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Abstract

Deep neural networks set the state-of-the-art across many tasks in computer vision,
but their generalization ability to simple image distortions is surprisingly fragile.
In contrast, the mammalian visual system is robust to a wide range of perturbations.
Recent work suggests that this generalization ability can be explained by useful
inductive biases encoded in the representations of visual stimuli throughout the
visual cortex. Here, we successfully leveraged these inductive biases with a multi-
task learning approach: we jointly trained a deep network to perform image
classification and to predict neural activity in macaque primary visual cortex
(V1) in response to the same natural stimuli. We measured the out-of-distribution
generalization abilities of our resulting network by testing its robustness to common
image distortions. We found that co-training on monkey V1 data indeed leads
to increased robustness despite the absence of those distortions during training.
Additionally, we showed that our network’s robustness is often very close to
that of an Oracle network where parts of the architecture are directly trained on
noisy images. Our results also demonstrated that the network’s representations
become more brain-like as their robustness improves. Using a novel constrained
reconstruction analysis, we investigated what makes our brain-regularized network
more robust. We found that our monkey co-trained network is more sensitive
to content than noise when compared to a Baseline network that we trained for
image classification alone. Using DeepGaze-predicted saliency maps for ImageNet
images, we found that the monkey co-trained network tends to be more sensitive
to salient regions in a scene, reminiscent of existing theories on the role of V1 in
the detection of object borders and bottom-up saliency. Overall, our work expands
the promising research avenue of transferring inductive biases from biological
to artificial neural networks on the representational level, and provides a novel
analysis of the effects of our transfer.

1 Introduction

Although machine learning algorithms have witnessed enormous progress thanks to the recent
success of deep learning methods [1], current state-of-the-art deep models [2–4] still fall behind
the generalization abilities of biological brains [5, 6]. This includes a lack of robustness to image
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corruptions as pointed out by Hendrycks and Dietterich [7], who measured a network’s performance
on 15 different image corruptions applied to the ImageNet [8] test-set. Studies with similar image
corruptions have proven to severely decrease performance in classification networks while having a
smaller impact on human perception [9], suggesting that the ability to extrapolate is weak in these
networks compared to the mammalian visual system. This gap in extrapolation has previously been
attributed to differences in feature representations [10, 11] and internal strategies for decision making
[12] between humans and CNNs.

Historically, neuroscience has inspired many innovations in artificial intelligence [13, 14], and
most of this transfer between neuroscience and machine learning happens on the implementational
level [15, 13]. However, we currently know too little about the structure of the brain at the level of
detail needed to transfer functional generalization properties from biological to artificial systems [5].
To transfer functional inductive biases from the brain to deep neural networks (DNNs), it may thus
be better to consider the representational level by capturing biological feature representations in the
responses of biological neurons to visual input – abstracting away from the implementational level.
In fact, deep neural networks have set new standards in capturing brain activity across multiple areas
in the visual cortex [16], becoming the state-of-the-art for neural response prediction of the primary
visual cortex (area V1, [17], but also see Marques et al. [18] for biologically inspired models that
perform similarly well). Recent work has shown that CNNs, which were fitted to V1 neural data,
can generalize well to other neurons, animals, and stimuli [19, 20]. Vice versa, prior work suggests
that enforcing brain-like representations in CNNs via neural data from humans [21], mice [22], or
monkeys [23] can have beneficial effects on the generalization abilities of these networks to stimuli
outside their training distribution for object recognition.

Our work expands on this line of research by exploring the extrapolation capabilities of multi-task
learning models (MTL; [24]) trained on image classification and prediction of neural responses from
monkey V1. This approach was proposed as the neural co-training hypothesis by Sinz et al. [5], but
remained untested to the best of our knowledge. We implement MTL via a shared representation
between image classification and neural response prediction (Fig. 1). Our hypothesis is that MTL
with neural data regularizes the shared representation to inherit good functional inductive biases from
neural data, and improves the network’s generalization abilities to out-of-distribution images, thus
rendering it more robust. We empirically test this idea using common corruptions on tiny ImageNet
(TIN)1. We show that MTL on monkey V1 has a positive effect on generalization as it increases
the model’s robustness to image distortions, even though it is trained on undistorted images only.
We compare our model with a robust Oracle model to quantify what performance improvement
can be expected given that only parts of the network are shared during MTL. Subsequently, we
develop a constrained reconstruction based method to analyze learned sensitivities and invariances
in the feature representation of the different models. We find that the robust models qualitatively
exhibit different feature sensitivities than a standard classification model. Finally, we show that the
feature sensitivity of the monkey V1 co-trained model is related to salient image features, consistent
with existing theories about the role of V1 [25]. Overall, our results support the neural co-training
hypothesis and further expand the scope of prior results, by exploring the relationship between
brain-like representations and robustness. To the best of our knowledge, we are the first to analyze
learned feature representations of neurally co-trained models and thus take a step towards a semantic
understanding of what makes biological vision robust.
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Figure 1: VGG-19 architecture for MTL on image classification and neural prediction.

2



2 Neural multi-task learning

Data The images for the classification task and the neurophysiological experiments were selected
from the ImageNet dataset [8]. For the classification task, we used a grayscale version of TIN1.
The tiny ImageNet dataset (TIN) is a subset of ImageNet containing 100000 training images of
200 classes (500 for each class) downsized to images of size 64x64. In addition, each class has 50
validation images and 50 test images. For neural prediction, we used neurophysiological recordings
of 458 neurons from the primary visual cortices (area V1) of two fixating awake macaque monkeys,
recorded with a 32-channel depth electrode during 15 (monkey 1) and 17 (monkey 2) sessions. In
each session, approximately 1000 trials of 15 images were presented – each image for 120ms. We
extracted the spike count from 40ms to 160ms after image onset. The image set presented to the
monkey consists of 24075 images from 964 categories – 25 images per category. Of those, 24000
were designated to model training and 75 to testing. For each training trial, a new subset of 15 images
was randomly sampled from the training set. Test images were displayed in fixed order in 5 test
trials consisting of 15 images each. Each of the test trials were randomly interleaved among training
trials and repeated 40-50 times per session. All images were converted to gray-scale and presented at
420×420 px, covering 6.7° visual angle for the monkey, resulting in 63 pixels per degree (ppd). For
model training, images were downscaled and cropped to 64×64 pixels, corresponding to 14.0 ppd.

Architecture All our experiments were based on a variant of the VGG-19 architecture [26] with
batch normalization layers [27] after every convolutional layer (Figure 1). To allow for arbitrary
image sizes, we made the network fully convolutional by replacing the fully connected readout by
three convolutional layers with dropout of 0.5 after the first two, and a final max-pooling operation
and softmax [28]. We predicted neural responses by feeding the output of the convolutional layer
conv-3-1, shown by Cadena et al. [17] to be optimal for predicting V1 responses, into a Gaussian
readout [19] yielding a spike count prediction per neuron and image.

Models We use a VGG-19, like we described it above, trained on grayscale TIN to serve as the
Baseline for image classification in our experiments. To prepare our neural co-training, similar to Li
et al. [22], we first trained a Monkey Predictor model on the image-response pairs of our recorded
neural data. We then used that model to predict neural responses for all input images of the TIN
classification dataset. These predicted responses served as the basis neural dataset we used in our
MTL approach. This allowed us to balance the amount of data we have for each task and it removed
trial-to-trial variability in the neural data.

Since co-training only affects the shared representation up to layer conv-3-1, we cannot expect the
network to be as robust as a network where all layers are trained on data augmented with the image
distortions. To explore the limits on robustness resulting from sharing lower layers only, we trained
a classification model with a 1:1 mixture of clean and distorted images drawn from the pool of 14
ImageNet-C [7] corruptions (cf. Figure 9 for examples). To push the robustness to the frozen part,
we added a second loss that penalizes the Euclidean distance between the outputs of layer conv-3-1
for the same image augmented with different corruptions – similar to Chen et al. [29]. We then froze
all layers up to conv-3-1, re-initialized the rest, and re-trained the remaining network on clean data
only. We refer to this model as the Oracle since it has access to the image distortions during training –
unlike our MTL models.

To demonstrate that MTL can in principle transfer robustness properties without showing distorted
images in training, we generated neural responses from our Oracle model for all images of the clean
TIN dataset by freezing the Oracle model and training a Gaussian readout on top of layer conv-3-1
for 10 epochs to predict V1 data. Then, we trained a model on the resulting neural responses alongside
clean image classification using MTL. We call this model MTL-Oracle. This model also gives us a
realistic “upper bound” for our MTL experiments.

For our main experiment, we trained MTL with the neural responses generated from the Monkey
Predictor model, and refer to it as MTL-Monkey. This model has never seen distorted images at any
point during training. To demonstrate that MTL-Monkey has an effect beyond introducing noise
into the training, we perform a control experiment which we refer to as MTL-Shuffled. For this, we
train a model on the same neural data but with shuffled responses across images for all neurons. An
overview of all models used in this study can be found in Table 1.

1https://www.kaggle.com/c/tiny-imagenet/overview
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Table 1: Overview of the different models that we use in this study.

Model Classification Neural Prediction
Baseline Clean TIN –

Monkey Predictor – Monkey responses
Oracle Noise augmented TIN –
MTL-Oracle Clean TIN Oracle model responses
MTL-Monkey Clean TIN Monkey predictor responses
MTL-Shuffled Clean TIN Monkey predictor responses (shuffled)

Training We used cross-entropy loss for single task image classification and Poisson loss for
single task neural prediction. For multi-task training, the challenge was to find the optimal balance
between the two objectives that achieves a reasonable performance on each task individually, and
allows both tasks to benefit from each other by learning common representations. To put both
objectives on the same scale, we used their corresponding negative log-likelihood and learned their
balance through trainable observation noise parameters σ [30]. This yields a combined loss of
1
σ2
c
LCE(θ,ψc) +

1
2σ2

n
LMSE(θ,ψn) + log σc + log σn where θ are the shared parameters and ψc, σc

and ψn, σn are the task-specific parameters for classification and neural prediction, respectively. The
classification objective LCE was the standard cross-entropy, analogous to the single-task case. For
MTL on neural data, we used mean-squared error LMSE because the targets are predictions from the
network trained on neural data and not the original noisy neural responses. For optimization, we
accumulated the gradients over the different losses to optimize the shared parameters θ in a single
combined gradient step. By definition, the two loss components would contribute equally to the
learning process.

We standardized all pixel values with the mean and standard deviation of the training set, and
augmented the images by random cropping, horizontal flipping, and rotations in a range of 15◦ for
classification. Optimization was performed using stochastic gradient descent with momentum in
all classification-related cases, and Adam for single task neural prediction [31]. We used a batch-
size of 128 and weight decay with a factor of 5 · 10−4 throughout all our experiments. The initial
learning rate was determined for each task individually and reduced by a (task-specific) factor via an
adaptive learning rate schedule. The schedule reduces the learning rate depending on the validation
performance – classification performance in the case of MTL – when the rate of improvement is not
above 10−4 for 5 consecutive epochs. The training was stopped when we reach either five learning
rate reduction steps or a maximum number of epochs, that we defined for each task. This training
setup was determined via prior hyper-parameter searches on the validation-set. We repeated every
experiment with five different random initializations. Error bars were obtained by bootstrapping (250
repetitions).

3 Results

Our goal is to test whether co-training on neural data can lead to improved extrapolation abilities. To
this end, we evaluated our model’s robustness on distorted copies of the TIN validation-set – used as a
test-set in our experiments – following the corruption paradigm of Hendrycks and Dietterich [7]. We
reproduced the distortions with an on-the-fly implementation [32], dropped glass blur because it is
computationally expensive, and refer to our resulting test-set as TIN-TC. We quantified the robustness
for each of the remaining 14 noise types and five levels of corruption severity separately, and computed
a summary robustness score adopted from Hendrycks and Dietterich [7]: 1

14

∑14
c=1 A

robust
c /A

Baseline
c ,

where Ac =
1
5

∑5
l,s=1 Al,c,s denotes the mean accuracy on corruption c across levels l and seeds s.

MTL can successfully transfer robustness Comparing the robustness of the MTL-Oracle model
on TIN-TC to the robustness of the single-task Baseline model trained on clean TIN only, we saw
clear signs of successful transfer (Fig. 2 and Fig. 3A,B) although the MTL network has never seen the
image distortions of TIN-TC. In fact, the MTL-Oracle performed close to the Oracle in most cases.

4



1 2 3 4 5
Corruption Severity

0

20

40

A
cc

ur
ac

y
[%

]

Pixelate

1 2 3 4 5
Corruption Severity

0

20

40
Impulse Noise

1 2 3 4 5
Corruption Severity

0

20

40
Contrast

Baseline MTL-Monkey MTL-Shuffled MTL-Oracle Oracle

Figure 2: Exemplary classification results on TIN-TC, showing 3 corruption types with the best (left),
median (center) and worst (right) robustness scores for MTL-Monkey across 5 increasing levels of
severity each.
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Figure 3: A Robustness scores for each model grouped by corruption category, as defined in
Hendrycks and Dietterich [7]. B Overall robustness scores for our 5 different models. C Robustness
and neural prediction correlate positively for MTL-Monkey models across 12 different batch-ratios
and 5 random seeds per model (grey line: linear regression from neural performance to robustness).
Neural prediction performance is measured as the fraction of explained variance (FEV), as described
in Cadena et al. [17]. A darker color indicates higher accuracy on the clean TIN test-set.

Co-training with monkey V1 increases robustness. The results of MTL-Oracle show that MTL
with neural responses from a robust network in response to undistorted images successfully transfers
robustness properties. Furthermore, MTL-Monkey generalized better to the TIN-TC image distortions
than the Baseline model, similar to MTL-Oracle, despite the fact that MTL-Monkey has not seen
distorted images at any stage during the training process. We found increased robustness for 9/14
image corruptions. This improvement is mainly observed across 3 groups of distortions: Noise,
Blur and Digital (Fig. 3A), whereas MTL-Monkey did not exceed the Baseline performance for the
Weather group. The shuffled control did not provide any benefits (Fig. 2 and Fig. 3A,B), suggesting
that the improved robustness of our monkey network is, in fact, due to the original neural data.

The more “brain-like" the neural network, the better it generalizes to image distortions. If
features in the neural data affect the robustness, we would expect that the robustness of MTL-Monkey
correlates positively with its neural prediction performance on real monkey V1 data. To test this
hypothesis, we created a pool of MTL-Monkey models with varying neural performance by altering
the amount of neural data introduced during co-training. We ran experiments with different ratios
of neural data to image classification that was presented to the network before each backward pass.
We ran experiments for ratios 1 : 15, 1 : 10, 1 : 7, 1 : 5, 1 : 4, 1 : 3, 1 : 2, 1 : 1, 2 : 1, 3 : 1, 4 :
1, and 5 : 1 with five seeds each, giving us 60 models to plot in Figure 3-C. We found that both the
model’s test accuracy on clean images and its neural performance on real monkey V1 data improved
the network’s robustness (Figure 3C; p < 10−4 for both neural prediction and clean accuracy2).

2t-test for both factors in a 2-factor linear regression, in which robustness (dependent variable) is predicted
from clean test accuracy for image classification and performance on V1 prediction (independent variables).

5



Analysis for MTL-Shuffled showed a slight connection between robustness and neural performance
(p = 0.034 for neural prediction and p < 10−13 for clean accuracy). When comparing the regression
coefficient of neural prediction in the case of MTL-Monkey and MTL-Shuffled, we found that the
influence of neural performance on robustness is two orders of magnitude larger for real neural data
bmonkey = 54.72 than for the shuffled version bshuffled = 0.26. Overall, our results are consistent
with previous work finding a positive correlation between model robustness and ”brain-likeness“ [33].

4 Analysis

In the previous section, we showed that our MTL approach can transfer robustness properties and that
improved robustness correlates with more brain-like representations learned from monkey V1 data.
The aim of this section is to understand the representational differences compared to other models
that could be responsible for the increased robustness of our MTL-Monkey model. To this end, we
visualize which image features the networks are sensitive to, using a novel resource constrained
image reconstruction from a given layer across all of the models used in this study. The rationale
behind a constrained reconstruction is to put a resource limitation on the total power of an image,
thereby force the reconstruction to put contrast in the image wherever it is necessary to recreate the
activity of a given layer, and thus visualize the sensitivities and invariances of this layer (see Figure 4).
Specifically, given a noisy target image x0, we computed the corresponding activations f(x0) of a
particular layer and reconstructed the original image by minimizing the squared loss between the
target activations and the activations from the reconstructed image ℓ (x0,x) = ∥f(x)− f (x0)∥2
subject to a norm constraint

x∗ = argminx ∥f(x)− f (x0)∥2 s.t.∥x∥2 ≤ r2.

Note that, if ∥x0∥ ≤ r, one trivial optimal solution is x = x0. However, if ∥x0∥ > r, the constraint
becomes active and the reconstruction has to choose where to put power in the image (see Figure 4).
This can be seen more formally if we approximate the loss function with a second order Taylor
approximation ℓ (x0,x) ≈ 1

2 (x− x0)
⊤
H (x− x0) around the optimal solution x0. Using the local

approximation in the optimization problem and solving for x using Lagrange multipliers

maxγ minx
1

2
(x− x0)

⊤
H (x− x0) + γ · 1

2

(
∥x∥22 − r2

)
s.t. γ ≥ 0

Figure 4: An illustration of the reconstruction
process. We reconstruct a noise corrupted tar-
get image (green) from a given model under a
resource constraint (gray circles). An agnos-
tic model (dark pink) would be, by definition,
equally sensitive to: The image content and
noise. In contrast, a robust model (orange)
would be more sensitive to content and less to
noise. Resource constraints that do not allow
for a full reconstruction force the optimization
to put more image power towards directions
to which the model is more sensitive.

yields x = (H + γI)−1Hx0 where γ denotes the
Lagrange multiplier chosen such that ∥x∗∥ = r if
the constraint is active. To see that this preferentially
reconstructs images along directions where the loss
in activation space is more sensitive, consider x and
x0 in the eigenbasis U of the Hessian H = UγU⊤,
which we denote by v = U⊤x and v0, respectively.
In that space, the solution is

v = (Λ + γI)−1Λv0 or vi =
λi

λi + γ
,

which means that directions with λi ≫ 0, i.e. high
curvature or strong sensitivity, stay as they are while
directions with small λi, i.e. low curvature or “in-
variance”, get diminished. How strongly they are
diminished depends on the Lagrange multiplier γ, or,
equivalently, the norm constraint.

In our analysis, we optimized the pixels based on the
activations of layer conv-3-1 – the co-trained layer
– for all five models MTL-Monkey, Baseline, Oracle,
MTL-Oracle and MTL-Shuffled. We found SGD with
a learning rate of 5 to be most suitable to reconstruct
from all the MTL models, and the Adam optimizer
with a learning rate of 0.01 best for the Baseline and
Oracle models. We always optimized for 8000 steps
per image and model for each norm constraint.
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Figure 5: Reconstruction examples from all the 5 models of 4 noisy images (see last row for original
images) with Gaussian noise of severity level 2, under 3 norm constraints: 5, 15 and 60. See main
text for details on the spectral control.

Reconstructions show qualitative differences between models Reconstructions from test images
distorted with Gaussian noise under three different norm constraints qualitatively show that the
models are sensitive to different features (Figure 5). When looking at a mid-range norm constraint
(norm=15), where we expected the difference between the models to be the largest (see Figure 4),
we found that the Baseline model seems to be sensitive to distortions present in the original image.
This manifests itself in a stronger noise component in the background of the image reconstructed
from the Baseline model compared to other models. The robust networks (MTL-Monkey, Oracle and
MTL-Oracle), on the other hand, were less sensitive to these perturbations and exhibited more content
structure for that norm constraint (see appendix for more reconstructions). However, when comparing
our MTL-Monkey model with the other robust networks, we noticed that the Oracle and MTL-Oracle
models generally preserved the original image content as much as possible, while reconstructions
from the MTL-Monkey model seem to put slightly more emphasis on edges and object boundaries.

MTL-Monkey’s sensitivities cannot be fully explained by frequency filtering One simple mech-
anism that would make a network more robust against noise types with high-frequency perturbations
would be to change the frequency sensitivity towards low-pass components. To assess whether this
might be the case for the MTL-Monkey network, we used a simple “spectral control”, where we
transferred the Fourier amplitude spectrum of the reconstructed image to the original noisy image.
This enforces the norm constraint on the original image, and exactly matches the frequency content.
If the MTL-Monkey model were simply changing the frequency sensitivity, we would expect the
reconstruction and the spectral control to match. However, this does not seem to be the case. The
spectral control exhibited more noise in the background and showed less edge enhancing compared
to the MTL-Monkey reconstruction. Thus, while changed frequency sensitivity might play a role,
there might be additional effects that lead to more noise suppression and more edge enhancement.

MTL-Monkey exhibits increased sensitivity to salient image regions Our constrained recon-
struction analysis exposes image content that is relevant to recreate the responses of a particular layer.
In this final section, we try to characterize this content in terms of known perceptual mechanisms of
mammalian vision. Motivated by the potential role of V1 in bottom-up saliency [25], we specifically
investigated the relation between salient regions of an image and the regions that get emphasized in
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Original Ground Truth Binary Mask Norm = 15 Norm = 60

Figure 6: Examples from the ImageNet images used for testing our neural saliency hypothesis in the
MTL-Monkey model. In addition to the original image, we show the DeepGaze predicted saliency
map and the resulting binarized mask for computing the norm ratio as well as the MTL-Monkey
reconstructions with norm constraints (15 and 60).

the reconstructions from different models. Salient regions of an image often include boundaries and
shapes of central objects [25, chapter 5]. It could be possible that focusing on more salient regions
of an image improves the robustness of a model to corruptions as a correlation between shape-like
feature detection and robustness has been reported before [10, 32]. From our qualitative observation
of the reconstruction examples (Figure 5), we noticed that the reconstructions from the MTL-Monkey
model seem to often enhance the central object in a scene by emphasizing edges and boundaries
compared to the reconstructions from our Oracle models. To investigate whether the MTL-Monkey
model is more sensitive to salient regions compared to other models, we collected 70 undistorted
images with structured background from ImageNet. We used grayscale versions of these images as
targets for the reconstruction from our MTL-Monkey, Oracle, and Baseline models. Additionally, we
used the DeepGaze II model [34] to predict the saliency maps of these images. To define a binary
saliency mask, we took the predicted density map, sorted all resulting pixel values in a descending
order, and selected all pixels up to a cumulative sum of 0.7 as “salient” (see section A). Afterwards,
we resized the target image and the binarized mask to 64x64 pixels, which is the standard size used
for our models (see Figure 6). To quantify how much contrast is spent on the salient region salient(I)
compared to the entire image I , we computed the ratio ϱ of the norm of the salient region against the
full image’s norm:

ϱ(I) =
∥salient(I)∥22

∥I∥22
.

We then computed the difference ϱ (Ir)− ϱ (Io) between the norm ratio of each reconstructed image
Ir and the original image Io. To put the values on a common scale, we normalized this difference by
its maximally achievable value 1− ϱ (Io) [inspired by 12]:

ϱ̄r =
ϱ (Ir)− ϱ (Io)

1− ϱ (Io)
. (1)

Our results show that the MTL-Monkey is more sensitive to salient regions than the Oracle and
Baseline models across images under low to mid-range norm constraints (Figure 7). And as the norm
approaches the norm of the full image, the ratios for both models become more equal to those of
the MTL-Monkey model, as expected (right). In comparison to the Baseline and Oracle models, the
spectral control seems to be closer to the diagonal. However, in most cases the MTL-Monkey model
emphasized the salient regions more strongly, supporting our previous observation that frequency
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filtering cannot fully explain the sensitivities of the co-trained model (see section 4). We want to
stress that our analysis is purely correlational at this point: Robust MTL monkey models seem to
be more sensitive to salient image content than other –robust and non-robust– models. However, if
the focus on salient features turns out to be causal, it would open up the possibility that the Oracle
models and the MTL-Monkey model are robust due to different reasons.

5 Related work

A number of previous studies also transferred useful inductive biases from biological to artificial
neural networks. For instance, Arai et al. [35] utilized neural data –recorded from the superior
colliculus (SC) in monkeys– to regularize the network’s hidden layers for predicting saccadic eye
movements accurately and improving the model’s generalization abilities. Moreover, Rezai et al.
[36] used the prediction of responses from the primate middle temporal area (MT) to train the lower
layers of a deep CNN for visual odometry via multi-task learning, which is the main approach in
our work. Although Arai et al. [35] and Rezai et al. [36] leverage the idea of co-training, their main
focus is on neuroscientific modeling in contrast to our work. We directly focus on improving machine
learning models, which is more in line with other related examples from the literature. Fong et al.
[21] used fMRI data of the human brain’s activity to guide the training of neural networks on a
classification task, obtaining general performance improvements for CNNs. Other works used neural
data from animals to regularize the training of artificial networks on image classification, such as
in Li et al. [22], through representational distance learning (RDL, [37]). Li and colleagues used
mouse V1 to regularize CNNs towards a more brain-like representation. They used the CIFAR-10
and CIFAR-100 datasets, and evaluated robustness on Gaussian noise corruptions. Similar to our
findings, they observed an increase in robustness when comparing their network to the Baseline while
the model regularized by the shuffled neural data did not yield similar benefits. They also observed
increased robustness to adversarial attacks. We extend their work by using a larger set of 14 distinct
types of corruption to evaluate the robustness on tiny ImageNet. Federer et al. [23] used neural data
from the primary visual cortex of macaque monkeys for regularization, and reported an improvement
in test accuracy and an increased robustness to label corruption.

Finally, previous work, summarized by Yamins and DiCarlo [16], found a strong correlation between
how well a neural network performs on a classification task and how well it predicts neural responses.
Recent work by Dapello et al. [33] also found that robust networks tend to be better at predicting V1
responses in macaque monkeys than non-robust models. They also reported a correlation between the
brain-likeness on the representational level of a network and robustness, without explicitly training on
neural data, as the model architecture was hand-crafted to emulate V1. In this work, we show similar
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results on the representational level by directly co-training on neural data while using an established
image classification architecture (see sections 2 and 3). Therefore, we believe that our approach of
learning a neurally informed representation from data is more flexible and readily generalizable in
comparison to Dapello et al. [33]. For example, extending our MTL approach to higher brain areas is
straightforward to do, whereas that is not immediately clear with the approach from Dapello et al.
[33]. Finally, we think that Dapello et al. [33] supports our results about transferring properties of
V1 into our network, especially that the similar behavior on the ImageNet-C test set, with "weather"
corruptions also having a weaker performance than the rest, supports the validity of our results.

6 Discussion and conclusion

In this work, we show a successful transfer of robustness properties via multi-task learning on neural
data and object classification. Our findings are generally consistent with prior works on inductive
bias transfer from the brain, and constitutes a first test of the neural co-training hypothesis [5]
for improving the robustness of neural networks. Furthermore, we are the first, to the best of our
knowledge, to go a step further by introducing a novel attribution method to understand what makes
our neurally co-trained model robust. Through that analysis, we find that our MTL monkey model
is more sensitive to salient regions of an image compared to other models. Since V1 has been
implicated in bottom-up saliency before [25], it could be that our finding might be connected to this
computational property of V1 neurons. In that respect, our results are consistent with the V1 saliency
hypothesis, which has been already supported by several studies in the literature [38–41].

In this work, our aim was to learn robustness from a system that is known to be robust against most
corruptions – the mammalian visual system [9]. Data augmentation with image corruptions during
training –as in our Oracle model– is a simple and effective baseline for robust networks [7, 42].
However, the effectiveness is limited when it comes to unseen corruptions [9], although some noise
types might generalize when calibrated carefully [42]. Thus, to get a truly robust network, one would
need to anticipate every possible corruption to include them in training, which is obviously intractable.
Notably, our MTL approach achieves better generalization without modifying the network’s input
and without the additional overhead of a noise generator, and we hope that further improvements
can eventually replace data corruption. Although our models are still far behind the human visual
system in terms of generalization, our work is a conceptual step towards bridging the gap between
artificial and biological intelligence. This could be a deciding factor in helping the reliability and
generalization capabilities of computer vision. In addition, our findings might help to get a better
understanding of the computational role of V1, such as its role in bottom-up saliency. A promising
future direction is to include higher brain areas for neural co-training, inspired by Kietzmann et al.
[43]. They trained a network for object classification with RDL on neural dynamics of multiple visual
areas –including higher ones– and showed that recurrent architectures achieve better test classification
performance than feedforward architectures with additional self-connections (ramping feedforward
architectures). Thus, using higher areas for neural co-training while potentially relying on recurrence
will presumably yield stronger robustness against more complex distortions, and when combined
with our analyses, it could improve our understanding of the functional role of these areas as well.3

Our work represents fundamental research into the link between biological and artificial vision. Since
this direction is at an early stage, the risk of misuse or unethical use of our results is present but
not larger than in other fundamental investigations of the principles of vision. Our data is collected
through animal experiments which are currently the only method to get high numbers of single unit
responses across brain regions. All data coming from monkeys complied with the approved protocol
of local authorities (see appendix). A key advantage of the type of data we used is that it is suited
for a wide range of analyses beyond this paper. Therefore, our paper simply improves the scientific
yield of animal recordings. Furthermore, our approach highlights that it is not strictly necessary to
record dozens of new datasets for new tasks - the model that we trained on the original neural data
was powerful enough to predict responses to unseen images, and these responses, in turn, can be
successfully used for multi-task learning. We do believe that a network trained on a larger amount of
already existing neuronal data (possibly also from other areas) of the primate visual system can be
used for many more conceivable tasks. Thus, we think that our work contributes to reducing the need
for invasive animal experiments and rather encourages the use of surrogate models.

3The data and code for this work are made public here: https://github.com/sinzlab/neural_cotraining.
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