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Abstract

Diffusion based vocoders have been criticised for being slow due to the many steps required
during sampling. Moreover, the model’s loss function that is popularly implemented is
designed such that the target is the original input x0 or error ϵ0. For early time steps of the
reverse process, this results in large prediction errors, which can lead to speech distortions
and increase the learning time. We propose a setup where the targets are the different
outputs of forward process time steps with a goal to reduce the magnitude of prediction
errors and reduce the training time. We use the different layers of a neural network (NN) to
perform denoising by training them to learn to generate representations similar to the noised
outputs in the forward process of the diffusion. The NN layers learn to progressively denoise
the input in the reverse process until finally the final layer estimates the clean speech. To
avoid 1:1 mapping between layers of the neural network and the forward process steps, we
define a skip parameter τ > 1 such that an NN layer is trained to cumulatively remove the
noise injected in the τ steps in the forward process. This significantly reduces the number
of data distribution recovery steps and, consequently, the time to generate speech. We show
through extensive evaluation that the proposed technique generates high-fidelity speech in
competitive time that outperforms current state-of-the-art tools. The proposed technique
is also able to generalize well to unseen speech.

1 Introduction

The use of deep generative models is prevalent in speech synthesis (Lam et al., 2022) (Chen et al., 2020) (Kong
et al., 2020b) (Prenger et al., 2018) (Kumar et al., 2019) (Kong et al., 2020a). These models use generative
adversarial network (GAN) (Goodfellow, 2016) or likelihood-based techniques. GAN-based models such as
(Kong et al., 2020a) and (Kumar et al., 2019) exploit the training objective to make the model generate
data that are indistinguishable from the training data. While GAN based models can generate high quality
speech, they are difficult to train due to instability during the training process (Mescheder et al., 2018).
Likelihood speech synthesis-based techniques are composed of autoregressive models such as (Oord et al.,
2016) (Kalchbrenner et al., 2018) (Mehri et al., 2016) (Valin & Skoglund, 2019), flow-based models (Prenger
et al., 2019) (Kim et al., 2020) (Hsu & Lee, 2020) and variational auto-encoders (VAE) based models (Liu
et al., 2022). Autoregressive speech synthesis models generate speech in a sequential nature, where the current
sample to be generated is conditioned on the previously generated samples. Due to the sequential nature of
speech generation, these models require many computations to generate a sample. This limits their ability
to be deployed in application where faster real time generation is required. The flow-based model utilises
specialised architectures to model a normalised probability model. These architectures require optimisation
of many parameters during training, and hence can be computationally expensive. VAE based models on
the other hand do not work well with high dimensional data (Bond-Taylor et al., 2021). Another type of
likelihood-based generative model that is becoming popular for speech synthesis is the diffusion probability
model (DPM) (Sohl-Dickstein et al., 2015). It has been explored in speech synthesis in (Lam et al., 2022)
(Chen et al., 2020) (Kong et al., 2020b). DPMs are composed of two main processes i.e., the forward and
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reverse process. The forward process involves sequentially adding Gaussian noise to a given distribution
until eventually it becomes identical to white noise, i.e., pure Gaussian noise. The reverse process starts
with white noise and recovers the data distribution by sampling. To learn a given target distribution, DPMs
require a significant number of diffusion steps during training, resulting in many reverse steps to recover
the data distribution during sampling time. Due to this, speech synthesis tools using diffusion generative
model are slow, a property that prohibits their real-world deployment. Recognizing this limitation, speech
synthesis tools that employ diffusion generative models employ a number of techniques to reduce sampling
steps. WaveGrad (Chen et al., 2020) uses a grid search algorithm (GS) to reduce the sampling noise schedule.
The use of grid search to shorten the noise schedule has been criticised for being computationally prohibitive
when many noising steps N are used (Lam et al., 2022). BDDM (Lam et al., 2022) reduces the sampling
schedule by first training a generative model for speech synthesis using T steps, then uses the optimised
score network to train a scheduling network to learn a shorter noise schedule N << T to be used during
sampling. In this work, we explore the idea of using content transfer to speed up speech synthesis in DPM.
Content transfer which was first used in (Gatys et al., 2016) as part of style transfer, involves training layers
of a neural network to minimize the distance between representations of a desired style (or content) and
a white noise and iteratively transform white noise to the desired style or content. Motivated by this, we
also use neural network layers to learn to generate representations of a given audio generated by a given
time-step t of the forward process. Since the forward process can have many steps T , we restrict the layers
of the neural network used in the reverse process to N = T

τ where τ > 1. Intuitively, we use the layers of the
neural network to reduce the noise schedule of the forward process by training a neural network such that its
single layer can remove cumulative noise injected in τ steps during the forward process. Unlike (Lam et al.,
2022) which optimises two sets of parameters, we train the model to optimise only a single parameter set θ
therefore hypothesise that the proposed method will significantly reduce sampling time and, consequently,
audio generation time.

1.1 Denoising diffusion probabilistic model

Given an observed sample x of unknown distribution, the diffusion probabilistic model (DPM) aims to model
the true distribution of the data p(x). The modelled distribution p(x) can then be used to generate new
samples at will. DPM defines a forward process as:

q(x1:T |x0) =
T∏

i=1
q(xt|xt−1) (1)

Here, latent variables and true data are represented as xt with t = 0 being the true data. The encoder
q(xt|xt−1) seeks to convert the data distribution into a simple tractable distribution after the T diffusion
steps. q(xt|xt−1) models the hidden variables xt as linear Gaussian models with mean and standard cen-
tered around its previous hierarchical latent xt−1. The mean and standard deviation can be modelled as
hyperparameters (Ho et al., 2020) or as learnt variables (Nichol & Dhariwal, 2021) (Kingma et al., 2021).
The Gaussian encoder’s mean and variance are parameterized as ut(xt) = √

αtxt−1 and Σq(xt) = (1 − αt)I
respectively, hence the encoder can be expressed as:

q(xt | xt−1) = N (xt;
√

αtxt−1, (1 − αt)I) (2)

αt evolves with time t based on a fixed or learnable schedule such that the final distribution p(xT ) is a
standard Gaussian. The encoder essentially describes a steady noisification of an input over time by adding
Gaussian noise until eventually it becomes identical to pure noise. It is completely modelled as a Gaussian
with a defined mean and variance parameters at each timestep hence it is not learned. Using the property
of isotropic Gaussians, Ho et al. (2020) shows that xt can be derived directly on x0 as:

xt =
√

ᾱtx0 +
√

(1 − ᾱt)ϵ0 (3)

Where

ᾱt =
t∏

t=1
αt and ϵ0 ∼ N (ϵ0; 0, I)
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hence:
q(xt|x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I) (4)

The reverse process which seeks to recover the data distribution from the white noise p(xT ) is modelled as:

pθ(x0:T ) = p(xT )
T∏

i=1
pθ(xt−1|xt) (5)

where
p(xT ) = N (xT ; 0, I) (6)

The goal of DPM is therefore to model the reverse process pθ(xt−1|xt) so that it can be exploited to generate
new data samples. After the DPM has been optimized, a sampling procedure entails sampling Gaussian
noise from p(xT ) and iteratively running the denoising transitions pθ(xt−1|xt) for T steps to generate x0. To
optimize DPM, evidence lower bound (ELBO) in equation 7 is used.

log p(x) = Eq(x0)[DKL(q(xT |x0)||p(xT )) +
T∑

t=2
Eq(xt|x0)[DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))]

− Eq(x1|x0)[log pθ(x0|x1)]

(7)

In equation 7, the second term on the right is the denoising term that seeks to model pθ(xt−1|xt) to match
the ground truth q(xt−1|xt, x0). In (Ho et al., 2020), q(xt−1|xt, x0) is derived as:

q(xt−1|xt, x0)

= N (
√

α(1 − ᾱt−1)xt +
√

ᾱt−1(1 − αt)x0

(1 − ᾱt)
,

(1 − αt)(1 − ᾱt−1)
(1 − ᾱt)

I)
(8)

In order to match pθ(xt−1|xt) to q(xt−1|xt, x0) during the reverse process, pθ(xt−1|xt) is modeled with the
same variance as that of q(xt−1|xt, x0) i.e Σq(t) = (1−αt)(1−ᾱt−1)

(1−ᾱt) I. The mean of pθ(xt−1|xt) is made to
match that of q(xt−1|xt, x0) hence it is parameterized as:

uθ(xt, t) =
√

α(1 − ᾱt−1)xt +
√

ᾱt−1(1 − αt)x̂θ(xt, t)
(1 − ᾱt)

(9)

Here, the score network x̂θ(xt, t) is parameterized by a neural network and it seeks to predict x0 from a
noisy input xt and time index t. Hence,

pθ(xt−1|xt)

= N (
√

α(1 − ᾱt−1)xt +
√

ᾱt−1(1 − αt)x̂θ(xt, t)
(1 − ᾱt)

,
(1 − αt)(1 − ᾱt−1)

(1 − ᾱt)
I)

(10)

Therefore, optimizing the KL divergence between the two Gaussian distributions of q(xt−1|xt, x0) and
pθ(xt−1|xt) can be formulated as:

Lt−1 = arg min
θ

Et∼U(2,T )DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)) (11)

Lt−1 = arg min
θ

Et∼U(2,T )DKL(N (xt−1; µq, Σq(t)||N (xt−1; µθ(xt, t), Σq(t)) (12)

Here,

µq =
√

α(1 − ᾱt−1)xt +
√

ᾱt−1(1 − αt)x0

(1 − ᾱt)
Equation 12 is simplified as (see (Luo, 2022)):

Lt−1 = arg min
θ

Et∼U(2,T )[||x̂θ(xt, t) − x0||22] (13)
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Replacing xt in equation 13 as defined in equation 3 we have:

Lt−1 = arg min
θ

Et∼U(2,T )[||x̂θ(
√

ᾱtx0 +
√

(1 − ᾱtϵ0, t) − x0||22] (14)

The loss function is composed of the neural network x̂θ(xt, t) that is conditioned on the discrete time t and
noisy input xt to predict the original ground truth input x0. By rearranging equation 3 as:

x0 = xt −
√

1 − ᾱtϵ0√
ᾱt

(15)

an equivalent optimization of modelling a neural network ϵ̂θ(xt, t) to predict the source noise can be derived
(Ho et al., 2020).

Lt−1 = arg min
θ

Et∼U(2,T )[||ϵ̂0θ(
√

ᾱtx0 +
√

(1 − ᾱtϵ0, t) − ϵ0||22] (16)

Work in (Ho et al., 2020) uses Lt−1 as an optimization of the ELBO.

2 Related work

Deep neural network generative techniques for speech synthesis (vocoders) are either implemented using
likelihood technique or generative adversarial network (Goodfellow, 2016). Likelihood methods are composed
of autoregressive, VAE, flow, and diffusion-based vocoders. Autoregressive models such as (Oord et al., 2016)
(Kalchbrenner et al., 2018) (Mehri et al., 2016) and (Valin & Skoglund, 2019) are models that generate speech
sequentially. The models learn the joint probability over speech data by factorizing the distribution into a
product of conditional probabilities over each sample. Due to their sequential nature of speech generation,
autoregressive models require a large number of computations to generate a sample. This limits their ability
to be deployed in application where faster real time generation is required. However, there are models such
as (Paine et al., 2016), (Hsu & Lee, 2020) and (Mehri et al., 2016) which propose techniques to speed up
speech generation in autoregressive models. Another likelihood-based speech synthesis technique is the flow-
based models (Rezende & Mohamed, 2015) used in (Prenger et al., 2019) (Kim et al., 2020) (Hsu & Lee,
2020). These models use a sequence of invertible mappings to transform a given probability density. During
sampling, flow-based models generate data from a probability distribution through the inverse of these
transforms. Flow based models implement specialized models that are is complicated to train Tan et al.
(2021). Denoising diffusion probabilistic models (DDPM) have recently been exploited in speech synthesis
using tools such as PriorGrad (Lee et al., 2021), WaveGrad (Chen et al., 2020), BDDM (Lam et al., 2022)
and DiffWave (Kong et al., 2020b). These models exploit a neural network that learns to predict the source
noise that was used in the noisification process during the forward process. Diffusion-based vocoders can
generate speech with very high voice quality but are slow due to the high number of sampling steps. Tools
such as BDDM (Lam et al., 2022) propose techniques to speed up speech generation while using diffusion
models. Our proposed work also looks at how to speed up speech synthesis in diffusion models. Finally,
GAN based models such as (Kong et al., 2020a) and (Kumar et al., 2019) exploit the training objective to
make the model generate data that is indistinguishable from the training data. While GAN based models
can generate high quality speech, they are difficult to train due to instability during the training process
(Mescheder et al., 2018). A complete review of the vocoders can be found in (Tan et al., 2021).

3 Unconditional speech generation

3.1 Forward Process

The proposed method is based on content transfer between audio in the forward process and audio generated
by the layers of neural network in the reverse process. The number of steps N used to recover the data
distribution is fixed by selecting a skip parameter 1 ≤ τ < T such that N = T

τ . If τ = 1, then there is
1:1 mapping between a time step t ∈ T of the forward process and a neural network layer of the reverse
process. However, the goal is to fast track the reverse of the diffusion process, and hence we aim to select
τ > 1 that significantly reduces the sampling time. By doing this, a layer l that is mapped to a time step t
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Figure 1: An overview of the unconditioned audio generation. An input audio is processed by a pre-
trained model to generate x0. x0 is then processed by forward process to generate latent variable xt. The
representations of latent variable xt are stored for selected steps. In the reverse process, white noise xT

is passed through the first layer of the neural network and processed through the subsequent layers. For
each layer, we store its generated representation. A layer is mapped to a given time step t of the forward
process. If a layer l is mapped to a time step t, an error Li is computed by establishing l2 norm between
their respective embeddings.

of the forward process can eliminate noise injected from t = t − τ to t = t in the diffusion process. During
the forward process, given a raw waveform x ∈ RT , we use Wav2Vec 2.0 (Baevski et al., 2020) to establish
its representations x0 ∈ Rf×h. We then generate latent variables xt from x0 based on equation 3. The
representations of latent variables at selected steps t are stored based on the set value of τ . We also employ
a discrete codebook Z = {zk}K

k=1 ∈ Rh such that the rows of x0 are mapped to entries in the codebook
based on equation 17 (see figure 1).

zq =
(

arg min
zk∈Z

||xi
0 − zk||22 for all (i)in (f)

)
∈ Rf×h (17)

The indexes from the codebook to which the row of x0 are mapped to are stored.

3.2 Reverse process

The ELBO (equation 7) used for optimizing diffusion probabilistic model is composed of three key parts:

L0 = Eq(x1|x0)[log pθ(x0|x1)]
LT = Eq(x0)DKL(q(xT |x0)||p(xT ))

Lt−1 =
T∑

t=2
Eq(xt|x0)[DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))]

The total loss based on these three parts is defined as:

Lvlb = L0 + L1 + · · · + LT −1 + LT . (18)

Lt−1 is the denoising term with the goal to learn a transition step pθ(xt−1|xt) that estimates the tractable
ground truth q(xt−1|xt, x0). When the KL divergence of the two denoising steps is minimised, denoising is
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achieved. q(xt−1|xt, x0) can be expanded using Bayes theorem as:

q(xt−1|xt, x0) = q(xt|xt−1, x0)q(xt−1|x0)
q(xt|x0) (19)

Using Markov property,
q(xt|xt−1, x0) = q(xt|xt−1) (20)

Based on equation 3, q(xt|xt−1) can be derived directly from input as q(xt|x0). Therefore, equation 19 is
reformulated as:

q(xt−1|xt, x0) = q(xt|x0)q(xt−1|x0)
q(xt|x0) = q(xt−1|x0) = q(xt−1|xt−2) (21)

Hence equation Lt−1 can now be rewritten as:

Lt−1 =
T∑

t=2
Eq(xt|x0)[DKL(q(xt−1|xt−2)||pθ(xt−1|xt))] (22)

We further parameterize it as:

Lt−1 =
T∑

t=2
Eq(xt|x0)[DKL(q(xt−1|xt−2)||pθ(x̂t−1|x̂t))] (23)

Where we introduce estimates x̂t−1 and x̂t instead of actual xt−1 and xt respectively. The denoising goal
now is to model pθ(x̂t−1|x̂t) to estimate q(xt−1|xt−2)) established during the forward process. In (Ho et al.,
2020), they randomly sample t and use Et,x0,ϵ0 [Lt−1](see equation 16) to estimate Lvlb (equation 18). The
minimization of the loss proposed by (Ho et al., 2020) generates samples that do not achieve competitive
log-likelihoods (Nichol & Dhariwal, 2021). Log-likelihood is a key metric in generative models and optimizing
it drives generative models to capture all of the modes of the data distribution (Razavi et al., 2019). Inspired
by this, we seek to efficiently optimize the whole of Lvlb. We start by minimizing Lt−1 across all noise levels
over all timesteps. This can be approximated by minimizing the expectation optimized using stochastic
samples over timesteps.

Lt−1 = arg min
θ

Et∼U(2,T )DKL(q(xt−1|xt−2))||pθ(x̂t−1|x̂t)) (24)

Lt−1 = arg min
θ

Et∼U(2,T )DKL(N (xt−1; µq(t), Σq(t))||N (x̂t−1; µ̂θ, Σq(t))) (25)

where µq(t) = √
αt−1xt−2, and Σq(t) = (1−αt−1)I. pθ(x̂t−1|x̂t) is supposed to be modelled to have a similar

distribution to that of q(xt−1 | xt−2) as much as possible (Ho et al., 2020). Hence, we model the distribution
of pθ(x̂t−1|x̂t) as a Gaussian with mean µ̂θ = √

αt−1x̂θ(x̂t−1, t − 2) and variance Σq(t). With x̂θ(x̂t−1, t − 2)
being parameterized by a neural network that seeks to predict xt−2 from the estimate x̂t−1 and time step
t − 2. Based on this, equation 25 can be simplified as ( see appendix A for complete derivation):

Lt−1 = arg min
θ

Et∼U(2,T )
1

2(1 − αt−1) [||√αt−1x̂θ(x̂t−1, t − 2) − √
αt−1xt−2||22] (26)

Lt−1 = arg min
θ

Et∼U(2,T )

√
αt−1

2(1 − αt−1)
[
∥x̂θ(x̂t−1, t − 2) − xt−2∥2

2
]

(27)

Equation 27 can be generalized as:

Lt−1 = arg min
θ

Et∼U(2,T )

√
αt−1

2(1 − αt−1) [||x̂θ(x̂t+1, t) − xt||22] (28)

Therefore, optimizing Lt−1 boils down to learning a neural network x̂θ to predict xt established during the
forward process. The neural network should be conditioned on an estimate x̂t+1 and time step t to predict
xt. Unlike the loss in equation 13 where the neural network x̂θ(xt, t) conditioned on a random noisy input xt
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predicts the original noiseless input x0, the loss in equation 28, conditions the neural network on an estimate
x̂t+1 of step t + 1 of the reverse process to predict the noisy output generated at a time step t during the
forward process. For instance, to recover q(x1|x0) generated at t = 1 during the forward process, using the
loss function in equation 28, we will need to design a neural network conditioned on an estimate x̂2 and time
t = 1 and minimise the loss:

Lt−1 = arg min
θ

Et∼U(2,T )

√
αt−1

2(1 − αt−1) [||x̂θ(x̂2, 1) − x1||22] (29)

3.3 Neural network

To recover data distribution, we use individual layers of Wav2Vec 2.0 (Baevski et al., 2020) to model a given
timestep of the reverse process. Wav2Vec 2.0 is a speech pre-trained model that is composed of two main
blocks. The first block, feature extractor is made of seven 1D convolution layers and a normalization layer.
It accepts raw audio waveform and generates a representation Z = {z1, · · · , zn} with 20 ms stride between
samples where each sample has a receptive field of 25ms. The second block is composed of a transformer
with 24 layers that establish a contextual representation C = {c1, · · · , cn} of a given audio. Therefore, to
recover data distribution, we use N = 24 steps where each step is modelled by a Wav2Vec’s layer. This is
similar to defining a skip parameter τ such that for a forward process with T , N = T

τ . Factoring τ in Lt−1,
equation 28 is implemented as:

Lt−1 = arg min
θ

Et∼U(2,T )

√
αt−1

2(1 − αt−1) [||x̂θ(x̂t+1, t) − xt−τ ||22] (30)

Intuitively, since τ > 1, the network layer x̂θ(x̂n+1, t) is supposed to remove the cumulative noise injected
between timesteps t = t−τ and t = t during the forward process. This significantly speeds the data recovery
process. Note that since the layers of neural network are sequential, an estimate x̂t generated by layer l = t
acts as input of layer l = t − 1 to estimate x̂t−1. Therefore, the timesteps t are implicitly encoded by the
layers hence the layers need not to be conditioned on time t i.e.,

arg min
θ

Et∼U(2,T )

√
αt−1

2(1 − αt−1) [||x̂θ(x̂t+1, t) − xt||22] = arg min
θ

Et∼U(1,T −1)

√
αt−1

2(1 − αt−1) ||x̂t
θ(x̂t+1) − xt−τ ||22

(31)
The reverse process starts with white noise xT ∼ N (0, I) which is passed through the first layer of neural
network l = T −1 and subsequent layers of the Wav2Vec. Each layer l = t generates representation estimation
x̂t ∈ Rf×h which is passed to the next layer l = t − 1 to estimate x̂t−1 ∈ Rf×h. Representations encoded by
each of the 24 layers of Wav2Vec are stored. We compute Lt−1 loss by minimizing l2 normalized embeddings
between x̂t ∈ Rf×h and the embeddings xt−τ ∈ Rf×h established during the forward process according to
equation 32.

Lt−1 =
1∑

l=T −1
λi

f∑
i=1

2 − 2
< x̂ti, x(t−τ)i >

||x̂ti||2.||x(t−τ)i||2
(32)

Here, λt is the weight of the amount of loss contributed by a layer l = t to the loss Lt−1. During implemen-
tation we drop

√
αt−1

2(1−αt−1) since it does not contribute significantly to the loss.

To compute the loss L0, we pass the estimate x̂1 estimated by layer l = 1 to the last layer l = 0 of the neural
network i.e x̂0 = x̂0

θ(x̂1). It is this predicted x̂0 that used to estimate the probability pθ(x̂0|x̂1) of predicting
the original indexes of the input x0 established by the codebook (see figure 1). L0 is then computed as:

L0 = − log pθ(x̂0|x̂1) (33)

LT is not modelled by a neural network hence does not depend on θ, it will be close to zero if the forward
noising process sufficiently corrupts the data distribution so that q(xT |x0) ≈ N (0, I). LT can simply be
computed as KL Divergence between two Gaussian distributions. Based on this, we can now compute
Llvb = L0 + Lt−1 + LT . The weights of the layers are by adjusted by computing the derivative of Llvb with
respect to their activations.
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Figure 2: An overview of the conditioned audio generation. Compared to unconditioned audio generation in
figure 1, the conditioned audio generation includes upsampling blocks that accepts Mel-spectrogram y that
contains acoustic features of the audio to be generated. The upsampling blocks process the Mel-spectrogram
to generate β = f(y) and γ = f(y). Both β and γ are used to modulate the activation of the neural network
layer according to equation 35.

3.4 Conditional speech generation

To enable the model to generate speech that follows a given acoustic features, we condition the loss in
equation 31 on acoustic features y as:

Lt−1 = arg min
θ

Et∼U(2,T )

√
αt−1

2(1 − αt−1) ||x̂t
θ(x̂t+1, y) − xt−τ ||22 (34)

Therefore, we design the score network x̂t
θ(., .) such that it can process both noisy estimate x̂n+1 and acoustic

features y. To achieve this, we exploit feature-wise linear modulation (FiLM) (Perez et al., 2018) which has
also been used in (Chen et al., 2020). Through FiLM, we adaptively influence neural network layer estimates
by applying affine transformation to layer activation based on the input Mel spectrogram y (see equation
35 and Figure 2). To compute L0 for conditional generation, we estimate the probability pθ(x̂0|x̂1, y) of
predicting the original indexes of the input x0 established by the codebook. Here, x̂0 is conditioned on both
x̂1 and acoustic features y.

FiLM(x̂n+1) = γ ⊙ x̂n+1 + β (35)

where both γ and β ∈ Rf×h modulates x̂n+1 based on a certain Mel-spectrogram y and ⊙ is the Hadamard
product.

4 Evaluation

This section discusses how we developed and evaluated the proposed technique which we refer as DiCon
(Dinoising by Content transfer).
Dataset: In keeping with the trend in the speech synthesis domain and to allow for comparison with other
existing tools, we used the most popular datasets i.e., LJSpeech dataset for single speaker evaluation and
VCTK dataset for multi-speaker evaluation. LJSpeech dataset consists of 13,100 audio clips sampled at
22KHz. The audio clips are from a female speaker that vary in length from 1 to 10 seconds with a total
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of about 24hrs. For multispeaker, we used the VCTK dataset, which is sampled at 48KHz and consists of
109 English speakers with various accents. VCTK was downsampled to 22KHz. Similar to (Chen et al.,
2020), for LJSpeech, we used 12,764 utterance subset which is approximately 23 hours for training the model
and evaluated it on test set of 130 utterances subset. For multi-speaker evaluation, we used the data split
used in (Lam et al., 2022) of 100 speakers for training and 9 were used for evaluation. From each audio
we extracted a 128-dimensional Mel spectrogram features. Similar to (Chen et al., 2020) we used a 50-ms
Hanning window, 12.5-ms frame shift, and a 2048-point FFT with upper and lower frequencies of 20 Hz and
12 kHz lower.
Training parameters: The model was trained using a single NVDIA V100 GPU. We used Adam Opti-
miser and the cyclical learning rate (Smith, 2017) with a minimum learning rate of 1e−4 and a maximum of
1e − 1. We used a batch size of 32 and trained for 1M steps. Similar to (Chen et al., 2020), for conditioned
audio generation we used Mel-spectrogram extracted from ground truth audio as conditioning audio features
during training while during testing we used Mel-spectrogram generated by Tacotron 2 model (Shen et al.,
2018). To generate the FiLM parameters β and γ, we use the upsampling blocks proposed in Chen et al.
(2020) and use the parameters to modulate the activations of a given layer as described in equation 30. To
weigh the loss contributed by a layer l to the loss Lt−1 as described in equation 32, we initialize λ = 0.001
for the first layer and increase it by 0.001 for each upper layers i.e., upper layers contribute more to the loss
as compared to lower layers.
Baseline models: We compared the proposed method with other state-of-the-art vocoders. We used mod-
els that have publicly available samples which can be used for human evaluation. The baseline models used
include WaveNet (Oord et al., 2016)1, WaveGlow (Prenger et al., 2018) 2, MelGAN (Kumar et al., 2019) 3,
HiFi-GAN (Kong et al., 2020a) 4, WaveGrad (Chen et al., 2020) 5, DiffWave (Kong et al., 2020b) 6, BDDM
(Lam et al., 2022) 7 and FastDiff (Huang et al., 2022a) 8.
Metrics: For subjective evaluation, we used the Mean Opinion Score (MOS) metric to evaluate the perfor-
mance of the proposed model compared to the baseline tools. For each model we collected samples generated
by the model. We also randomly selected samples from original audio samples. Each of the samples was
presented to human evaluators one at time for them to rate the quality of speech on its naturalness on
a 5-point Mean Opinion Score (MOS) scale. The scores used were Bad: 1, Poor: 2, Fair: 3, Good: 4,
Excellent: 5 with a rating increment of 0.5. A single evaluator was required to rate 10 samples. Human
evaluators were contracted via Amazon Mechanical Turk where they were required to wear headphones and
be English speakers. For objective evaluation, we use deep learning-based MOS prediction tools. We use
SSL-MOS 9 (Cooper et al., 2022), MOSA-Net10 (Zezario et al., 2022) and LDNet 11(Huang et al., 2022c).
We use these tools since they are also adopted as baseline tools for MOS prediction in VoiceMOS challenge
Huang et al. (2022b). SSL-MOS is a Wav2Vec based model that was finetuned for MOS prediction task by
adding a linear layer on top of Wav2Vec model. MOSA-Net employs a cross-domain features such as T-F
spectrogram, complex spectrogram, raw waveform and features extracted from SSL speech models to predict
MOS of speech samples. LDNet is a mean opinion score (MOS) prediction tool that predicts the listener-wise
perceived quality given the input speech. Speech samples submitted to the tool need to be annotated with
listener identity. MOS scores are based on all listeners averages. We also use F0 Frame Error (FFE) which
measures the proportional of the generated speech whose pitch differs from the ground truth. To compute
FFE, ground truth speech is required. We use Mel-spectrograms of ground truth speeches to generate FFE.
Model Configurations: To train the model, we experimented with different number of steps in the forwards
process while the reverse steps were kept constant at 24. We experimented with forward step (fsteps) of 1200,
960, 720 and 240 while the reverse steps (rsteps) were kept constant at 24 hence we selected a skip parameter

1https://github.com/r9y9/wavenet_vocoder
2https:// github.com/NVIDIA/waveglow
3https://github.com/descriptinc/melgan-neurips
4https://github.com/jik876/hifi-gan
5https://github.com/tencent-ailab/bddm
6https://github.com/tencent-ailab/bddm
7https://github.com/tencent-ailab/bddm
8https://FastDiff.github.io/
9https://github.com/nii-yamagishilab/mos-finetune-ssl

10https://github.com/dhimasryan/MOSA-Net-Cross-Domain
11https://github.com/unilight/LDNet
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τ = {50, 40, 30, 10} respectively. The model accepts a 0.3 second input of audio. For the forward process αi

increases linearly from α1 to αN defined as Linear(α1, αN , N) such as Linear(1 × 10−4, 0.005, 1200).

4.1 Results

4.1.1 Single speaker

For conditional speech generation on a single speech dataset, the subjective MOS and objective MOS from
SSL-MOS, MOSA-Net and LDNet are shown table 1. Table 1 also shows the speech generation time RTF.
For subjective MOS, the best performing configuration of the proposed technique DiCon(1200,24) registers
a score 4.49 which has margin of 0.23 from that of the ground truth. DiCon(1200,24) also registers the best
results in all the objective MOS. With regards to speed of speech generation, all the configuration of the
proposed model are competitive with the observation that as the step size τ becomes smaller the speed of
generation increases. We hypothesize that this is because a neural network layer has a reduced load of the
amount of noise it is supposed to remove. We also note that the more forward steps, the better quality of
audio the model can generate.

Table 1: Evaluation results of the conditioned version of the proposed method and how it compares to other
state of the art tools on the evaluation metrics when single-speaker dataset is used.

LJSpeech test-dataset
Model MOS(↑) SSL-MOS(↑) MOSANet(↑) LDNet(↑) FFE(↓) RTF (↓)

Ground truth 4.72±0.15 4.56 4.51 4.67 -
BDDM(12 steps) 4.38±0.15 4.23 4.17 4.42 3.6% 0.543
DiffWave(200 steps) 4.43± 0.13 4.31 4.28 4.36 2.6% 5.9
WaveGrad(1000 steps) 4.32± 0.15 4.27 4.23 4.31 2.8% 38.2
HIFI-GAN 4.26± 0.14 4.19 4.13 4.27 3.3% 0.0134
MelGAN 3.49± 0.12 3.33 3.27 3.42 6.7% 0.00396
WaveGlow 3.17± 0.14 3.12 3.09 3.14 7.3% 0.0198
WaveNet 3.61 ± 0.15 3.51 3.47 3.54 6.3% 318.6
DiCon(fsteps:1200 rsteps 24 ) 4.49± 0.12 4.43 4.35 4.44 2.3% 0.0042
DiCon(fsteps:960 rsteps 24 ) 4.33 ± 0.15 4.283 4.23 4.31 3.7% 0.00371
DiCon(fsteps:720 rsteps 24 ) 4.17 ± 0.15 4.12 4.09 4.14 4.3% 0.002912
DiCon(fsteps:240 rsteps 24 ) 4.09± 0.13 4.05 4.01 4.05 4.7% 0.00182

4.1.2 Multi-speaker

The results of the performance of the proposed technique on the multi-speaker dataset are shown in table 2.
For this dataset, the proposed technique can generalize to unseen speakers and DiCon(1200,24) configuration
has the best MOS score of 4.38 which has a gap of 0.25 from the ground truth. It also registers the best
performance on all the objective metrics except in FFE where it has a margin of 0.1% from the best performing
tool on this metric DiffWave.

4.1.3 Unconditional speech generation

Here, the model was trained using multi-speaker dataset. To generate a speech sample, we sample white noise
at random and process it through the trained model without conditioning it on any acoustic features. The
results for unconditional speech generation are shown in table 3. For short clips, DiCon(fsteps:1200 rsteps
24 ) attains the MOS score of 3.11. Listening to the audio clips, we noticed a phenomenon where the clips
begin by generating coherent sounding sentences, but the coherence drops with time. We will investigate the
reason for this phenomenon in our future work. However, the model can generate clean sounding speeches,
i.e., almost free of noise or artefacts.

10
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Table 2: Evaluation results of the conditioned version of the proposed method and how it compares to other
state of the art tools on the evaluation metrics when single-speaker dataset is used.

VCTK test-dataset
Model MOS(↑) SSL-MOS(↑) MOSANet(↑) LDNet(↑) FFE(↓) RTF (↓)

Ground truth 4.63±0.05 4.57 4.69 4.65 -
BDDM(12 steps) 4.33±0.05 4.28 4.25 4.35 4.3% 0.543
DiffWave(200 steps) 4.38± 0.03 4.41 4.32 4.33 3.2% 5.9
WaveGrad(1000 steps) 4.26± 0.05 4.31 4.21 4.24 3.4% 38.2
HIFI-GAN 4.19± 0.14 4.12 4.16 4.18 3.9% 0.0134
MelGAN 3.33± 0.05 3.27 3.24 3.37 7.7% 0.00396
WaveGlow 3.13± 0.05 3.12 3.16 3.09 8.2% 0.0198
WaveNet 3.53 ± 0.05 3.43 3.45 3.46 7.2% 318.6
DiCon(fsteps:1200 rsteps 24 ) 4.38± 0.12 4.43 4.36 4.40 3.3% 0.0042
DiCon(fsteps:960 rsteps 24 ) 4.28 ± 0.05 4.23 4.25 4.29 4.2% 0.00371
DiCon(fsteps:720 rsteps 24 ) 4.12 ± 0.05 4.11 4.13 4.08 4.6% 0.002912
DiCon(fsteps:240 rsteps 24 ) 4.04± 0.03 4.01 3.91 4.01 5.2% 0.00182

Table 3: Results of the unconditioned proposed method on multi-speaker dataset.
VCTK test-dataset

Model MOS(↑) SSL-MOS(↑) MOSANet(↑) LDNet(↑) RTF (↓)
DiCon(fsteps:1200 rsteps 24 ) 3.11± 0.12 3.17 3.16 3.23 0.0038
DiCon(fsteps:960 rsteps 24 ) 3.04± 0.05 3.09 3.01 3.09 0.00351
DiCon(fsteps:720 rsteps 24 ) 3.02 ± 0.05 3.07 3.01 3.06 0.002812
DiCon(fsteps:240 rsteps 24 ) 2.98± 0.03 3.02 3.03 3.08 0.00162

5 Conclusion

This paper presents DiCon, a technique for speeding up speech generation in diffusion models using neural
network layers. We exploit the layers of the neural network to progressively recover the data distribution
from white noise. Using content transfer, we demonstrate how an NN network layer can be exploited to
implicitly perform denoising. We use a skip parameter τ to guide the mapping of NN layers to the forward
process, and hence reduce the number of distribution recovery steps. In conditional speech generation, we
use FiLM to infuse the acoustic features of a given speech into the denoising process. Based on evaluation,
we demonstrate that the proposed technique generates superior quality speech samples at a competitive
speed.
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6 Appendix A

This section describes how equation 26 was arrived at.

Lt−1 = arg min
θ

Et∼U(2,T )DKL(q(xt−1 | xt−2)||pθ(x̂t−1|x̂t)) (36)

Lt−1 = arg min
θ

Et∼U(2,T )DKL(N (xt−1; µq(t), Σq(t))||N (x̂t−1; µ̂θ, Σq(t))) (37)

where Σq(t) = 1 − αt−1, µ̂θ = √
αt−1x̂θ(x̂t−1, t − 2) and µq(t) = √

αt−1xt−2

DKL (N (xt−1; µq, Σq(t)) ∥N (x̂t−1; µ̂θ, Σq(t))) =
1
2

[
log |Σq(t)|

|Σq(t)| − d + tr
(
Σq(t)−1Σq(t)

)
+ (µ̂θ − µq(t))T Σq(t)−1 (µ̂θ − µq(t))

] (38)

Here d is the dimension of both distributions.

DKL (N (xt−1; µq(t), Σq(t)) ∥N (x̂t−1; µ̂θ, Σq(t))) = 1
2

[
log 1 − d + d + (µ̂θ − µq(t))T Σq(t)−1 (µ̂θ − µq(t))

]
(39)

= 1
2

[
(µ̂θ − µq(t))T Σq(t)−1 (µ̂θ − µq(t))

]
(40)

= 1
2Σq(t)

[
(µ̂θ − µq(t))T (µ̂θ − µq(t))

]
(41)

= 1
2Σq(t)

[
∥µ̂θ − µq(t)∥2

2
]

(42)

= 1
2Σq(t)

[
∥
√

αtx̂θ(x̂t−1, t − 2) − √
αt−1xt−2∥2

2
]

(43)

=
√

αt−1

2(1 − αt−1)
[
∥x̂θ(x̂t−1, t − 2) − xt−2∥2

2
]

(44)
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