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Abstract

A high level of similarity between neural codes of natural images has been reported1

for both biological and artificial brains. These observations beg the question2

whether this similarity of representations stems from a more fundamental similarity3

between neural coding strategies. In this paper, we show that neural networks4

trained on different image classification datasets learn similar weight summary5

statistics. Our results reveal the existence of a universal neural code for natural6

images.7

1 Introduction8

Deep neural networks reliably achieve high performance on visual tasks such as image classification,9

with remarkable robustness with respect to the exact details of the architecture, initialization, and10

training procedure. The success of transfer learning also demonstrates that networks trained on one11

task can perform well on another (related) task. This raises the question: do all these networks share12

a universal encoding of images, irrespective of their architecture and training dataset? And if so, is13

this encoding shared in human and animal visual cortex?14

Hidden representations learned by networks trained from different initializations have been found15

to be similar at all layers [Raghu et al., 2017], and this similarity increases when the network width16

increases [Kornblith et al., 2019]. Similar observations in the context of human neural encodings17

have been made by studying fMRI response patterns in visual cortex [Haxby et al., 2011], as well18

as between neural network representations and IT spiking responses [Yamins et al., 2014]. Here,19

we ask whether this similarity at the level of network representations/activations arises from a more20

fundamental similarity between their learned weights.21

Network weights are less easily prone to analysis than hidden representations, and have thus been22

less studied. The first layer can be directly visualized, and learns Gabor-like filters [Krizhevsky et al.,23

2012] in a wide range of settings. Attempts to generalize comparisons to deeper layers based on24

matching individual neurons between networks however lead to mixed results [Entezari et al., 2022,25

Benzing et al., 2022, Ainsworth et al., 2022]. The recent work of Guth et al. [2023] instead considers26

global weight statistics and shows that they do not depend on the initialization nor the network width.27

In this paper, we extend these results by showing that networks trained on different image classification28

datasets share a set of universal weight statistics even deep within the network. In Section 2, we first29

review the approach of Guth et al. [2023] to compare weights in hidden layers between different30

networks. We then show in Section 3 that this approach applied to networks trained on different31

datasets reveals the universality of the learned weights.32

2 Comparing weights of deep networks33

How does one meaningfully compare weights of two trained deep networks? In this section, we34

briefly review the approach introduced by [Guth et al., 2023].35
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Separating space and channels. Weights of convolutional layers take the form of a four-36

dimensional tensor with two spatial dimensions and two channel dimensions. To simplify the37

analysis of the weights, it is helpful to consider a family of architectures for which operations across38

space and channels are separated. We consider learned scattering networks [Guth et al., 2022],39

in which the spatial convolutions are not learned and fixed to wavelets, yet achieve classification40

accuracies on par with ResNets of similar depths on ImageNet. We thus focus on the learned weights41

which apply along channels only, through a 1 × 1 (or pointwise) convolution. Our approach is42

however general and can be applied to any CNN with appropriate modifications [Guth et al., 2023].43

Aligning hidden layers. Visualizations and comparisons of learned weights in deep networks are44

generally limited to the first layer. A major difficulty in comparing weights in deeper layers is that45

they are adapted to hidden representations which themselves vary across networks, contrary to the46

input of the first layer which is fixed.47

Comparing two layers can be done as follows. Consider two hidden representations ϕ(x) and ϕ′(x)48

learned by two different networks: ϕ(x) and ϕ′(x) are in general not comparable (they might even49

have different numbers of dimensions). Representational similarity analysis [Kriegeskorte et al.,50

2008] instead compares their similarity structures (or kernels) ⟨ϕ(x), ϕ(y)⟩ and ⟨ϕ′(x), ϕ′(y)⟩, which51

have empirically been found to be close in various settings [Raghu et al., 2017, Kornblith et al., 2019].52

This implies that the variability in the representation between ϕ and ϕ′ must preserve this similarity53

structure, and is thus limited to an orthogonal transform. In other words, when ⟨ϕ(x), ϕ(y)⟩ ≈54

⟨ϕ′(x), ϕ′(y)⟩, there exists an orthogonal alignment matrix A such that ϕ′(x) ≈ Aϕ(x) [Guth et al.,55

2023].56

Now consider two neurons w and w′ in the next layer of the two different networks. What does it57

mean for w and w′ to be equivalent? It seems natural to ask that the two neurons compute similar58

outputs:59

⟨w, ϕ(x)⟩ ≈ ⟨w′, ϕ′(x)⟩.
Because ϕ(x) ̸= ϕ′(x), this condition is not equivalent to w ≈ w′. Rather, we have60

⟨w′, ϕ′(x)⟩ ≈ ⟨w′, Aϕ(x)⟩ = ⟨ATw′, ϕ(x)⟩,
so that the two neurons compute similar outputs when w ≈ ATw′, or equivalently, when w′ ≈ Aw.61

Just like the alignment A maps representations in the first network to representations in the second62

network, it maps next-layer neurons in the first network to equivalent neurons in the second network.63

Comparing hidden neurons from different networks thus requires aligning their hidden representations64

and taking this alignment into account in the comparison.65

Comparing neuron distributions. Comparing individual neurons in two different networks66

amounts to searching for a one-to-one mapping between them. If the two networks had exactly67

the same neurons, but possibly in a different order, then their representations would differ by a68

permutation [Entezari et al., 2022, Benzing et al., 2022, Ainsworth et al., 2022]. The use of rotations69

when aligning representations suggests that more variability might be present.70

Rather than comparing individual neurons from two different networks, we search for similarities71

between the neural populations at a global level: do they have the same statistics? This corresponds to72

testing whether the neurons in both networks can be modeled as samples from the same distribution.73

as done in so-called “mean-field” analyses of neural networks.74

Weight principal directions. When considering probability distributions, which statistics of the75

neural populations should we measure and compare? Guth et al. [2023] have shown that the covariance76

of neuron weights, and in particular its leading eigenvectors, captures most of the encoding properties,77

as knowledge of the weight covariances can be sufficient to generate new networks with similar78

performance.79

In summary: to compare weights between two networks, for each layer, we compute the alignment80

matrix A between the input representations, and use it to compare the covariances of the neuron81

weights of both networks. In Figure 1, we reproduce some of the results of Guth et al. [2023]. We82

show that two networks with different random initializations learn the same weight eigenvectors when83

trained on CIFAR-10. This shows that the leading eigenvectors of the weight covariance correspond84

to a stable low-dimensional “informative” subspace. In the next section, we extend this result to85

networks trained on different datasets.86
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Figure 1: Comparison between the weight covariance eigenvectors of two four-layer learned scattering
networks trained on the CIFAR-10 dataset (after alignment). We focus on the second layer (all layers
lead to similar results). Top: matrix of pairwise cosine similarities between covariance eigenvectors
of the two networks. High values along the diagonal at low ranks indicate that the same leading
eigenvectors are learned by both networks. Bottom: classification accuracy after projection of the
neuron weights in the subspace spanned by the top r eigenvectors as a function of maximal rank r.
A relatively small fraction of the eigenvectors is sufficient to achieve the maximal performance for
both networks. This fraction coincides with the number of eigenvectors that are stable to the random
initialization.

3 Universality of weight eigenvectors learned from natural images87

In order to evaluate the universality of the learned neural codes, we train the same eight-layer learned88

scattering architecture on various image classification datasets which vary in the number and diversity89

of their image classes. We consider subsets of CIFAR10, CIFAR100, and ImageNet (downsampled90

to 32× 32 resolution for direct comparison with the same architecture). In particular, CIFAR5 is the91

subset of CIFAR10 composed of the first 5 classes, while ImageNet100a and ImageNet100b are two92

subsets of ImageNet composed of 100 random classes. Naturally, networks trained on classification93

tasks with more classes learn a higher number of relevant weight eigenvectors. A meaningful learned94

encoding comparison therefore requires considering networks trained on tasks with similar numbers95

of classes. This justifies the choices of the pairs of datasets presented in Figure 2.96

Using the same image resolution and architecture for all datasets ensures that all networks have the97

same number of layers and receptive field sizes. This allows comparing each layer independently.98

The results are shown in the figure. Interestingly, we find universal weight eigenvectors over an99

appreciable range of layer depth. We observe this universality of learned weight eigenvectors to100

vanish towards the final classifier. This is expected to happen at some level as the representation101

has to become task-specific. Further, we find that the more challenging datasets (with more classes,102

or more diversity such as ImageNet100 as opposed to CIFAR100) lead to a richer encoding with a103

higher number of universal weight eigenvectors.104

The existence of this universality has a number of fascinating implications. It suggests that the105

training procedure of artificial networks could be significantly simplified as networks could be preset106

with these generic features. It also opens the door to quantitative comparisons between datasets107

through a definition of encoding dimensionality or complexity. If such results also apply to biological108

brains, it suggests that different individuals may encode the visual world in a very similar manner.109
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Figure 2: Universality of the leading covariance eigenvectors. We train several eight-layer learned
scattering networks on various image classification datasets. We compute pairwise cosine similarities
between weight covariance eigenvectors at several layers (in rows) for several dataset pairs (in
columns). The color scheme has been cut off at 0.7 to better represent the dynamic range of the
correlations. In the three cases, the low-rank eigenvectors are similar across datasets, even for deeper
layers. The number of such eigenvectors increases with the number of classes.
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