

MLP = LCE(Ŷt, Yt), (9)
By assigning separate prediction heads to each MLP, the framework enables each MLP to specialize in its
corresponding time step and newly emerging node classes.

4.3 Energy-based Test-time Routing

In our framework, at each time step t, a new MLP model f t
MLP is constructed by progressively expanding the

previous MLP. This results in a series of specialized MLPs, each trained on a distinct subset of the evolving
data with a disjoint set of classes. The collection of MLPs naturally forms a Progressive Mixture of Experts
(PMoE), where the number of experts dynamically increases over time. For example, at step t = 0, a single
expert is trained; at step t = 1, two experts exist; at step t = 2, three experts are available, and so on. Unlike
traditional MoE architectures with a fixed set of experts, our design introduces a growing ensemble, where
new experts are continually added rather than replacing old ones. This PMoE design allows the model
to retain previously learned knowledge while efficiently adapting to new graphs. Each expert specializes
in the data distribution at its corresponding time step, ensuring that stability and plasticity are balanced
without catastrophic forgetting. Compared to single-expert models that continually update a single set of
parameters, this formulation provides a scalable and adaptive learning framework, where the model increases
its capacity as new knowledge is introduced.

Specifically, we propose a test-time routing mechanism by adopting the energy-based model to measure
expert confidence directly from the output logits of each MLP. This eliminates the need for canonical gating
training, ensuring that expert selection remains robust to catastrophic forgetting. During test time at time
step t, given a testing node with feature input x, each expert from {f i

MLP}t
i=0 produces a prediction by

ŷi = gi(f i
MLP(x)), where gi is the prediction head attached to MLP f i

MLP. The confidence of each expert is
then quantified using an energy function as:

Ei(x) = − log
∑

c

exp(gi(f i
MLP(x))c) (10)
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where gi(f i
MLP(x)) represents the output logits of expert i, and the summation is taken over all class logits c.

Lower energy values indicate higher model confidence, meaning that the expert is more suitable for handling
the input node, while higher energy values indicate greater uncertainty in the expert’s prediction.

To select the best expert at test time, we identify the expert with the lowest energy score among all experts
trained from step 0 to t:

i∗ = arg min
i∈{0,...,t}

Ei(x). (11)

where i∗ denotes the most confident expert up to time step t for the given input node. The final prediction
is then defined as ŷi = gi∗(f i∗

MLP(x)). This routing mechanism ensures that only the most confident expert
from the available experts at time t is used for inference, preventing interference from less relevant models.

4.4 Expert-guided GNN Updating

In our framework, the GNN is updated periodically at a larger time scale compared to the more frequent
MLP updates. During each GNN update cycle, the system has already completed multiple MLP update
cycles, resulting in a set of progressively expanded MLPs that have adapted to short-term variations in the
data. The role of the GNN update is to periodically integrate structural information from the observed graphs
that emerged in the current update cycle and refine node representations, providing a more robust backbone
for future MLP adaptations. Given that GNN training is computationally expensive, it is performed at a
lower frequency, ensuring a balance between efficiency and adaptability. However, continual GNN updates
inevitably lead to catastrophic forgetting, where new knowledge overwrites previously learned representa-
tions, resulting in a loss of past information. This issue arises due to the evolving graph structures, where
newly introduced nodes, edges, and labels dynamically shift the model’s learned representations, potentially
degrading its ability to classify earlier classes.

To address this challenge, we propose leveraging the MLPs built during the current GNN update cycle as
knowledge-preserving models to mitigate forgetting in the GNN. Since these experts are trained sequentially,
with the first MLP expert preserving past graph data, they inherently retain information from earlier data
distributions. Therefore, we use knowledge distillation from the most confident past MLP to guide GNN
updating, ensuring that it retains meaningful representations while learning from new data. Specifically, at
each GNN update step T , we leverage the data accumulated in the current GNN update cycle, denoted as
GT = (VT , ET , XT , YT ). The GNN fGNN learns structure-aware representations by HT = fGNN(GT ). A clas-
sification head gGNN is applied to the learned representations. To ensure the updated GNN retains knowledge
from prior tasks, we select the most confident past MLP using the energy-based routing mechanism:

i∗ = arg min
i∈{0,...,T }

Ei(xT ), (12)

where Ei(xT ) is the energy score computed for input xT by the past MLP f i
MLP. The knowledge distillation

loss aligns a GNN’s prediction with the selected expert’s outputs using KL divergence:

LGKD = 1
|VT |

|VT |∑
z=1

LKL(gGNN(hz
T ) ∥ gi∗(f i∗

MLP(xT
z ))). (13)

The final objective for updating the GNN is a combination of the supervised cross-entropy loss for learning
from new labels and the distillation loss for preserving past knowledge:

LGNN = LCE + βLGKD. (14)

where β controls the balance between learning new information and retaining prior knowledge. By periodi-
cally updating the GNN at a larger time scale, the model captures long-term structural dependencies in the
evolving graph while leveraging the continuously updated MLPs for efficient inference in between GNN up-
dates. The asynchronous updates ensure that both short-term adaptability and long-term structural learning
are balanced in an efficient manner while preventing catastrophic forgetting in the framework. Note that at
the end of each GNN update cycle, all expanded MLPs are discarded to reduce memory usage, and a new
MLP is reinitialized from scratch for Graph-to-MLP distillation to begin the next MLP cycle.
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Table 2: Overall Performance Comparison. ∗ denotes p < 0.05 for the paired t-test on CMLP with the best
baseline.
Method CoraFull-CL Arxiv-CL Reddit-CL Products-CL

AP/% ↑AF/% ↑H-Mean ↑AP/% ↑AF/% ↑H-Mean ↑AP/% ↑AF/% ↑H-Mean ↑AP/% ↑AF/% ↑H-Mean ↑
MLP 12.83 -77.00 16.47 12.56 -68.74 17.91 15.96 -80.34 17.61 15.74 -78.63 18.12
GraphMLP 12.89 -77.63 16.35 13.25 -68.36 18.67 18.17 -83.87 17.08 16.20 -79.13 18.24
GLNN 13.24 -76.71 16.88 13.70 -69.08 18.98 18.48 -84.03 17.13 16.27 -79.47 18.15
GENN 13.85 -77.89 17.03 14.31 -69.59 19.46 19.20 -84.72 17.02 16.58 -80.40 17.96
VQGraph 14.05 -78.61 16.95 14.85 -69.94 19.87 19.58 -84.58 17.25 16.87 -81.28 17.74
NOSMOG 14.18 -78.59 17.06 14.63 -68.86 19.90 19.38 -84.49 17.23 16.62 -80.81 17.81
GEM 17.68 -71.55 21.80 15.63 -65.84 21.44 25.60 -60.67 31.01 18.69 -51.46 26.98
MAS 20.79 -68.84 24.93 15.42 -64.83 21.43 27.18 -52.40 34.60 19.05 -50.83 27.46
LwF 14.89 -75.15 18.62 15.25 -65.80 21.09 23.58 -68.37 27.01 18.63 -52.77 26.72
EWC 23.64 -65.56 28.03 17.32 -42.56 26.61 32.50 -45.89 40.60 20.21 -45.50 29.48
CMLP 42.66∗ -14.54∗ 56.91∗ 23.48∗ -9.53∗ 37.28∗ 55.84∗ -12.80∗ 66.73∗ 25.59∗ -22.71∗ 38.44∗

5 Experiments

5.1 Experimental Setup

Dataset. We evaluate our proposed method on four benchmark datasets from CGLB (Zhang et al., 2022c).
CoraFull-CL (Bojchevski & Günnemann, 2018) consists of 70 classes, Arxiv-CL (Hu et al., 2020) and Reddit-
CL (Hamilton et al., 2017) each contain 40 classes, and Products-CL (Hu et al., 2020) includes 46 classes.
Each dataset is partitioned into five groups: the first is used to train the GNN and perform GNN-to-MLP
distillation, while the remaining groups are incrementally introduced to update the MLPs in subsequent
steps. Additional dataset details are provided in Appendix D.

Baselines. To evaluate CMLP, we compare it with state-of-the-art models across two main categories,
including GNN-to-MLP distillation and continual learning. The first category includes GLNN (Zhang
et al., 2022b), GraphMLP (Hu et al., 2021), GENN (Wang et al., 2023), VQGraph (Yang et al., 2024),
and NOSMOG (Tian et al., 2022). The second category consists of GEM (Lopez-Paz & Ranzato, 2017),
MAS (Aljundi et al., 2018), LwF (Li & Hoiem, 2017), and EWC (Kirkpatrick et al., 2017). All these models
are evaluated under identical experimental setups with the same evolving graphs and update schedule as
CMLP, to ensure a fair comparison. Additional details about baselines are provided in Appendix D.

Experimental Details. We follow an evaluation protocol tailored for graph continual learning (Zhang
et al., 2022c), and employ Average Performance (AP), Average Forgetting (AF), and H-mean as evaluation
metrics. Details about the evaluation protocol and implementation are provided in the Appendix D.

5.2 Experimental Results

Overall Performance. To assess the effectiveness of our proposed framework, we compare CMLP against
both GNN-to-MLP baselines and continual learning baselines in their ability to continuously learn and
adapt MLPs. As shown in Table 2, CMLP significantly outperforms all baseline models. While existing
GNN-to-MLP methods incorporate different techniques to embed graph structure into MLPs, their poor
performance on the class-incremental graph highlights their inability to handle the continual adaptation
of MLPs to evolving graphs, leading to high forgetting scores. On the other hand, continual learning
baselines perform better than GNN-to-MLP models, as they adopt various strategies to mitigate catastrophic
forgetting. However, their reliance on selecting representative samples or estimating parameter importance
still inevitably modifies previously learned parameters, ultimately degrading continual learning performance.
In contrast, CMLP preserves all learned parameters intact and adopts a progressive MLP expansion strategy,
ensuring the retention of past knowledge while adapting to newly emerging node classes. This design makes
CMLP particularly well-suited for the continual learning of MLPs in the class-incremental setting.

Performance Over Time. We present the performance matrix M comparisons between GLNN, EWC,
and CMLP in Figure 4 and Figure 5 to analyze how classification accuracy evolves over time. Each entry
Mi,j in the heatmap represents the classification accuracy of a model on the novel node classes introduced
at time step j, after training on the emerging graph at time step i. From these comparisons, we observe that
as time progresses, CMLP demonstrates a stronger ability to retain past knowledge and achieves superior
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Figure 4: Performance comparison over time on Cora. Figure 5: Performance comparison over time on Red-
dit.

Table 3: The results of ablation studies.
Method CoraFull-CL Arxiv-CL

AP/% ↑AF/% ↑H-Mean ↑AP/% ↑AF/% ↑H-Mean ↑
Single MLP 12.83 -77.00 16.47 12.56 -68.74 17.91
CMLP w/o E 18.54 -68.56 23.33 16.30 -57.55 23.56
CMLP 42.66 -14.54 56.91 23.48 -9.53 37.28

classification accuracy on previously learned classes compared to GLNN and EWC. GLNN primarily focuses
on learning from the current input graphs while entirely forgetting past knowledge. EWC, although more
effective at mitigating forgetting than GLNN, suffers from inaccuracies in estimating parameter importance,
limiting its ability to fully preserve prior knowledge. In contrast, CMLP effectively maintains past class
information while continually adapting to new data, leading to more stable long-term performance.

AP

Figure 6: GNN performance comparison on four
datasets.

Performance of GNN. Since our experiments include
five MLP update cycles within one GNN update cycle,
we evaluate the GNN’s performance on the classes that
appeared in the stage t0, where GNN-to-MLP distillation
was performed. As Figure 6 shows, GNN at t0 repre-
sents the classification accuracy of the initial GNN model
used for distillation. GNN w/o Expert refers to the up-
dated GNN model after MLP update cycles, but without
guidance from the trained MLPs. GNN w/ Expert repre-
sents the updated GNN model that incorporates knowl-
edge from PMOE during its update. From the results, we
observe that the GNN undergoes catastrophic forgetting
after completing a GNN update cycle, as indicated by the performance drop when comparing GNN at t0
with the other two variants. This forgetting occurs because the parameters of the GNN are modified during
the update. However, with guidance from the MLPs trained throughout the cycle, the forgetting effect is
mitigated. The mixture of experts effectively preserves past knowledge acquired at step t0 and facilitates
knowledge distillation back into the GNN, helping it retain previously learned information.

Ablation study. To assess the contribution of each component in CMLP, we conduct an ablation study by
comparing CMLP with two variants. The first variant, Single MLP, maintains only a single MLP that is
continually updated as new graphs emerge, without any explicit mechanism for preserving past knowledge.
The second variant, CMLP w/o E, removes the mixture of experts design, relying solely on the latest
MLP at each time step for inference. As shown in Table 3, Single MLP performs the worst, as continual
updates overwrite previously learned knowledge, leading to severe forgetting. CMLP w/o E achieves
slightly improvement over Single MLP but remains inferior to the full CMLP, as the latest MLP primarily
adapts to the current graph while disregarding prior knowledge. These results show the importance of the
mixture of experts in preserving historical information and ensuring long-term performance.

Impact of MLP Expansion Parameters. To investigate the impact of the MLP expansion dimension ∆h,
we conduct experiments with different expansion sizes ranging from 32 to 512 on CoraFull-CL and Arxiv-CL.
As shown in Figure 7, we observe that performance improves as the expansion dimension increases. When the
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Figure 7: The impact of expansion dimension ∆h. Figure 8: The impact of low-rank projection k.

Table 4: The impact of the number of MLP update cycles.
Update Cycles CoraFull-CL Reddit-CL

AP/% ↑AF/% ↑H-Mean↑AP/% ↑AF/% ↑H-Mean↑

3 47.52 -10.70 62.03 58.41 -11.01 70.53
5 42.66 -14.54 56.91 55.84 -12.80 66.73
7 36.45 -14.84 51.05 52.38 -14.27 65.03

expansion dimension is small (e.g., 32), the model has a limited set of parameters for learning from emerging
graphs and classes, leading to insufficient network capacity and poor adaptation to new data. In contrast,
when the expansion dimension is larger (e.g., 256 or 512), the performance significantly improves compared to
the 32-dimensional setting, indicating that a larger network provides better learning capacity. Additionally,
we find that the performance with 256 and 512 dimensions is similar, suggesting that a 256-dimensional
expansion is sufficient for learning new data under the current experimental setting. Furthermore, we
also study the impact of the MLP low-rank projection parameter k. Similarly, we progressively expand
the MLP with varying values of k ∈ {25, 50, 75, 100, 125}, which control the parameter in the key-value
expansion. As shown in Figure 8, the performance generally improves with increasing k, especially when
moving from 25 to 75, indicating that higher-rank projections allow for richer capacity and more expressive
updates. However, further increasing k beyond 75 leads to marginal or even slightly decreased improvements,
suggesting a saturation point where the additional projection dimensions may not yield significant gains and
could introduce redundancy. This trend is consistently observed across both the CoraFull-CL and Arxiv-CL,
demonstrating that moderate values of k strike a favorable balance between expressiveness and efficiency.

Impact of the Number of MLP Update Cycles. To explore the influence of MLP update cycles, we
conduct experiments on CoraFull-CL and Reddit-CL with varying update cycles of 3, 5, and 7. As shown
in Table 4, we observe that the AP score decreases as the update cycle increases, indicating a decline in
adaptation ability. Additionally, the average forgetting increases since the energy-based confidence estimation
becomes less distinguishable when the number of experts grows. These results suggest that a smaller update
cycle leads to better overall performance but requires more frequent GNN updates. Conversely, a larger
update cycle degrades performance due to accumulated forgetting. Therefore, it is crucial to balance the
GNN update cycle and the MLP update cycle to achieve an optimal tradeoff between adaptation and
knowledge retention. Moreover, we also compare CMLP with the two best baseline models in two categories,
including NOSMOG and EWC, under the setting where MLP update cycle is fixed at 10. As illustrated
in Figure 9, CMLP consistently outperforms both baselines across all four benchmarks on both AP and
H-Mean metrics. These results highlight that CMLP is more robust under larger MLP update cycles, where
baseline methods tend to suffer from more severe forgetting due to their limited mechanisms for preserving
past knowledge. In contrast, CMLP benefits from its progressive MLP expansion, which mitigates forgetting
while ensuring continuous adaptation.

Inference and Training Efficiency Comparison. To demonstrate the efficiency of inference
and training of our proposed method, we show comparisons between our method and several base-
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Figure 9: Performance comparison (AP and H-Mean) on four datasets when the MLP update cycle is fixed
at 10.

line methods. As shown in Figure 10, we observe that for inference efficiency, all methods ex-
cept GraphSAGE adopt an MLP for inference and therefore achieve similarly low inference time.

The best at balancing 
efficiency and adaptability.

Figure 10: Inference and training efficiency com-
parison (the size of each solid circle represents
the training time, where a larger circle denotes a
longer duration).

Although CMLP is based on the progressive mixture-of-
experts, inference across these experts can be executed
in parallel, so the overall inference time is primarily de-
termined by the last expert. In contrast, GraphSAGE
uses a full GNN for inference, which results in signifi-
cantly higher inference time. For training efficiency, the
size of each solid circle represents the training time, where
a larger circle indicates a longer duration. CMLP achieves
the best AP performance with relatively low training cost.
In comparison, NOSMOG and GLNN, which are based
on GNN-to-MLP distillation, directly fine-tune the GNN
and MLP to adapt to emerging graphs and thus require
longer training time than the standard MLP. On the other
hand, EWC and MAS adopt more complex strategies to
address forgetting, such as parameter regularization, and
consequently require more training time. This compar-
ison highlights the effectiveness of CMLP in balancing
inference and training efficiency.

Impact of the Different Routing Designs. To further examine the routing mechanism, we compared
several designs that differ in how experts are selected and combined. 1) Soft gating routing assigns continuous
mixture weights to all experts through a learnable gating network, allowing each input to be processed by
multiple experts simultaneously. 2) Hard gating routing, in contrast, selects only the top-1 expert based
on gating probabilities. 3) Our energy-based test-time routing operates without a learned gating network:
it dynamically selects experts according to their energy scores computed from input representations. We
observe from Table 5 that our energy-based test-time routing achieves substantially better performance than
both soft and hard gating strategies. The main reason is that gating-based routing requires labeled data
for training at each time step; as a result, the gating network inevitably suffers from catastrophic forgetting
and tends to overfit to the most recent classes, thereby degrading its ability to generalize across incremental
tasks. In contrast, the energy-based approach performs routing directly at inference without requiring label
supervision, making it more robust and stable under continual learning settings.

6 Complexity Analysis

Time Complexity Analysis To support continual adaptation on class-incremental graphs while main-
taining inference efficiency, we adopt a key-value expansion strategy that incrementally increases the model’s
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Table 5: The impact of the different routing designs.
Designs CoraFull-CL Reddit-CL

AP/% ↑AF/% ↑H-Mean↑AP/% ↑AF/% ↑H-Mean↑

Soft Gating 20.63 -67.32 25.81 27.10 -54.43 34.92
Hard Gating 17.43 -69.49 21.69 26.78 -62.57 30.10

Energy-based Routing 42.66 -14.54 56.91 55.84 -12.80 66.73

capacity without modifying previously learned parameters. During the training phase at each time step t,
only the newly introduced key-value matrices K

(t)
1 , V

(t)
1 and K

(t)
2 , V

(t)
2 are updated, while the previously

learned weights W
(t)
1 , W

(t)
2 , b

(t)
1 , b

(t)
2 remain fixed to preserve past knowledge. The computational complexity

of training primarily involves computing the key-value products K
(t)
1 V

(t)
1 ∈ Rd×∆h and K

(t)
2 V

(t)
2 ∈ R∆h×h′ ,

in addition to the forward computations through the expanded layers. This results in an overall training
time complexity defined as:

O(md(h + ∆h) + m(h + ∆h)h′ + dk + k∆h + ∆hk′ + k′h′), (15)

where m is the batch size, d the input dimension, h the base hidden size, h′ the output size, and k, k′ the
low-rank projection dimensions. Since k and k′ are typically much smaller than d, h, and h′, the added cost
remains modest and scales linearly with the expansion size ∆h. During inference, all previously learned and
newly added parameters are used. If the key-value products are precomputed and cached after training, the
inference time complexity reduces to a standard forward pass with cost as:

O(md(h + ∆h) + m(h + ∆h)h′). (16)

This formulation enables progressive model growth with limited overhead, allowing efficient and scalable
inference.

Parameter Complexity Analysis We analyze the number of parameters introduced by the key-value
expansion strategy to evaluate its efficiency and scalability. At each time step t, the MLP model has a first-
layer weight matrix W

(t)
1 ∈ Rd×h, a second-layer weight matrix W

(t)
2 ∈ Rh×h′ , and associated bias terms

b
(t)
1 ∈ Rh and b

(t)
2 ∈ Rh′ . The total number of parameters before expansion is defined as:

Pbase = d · h + h + h · h′ + h′. (17)

At time step t + 1, the model is expanded by adding ∆h hidden units. Instead of directly appending new
weight blocks Wnew ∈ Rd×∆h, we adopt a key-value decomposition strategy: introducing a key matrix
K

(t)
1 ∈ Rd×k and a value matrix V

(t)
1 ∈ Rk×∆h, along with a bias bnew

1 ∈ R∆h. Similarly, the second layer is
expanded using K

(t)
2 ∈ R∆h×k′ and V

(t)
2 ∈ Rk′×h′ . The total number of new parameters introduced is:

Padded = d · k + k · ∆h + ∆h + ∆h · k′ + k′ · h′. (18)

Compared to a naive expansion method that directly introduces Wnew ∈ Rd×∆h with cost O(d · ∆h), our
key-value approach achieves reduced parameter growth of O(d·k+k ·∆h), assuming k ≪ ∆h. This structured
decomposition reduces redundancy and provides an efficient and compact alternative for continual model
expansion.

7 Conclusion

In this paper, we proposed CMLP, a novel framework for GNN-to-MLP distillation in class-incremental graph
learning. To achieve fast adaptation and long-term knowledge retention, CMLP introduces an asynchronous
update paradigm that decouples GNN and MLP training. We further developed a progressive MLP expansion
strategy, allowing the MLP to adapt to new classes while preserving low-latency inference. An energy-based
test-time routing mechanism was designed for efficient expert selection. Additionally, to alleviate GNN
forgetting, the trained MLP experts are used as teachers for distillation back into the GNN. Experiments on
real-world datasets show the effectiveness of CMLP on bridging inference efficiency and adaptability.
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A More Detailed Related Work

In this section, we survey the related studies on GNN-to-MLP distillation and graph class-incremental
learning.

A.1 GNN-to-MLP Distillation

GNN-to-MLP distillation (Zhang et al., 2022b; Wang et al., 2023) has emerged as a promising approach to
enable graph-free inference by training a lightweight MLP to mimic the predictions of a GNN while preserving
structural knowledge. This paradigm is particularly appealing in scenarios where low-latency inference
is critical, as the recursive message passing operations in GNNs are computationally expensive and often
impractical for real-time applications or resource-constrained environments. To address this challenge, GLNN
(Zhang et al., 2022b) proposed distilling the output of a trained GNN into a structure-independent MLP,
effectively removing the need for message passing at inference time. While this results in significant speedups,
it also eliminates the inference model’s direct access to relational information, thereby limiting its ability to
fully capture the structural patterns present in graph data. To compensate for the loss of explicit structural
cues, a number of follow-up studies have explored mechanisms for injecting structural inductive biases into the
MLP during distillation. GENN and NOSMOG (Wang et al., 2023; Tian et al., 2022) incorporate positional
embeddings derived from graph Laplacians or random walks to encode node location and topological context.
CPF (Yang et al., 2021) applies label propagation during training to approximate local smoothness and
improve decision boundaries. A separate line of work focuses on neighborhood alignment, where the goal
is to align the representations or outputs of MLPs with those of their GNN teachers at the local subgraph
level. Representative methods include (Xiao et al.; Dong et al., 2022; Hu et al., 2021; Liu et al., 2022), which
apply contrastive learning, output matching, or feature consistency constraints to preserve local relational
signals. More recently, structural discretization approaches have been proposed. VQGraph (Yang et al.,
2024) introduces a vector-quantized codebook that learns to represent common subgraph motifs, using
these discrete codes to guide MLP training and encode structural priors. This method achieves strong
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performance while maintaining scalability. In parallel, AdaGMLP (Lu et al., 2024) introduces an ensemble-
based framework for distillation, where multiple MLPs are trained on random node subsets and combined
using an AdaBoost-inspired strategy. AdaGMLP further incorporates a node alignment mechanism to ensure
hidden and output-level consistency, particularly in the presence of sparse or incomplete node features.

Despite these advances, existing GNN-to-MLP distillation methods are largely confined to static graphs,
where distillation is performed once from a pre-trained GNN and the MLP does not evolve further. In
contrast, real-world graphs are dynamic in nature, with new nodes and classes emerging continuously. These
evolving settings demand models that can not only perform fast inference but also continually adapt without
sacrificing previously acquired knowledge. However, current approaches overlook the challenge of supporting
efficient inference and incremental knowledge retention in the class-incremental graph setting.

A.2 Graph Class-incremental Learning

Graph class-incremental learning (GCIL) extends traditional incremental learning (De Lange et al., 2021;
Goswami et al., 2024; Wang et al., 2024; Chen et al., 2024) to dynamic graph settings, where models must
continually learn from new node classes and evolving graph structures while preserving performance on
previously seen data. A key challenge in GCIL is catastrophic forgetting, where updates on new tasks can
overwrite prior knowledge. Existing methods largely follow three canonical approaches. (1) Regularization-
based methods (Li & Hoiem, 2017; Kirkpatrick et al., 2017; Liu et al., 2021) impose constraints on important
model parameters to reduce forgetting, such as penalizing changes to parameters critical to earlier tasks or
maintaining structural consistency in learned embeddings. (2) Memory-based methods explicitly store a
portion of previous data to replay during training; for example, ERGNN (Zhou & Cao, 2021) selects repre-
sentative nodes using coverage and influence maximization strategies to build a replay buffer, SSM (Zhang
et al., 2022e) maintains sparsified subgraphs to capture essential topology with minimal memory, and CaT
(Liu et al., 2023) constructs compact synthetic graphs via condensation and then trains exclusively on these
graphs, effectively addressing class imbalance during replay. (3) Architectural methods dynamically ex-
pand the model to accommodate new tasks, as in the hierarchical prototype-based framework proposed in
(Zhang et al., 2022d), where parameter subsets are selectively activated based on task identity. Beyond these
categories, recent work has proposed alternative strategies to further improve GCIL performance. Replay-
and-Forget-Free GCIL (Niu et al., 2024) introduces a task profiling and prompting mechanism that enables
class-incremental learning without explicit replay, using task-specific prompts to encode knowledge and con-
dition predictions. Meanwhile, GSIP (Li et al., 2024) provides an information-theoretic perspective, arguing
that preserving discriminative and structural signals is more effective than naive example replay, and propos-
ing a benchmark and training strategy to explicitly enforce this principle. Despite these advances, existing
graph class-incremental learning methods have primarily focused on updating a single GNN model with
sufficient capacity to retain past knowledge, which differs significantly from our problem setting. Applying
GNN-to-MLP distillation on class-incremental graph remains unexplored. Furthermore, existing methods
often rely on complex mechanisms for selecting representative data or identifying important parameters to
preserve prior knowledge. However, these selection processes are inherently imperfect, and errors in data or
parameter selection can compromise the model’s ability to retain previously acquired information, leading
to degraded performance over time.

B Additional Preliminary

Definition 4 (GNN-to-MLP Knowledge Distillation) GNN-to-MLP knowledge distillation transfers
knowledge from a GNN (teacher) to a lightweight Multi-Layer Perceptron (MLP) (student) by minimizing
the discrepancy between their output logits, enabling graph-free inference while retaining essential structural
information. The student model significantly reduces inference time and resource consumption, making it
well-suited for large-scale applications, low-latency services, and environments where graph connectivity is
unavailable.

16



Under review as submission to TMLR

Algorithm 1: Training Procedure of CMLP
Input: An evolving dataset {Gt}T

t=0, CG = T and C = 1, GNN teacher fGNN(·), MLP student f0
MLP(·)

/* GNN-to-MLP Distillation */
1 Train fGNN(·) and f0

MLP(·) on G0 and optimize loss function LKD defined in Eq. (1);;
2 foreach time step t ∈ {1, 2, . . . , T } do

/* Progressive MLP Expansion */
3 Conduct the progressive MLP expansion following Eq. (4)-(6) and obtain a new MLP f t

MLP(·);;
4 Train the new MLP f t

MLP(·) on Gt using Eq. (9);;
/* Energy-based Test-time Routing */

5 Collect {f i
MLP}t

i=0 to form PMOE;;
6 Calculate the confidence of each expert using the energy function in Eq. (10);;
7 Select the best expert MLP for inference following Eq. (11);;

/* Expert-guided GNN Updating */
8 Optimize GNN teacher fGNN(·) on accumulated graph GT using Eq. (12)-(14);
9 return GNN fGNN(·) for the next update cycle;

Table 6: The statistics of the benchmark datasets
Datasets CoraFull-CL Arxiv-CL Reddit-CL Products-CL

# nodes 19,793 169,343 227,853 2,449,028
# edges 130,622 1,166,243 114,615,892 61,859,036
# classes 70 40 40 46

C Optimization

We first distill knowledge from a trained GNN into an MLP by optimizing Eq.(1), enabling graph-free
inference. As new graph data arrives, the MLP progressively expands following Eq.(4)-(6), allowing it to
adapt to new classes while preserving previously learned parameters. The GNN is then periodically updated
using newly accumulated graph data, with past MLPs providing guidance to mitigate catastrophic forgetting,
as formulated in Eq.(14). During inference, the energy-based routing mechanism selects the most confident
MLP as the expert, ensuring efficient expert utilization without relying on labeled data. The training
procedure of CMLP is provided in Algorithm 1.

D Additional Experiment Setup

D.1 Datasets

We evaluate our proposed method on four benchmark datasets from CGLB (Zhang et al., 2022c). The first
dataset, CoraFull-CL (Bojchevski & Günnemann, 2018), consists of 70 classes, which we divide into five
groups of 14 new classes per cycle, corresponding to five MLP update cycles within one GNN update cycle.
Specifically, the first 14 classes are used for training the GNN and performing GNN-to-MLP distillation,
while the remaining 56 classes are introduced incrementally to update the MLPs in subsequent steps. The
second and third datasets, Arxiv-CL (Hu et al., 2020) and Reddit-CL (Hamilton et al., 2017), each contain
40 classes, which are similarly divided into five groups of eight new classes per cycle. In each case, the first
eight classes are used to train the GNN and distill knowledge into the MLP, while the remaining classes are
incrementally introduced to update the MLP in later steps. The last dataset, Products-CL (Hu et al., 2020),
includes 46 classes. Following the same pipeline, we divide these classes into five groups corresponding to
five update cycles, with one group containing 10 classes for training the GNN and conducting knowledge
distillation, and the remaining four groups each containing 9 classes for later MLP updates. The statistics
of the benchmark datasets are provided in Table 6.
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D.2 Evaluation Protocol

We follow an evaluation protocol tailored for continual learning (Zhang et al., 2022c), where models are
initially trained on the first graph G0 and subsequently updated with newly emerging node classes from
G1, G2, . . . , GT . At each time step t, the model is updated using the current graph Gt, while access to
previous graphs G0, ..., Gt−1 is restricted, simulating a realistic class-incremental setting where historical
data is unavailable. To evaluate the model’s ability to balance adaptability and knowledge retention, we
construct a performance matrix M ∈ RT ×T , where each entry Mi,j represents the classification accuracy on
node classes introduced at time step j after training on Gi. Based on this, we employ two evaluation metrics
(Zhang et al., 2022c). The Average Performance (AP) is given by:

APi = 1
i

i∑
j=1

Mi,j , i = 1, ..., T, (19)

which measures the model’s average accuracy across all encountered node classes after training on graph Gi,
assessing its overall learning capability. The Average Forgetting (AF) is computed as:

AFi = 1
i − 1

i−1∑
j=1

(Mi,j − Mj,j), i = 2, ..., T, (20)

which quantifies the degree of forgetting for previously learned node classes, computed as the drop in accuracy
from the time a node class was first learned to the current evaluation step. The AP and AF after learning
all T tasks are reported. To provide a single numerical measure of overall model performance, we compute
the H-mean, which takes the harmonic mean of AP and AF. Given that AF is negative, we adjust it by
adding 100 before computing the H-mean, ensuring a meaningful and interpretable evaluation metric.

D.3 Baselines

To comprehensively evaluate our proposed CMLP, we compare it with state-of-the-art models across two
main categories, including GNN-to-MLP distillation methods and continual learning strategies. The first
category includes GNN-to-MLP distillation models, which aim to enable efficient, graph-free inference by
transferring knowledge from GNNs to MLPs:

• GraphMLP (Hu et al., 2021) injects structural information into MLPs using node-level feature
propagation and positional encodings, enabling effective node classification without relying on mes-
sage passing.

• GLNN (Zhang et al., 2022b) distills a pre-trained GNN into a structure independent MLP, accel-
erating inference while preserving performance by eliminating the need for explicit graph structure
during inference.

• GENN (Wang et al., 2023) improves distillation by incorporating Laplacian eigenvector-based posi-
tional embeddings into the MLP, aiming to retain global structural context from the original graph.

• VQGraph (Yang et al., 2024) employs vector quantization to encode discrete motif-based patterns,
guiding MLP training with quantized structural features that capture local subgraph semantics.

• NOSMOG (Tian et al., 2022) enhances the robustness of the distillation process by applying noise-
injected message passing, generating more stable supervision signals for MLPs without structural
input.

All these models are evaluated under identical experimental setups with the same evolving graphs and update
schedule as CMLP, to ensure a fair comparison.

The second category consists of continual learning methods, which are applied to a single MLP to examine
their effectiveness in mitigating catastrophic forgetting:
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• GEM (Lopez-Paz & Ranzato, 2017) stores a small memory of past examples and constrains gradients
during training to preserve previously acquired knowledge.

• MAS (Aljundi et al., 2018) estimates parameter importance and applies weight-based regularization
to discourage updates to critical parameters.

• LwF (Li & Hoiem, 2017) distills knowledge from previous tasks using soft targets, avoiding the need
to store past data explicitly.

• EWC (Kirkpatrick et al., 2017) remembers old tasks by selectively slowing down learning on the
weights important for those tasks.

These continual learning baselines provide comparisons for understanding how well CMLP maintains per-
formance over time compared to traditional forgetting-mitigation approaches.

D.4 Implementation Details

All experiments were conducted on a workstation equipped with Nvidia GeForce RTX 4090 GPUs. We
follow the dataset preprocessing and splitting pipeline provided in CGLB (Zhang et al., 2022c). For the
models, we use a basic GCN with a 256-dimensional embedding and a two-layer MLP for distillation. In
the progressive MLP expansion, we set ∆h = 256 and low-rank project k = 75. The Adam optimizer is
employed with a learning rate of 0.001. For the tradeoff parameters α and β, we performed a search over
{0.01, 0.1, 1, 10} and found that setting both parameters to 1 achieved the best performance. To ensure
robustness, all experiments were repeated three times, and we report the average results. We also determine
the best parameter configurations for all baseline methods to ensure a fair comparison. The memory budget
for baseline models requiring a memory set is set to 20% of the training data used at each time step. The
implementation code is available at https://github.com/Anony-code/CMLP.

E Additional Experimental Results

E.1 Impact of the Different Teacher GNNs

Figure 11: The impact of different teacher GNNs.

To evaluate the influence of the teacher GNN archi-
tectures on the performance of the MLP, we com-
pare four commonly used GNN models: GCN (Kipf
& Welling, 2017), GraphSAGE (Hamilton et al.,
2017), GAT (Veličković et al., 2018b), and APPNP
(Gasteiger et al., 2018). These models are evalu-
ated across four datasets used in the paper. As il-
lustrated in Figure 11, the performance differences
among the four GNN variants are relatively minor
across all datasets. This suggests that the choice of
teacher model has only a limited impact on the fi-
nal performance of the MLP. This observation can
be attributed to the design of our framework, where
the GNN-to-MLP distillation is conducted only once
at the beginning of each GNN update cycle. After
distillation, the MLP evolves independently through
the proposed progressive expansion strategy, which
enables it to incrementally adapt to newly emerging classes. Consequently, the performance of the MLP is
primarily determined by its own adaptive updates rather than by the specific GNN used for initial supervi-
sion. This finding highlights the robustness of our method and its ability to operate effectively with a variety
of GNN backbones.
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F Further Discussion

F.1 Distinction from Traditional Continual Learning

While both our setting and canonical graph continual learning operate on evolving graph structures, our
problem formulation differs fundamentally in focus and objectives. Traditional methods primarily aim to
mitigate catastrophic forgetting in GNNs by preserving performance on previously seen tasks. However,
they overlook the need for efficient inference, which is critical in real-world, latency-sensitive applications.
In contrast, our work focuses on enabling low-latency inference in class-incremental scenarios through GNN-
to-MLP distillation, a direction that has not received attention in prior research. We propose a novel
design paradigm that decouples the training schedules of the GNN and MLP. The GNN is updated at a
lower frequency to reduce computational cost, while the lightweight MLP is frequently adapted to new data
to support timely and accurate predictions. This means that when a new GNN update cycle begins, all
previously expanded MLPs are discarded, and a new MLP is re-initialized from scratch with the original
dimension h. In practice, a reasonable GNN update cycle can include 5 to 10 MLP update cycles, which
limits unbounded memory growth by preventing the accumulation of the expanding set of MLP parameters.
This asynchronous update strategy ensures both inference efficiency and adaptability, making it suitable for
real-time, large-scale graph applications. Importantly, our approach provides a solution that is orthogonal
to existing graph continual learning methods. As such, it can be seamlessly integrated with these methods
to complement their strengths and broaden their applicability.

F.2 Memory Usage

Our framework maintains a low memory footprint due to the asynchronous update paradigm between the
GNN and MLPs, which establishes a fixed cycle ratio. Our design ensures that all previously expanded
MLP experts are discarded at the end of each GNN update cycle, preventing unbounded parameter growth.
This is possible because the cumulative knowledge from these MLPs is distilled back into the GNN during
the update. Subsequently, a new MLP is re-initialized via GNN-to-MLP distillation, serving as the primary
"knowledge keeper" of past information. By consolidating historical patterns into the GNN and restarting
the MLP expansion, we effectively mitigate the forgetting issue while keeping the total number of active
parameters bounded across training cycles.

F.3 Future Work

In future work, we will explore lightweight expert clustering or pruning strategies to improve the scalability of
the energy-based routing mechanism, particularly in scenarios where MLPs require high-frequency updates.
Although our current design observes stable routing in practice, this is because each expert is trained on
disjoint class groups. However, more aggressive update cycles may benefit from routing regularization or
expert consolidation.
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