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Figure 1: FlowRVS replaces the cascaded ‘locate-then-segment’ paradigm (A) with a unified, end-
to-end flow model (B). This new paradigm avoids information bottlenecks, enabling superior han-
dling of complex language and dynamic video (C) and achieving state-of-the-art performance (D).

ABSTRACT

Referring Video Object Segmentation (RVOS) requires segmenting specific ob-
jects in a video guided by a natural language description. The core challenge of
RVOS is to anchor abstract linguistic concepts onto a specific set of pixels and
continuously segment them through the complex dynamics of a video. Faced with
this difficulty, prior work has often decomposed the task into a pragmatic ‘locate-
then-segment’ pipeline. However, this cascaded design creates an information
bottleneck by simplifying semantics into coarse geometric prompts (e.g, point),
and struggles to maintain temporal consistency as the segmenting process is often
decoupled from the initial language grounding. To overcome these fundamental
limitations, we propose FlowRVS, a novel framework that reconceptualizes RVOS
as a conditional continuous flow problem. This allows us to harness the inherent
strengths of pretrained T2V models, fine-grained pixel control, text-video seman-
tic alignment, and temporal coherence. Instead of conventional generating from
noise to mask or directly predicting mask, we reformulate the task by learning a
direct, language-guided deformation from a video’s holistic representation to its
target mask. Our one-stage, generative approach achieves new state-of-the-art re-
sults across all major RVOS benchmarks. Specifically, achieving a J&F of 51.1
in MeViS (+1.6 over prior SOTA) and 73.3 in the zero shot Ref-DAVIS17 (+2.7),
demonstrating the significant potential of modeling video understanding tasks as
continuous deformation processes.

1 INTRODUCTION

Referring Video Object Segmentation (RVOS) (Khoreva et al., 2018; Gavrilyuk et al., 2018; Hu
et al., 2016) requires the machine to segment objects described by natural language queries, which
is critical to intelligent systems to precept and interact with the real world (Jiang et al., 2025; Li et al.,
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2023). The core challenge of RVOS lies in resolving a fundamental spatio-temporal correspondence
dilemma: anchoring abstract linguistic concepts onto a dynamic and fine-grained pixel space. Cur-
rent paradigms often rely on instance-centric approaches, which first identify and then track object
instances. While effective, even modern query-based (e.g., ReferFormer (Wu et al., 2022)) or VLM-
based (e.g., LISA (Lai et al., 2024)) methods can introduce an information bottleneck by collapsing
rich semantics into intermediate object-centric representations. This can limit holistic scene under-
standing and temporal consistency, especially as the segmentation of each frame, while conditioned,
doesn’t stem from a single, unified spatio-temporal deformation process (Liang et al., 2025b; Ren
et al., 2024; Bai et al., 2024; Lin et al., 2025).

To address these limitations, we argue that pretrained Text-to-Video (T2V) models offer a funda-
mental solution since their native capabilities for fine-grained, text-to-pixel synthesis and spatio-
temporal reasoning directly counter the bottlenecks of the ‘locate-then-segment’ paradigm. While
some attempts use T2V models as powerful frozen feature extractors for a separate decoder (e.g.,
VD-IT (Zhu et al., 2024), HCD (Zhang et al., 2025)), this two-stage design decouples the model’s
generative dynamics from the final task. Our work fundamentally differs: we propose to repurpose
the entire generative process itself, learning a direct, language-guided deformation flow from video
to mask. DepthFM (Gui et al., 2025) have adapted the entire generative process itself for visual-
to-visual tasks like depth estimation based on a image generation model. While these pioneering
efforts validate the generative approach, they also expose a shared, critical blind spot: they fail to
fully utilize the dynamic, text-driven reasoning that T2V models are capable of and RVOS demands.
The feature-extraction approach remains decoupled, forcing a separate decoder to reconstruct tem-
poral relationships from temporally isolated features, squandering the T2V model’s inherent video
coherence. Meanwhile, the image-to-depth flows proposed by previous styles completely neglect
text condition, rendering them fundamentally incapable of addressing the core RVOS challenge:
producing different masks for the same video based on varying textual queries. Thus, we argue that
a deeper, more principled alignment with the T2V paradigm is required: one that treats the entire
process as a single, unified, language-guided flow from video pixels to required masks.

This unfied flow with existing powerful T2V pretrain model (e.g, Wan) brings several benefits: (1)
their pixel-level synthesis training provides fine-grained control, which enables them to distinguish
and handle more delicate objects when locating specific targets; (2) their text-condition generation
ensures powerful multi-modal alignment, which allows them to ground rich linguistic semantics
directly in the pixel space without as much information loss as first mapping in coarse geomet-
ric intermediaries; (3) their video-native architecture provides inherent spatio-temporal reasoning,
naturally unifying language guidance with temporal consistency.

However, simply leveraging the T2V framework is not enough. As shown in Figure 3, standard
T2V generation is a divergent process: it maps a simple noise prior to a set of possible videos,
exploring a broad trajectory space. RVOS, conversely, is a convergent task: it must map a complex,
high-entropy video to a single, low-entropy mask. This transforms the problem into a deterministic,
guided information contraction, where the text query acts as the crucial selector that isolates the
precise target from the rich visual input (e.g., distinguishing “the smaller monkey” from “the bigger
monkey”). This core insight that RVOS is a convergent flow directly informs our contributions. To
successfully manage this asymmetric transformation, we introduce a suite of principled adaptations:
(1) a boundary-biased sampling strategy to force the model to master the crucial, high-certainty start
of the trajectory where the video’s influence is strongest; (2) a direct video injection mechanism
to preserve the rich source context throughout the contraction process; and (3) a task-specific VAE
adaptation and start point augmentation to create a stable latent space for this unique mapping.

Summarizing, our contributions are as follows:

• We reformulate RVOS as learning a continuous, text-conditioned flow that deforms a video’s
spatio-temporal representation into its target mask, directly resolving the correspondence be-
tween language and dynamic visual data.

• We propose a suite of principled techniques that successfully enable the transfer of powerful
text-to-video generative models to this challenging video understanding task.

• Our proposed framework, FlowRVS, establishes a new state of the art on key benchmarks. No-
tably, it achieves a significant improvement of 1.6% J&F on the challenging MeViS dataset
and 2.7% J&F on the zero-shot DAVIS 2017 benchmark.
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2 RELATED WORK

Referring Video Object Segmentation aims to segment a target object within a video based on a
natural language expression (Xu et al., 2018; Ding et al., 2023). This task demands both visual-
linguistic understanding and robust temporal segmenting. Early approaches often adapted frame-
level referring image segmentation models and appended temporal linking mechanisms as a post-
processing step (Khoreva et al., 2018). More recent and competitive methods have evolved into
more integrated yet predominantly multi-stage pipelines. A dominant paradigm involves a “locate-
then-segment” strategy, where a powerful multi-modal model first grounds the textual reference to a
spatial region, which then guides a separate segmentation process for each frame.

“Locate-then-Segment” Paradigm manifests in several forms. A significant breakthrough came
with the introduction of query-based architectures, inspired by the success of DETR-style (Zhu et al.,
2020) transformers in vision tasks (Wu et al., 2022; Yan et al., 2024b), this new paradigm reframed
RVOS by treating language as a query to the visual features. Furthermore, multimodal model based
approaches like LISA (Lai et al., 2024), VISA (Yan et al., 2024a) and ReferDINO (Liang et al.,
2025b;a) leverage a pretrained model’s reasoning or grounding ability, such as LLaVA(Liu et al.,
2023) or DETR-based GroundingDINO (Ren et al., 2024), to perform initial object localization, and
then introduce a custom-designed mask decoder to generate the final segmentation. A similar phi-
losophy is seen in the “VLM+SAM” family of methods (Luo et al., 2023; Wu et al., 2023), which
use a Vision-Language Model for bounding box prediction, followed by a generic segmentation
model like SAM (Kirillov et al., 2023; Cuttano et al., 2025) to produce pixel-level masks (He &
Ding, 2024; Lin et al., 2025; Pan et al., 2025). Another line of work explores repurposing generative
models: VD-IT (Zhu et al., 2024) first extracts features from a pretrained text-to-video diffusion
model and then feeds these features into a separate DETR-like architecture for mask prediction.
While these methods have pushed the performance boundaries, their reliance on intermediate rep-
resentations—whether object queries or extracted features—can introduce information bottlenecks
that prevent a truly holistic, end-to-end optimization of the video-to-mask correspondence problem.

Generative Modeling is largely catalyzed by the advent of latent diffusion models (Rombach et al.,
2022). Building on this success, the frontier rapidly expanded into the temporal domain, leading to
a surge of powerful text-to-video (T2V) models (Liu et al., 2024; Wan et al., 2025; Gao et al., 2025).
Recent works have begun to leverage these models for RVOS. A notable approach (e.g., VD-IT (Zhu
et al., 2024), HCD (Zhang et al., 2025)) utilizes T2V models as powerful frozen feature extractors for
a separate segmentation decoder. Our work fundamentally differs: instead of extracting features, we
repurpose the entire generative process, fine-tuning the core model to learn a direct video-to-mask
deformation flow. This avoids the bottleneck inherent in a two-stage pipeline. Furthermore, unlike
conditional generation frameworks like ControlNet(Zhang et al., 2023) that add external guidance to
a divergent, noise-to-image process, our method learns a convergent, discriminative transformation
from the video source itself. Beyond diffusion, Flow Matching (Lipman et al., 2022; Liu et al.,
2022) offers a significant theoretical advancement by learning a velocity field to transport samples
along a deterministic ODE path. This has been leveraged for visual tasks like depth estimation
(e.g., DepthFM (Gui et al., 2025)), but these methods are typically text-agnostic. Our work makes
a critical distinction: we introduce the natural language query as the core conditional force that
modulates the entire ODE path. This elevates the framework from a simple translation to a dynamic,
multi-modal reasoning engine, reframing RVOS as a learned, conditional deformation.

3 METHOD

3.1 PROBLEM REFORMULATION: RVOS AS A CONTINUOUS FLOW

Traditionally, RVOS is approached as a discriminative, one-step prediction task. A model fθ is
trained to learn a direct mapping M = fθ(V, c) from a video-text pair to a mask sequence. How-
ever, this direct mapping is fundamentally challenged by the need to collapse a dynamic, high-
dimensional video into a precise pixel-mask under the complex constraints of a linguistic instruction,
all within a single transformation.

To overcome this limitation, we depart from direct prediction and reconceptualize RVOS as a text-
conditioned continuous flow problem. We propose to model segmentation as a gradual, determin-
istic deformation process that transforms the video’s representation into the target mask’s. This is
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Figure 2: FlowRVS reformulates RVOS as a text-conditioned continuous flow, learning a velocity
field via Flow Matching stabilized by boundary-biased time sampling in latent space. During infer-
ence, an ODE solver uses this field to deterministically deform the video latent to the target mask,
this video to mask paradigm superior to noise-based or one-step prediction approaches.

governed by an Ordinary Differential Equation (ODE), where our goal is to learn the velocity field
v(zt, c, t) that dictates the evolution of a latent state zt:

dzt
dt

= v(zt, c, t), with boundary conditions z0 ∼ Pvideo and z1 ∼ Pmask. (1)

The trajectory starts from the video latent z0 and is guided by the text query c to terminate at the
specific mask latent z1. This transforms the learning objective from mastering a single, complex
global function to learning a simpler, local velocity field.

However, adapting this generative-native paradigm to a discriminative task like RVOS is not straight-
forward, but a fundamental inversion of the generative process, as illustrated in Figure 3. Standard
T2V generation is a divergent, one-to-many process: it starts from a simple, fixed noise distribution
and has a broader exploration space in the initial steps to generate a diverse set of plausible videos.
In contrast, our approach is a convergent, video-text-to-one task. It begins with a complex, high-
entropy video latent z0 and must follow a more tightly mapped direction to a single, correct mask.
Here, the text query c is no longer a creative prompt but a critical, disambiguating force. The initial
velocity computed from z0 must be precise enough to distinguish “the smaller monkey” from “the
bigger monkey.” An error in this first step is irrecoverable, dooming the entire trajectory to fail. This
places paramount importance on correctly learning the starting point of the flow.

3.2 TRANSFERRING TEXT-TO-VIDEO MODEL TO RVOS

A naive, uniform treatment of the trajectory, inherited from generative modeling, fails to account
for the unique asymmetric nature of the video-to-mask flow. This asymmetry—a high-certainty,
structured start and a low-certainty, sparse end—demands a non-uniform approach to learning the
velocity field. Therefore, we introduce a suite of three synergistic strategies grounded in a single
principle: fortifying the flow’s origin. These are designed not as independent tweaks, but as a
cohesive framework to successfully adapt the powerful T2V model for RVOS.

Boundary-Biased Sampling (BBS). We hypothesize that the most critical learning signal resides
at the beginning of the trajectory, where the model computes the initial “push” away from the video
manifold based on the text query. To exploit this, we introduce BBS, a curriculum learning strategy
that oversamples timestep t = 0. By concentrating the gradient updates on this initial, high-influence
decision, we force the model to first master the crucial text-guided velocity computation. As em-
pirically demonstrated in Table 2, this focused learning strategy is the key to stabilizing the training
process, transforming the failing baseline into a highly effective model by ensuring a well-posed
initial value problem for the ODE.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

A broader exploration space and 

direction in the initial step

“A ca
t is

 

ru
nning”

Noise to Video  Video to Mask

A more tightly mapped direction  

in the initial step determined  by 

video and text query

“A goa
t w

ith
 

black
 hea

d”

“The bigger 

monkey”“The sm
alle

r 

monkey”

Figure 3: Repurposing a generative process for a discriminative task. Unlike standard T2V genera-
tion which maps noise to diverse videos (left), our method maps a complex video to a single mask
(right). This transforms the process into a deterministic, convergent task where the text query is the
crucial element that selects the precise target from the visual input (e.g., distinguishing the ‘smaller’
from the ‘bigger’ monkey).

Start-Point Augmentation (SPA). To prevent the model from overfitting to discrete points on the
data manifold and to encourage the learning of a smoother, more generalizable flow, we introduce
Start-Point Augmentation (SPA). During training, we transform the initial video latent z0 through a
stochastic encoding and normalization process. This technique effectively presents the model with
a richer, locally continuous distribution of starting points centered around the original video latent.
This acts as a powerful regularizer, forcing the model to learn a velocity field that is robust not just
on the manifold, but also in its immediate vicinity.

Direct Video Injection (DVI). In our video-to-mask formulation, the initial video latent z0 is
not merely a starting point, but the foundational context for the entire transformation. To ensure
this context remains accessible throughout the flow, we introduce Direct Video Injection (DVI).
We implement this by concatenating the original video latent z0 with the current state zt along
the channel dimension at each ODE step without introducing heavy computational burden. This
transforms the velocity prediction at every subsequent point from v(zt, t) to v([zt, z0], t), explicitly
conditioning each local update on the global origin. This simple yet effective strategy provides
a persistent, high-fidelity reference to the source video, preventing trajectory drift and improving
fine-grained accuracy with negligible computational overhead.

3.3 ANALYSIS OF ALTERNATIVE PARADIGMS

To motivate our final choices, we first analyze the fundamental limitations of three plausible al-
ternative paradigms for adapting a T2V model to RVOS. As empirically validated in our ablation
studies, each of these alternatives fails due to a core mismatch with the nature of RVOS. To ensure a
fair comparison, all alternative paradigms were built upon the same Wan2.1 pre-trained model and
trained under the exact same supervised setting (same optimizer, learning rate, and duration) as our
final model. And we implemented the same fine-tuned VAE to reveal the superiority of our proposed
flow-based paradigm.

Direct Mask Prediction (Worst Performance). A direct, single-step mapping from the video and
text latents to the mask latent represents the classic discriminative paradigm. We argue this approach
is fundamentally ill-posed due to what we term “information collapse.” The mapping from a high-
entropy, complex video manifold to a low-entropy, sparse mask manifold is a drastic information
contraction. Forcing a neural network to learn this in a single, abrupt step leads to collapsion of the
rich visual context into a coarse approximation rather than performing a precise, guided refinement.
The model is not learning a transformation, but rather a brittle pattern recognition function.

Noise-to-Mask Flow (Suboptimal). This paradigm mirrors standard text-to-video generation,
starting from Gaussian noise z1 ∼ N (0, I) and conditioning on the video context. This approach
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demotes the video from the primary source of information to a secondary condition. Weaken the
guidance of the video in the process would possibly force the entire, high-dimensional video context
to be injected via a simple concatenation at each step, creating a severe information bottleneck. The
model is tasked with generating the mask’s complex spatio-temporal structure from scratch based
on this limited conditional signal, rather than progressively refining the rich, structured information
already present in the video itself.

One-Step Velocity Prediction (Better, but Limited). This paradigm makes the model predict the
full velocity vector v = z1 − z0 in a single inference step. It significantly outperforms the previous
two baselines, confirming our hypothesis that learning a residual velocity is a more stable and ef-
fective objective than predicting an absolute state. However, its performance is still fundamentally
capped. We assume that it is limited by the need to compute the entire, often large-magnitude de-
formation in a single forward pass, lacking the capacity for the gradual, iterative refinements that a
multi-step process allows.

This analysis solidifies our central thesis: a multi-step, video-to-mask flow is the most effective
paradigm for RVOS, but only when augmented with our proposed start-point focused adaptations to
bridge the critical gap between its generative origins and the discriminative demands of the task.

4 EXPERIMENTS

4.1 BENCHMARK AND METRICS

We evaluate our framework on three standard RVOS benchmarks. MeViS (Ding et al., 2023) is a
challenging, motion-centric benchmark featuring 2,006 long videos and over 28,000 fine-grained
annotations that emphasize complex dynamics. Ref-YouTube-VOS (Wu et al., 2022) is the large-
scale benchmark, comprising 3,978 videos that test for generalizability across a wide diversity of
objects and scenes. Ref-DAVIS17 (Khoreva et al., 2018) is a high-quality, densely annotated dataset
of 90 videos, serving as a key benchmark for segmentation precision and temporal consistency.

Following standard protocols, we report region similarity (J , Jaccard Index), contour accuracy (F ,
F-measure), and their average (J&F) as our primary evaluation metrics.

4.2 IMPLEMENTATION DETAILS

Our framework is built upon the publicly available Wan 2.1 text-to-video model, which features a
1.3B parameter Diffusion Transformer (DiT) (Wan et al., 2025). Throughout all training stages, we
keep the pretrained text encoder and the VAE encoder entirely frozen. Our training focuses exclu-
sively on fine-tuning the DiT block to learn the conditional flow. Crucially, the VAE decoder is
specifically adapted for the segmentation task by being fine-tuned separately on the MeViS training
set, allowing it to specialize in reconstructing high-quality masks from the latent space. Our train-
ing protocol varies by dataset to align with the same evaluation protocols of compared methods.
For experiments on Ref-YouTube-VOS, we follow a two-stage training strategy. The model is first
pre-trained on a combination of static image datasets (RefCOCO/+/g) (Yu et al., 2016; Kazemzadeh
et al., 2014) to learn foundational visual-linguistic grounding. Subsequently, this pre-trained model
is fine-tuned on the Ref-YouTube-VOS training set. The final weights from this stage are then
used for zero-shot evaluation on the Ref-DAVIS17 benchmark without any further fine-tuning to
prove FlowRVS’s generalization ability. For the more challenging MeViS dataset, which empha-
sizes complex motion understanding, we train our model directly on its training set from scratch,
without leveraging any static image pre-training. More hyperparameters settings can be found in
Appendix A.

4.3 MAIN RESULTS

We compare our proposed FlowRVS against a wide range of baselines in Table 1. Our results show
that FlowRVS significantly and consistently outperforms previous approaches. We highlight some
key features as follows:
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Table 1: Comparison of our one-stage FlowRVS with other previous ’locate-then-segment’ methods
on MeViS, Ref-YouTube-VOS and Ref-DAVIS datasets. We further include methods based on large
VLMs for comparison. Bold and underline indicate the two top results.

Method MeViS Ref-YouTube-VOS Ref-DAVIS17

J&F J F J&F J F J&F J F
Locate-then-segment
MTTR [CVPR’22] 30.0 28.8 31.2 55.3 54.0 56.6 - - -
ReferFormer [CVPR’22] 31.0 29.8 32.2 62.9 61.3 64.6 61.1 58.1 64.1
SOC [NIPS’23] - - - 66.0 64.1 67.9 64.2 61.0 67.4
OnlineRefer [ICCV’23] 32.3 31.5 33.1 63.5 61.6 65.5 64.8 61.6 67.7
LISA [CVPR’24] 37.2 35.1 39.4 53.9 53.4 54.3 64.8 62.2 67.3
DsHmp [CVPR’24] 46.4 43.0 49.8 67.1 65.0 69.1 64.9 61.7 68.1
VideoLISA [NIPS’24] 42.3 39.4 45.2 61.7 60.2 63.3 67.7 63.8 71.5
VD-IT [ECCV’24] - - - 64.8 63.1 66.6 63.0 59.9 66.1
VISA [ECCV’24] 43.5 40.7 46.3 61.5 59.8 63.2 69.4 66.3 72.5
SSA [CVPR’25] 48.9 44.3 53.4 64.3 62.2 66.4 67.3 64.0 70.7
SAMWISE [CVPR’25] 49.5 46.6 52.4 69.2 67.8 70.6 70.6 67.4 74.5
ReferDINO [ICCV25] 49.3 44.7 53.9 69.3 67.0 71.5 68.9 65.1 72.9

One-stage generation based
FlowRVS (ours) 51.1 47.6 54.6 69.6 67.1 72.1 73.3 68.4 78.2

Dominance on Complex Motion-Centric Benchmarks. The most significant advantage of our
framework is demonstrated on MeViS, the most challenging benchmark designed to test a nuanced
understanding of motion-centric language. FlowRVS achieves a J&F score of 50.7, establishing a
new SOTA and surpassing the previous best method, SAMWISE, by a substantial 1.2 point margin.
This result is particularly noteworthy as MeViS features long videos with complex object interac-
tions and appearance changes—scenarios where the limitations of multi-stage, cascaded pipelines
are most exposed. The superior performance of FlowRVS directly validates our core thesis: a holis-
tic, end-to-end flow that models the entire video-to-mask transformation is fundamentally better
suited to capture and reason about complex spatio-temporal dynamics.

Superiority over ‘Locate-then-Segment’ Paradigms. Our performance gains are particularly
meaningful when compared directly against methods that epitomize the ‘locate-then-segment’
paradigm, such as VISA (VLM-based) and ReferDINO (grounding-model-based). On MeViS,
FlowRVS outperforms VISA-13B by a remarkable 7.0 points and ReferDINO (best results an-
nounced in the paper) by 1.4 points. This underscores the advantage of our one-stage approach.
By avoiding the irreversible information loss inherent in collapsing semantics into an intermedi-
ate geometric or feature prompt, our continuous flow process maintains a high-fidelity, text-guided
transformation from start to finish, leading to more accurate and robust segmentation. The funda-
mental advantages of our one-stage flow paradigm are further illustrated in our qualitative compar-
isons (Figure 4). For the query ”The white rabbit which is jumping,” ReferDINO provides a coarse,
static grounding of the rabbit but misses the jumping action’s details, whereas FlowRVS delivers a
precise, dynamic segmentation. More critically, for the temporal query ”The first tiger...”, VD-IT’s
decoupled decoder fails to resolve the ambiguity and tracks the wrong target. In contrast, FlowRVS
correctly identifies and tracks the first tiger throughout, demonstrating superior global reasoning.

Exceptional Zero-Shot Generalization on Ref-DAVIS17. The generalization capability of our
model is best illustrated by its zero-shot performance on Ref-DAVIS17. Without any fine-tuning on
the DAVIS dataset, the model trained on Ref-YouTube-VOS achieves a J&F score of 73.3. This
result is not only state-of-the-art but is also significantly higher than many previous methods that
were explicitly trained or fine-tuned on similar high-quality datasets. This strong zero-shot trans-
ferability suggests that our flow-based paradigm, by learning a more fundamental and continuous
mapping between video and its corresponding mask guided by language, develops a more general-
izable understanding of spatio-temporal correspondence that is less prone to dataset-specific biases.
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The first tiger in the area with another that came through later.
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Figure 4: Qualitative comparison on challenging temporal and linguistic reasoning. Prior paradigms
struggle: VD-IT produces temporally unstable masks due to its frame-wise decoder, while Refer-
DINO fails to interpret long-range descriptions. Our method, FlowRVS, demonstrates superior tem-
poral coherence and language grounding by leveraging an end-to-end generative process.

Table 2: Ablations of FlowRVS on the MeVIS validu set. BBS: Boundary-Biased Sampling (prob-
ability p). DVI: Direct Video Injection. SPA: Start Point Augmentation. WI: Weight Init from Wan.

ID Method Configuration BBS (p) SPA DVI WI J&F J F
Alternative Paradigms
(a) MutiStep Noise-to-Mask Flow – – ✓ ✓ 32.3 29.6 35.0
(b) Onestep Mask Prediction – – – ✓ 36.2 41.5 38.9
(c) Onestep Velocity Prediction – – – ✓ 50.8 47.1 54.4

Our MutiStep Video-to-Mask Flow
(c) Base Flow 0.0 – – ✓ 47.9 42.9 52.9
(d) + BBS 0.25 – – ✓ 55.2 50.7 59.6
(e) + BBS 0.50 – – ✓ 57.9 53.8 62.1
(f) + BBS 0.75 – – ✓ 56.5 52.5 60.4
(g) + SPA 0.50 ✓ – ✓ 58.6 54.2 63.0
(h) + DVI (ours default) 0.50 ✓ ✓ ✓ 60.6 55.9 65.2
(i) - WI 0.50 ✓ ✓ × 21.1 20.3 21.9

4.4 ABLATION STUDIES

We conduct our ablation studies on the challenging MeViS dataset, as its complex, motion-centric
scenarios provide a rigorous testbed for our design choices. To ensure a consistent and fair com-
parison, all results are reported on the validu set, following the protocol in prior work (Ding et al.,
2023). The results are summarized in Table 2.

Analysis of Alternative Paradigms. Our investigation begins by establishing the limitations of
alternative paradigms (rows a-c). The Noise-to-Mask Flow (a), which mirrors standard generative
practices, performs poorly (32.3 J&F). This confirms our hypothesis that demoting the video to
a secondary condition (concatenate with noise) creates a severe information bottleneck, forcing the
model to generate the mask from scratch. The Onestep Mask Prediction model (b) also struggles
(36.2 J&F), validating that a single, abrupt mapping is insufficient to bridge the vast represen-
tational chasm between video and mask. Notably, shifting the objective from state prediction to
Onestep Velocity Prediction (c) yields a substantial +14.6 J&F gain. This key result proves that
learning a residual (velocity) is a fundamentally more stable and effective task, providing strong
initial validation for our flow-based reformulation.

Effectiveness of Start-Point Focused Adaptations. Having confirmed the video-to-mask flow
as the most promising direction, we dissect our proposed adaptations (rows c-h). The Base Flow
model (c), trained with naive uniform sampling, performs poorly at 47.9 J&F , even worse than
the one-step velocity predictor. This confirms that a multi-step process is not inherently superior; it
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Table 3: Analysis of VAE adaptation strategies. We measure both the mask
reconstruction quality (Recon.) and the resulting performance (Perf.) on the
MeViS validu set with a fixed flow model. VAE is tuned on MeViS training set.

VAE Adaptation Strategy Recon. J&F Perf. J&F
Frozen VAE 29.7 19.6
Add Trainable Conv Head 85.4 53.2
Finetuning Decoder (ours default) 99.1 60.6

must be correctly stabilized. The introduction of Boundary-Biased Sampling (BBS) provides the
definitive solution. As shown in rows (d)-(f), forcing the model to focus on the start of the trajectory
by oversampling t = 0 almost single-handedly unlocks the potential of the multi-step flow. Even a
moderate bias of p = 0.25 (d) brings a massive +7.3 point improvement. The performance peaks
at p = 0.5 (e), yielding a total gain of +10.0 J&F over the baseline. While a more extreme bias
of p = 0.75 (f) leads to a slight performance drop, the score of 56.5 remains substantially higher
than the baseline, demonstrating that the strategy is robust and effective across a reasonable range
of hyperparameters. This confirms that mastering the initial, text-guided velocity is the most critical
factor for success. Finally, Direct Video Injection (DVI) (h) provides a persistent context anchor
throughout the trajectory, preventing drift and adding a significant +2.0 J&F .

Effectiveness of the T2V Pretrain Model. Finally, we validate the central premise of our work:
leveraging the power of large-scale T2V models. As shown in row (i), training our model from
scratch without the pretrained weights (-WI) results in a complete performance collapse to 21.1
J&F . This underscores that our contributions are not generic training method, but are specifi-
cally designed to effectively harness and adapt the powerful priors learned by generative foundation
models for this challenging discriminative task.

Effectiveness of the VAE Adaptation. A crucial step in our method is adapting the pretrained
VAE to accurately transform between the latent space and the pixel space of binary masks. As shown
in Table 3, we evaluate several adaptation strategies. In all experiments, we freeze the VAE encoder
to preserve its powerful pretrained features and maintain a stable latent space. We then compare three
decoder configurations: keeping it frozen, adding a simple convolutional head, and full-parameter
finetuning. The results are definitive: fully finetuning the decoder dramatically improves mask
reconstruction quality, which directly translates to a significant boost in final RVOS performance.
The The visualization results which we provide in Appendix B also demonstrate the effectiveness of
such adaptation.

5 CONCLUSION AND FUTURE WORK

In this work, we introduce FlowRVS, a framework that moves beyond using T2V models as mere
feature extractors and instead reformulates RVOS as a continuous, text-conditioned flow from video
to mask. Our core contribution is demonstrating that this paradigm shift, when combined with
our proposed start-point focused adaptations (BBS, SPA, DVI), successfully aligns the generative
strengths of T2V models with the discriminative demands of the task, leading to state-of-the-art
performance. Our findings validate that the key to unlocking these models lies in principled adap-
tation, proving that by fortifying the flow’s structured starting point, the philosophical gap between
generative processes and discriminative objectives can be effectively bridged.

Looking forward, we believe the paradigm of modeling understanding tasks as conditional defor-
mation processes holds significant potential beyond RVOS. And our insight in stabilizing discrimi-
native, start-point-critical flows provide a crucial blueprint for the future. As even bigger and more
powerful foundation models emerge, these techniques will be essential for harnessing their full po-
tential and applying their remarkable capabilities to the vast amount of video understanding tasks.
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APPENDIX

A HYPERPARAMETERS SETTINGS

All our models are trained using the AdamW optimizer. We detail the key hyperparameters for our
main experiments on Ref-YouTube-VOS and MeViS in Table 4.

Table 4: Key hyperparameters for the training of FlowRVS. We detail the settings for the 2D pre-
training, the main DiT fine-tuning on video datasets, and the separate VAE decoder adaptation.

Hyperparameter 2D Pre-training Video DiT Fine-tuning VAE Decoder Fine-tuning
(RefCOCO+/g) (Ref-YT-VOS & MeViS) (on MeViS)

Optimizer Configuration
Optimizer AdamW AdamW AdamW
Peak Learning Rate 7e-5 6e-5 8e-5
LR Schedule None None None
Warmup Steps 0 0 0 0
Weight Decay 5e-4 5e-4 5e-4
Adam β1, β2 (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)

Training Schedule & Loss
Total Training Epochs 6 7 / 6 1
Global Batch Size 8 8 4
Per-GPU Batch Size 1 1 1
Gradient Accumulation Steps 1 1 1
Mixed Precision bfloat16 bfloat16 bfloat16

Loss Function L2 (MSE Loss) L2 (MSE Loss) Combined Focal + Dice Loss
(α = 0.25, γ = 2.0)

B VAE RECONSTRUCTION COMPARISON

As shown in Table 3 and below Figure 5. The vanilla VAE decoder fails to reconstruct accurate
masks, a discrepancy we attribute to the extreme domain shift between mask images (binary 0/1)
and the natural-photo distribution on which the decoder was pre-trained. Fine-tuning the decoder
resolves this failure, indicating that the frozen encoder already encodes sufficient mask-related struc-
ture and that only the decoder needs to adapt to the new visual modality.

Video Frames

Frozen VAE

Fine-tuned
VAE 

(ours)

GT

Figure 5: Visualization of VAE reconstruction results

C MORE QUALITATIVE RESULTS

In this section, we provide additional qualitative results of FlowRVS on challenging video-text pairs.
These examples further demonstrate that our holistic, flow-based approach successfully handles
complex language and dynamic scenes, particularly in scenarios involving significant occlusion and
nuanced textual descriptions.
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A cat walking from the back to the front.

Lighter one of two fighting yaks.

White dog play with the other dog.

Mevis_valid_u

The bike does not move at all.

Figure 6: visualization example of FlowRVS results on MeViS-Valid-u.

The man riding motorcycle in circles.

The ship falling sideways.

The bull that lost its balance.

The two aircrafts navigating above the sea surface and preparing to land. _ Mevis
valid

Figure 7: visualization example of FlowRVS results on MeViS-Valid.

D COMPREHENSIVE RESULTS

While our method demonstrates strong performance, it is not without limitations. We present two
typical failure modes on Figure 9. For complex relational phrases requiring fine-grained interaction
understanding, such as ”swings its tail and strikes the head” on the top row, the model correctly iden-
tifies the primary subject (the horse) but fails to isolate the specific horse performing the action. This
suggests a limitation in comprehending intricate multi-part actions. In scenarios with multiple sim-

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A giraffe is taking a food from a person.

A kangaroo standing in the grass and jumping away.

A person skiing on a rail.

A  skateboard is being rode by a person wearing red pants up the hill.
ytos

Figure 8: visualization example of FlowRVS results on Ref-YouTube-VOS-Valid.

The second bird to reach the bottom of the cage.

The horse that swings its tail and strikes the head of the other horse.

Figure 9: failure cases of FlowRVS results.

ilar objects and temporal ordering cues (”the second bird”) on the bottom row, the model struggles
to accurately resolve the ambiguity. It incorrectly segments the first bird that moves, indicating that
while our temporal modeling is strong, it can be confounded by challenging counting and ordering
logic within dense scenes.

To address the question of generalization to unseen actions and challenging description, we tested
our model on phrases not present in the training data, such as ”the dog somersaulting.” As shown
on Figure 10, FlowRVS successfully identifies and segments the dog throughout its complex, non-
rigid motion. This demonstrates that our method does not merely memorize action-object pairings
from the training set. Instead, by leveraging the rich spatio-temporal and semantic priors from the
pretrained T2V model, it develops a more fundamental understanding based on open-set vocabulary
queries that allows it to generalize to novel and dynamic actions.

E DETAILS ABOUT PROPOSED IMPROVEMENTS

E.1 BOUNDARY-BIASED SAMPLING (BBS)

BBS is a training strategy to emphasize the crucial initial step of the flow (t = 0). Formally, we
sample the timestep t from a mixed probability distribution, whose probability density function f(t)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The dog somersaulting.

Figure 10: novel action phrases out of MeViS training.

is defined as: f(t) = p · δ(t)+ (1− p) · U(t|0, 1) where δ(t) is the Dirac delta function representing
a point mass at t = 0, U(t|0, 1) is the uniform distribution on the interval [0, 1], and p is the bias
probability. In practice, this means we sample t = 0 with probability (p=0.5).

E.2 START-POINT AUGMENTATION (SPA)

SPA is a crucial regularizer to improve the robustness of our convergent (video-to-mask) flow. For
a given video V , the VAE encoder Eϕ predicts a posterior distribution q(z|V ) = N (z|µV ,σ

2
V ),

where µV and σ2
V are directly inherited from the VAE. Instead of using the deterministic mean µV ,

SPA samples the starting point z′
0 from this posterior: z′

0 ∼ N (z|µV ,σ
2
V ). This sampled latent z′

0
is then normalized before being used the ODE solver. By augmenting the training data with samples
from the local neighborhood of each video’s true latent representation, SPA forces the model to learn
a smoother and more generalizable velocity field.

E.3 DIRECT VIDEO INJECTION (DVI)

DVI provides the model with a persistent anchor to the original video content throughout the ODE
trajectory. It is implemented by concatenating the current state zt with the initial video latent z0.
This changes the input tensor’s shape from [B,C, T,H,W ] to [B, 2 ∗ C, T,H,W ]. This is handled
by modifying the first convolutional layer of the DiT to accept 2 ∗ C input channels, while all
subsequent layers remain unchanged.
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