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Abstract

We study a contextual bandit setting where the agent has the ability to request multiple
data samples – corresponding to potentially different context-action pairs – simultaneously in
one-shot within a budget, along with access to causal side information. This new formalism
provides a natural model for several real-world scenarios where parallel targeted experiments
can be conducted. We propose a new algorithm that utilizes a novel entropy-like measure
that we introduce. We perform multiple experiments, both using purely synthetic data and
using a real-world dataset, and show that our algorithm performs better than baselines in
all of them. In addition, we also study sensitivity of our algorithm’s performance to various
aspects of the problem setting. We also show that the algorithm is sound; that is, as budget
increases, the learned policy eventually converges to an optimal policy. Further, we show a
bound on its regret under additional assumptions. Finally, we study fairness implications
of our methodology.

1 Introduction

Learning to make decisions that depend on context has a wide range of applications – software product
experimentation, personalized medical treatments, recommendation systems, marketing campaign design,
etc. Contextual bandits (Lattimore & Szepesvári, 2020) have been used to model such problems with good
success (Liu et al., 2018; Sawant et al., 2018; Bouneffouf et al., 2020; Ameko et al., 2020).

Contextual bandits have been studied in two primary variants – interactive (e.g., Agarwal et al. (2014);
Dimakopoulou et al. (2019)) and offline (e.g., Swaminathan & Joachims (2015a); Li et al. (2015)). In the
former, the agent repeatedly interacts with the environment (observe context, choose action, receive reward)
and updates its internal state after every interaction, whereas in the latter the agent is provided an offline
log of data to learn from. The objective in both cases is to learn a near-optimal policy that maps contexts
to actions. Interactive bandits are favored in applications where interventions are cheap, such as in software
product experimentation (e.g., Optimizely (2023)). On the other hand, offline contextual bandits have
become increasingly popular in scenarios where interactions are costly to actualize in the real world (e.g.,
conducting physical experiments) or prohibited (e.g., in the healthcare domain with human subjects).

While offline contextual bandit algorithms do provide methods to utilize existing data to learn policies, it
is an unreasonably constrained model for many problems; often in the real world it is possible to acquire
additional data in one-shot – but at a cost and within a budget. To the best of our knowledge, there has
not been any investigation on what the best way is to actively obtain additional experimental data in one
shot and incorporate it with aim of learning a good policy.1

1.1 Motivating examples

In software product development, product teams are frequently interested in learning the best software
variant to show or roll out to each subgroup of users. To achieve this, it is often possible to conduct

1Note that this is fundamentally different from interactive bandit settings because the agent cannot iteratively acquire
samples as it updates its knowledge, but rather raise a one-shot data request and learn from it. This is more reflective of many
real world scenarios.
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targeting at scale simultaneously for various combinations of contexts (representing user groups) and actions
(representing software variants) – instead of one experiment at a time – by routing traffic appropriately (see
Google (2021) for an example). These targeted experiments2 can be used to compute relevant metrics (e.g.,
click-through rate) for each context-action pair. Further, we might have some qualitative domain knowledge
of how some context variables are causally related to others; for example, we might know that os has a
causal relationship to browser; we would like to exploit this knowledge to learn better policies. This can
be naturally modeled as a question of “what table of targeted experimental data needs to be acquired and
how to integrate that data, so as to learn a good policy?”; here the table’s rows and columns are contexts
and actions, and each cell specifies the number of data samples (zero or more) required corresponding to the
context-action pair.

As another example, in ads targeting (e.g., Google (2023)) the objective is to learn the best ads to show
each group of people. This is done by conducting experiments where different groups of people are shown
different ads simultaneously. Further, letting context variables model the features of groups, we might have
some knowledge about how some of the features are causally related to others; for example, we might know
that country causally affects income. Our framework provides a natural model for this setting. Further,
we might also be interested in ensuring that the ads meet certain criteria for fairness. For example, there
might be some variables such as race that could be sensitive from a fairness perspective, and we would
not want the agent to learn policies that depends on these variables. We discuss fairness implications of
our algorithm in Section 6. These are just two of many scenarios where this framework provides a natural
model. Two additional examples include experimental design for marketing insights (e.g., Persado (2023))
and recommendation systems (e.g., ScaleAI (2023)).

1.2 Our framework

Our framework captures the various complexities and nuances described in the examples in Section 1.1. We
present an overview here; please see Section 3 for the mathematical formalism. At the start, the agent is
given a (possibly empty) log of offline data – consisting of context-action-reward tuples — generated from
some unknown policy. The context variables are partitioned into two sets – the main set and the auxiliary
set (possibly empty). The agent observes all context variables during training, but learns a policy that only
depends on the main set of context variables; this also provides a way to ensure that the learned policy meets
certain definitions of fairness (see Section 6 for a more detailed discussion). Further, the agent also has some
qualitative3 causal side-information available, likely from domain knowledge. This causal side-information is
encoded as a causal graph between contextual variables. A key implication of the causal graph is information
leakage (Lattimore et al., 2016; Subramanian & Ravindran, 2022) – getting samples for one context-action
pair provides information about other context-action pairs because of shared pathways in the causal graph.

Given the logged data and the causal graph, the agent’s problem is to decide the set of targeted experimental
samples to acquire within a budget, and then integrate the returned samples. More specifically, the agent is
allowed to make a one-shot request for data in the form of a table specifying the number of samples it requires
for each context-action pair, subject to the total cost being within the budget. The environment then returns
the requested samples after conducting the targeted interventions, and the agent integrates those samples
to update its internal beliefs and learned policy; this constitutes the training phase of the agent. The core
problem of the agent is to choose these samples in a way that straddles the trade-off between choosing more
samples for context-action pairs it knows is likely more valuable (given its beliefs) and choosing more samples
to explore less-seen context-action pairs – while taking into account the budget and the information leakage
from the causal graph. After training, the agent moves to an inference phase, where it returns an action
(according to the learned policy) for every context it encounters.

2Each of these experiments is a “targeted intervention”, formalized in Subramanian & Ravindran (2022) as an intervention
targeted on a subgroup specified by a particular assignment of values to the context variables.

3By qualitative, we mean that the agent can know the causal graph, but not the conditional probability distributions of the
variables. See Section 3 for a more detailed discussion.
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1.3 Contributions

1. This is the first work to study how to actively obtain and integrate a table of multiple samples in
one-shot in a contextual bandit setting. Further, we study this in the presence of a causal graph,
making it one of the very few works to study integration of causal side-information by contextual
bandit agents. See Section 2 for a more detailed discussion on related work, and Section 3 for the
mathematical formalism of the problem.

2. We propose a novel algorithm (Section 4.3) that works by minimizing a new entropy-like measure
called Υ(.) that we introduce. See Section 4 for a full discussion on the approach. We also show that
the method is sound – that is, as the budget tends to infinity, the algorithm’s regret converges to 0
(Section 4.4). We also provide a regret bound, under some additional assumptions (Section 4.5).

3. We show results of experiments, using purely synthetically generated data and an experiment inspired
by real-world data, that demonstrate that our algorithm performs better than baselines. We also
study sensitivity of the results to key aspects of the problem setting. Refer Section 5.

4. We discuss fairness implications of our method, and show that it achieves counterfactual fairness
(Section 6).

2 Related work

Causal bandits have been studied in the last few years (e.g., Lattimore et al. (2016); Yabe et al. (2018);
Lu et al. (2020)), but they study this in a multi-armed bandit setting where the problem is identification
of one best action. There is only one work (Subramanian & Ravindran, 2022) studying causal contextual
bandits – where the objective is to learn a policy mapping contexts to actions – and this is the closest related
work. While we do leverage some ideas introduced in that work in our methodology and in the design of
experiments, our work differs fundamentally from this work in important ways. Subramanian & Ravindran
(2022) consider a standard interactive setting where the agent can repeatedly act, observe outcomes and
update its beliefs, whereas in our work the agent has a one-shot data collection option for samples from
multiple context-action pairs. This fundamentally changes the nature of the optimization problem as we will
see in Section 4; it also makes it a more natural model in a different set of applications, some of which were
discussed in Section 1.1. Further, our work allows for arbitrary costs for collecting those samples, whereas
they assume every intervention is of equal cost.

Contextual bandits in purely offline settings, where decision policies are learned from logged data, is a
well-studied problem. Most of the work involves inverse propensity weighting based methods (such as
Swaminathan & Joachims (2015a;b); Joachims et al. (2018)). Contextual bandits are also well-studied
in purely interactive settings (see Lattimore & Szepesvári (2020) for a discussion on various algorithms).
However, in contrast to our work, none of these methods can integrate causal side information or provide a
way to optimally acquire and integrate new data. Further, none of these methods study actively obtaining
and integrating a table of data containing samples corresponding to multiple context-action pairs.

Active learning (Settles, 2009) studies settings where an agent is allowed to query an oracle for ground truth
labels for certain data points. This has been studied in supervised learning settings where the agent receives
ground truth feedback; in contrast, in our case, the agent receives outcomes only for actions that were taken
(“bandit feedback”). However, despite this difference, our approach can be viewed as incorporating some
elements of active learning into contextual bandits by enabling the agent to acquire additional samples at
a cost. There has been some work that has studied contextual bandits with costs and budget constraints
(e.g., Agrawal & Goyal (2012); Wu et al. (2015)). There has also been work that has explored contextual
bandit settings where the agent can not immediately integrate feedback from the environment, but can do
so only in batches (Zhang et al., 2022; Ren et al., 2022; Han et al., 2020). However, all these works consider
settings with repeated interactions, whereas our work considers a one-shot setting where the agent chooses
multiple context-action pairs simultaneously. Further, none of these works provide a way to integrate causal
side information.
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Table 1: Summary of key notation

Notation Meaning
X action variable
Y reward variable
CA, CB set of main context variables and set of auxiliary context variables, respectively; so

the set of all context variables is C = CA ∪ CB = {..., Ci, ...}.
Capital letters a random variable; e.g., C1 or X
Small letters a random variable’s value; e.g., c1 or x
Small bold font an assignment of values to a set of random variables; for example, c denotes a

specific choice of values taken by variables in C
P̂, Ê estimate of distribution P and expectation E based on current beliefs
val(V ), val(V) set of values taken by the variable V , and set of variables V, respectively.
ϕ̂, ϕ∗ the learned policy and an optimal policy, respectively
Υ entropy-like measure used in our algorithm; defined in Equation 3
paV value of variables in PAV , the parents of V
Nx,cA number of samples requested corresponding to X = x and CA = cA

β(x, cA, Nx,cA) cost of acquiring Nx,cA samples corresponding to X = x and CA = cA

B budget
a⟨B⟩ if a is an assignment of values to A, then a⟨B⟩ is assignment of those values to

respective variables B; a⟨B⟩ = ∅ if A ∩ B = ∅.

3 Problem formalism

Underlying model We model the underlying environment as a causal model M, which is defined by a
directed acyclic graph G over all variables (the “causal graph”) and a joint probability distribution P that
factorizes over G (Pearl, 2009b; Koller & Friedman, 2009). The set of variables in G consists of the action
variable (X), the reward variable (Y ), and the set of context variables (C). Each variable takes on a finite,
known set of values; note that this is quite general, and accommodates categorical variables. C is partitioned
into the set of main context variables (CA) and the set of (possibly empty) auxiliary context variables (CB).
That is, C = CA ∪ CB .

The agent knows only G but not M; therefore, the agent has no a priori knowledge of the conditional
probability distributions (CPDs) of the variables.

Protocol In addition to knowing G, the agent also has access to logged offline data, DL = {(ci, xi, yi)},
where each (ci, xi, yi) is sampled from M and xi is chosen following some unknown policy. Unlike many
prior works, such as Swaminathan & Joachims (2015a), the agent here does not have access to the logging
propensities.

The agent then specifies in one shot the number of samples Nx,cA it requires for each pair (x, cA). We denote
the full table of these values by N ≜

⋃
x,cA{Nx,cA}. Given a (x, cA), there is an arbitrary cost β(x, cA, Nx,cA)

associated with obtaining those samples. The total cost should be at most a budget B. For each (x, cA),
the environment returns Nx,cA samples of the form (cB , y) ∼ P(CB , Y | do(x), cA).4 Let’s call this acquired
dataset DA. The agent utilizes DA along with DL to learn a good policy.

Objective The agent’s objective is to learn a policy ϕ̂ : val(CA) → val(X) such that expected simple
regret is minimized:

Regret ≜
∑
cA

[µ∗cA − µ̂cA ] · P(cA)

4See Pearl (2009b; 2019) for more discussion on the do() operation.
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where ϕ∗ is an optimal policy, µ∗cA ≜ E[Y |do(ϕ∗(cA), cA)] and µ̂cA ≜ E[Y |do(ϕ̂(cA), cA)].

Table 1 provides a summary of the key notation used in this paper.

3.1 Assumptions

We assume that X has exactly one outgoing edge, X → Y , in G. This is suitable to express a wide range
of problems such as personalized treatments or software experimentation where the problem is to learn the
best action under a context, but the action or treatment does not affect context variables. We also make
a commonly-made assumption (see Guo et al. (2020)) that there are no unobserved confounders. Similar
to Subramanian & Ravindran (2022), we make an additional assumption that simplifies the factorization in
Section 4.2: {C confounds C ′ ∈ CA and Y } =⇒ C ∈ CA; a sufficient condition for this to be true is if CA

is ancestral.5 This last assumption is a simplifying assumption and can be relaxed in the future.

4 Approach

4.1 Overall idea

In our approach, the agent works by maintaining beliefs regarding every conditional probability distribution
(CPD). It first uses DL to update its initial CPD beliefs; this, in itself, makes use of information leakage
provided the causal graph. It next needs to choose DA, which is the core problem. The key tradeoff facing
the agent is the following: it needs to choose between allocating more samples to context-action pairs that
it believes are more valuable and to context-action pairs that it knows less about. Unlike Subramanian &
Ravindran (2022), it cannot interactively choose and learn, but instead has to choose the whole DA in one
shot – necessitating the need to account for multiple overlapping information leakage pathways resulting
from the multitude of samples. In addition, these samples have a cost to acquire, given by an arbitrary cost
function, along with a total budget.

Towards solving this To achieve this, we define a novel function Υ(N) that captures a measure of overall
entropy weighted by value. The idea is that minimizing Υ results in a good policy; that is, the agent’s
problem now becomes that of minimizing Υ subject to budget constraints. In Section 4.2, we formally define
Υ(N) and provide some intuition. Later, we provide experimental support (see Section 5), along with some
theoretical grounding to this intuition (see Theorem 4.1).

4.2 The optimization problem

Determine Nx,cA for each (x, cA) such that
Υ(N)

is minimized, subject to ∑
x,cA

β(x, cA, Nx,cA) ≤ B

where N ≜
⋃

x,cA{Nx,cA}. We will next define Υ(N).

Defining the objective function Υ(N) The conditional distribution P(V |paV ) for any variable V is
modeled as a categorical distribution whose parameters are sampled from a Dirichlet distribution (the belief
distribution). That is, P(V |paV ) = Cat(V ; b1, ..., br), where (b1, ..., br) ∼ Dir(θV |paV

), and θV |paV
is a vector

denoting the parameters of the Dirichlet distribution.

Actions in a contextual bandit setting can be interpreted as do() interventions on a causal model (Zhang
& Bareinboim, 2017; Lattimore et al., 2016). Therefore, the reward Y when an agent chooses action x
against context cA can be thought of as being sampled according to P[Y |do(x), cA]. Under the assumptions

5That is, if CA contains all its ancestors.
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described in Section 3.1, we can factorize as follows:

E[Y |do(x), cA] =
∑

cB∈val(CB)

[
P(Y = 1|x, c⟨PAY ⟩)

∏
c∈cB

P(C = c|c⟨PAC⟩)
]

(1)

Note that our beliefs about each CPD in Equation 1 are affected by samples corresponding to multiple
(x, cA). To capture this, we construct a CPD-level uncertainty measure which we call Q(.):

Q(P[V |paV ],N) ≜
∑
x,cA

(
1

1 + ln(Nx,cA + 1)

)
Entnew(P[V |paV ])

∣∣∣∣∣
x⟨P AV ⟩=paV ⟨X⟩, cA⟨P AV ⟩=paV ⟨CA⟩

(2)

Here Entnew is defined in the same way as in Subramanian & Ravindran (2022); for reference, we reproduce
the definition in Appendix A. Finally, we construct Υ(N) as:

Υ(N) ≜
∑
x,c

 ∑
V ∈CB∪{Y }

Q(P[V |c⟨PAV ⟩],N)

 · P̂(c) · Ê [Y |x, c⟨PAY ⟩]

 (3)

Intuition behind Q(.) and Υ(.) Intuitively, Entnew provides a measure of entropy if one additional
sample corresponding to (x, cA) is obtained and used to update beliefs. Q(.) builds on it and captures the
fact that the beliefs regarding any CPD P[V |paV ] can be updated using information leakage6 from samples
corresponding to multiple (x, cA); it does this by selecting the relevant (x, cA) pairs making use of the causal
graph G and aggregating them. In addition, Q(.) also captures the fact that entropy reduces non-linearly
with the number of samples. Finally, Υ(N) provides an aggregate (weighted) resulting uncertainty from
choosing Nx,cA samples of each (x, cA). The weighting in Υ(.) provides a way for the agent to relatively
prioritize context-action pairs that are higher-value according to its beliefs.

4.3 Algorithm

The full learning algorithm, which we call CoBA, is given as Algorithm 1a. After learning, the algorithm for
inferencing on any test context (i.e., returning the action for the given context) is given as Algorithm 1b.
The core problem (Step 2 in Algorithm 1a) is a nonlinear optimization problem with nonlinear constraints
and integer variables. It can be solved using any of the various existing solvers. In our experiments in Section
5, we solve it approximately using the scipy Python library.

4.4 Soundness

As B → ∞, the agent’s regret will tend towards 0 (Theorem 4.1). It demonstrates the soundness of our
approach by showing that as the budget increases, the learned policy will eventually converge to an optimal
policy.
Theorem 4.1 (Soundness). As B →∞, Regret→ 0.

The proof of Theorem 4.1 is presented in Appendix B.

4.5 Regret bound

The limiting case where B → ∞ was already analyzed and we showed that our algorithm converges to an
optimal policy in that case (Theorem 4.1). In Theorem 4.2, in contrast, we are interested in the finite-B case.
This is of interest in practical settings where the budget is usually small. We prove a regret bound under
additional additional assumptions (A2) which we describe in Appendix C. Here define m ≜ minx,cA π(x|cA),
where π is the (unknown) logging policy that generated DL; and MV ≜ |val(V)|.

6Information leakage arises from shared pathways in M; or equivalently, due to shared CPDs in the factorization of P.
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Algorithm 1a: Learning phase of CoBA
Data: Causal graph G; initial dataset DL

Initialization: For all V ∈ C ∪ {Y } and for all paV , set θV |paV
= (1, ..., 1).

1 Update all beliefs using initial dataset DL by calling update_beliefs(DL)
2 Solve the following

N = arg min
N′

Υ(N′)

subject to ∑
x,cA

β(x, cA, N ′x,cA) ≤ B

3 Place data request N; environment returns dataset DA as discussed in Section 3.
4 Update all beliefs using DA by calling update_beliefs(DA)

Result: Final set of beliefs for all V,paV :
{
..., θV |paV

, ...
}

5 Procedure update_beliefs(D)
6 for each sample (x, c, y) ∈ D do
7 let c̃ ≜ c ∪ {x, y}
8 for each V ∈ C ∪ {Y } do
9 θV |c̃⟨P AV ⟩ [c̃⟨V ⟩]← θV |c̃⟨P AV ⟩ [c̃⟨V ⟩] + 1

10 end
11 end

Algorithm 1b: Inference phase
Data: Causal graph G, learned beliefs

{
..., θV |paV

, ...
}

, test context cA

1 for every V, paV do
2 for v ∈ val(V ) do

3 Set P̂(V = v|paV ) =
θ

(v)
V |paV∑

v′ θ
(v′)
V |paV

4 end
5 end
6 for x ∈ val(X) do
7 Compute ψ̂(x, cA) ≜ Ê[Y |do(x), cA] using P̂ in Equation (1)
8 end

Result: Return ϕ̂(cA) ≜ arg maxx ψ̂(x, cA)

Theorem 4.2 (Regret bound). Under the additional assumptions (A2) mentioned in Appendix C, for any
0 < δ < 1, with probability ≥ 1− δ,

Regret ∈ O

(
|C|

√(
1

mB − ϵ

)
ln MXMC

δ

)

where ϵ ∈ O
(√

B ln (MXMP AY
MC/δ)

)
, ignoring terms that are constant in B, m, δ, |C| and the number

of possible context-action pairs.

The proof of Theorem 4.2 is presented in Appendix C. It closely follows the regret bound proof in Sub-
ramanian & Ravindran (2022) and adapts it to our setting. The purpose of the proof is to establish an
upper bound on performance, and not to provide a tight bound. Bounding regret without these additional
assumptions (A2) is left for future work.
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5 Experimental results

5.1 Baselines and experimental setup

Baselines There are no existing algorithms that directly map to our setting. Therefore, we construct a set
of natural baselines and study the performance of our algorithm CoBA against them. EqualAlloc allocates
an equal number of samples to all (x, cA); this provides a good distribution of samples to all context-action
pairs. MaxSum maximizes the total number of samples summed over all (x, cA). PropToValue allocates a
number of samples to (x, cA) that is proportional to P̂(cA) · Ê[Y |do(x), cA]; this allocates relatively more
samples to context-action pairs that are more “valuable” based on the agent’s current beliefs. All baselines
first involve updating the agent’s starting beliefs regarding the CPDs of M using DL (same as Step 1 of
Algorithm 1a) before allocating samples for active obtainment as detailed above. After DA is returned by
the environment, all baselines use it update their beliefs (same as Step 4 of Algorithm 1a).

Experiments Similar to Subramanian & Ravindran (2022), we consider a causal model M whose causal
graph G consists of the following edges: C1 → C0, C0 → X, C0 → Y, X → Y . We let CA = {C1} and
CB = {C0}. We use this causal graph for all experiments except Experiment 3, for which we use the graph
shown in Figure 3a.

Experiments 1 and 2 analyze the performance of our algorithm in a variety of settings, similar to those used
in Subramanian & Ravindran (2022). Experiment 3 analyzes the performance of the algorithm on a setting
calibrated using real-world CRM sales-data provided in Subramanian & Ravindran (2022). The details of all
the parameterizations are provided as part of the supplementary material (see Appendix G). Experiments 4
through 7 analyze sensitivity of our algorithm’s performance to various aspects of the problem setting. In all
experiments, except Experiment 6, we set the cost function β(.) to be proportional to the number of samples
– a natural definition of cost; in Experiment 6, we analyze sensitivity to cost function choice. Additional
experiments providing more insights into why our algorithm performs better than baselines are discussed in
Appendix E. Appendix D reports results of Experiment 1 and 2 for larger values of B (until all algorithms
converge), providing empirical evidence of our algorithm’s improved asymptotic behavior.

Remark If the specific parameterization of M were given a priori, it is possible to come up with an
algorithm that performs optimally in that particular setting. However, the objective is to design a method
that performs well overall without this a priori information. Consider the relative performance of the
baselines in Experiments 2 and 3. We will see that while EqualAlloc performs better than MaxSum and
PropToValue in Experiments 3 (Section 5.4), it performs worse than those two in Experiment 2 (Section
5.3). However, our algorithm performs better than all three baselines in all experiments, corroborating our
algorithm’s overall better performance.

5.2 Experiment 1 (representative settings)

Different parameterizations ofM can produce a wide range of possible settings. Given this, the first experi-
ment studies the performance of our algorithm over a set of “representative settings”. Each of these settings
has a natural interpretation; for example, CA could represent the set of person-level features that we are
learning a personalized treatment for, or it could represent the set of customer attributes over which we’re
learning a marketing policy. The settings capture the intuition that high-value contexts (contexts for which,
if the optimal action is learned, high expected rewards accrue to the agent) occur relatively less frequently
(say, 20% of the time), but that there can be variation in other aspects. Specifically, the variations come
from the number of different values of cA over which the 20% probability mass is spread, and in how “risky”
a particular context is (e.g., difference in rewards between the best and worst actions). The full details of
the parameterizations are provided as part of the supplementary material (refer Appendix G). The number
of samples7 in the initial dataset DL is kept at 0.5 · |val(CA)| · |val(X)|. In each run, the agent is presented
with a randomly selected setting from the representative set. Results are averaged over 50 independent runs;
error bars display ±2 standard errors.

7We consider a uniformly exploring logging policy for DL; that is, context variables for each sample are realized as per the
natural distribution induced by M, but X is chosen randomly.
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Figure 1: Experiment 1 results (Section 5.2). Figure 2: Experiment 2 results (Section 5.3).

Figure 1 provides the results of this Experiment. It plots the value of regret (normalized to [0, 1] since
different settings have different ranges for regret) as budget B increases. We see that our algorithm performs
better than all baselines. Our algorithm also retains its relatively lower regret at all values of B, providing
empirical evidence of overall better regret performance.

5.3 Experiment 2 (randomized parameters)

To ensure that the results are not biased due to our choice of the representative set in Experiment 1,
this experiment studies the performance of our algorithm when we directly randomize the parameters of
the CPDs in each run, subject to realistic constraints. Specifically, in each run, we (1) randomly pick an
i ∈ {1, ..., ⌊|val(C1)|/2⌋}, (2) distribute 20% of the probability mass randomly over the smallest i values of
C1, and (3) distribute the remaining 80% of the mass over the remaining values of C1. The smallest i values
of C1 have higher value (i.e., the agent obtains higher rewards when the optimal action is chosen) than
the other C1 values. Intuitively, this captures the commonly observed 80-20 pattern (for example, 20% of
the customers often contribute to around 80% of the revenue); but we randomize the other aspects. The
full details of the parameterizations are given as part of the supplementary material (refer Appendix G).
Averaging over runs provides an estimate of the performance of the algorithms on expectation. The number
of samples in the initial dataset DL is kept at 0.25 · |val(CA)| · |val(X)|. The results are averaged over 50
independent runs; error bars display ±2 standard errors.

Figure 2 shows that our algorithm performs better than all baselines in this experiment. Our algorithm also
demonstrates overall better regret performance by achieving the lowest regret for every choice of B.

5.4 Experiment 3 (calibrated using real-world data)

While Experiments 1 and 2 study purely synthetic settings, this experiment seeks to study the performance of
our algorithm in realistic scenarios. We use the same causal graph used in the real world-inspired experiment
in Section 4.2 of Subramanian & Ravindran (2022) and calibrate the CPDs using the data provided there.
The graph is shown in Figure 3a; CA = {C1, C2} and CB = {C0}. For parameterizations, refer Appendix G.

The objective is to learn a policy that can assist salespeople by learning to decide how many outgoing calls
to make in an ongoing deal, given just the type of deal and size of customer, so as to maximize a reward
metric. The variables are related to each other causally as per the causal graph. The number of samples
in the initial dataset DL is kept at 0.125 · |val(CA)| · |val(X)|. The results are averaged over 50 independent
runs; error bars display ±2 standard errors. Figure 3 shows the results of the experiment. Our algorithm
performs better than all other algorithms in this real-world inspired setting as well. Further, it retains its
better performance at every value of B.

9
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(a) Causal graph used in Experiment 3; taken from
Subramanian & Ravindran (2022)

(b) Experiment results for real-world data inspired experiment (Ex-
periment 3).

Figure 3: Causal graph and results of Experiment 3 (Section 5.4).

5.5 Experiments 4 through 7

Experiments 4 through 7 study sensitivity of the results to key aspects that define our settings. To aid
this analysis, instead of regret, we consider a more aggregate measure which we call AUC. For any run,
AUC is computed for a given algorithm by summing over B the regrets for that algorithm; this provides
an approximation of the area under the curve (hence the name). We then study the sensitivity of AUC to
various aspects of the setting or environment.

Experiment 4 (“narrowness” of M) We use the term “narrowness” informally. Since our algorithm
CoBA exploits the information leakage in the causal graph, we expect it to achieve better performance when
there is more leakage. To see this, suppose we do a forward sampling (Koller & Friedman, 2009) of M;
then, intuitively, more leakage occurs when more samples require sampling overlapping CPDs. For this
experiment, we proxy this by varying |val(C0)| while keeping |val(C1)| fixed. The rest of the setting is the
same as in Experiment 2. A lower |val(C0)| means that the causal model is more “squeezed” and there is
likely more information leakage. The results are averaged over 50 independent runs; error bars display ±2
standard errors. Figure 4 shows the results of this experiment. We see that our algorithm’s performance
remains similar (within each other’s the confidence interval) for |val(C0)|/|val(C1)| ∈ {0.25, 0.375}, but
significantly worsens when |val(C0)|/|val(C1)| = 0.5. However, our algorithm continues to perform better
than all baselines for all values of |val(C0)|/|val(C1)|. Figure 4 broken down by B is given in Appendix L.1.

Experiment 5 (size of initial dataset) The number of samples in the initial dataset DL would impact
the algorithm’s resulting policy, for any given B. Specifically, we would expect that as the cardinality of DL

increases, regret reduces. For this experiment, we consider a uniformly exploring logging policy, and vary
|DL| by setting it to be k · |val(CA)| · |val(X)|, where k ∈ {0, 0.25, 0.5}. The rest of the setting is the same as
in Experiment 2. The results are averaged over 50 independent runs; error bars display ±2 standard errors.
The results are shown in Figure 5. We would expect the performance of all algorithms improve with increase
in k since that would give the agent better starting beliefs; this, indeed, is what we observe. Importantly,
our algorithm performs better than all baselines in all these settings. Figure 5 broken down by B is provided
in Appendix L.2.

Experiment 6 (choice of β) Though we allow the cost function to be arbitrary, this experiment studies our
algorithm’s performance under two natural choices of β(.) to test its robustness: (1) a constant cost function;
that is, β(x, cA, Nx,cA) ∝ Nx,cA , and (2) cost function that is inversely proportional to the likelihood of

10
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Figure 4: Experiment 4 results. Figure 5: Experiment 5 results.

Figure 6: Experiment 6 results.

observing the context naturally (i.e., rarer samples are costlier); that is, β(x, cA, Nx,cA) ∝ Nx,cA

P[cA] . The rest
of the setting is the same as in Experiment 2. The results are averaged over 50 independent runs; error bars
display ±2 standard errors. Figure 6 shows the results. As expected, the choice of cost function does affect
performance of all algorithms. However, our algorithm performs better than all algorithms for both cost
function choices.

Experiment 7 (misspecification of G) In real-world applications, the true underlying causal graph may
not always be known. In this experiment, we study the impact of misspecification of G on the performance of
our algorithm. Note that the formalism described in Section 3 does not necessitate that the agent knows the
true underlying causal graph, but rather only that it knows a causal graph such that P factorizes according
to it. This means that the graph G that the agent knows might include additional arrows not present in the
true underlying graph. Intuitively, using such an imperfect graph would result in worsened performance by
our algorithm since there are less overlapping information pathways to exploit. In Experiment 7a, we study
this effect empirically by comparing results of Experiment 2 to the same experiment but with the causal
graph having an extra edge: C1 → Y . The results are averaged over 25 independent runs; error bars display
±2 standard errors.

Figure 7 shows the results of the experiment. As expected, performance of our algorithm degrades when there
is imperfect knowlege of the true underlying graph. However, our algorithm continues to perform better than
all baselines, while also maintaining a similar difference in regret AUC compared to the baselines. Figure 7
broken down by B is provided in Appendix L.3.
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Figure 7: Experiment 7a results. Figure 8: Experiment 7b results.

In Experiment 7b, we perform a similar analysis to the real-world inspired experiment presented in Section
5.4. Specifically, we compare the case where the true causal graph is known with the cases where there is a
misspecification of the causal relationships between the context variables. To capture this, we add one edge
(C1 → C0) to G and then one more edge (C2 → C1); we compare the performance under these two settings
to the case where the true causal graph is known. The results are averaged over 25 independent runs; error
bars display ±2 standard errors. The results in Figure 8 shows the results. In this case, the deterioration in
performance due to misspecification of G is quite small for all algorithms. However, our algorithm continues
to perform better than all baselines; it performs the best when the true graph is known.

6 Fairness

Fairness is becoming an increasingly important angle to discuss when designing machine learning algorithms.
A common way to approach fairness is to ensure some subset of variables (assumed given to the algorithm),
called “sensitive variables”, is not discriminated against. Specific formal definitions of this discrimination
give rise to different notions of fairness in literature (Grgić-Hlača et al., 2016; Dwork et al., 2012; Kusner
et al., 2017; Zuo et al., 2022; Castelnovo et al., 2022).

Counterfactual fairness Counterfactual fairness is a commonly used notion of individual fairness. In-
tuitively, a counterfactually fair mapping from contexts to actions ensures that the actions mapped to an
individual8 are the same in a counterfactual world where a subset of sensitive contexts is changed. In our
case, counterfactual fairness can be achieved by setting CB to contain all the sensitive attributes. We provide
a proof for this in Appendix I.

Demographic parity A common criterion for group-level fairness is Demographic Parity (Kusner et al.,
2017). Our algorithm does not achieve demographic parity. However, in Appendix J, we suggest a way by
which it can be achieved with some compromise to the agent’s performance.

7 Conclusion and future research directions

This paper proposed a new contextual bandit problem formalism where the agent, which has access to
qualitative causal side information, can also actively obtain a table of data in one shot, but at a cost
and budget. We proposed a novel algorithm based on a new measure similar to entropy, and showed
extensive empirical analysis of our algorithm’s performance. We also showed theoretical results on soundness
and regret. Furthermore, we studied the fairness implications of our algorithm. Possible directions of
future research include allowing unobserved confounders and designing algorithms that meet population-
level fairness criteria with minimial impact on performance.

8An individual is given by a specific choice of values for the context variables.
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A Appendix: definition of Entnew

This section is taken from Subramanian & Ravindran (2022). As discussed in Section 4.2, P(V |paV ) =
Cat(V ; b1, ..., br), where (b1, ..., br) ∼ Dir(θV |paV

). Here θV |paV
is a vector of length, say, r. Let θV |paV

[i]
denote the i’th entry of θV |paV

. We define an object called Ent that captures a measure of our knowledge of
the CPD:

Ent(P(V |paV )) ≜ −
∑

i

[
θV |paV

[i]∑
j θV |paV

[j] ln
(

θV |paV
[i]∑

j θV |paV
[j]

)]
We then define

Entnew(P(V |paV )) ≜ 1
r

∑
i

Ent(Cat(b′1, ..., b′r))

where (b′1, ..., b′r) ∼ Dir
(
..., θV |paV

[i− 1], θV |paV
[i] + 1, θV |paV

[i+ 1], ...
)
.

B Appendix: proof of soundness

We would like to show that Regret → 0 as B → ∞. As B → ∞, in the limit, the problem becomes
unconstrained minimization of Υ(N). Note that for all N, Υ(N) ≥ 0. Therefore, the smallest possible value
of Υ(N) is 0.

First, note that Nx,cA →∞,∀(x, cA) =⇒ Υ(N)→ 0. This is because ∀(x, cA),

Nx,cA →∞ =⇒ 1
1 + ln(Nx,cA + 1) → 0

which, in turn, makes Q(P[V |paV ],N) → 0,∀(V,paV ). From Equation 3, it is easy to see that this causes
Υ(N)→ 0.

Also note that Υ(N) → 0 =⇒ Nx,cA → ∞,∀(x, cA). To see this, let Υ(N) → 0, and consider the case
where there exists a (x, cA) such that Nx,cA is finite. That means that there is at least one term of the form

1
1 + ln(Nx′,cA′ + 1)

which occurs in the Q(.) function of at least one CPD P[V |paV ], causing Q(P[V |paV ],N) > 0 since Entnew >
0. This, in turn, causes Υ(N) ̸→ 0, resulting in a contradiction.9

Thus, Nx,cA → ∞,∀(x, cA) ⇐⇒ Υ(N) → 0. In other words, each (x, cA) gets a number of samples
tending towards infinity if and only if Υ tends to 0. Thus, since Υ(N) ≥ 0, Algorithm 1a will allocate
Nx,cA → ∞,∀(x, cA). Each CPD has at least one (x, cA) whose samples will be used to update its beliefs
in Algorithm 1a.10 This means that each CPD will have its beliefs updated a number of times approaching
infinity. Thus, for any (V,paV ), P̂[V |paV ]→ P[V |paV ]. As a result, we have that P̂→ P.

Since the agent’s policy constructed using P will necessarily be optimal, we have that Regret → 0. This
completes the proof.

C Appendix: proof of regret bound

In this section, we prove Theorem 4.2. The proof follows closely the one in Subramanian & Ravindran (2022)
and adapts it to our setting.

First, we define the assumptions (A2) under which the theorem holds:
9This makes an implicit technical assumption that P[c] > 0, ∀c and that min(val(Y )) > 0. These are stronger assumptions

than necessary, and could be weakened in the future.
10Due to the technical assumption in footnote 9
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1. There is some non-empty past logged data (|DL| > 0), and it was generated by an (unknown) policy
π where every action has a non-zero probability of being chosen (π(x|cA) > 0,∀x, cA). The latter is
a commonly made assumption, for example, in inverse-propensity weighting based methods.

2. |DL| ≥ αB, for some constant α > 011. This is generally achievable in real world settings since we
usually have fairly large logged datasets (or it is quite cheap to acquire logged data; for example,
think of search logs), and for the bound to hold we technically can have a very small α as long as it
is greater than 0.

3. The cost function β is constant.12 This is a common case in real world applications, especially when
we do not have estimates of cost; in those cases, we typically assign a fixed cost to all targeted
experiments.

C.1 Expression for overall bound

First, note that Equation 3 in Subramanian & Ravindran (2022) remains the same even for our case. This
is because it depends only on the factorization of E[Y |do(x), cA] (see Equation 1 in the main paper) and
on the fact that in the evaluation phase the agent uses expected parameters of the CPDs (derived from its
learned beliefs) to return an action for a given context.

Therefore, suppose, with probability ≥ 1− δX,paY
,

|∀x, P̂(Y = 1|X,paY )− P(Y = 1|X,paY )| ≤ ϵX,paY

and with probability ≥ 1− δC|paC
,

∀c, |P̂(C = c|paC)− P(C = c|paC)| ≤ ϵC|paC

where the expressions for δX,paY
, δC|paC

, ϵX,paY
and ϵC|paC

will be derived later in this section.

Then with probability ≥ 1−
∑

paY
δX,paY

−
∑

C∈C
∑

paC
δC|paC

, for any given cA,

Regret(cA) = E[Y |do(a∗), cA]− E[Y |do(aalg), cA] ≤ 2ϵ′X + 3
∑

C∈CB

ϵ′C (4)

where we define
ϵ′X ≜

∑
paY

P(paY |cA)ϵX,paY

and
ϵ′C ≜

∑
paC

P(paC |cA)ϵC|paC

C.2 Expressions for δC|paC
and ϵC|paC

Denote MV ≜ |val(V)|. Let LpaC
be the number of samples in DL where PAC = paC . Now, our starting

estimate of P̂(C = 1|paC) using DL is computed as (θ(1)
C|paC

+ 1)/(LpaC
+ 2). Since DL is built by observing

CA according to the natural distribution and choosing X according to some (unknown) policy, the proof of
Lemma A.1 in Subramanian & Ravindran (2022) can be followed if we replace T ′ by αB since |DL| ≥ αB.

Therefore, suppose, with probability at least 1− δL
C|P AC

, it is true that

∀paC , LpaC
≥ αBP(paC , cA)− ϵLP AC

11We also assume that B is finite, as discussed earlier.
12Without loss of generality, we let this constant be equal to 1.
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If the above event is true, then it is also true that with probability at least 1− δC|paC
, it is true that

∀c, |P̂(c|paC)− P(c|paC)| ≤

√√√√[ 2
αBP(paC , cA)− ϵLC|P AC

]
ln
(

2
δC|paC

)

where

ϵLC|P AC
=

√√√√[αB
2

]
ln
(
MP AC

δL
C|P AC

)
, MP AC

=
∏

C∈P AC

MC

Therefore, we have that

ϵC|paC
=

√√√√[ 2
αBP(paC , cA)− ϵLC|P AC

]
ln
(

2
δC|paC

)
(5)

C.3 Expressions for δX,paY
and ϵX,paY

Let Lx,paY
be the number of samples in DL where (X,PAY ) = (x,paY ). As before, recollect that our

estimate of P̂(Y = 1|x,paY ) is computed as (θ(1)
Y |x,paY

+ 1)/(Lx,paY
+ 2). Further, the mean of Lx,paY

is at
least |DL| · P(paY , cA) ·m > αBmP(paY , cA), where m = minx,cA π(x|cA) and π is the unknown logging
policy. From our set of assumptions (A2), we have that π(x|cA) > 0,∀x, cA; therefore, m > 0.

Given this, the proof of Lemma A.2 in Subramanian & Ravindran (2022) can be followed.

Therefore, suppose, with probability at least 1− δL
X,P AY

, it is true that

∀(x,paY ), Lx,paY
≥ αBmP(paY , cA)− ϵLX,P AY

where

ϵLX,P AY
=

√√√√[αB
2

]
ln
(
MXMP AY

δL
X,P AY

)

If the above event is true, then it is also true that with probability at least 1− δX,paY
, it is true that

∀x, |P̂(Y = 1|x,paY )− P(Y = 1|x,paY )| ≤

√√√√[ 2
αBmP(paY , cA)− ϵLX,P AY

]
ln
(

2MX

δX,paY

)

Therefore, we have that

ϵX,paY
=

√√√√[ 2
αBmP(paY , cA)− ϵLX,P AY

]
ln
(

2MX

δX,paY

)
(6)

C.4 Final bound

Now, we can plug the Equations 5 and 6 back into Equation 4, and following the same union bound trick
as in Subramanian & Ravindran (2022) and some algebra, we get that for any 0 < δ < 1, with probability
≥ 1− δ,
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Regret ≤ 3EpaY ,cA


√√√√[ 2

αmBP(paY , cA)− ϵLX,P AY

]
ln
(

2MX(MC + |C|)
δ

)
+ 3

∑
C∈CB

EpaC ,cA


√√√√[ 2

αBP(paC , cA)− ϵLP AC

]
ln
(

2(MC + |C|)
δ

) (7)

where

ϵLP AC
=

√[
αB

2

]
ln
(
MP AC

(MC + |C|)
δ

)
, ϵLX,P AY

=

√[
αB

2

]
ln
(
MXMP AY

(MC + |C|)
δ

)

It can be simplified as presented in Theorem 4.2 as:

Regret ∈ O

(
|C|

√(
1

mB − ϵ

)
ln MXMC

δ

)

where

ϵ ∈ O

(√
B ln MXMP AY

MC
δ

)

This completes the proof.

D Regret behavior for large values of B

Figures 1 and 2 provided regret behavior for small values of B. We are primarily interested in small-budget
behavior since that occurs more commonly in practice; for example, budgets exclusively for experimentation
in software teams in often quite low.

However, it is also interesting to look at regret behavior as B becomes large. Specifically, we increase B
large enough that all algorithms converge to optimal (or very close to optimal). We do this for Experiments
1 and 2. Figures 9 and Figures 10 provide the results. Note that the Figures 1 and 2 just zoom into these
plots for small B (i.e., B between 15 and 30).

Figure 9: Experiment 1 results (Section 5.2) for
large values of B.

Figure 10: Experiment 2 results (Section 5.3) for
large values of B.

18



Under review as submission to TMLR

PropToValue is the slowest to converge to the optimal policy in both instances, though it demonstrates
better low-budget behavior than EqualAlloc. MaxSum has the best low budget behavior among the baselines
because it maximizes the total number of samples within that low budget; it, as B gets larger, EqualAlloc
catches up (and even outperforms it) as it explores the context-action space better. In both experiments,
however, our algorithm converges to an optimal policy faster than all baselines.

E Appendix: Understanding the reason for better performance of our algorithm

As discussed in Section 4, our algorithm balances the trade off between allocating more samples to context-
action pairs that are higher value according to its beliefs and allocating more samples for exploration, while
taking into account information leakage due to the causal graph. To understand this in more detail, we
consider Setting 1 of Experiment 1, and zoom into the case where B = 20. We do 50 independent runs and
plot the frequency of choosing samples containing different value of C1. We show this for our algorithm and
all baselines (except EqualAlloc since it is obvious how it allocates).

(a) CoBA (Ours) (b) MaxSum

(c) PropToValue

Figure 11: Frequency of choosing or encountering each value of CA. Highlighted in teal color are the ‘high-
value’ contexts (i.e., contexts for which learning the right actions provides higher expected rewards).

Figure 11 shows the results of this experiment. MaxSum allocates lesser number of samples than our algorithm
to the two context values (C1 ∈ {0, 1}) that are high value. PropToValue over-allocates to these two context
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values, resulting in poor exploration of other contexts. Our algorithm, in contrast, allocate relatively more
to the high-value contexts, while also maintaining good exploration of other contexts.

F Appendix: Intuition for why EqualAlloc performs worse in Experiment 2

First, if we look at the figures in the main paper along with Figure 10, we see that that EqualAlloc performs
worse only for low values of B, and significantly improves its performance once B becomes 35.

To understand the intuition, first note that Experiment 2 captures the 80-20 rule (while randomizing other
aspects). It is easy to see that EqualAlloc overallocates to the lower-value 80% of contexts. PropToValue,
on the other hand, allocates more to the 20%, and therefore performs better for lower budgets (i.e., makes
better use of the small budget). However, as budget increases, PropToValue fails to explore well, causing
EqualAlloc to outperform it. MaxSum outperforms EqualAlloc in lower budgets because allocations which
allocate more to the higher-value contexts are also possible solutions for MaxSum, and therefore on average
it performs better than EqualAlloc which overallocates to the low-value contexts consistently. However, as
B becomes larger, EqualAlloc catches up, as seen in Figure 10.

G Appendix: Regarding parameterizations

For Experiments 1 through 3, we follow parameterizations very similar to the one used in Subramanian &
Ravindran (2022). Please see README.md in the Code folder in SupplementaryMaterial.zip for the full
parameterizations of all experiments.

H Appendix: How to implement our algorithm in practice

In our experiments, we have used the scipy.optimize.differential_evolution solver13 from the
scipy Python library to solve the problem in Section 4.2. This solver implements differential evolu-
tion,14 which is an evolutionary algorithm which makes very few assumptions about the problem. The
scipy.optimize.differential_evolution method is quite versatile; for example, it allows the specifica-
tion of the objective function as a Python callable, and also allows arbitrary nonlinear constraints of type
scipy.optimize.NonlinearConstraint.

However, a practitioner can use any suitable optimization algorithm or heuristic to solve the problem in
Section 4.2.

I Appendix: Proof of counterfactual fairness

To prove counterfactual fairness, first note that the learned policy is a map ϕ̂ : val(CA) → val(X); during
inference, for any given cA, the value of X is intervened to be set to ϕ̂(cA). Following the notation in Pearl
(2009a), we let ϕ̂CB←cB′(cA) denote ϕ̂(cA) in the counterfactual world where the variables in CB are set
equal to cB′. To achieve counterfactual fairness15, we want that, for all cA, cB , cB′, x,

P
[
ϕ̂CB←cB (cA) = x|cA, cB

]
= P

[
ϕ̂CB←cB′(cA) = x|cA, cB

]
Now, under the assumptions in Section 3.1, the conditional independences in G imply that we have

P
[
ϕ̂(cA) = x|cA, cB

]
= P

[
ϕ̂(cA) = x

]
,∀cB

This gives us that

P
[
ϕ̂CB←cB′(cA) = x|cA, cB

]
= P

[
ϕ̂(cA) = x

]
,∀cA, cB , cB′, x

which satisties the counterfactual fairness condition.
13https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
14https://en.wikipedia.org/wiki/Differential_evolution
15Our definition of counterfactual fairness draws from the definitions in Kusner et al. (2017); Zuo et al. (2022).
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J Appendix: Demographic Parity

A common criterion for group-level fairness is Demographic Parity (Kusner et al., 2017). Demographic Parity
(DP) requires that the distribution over actions remains the same irrespective of the value of the sensitive
variables. Formally, it requires that

P
[
ϕ̂ = x|cB

]
= P

[
ϕ̂ = x|cB′

]
, ∀cB′

Our algorithm, however, does not guarantee DP:

P
[
ϕ̂ = x|cB

]
=
∑
cA

P[cA|cB ] · P[ϕ̂(cA) = x]

which may not equal P
[
ϕ = x|cB′] since P[cA|cB ] may not equal P[cA|cB′].

However, we discuss one way through which DP can be achieved, but with a reduction in agent’s performance.
Specifically, we can achieve DP by ensuring that the agent acts according to a fixed policy irrespective of
the value of cA. Intuitively, we construct a fixed policy that maximizes rewards given the agent’s learned
beliefs.

Specifically, let ψ̂(x, cA) ≜ Ê[Y |do(x), cA]. Assume the fixed policy is probabilistic. Therefore, we’re in-
terested in a policy q which is a distribution over |val(X)|. Denoting q(x) ≜ q(x), we solve the following
optimization problem:

< ..., q(x), ... >= arg max
<...,q(x)′ ,...>

∑
x

[
q(x)′

[∑
cA

P̂[cA] · ψ̂(x, cA)
]]

subject to ∑
x

q(x)′
= 1

It is easy to see that one global optimum to this involves assigning a probability of 1 to an action x that
results in the largest value of

∑
cA P̂[cA] · ψ̂(x, cA). That is, choose x such that

x = arg max
x′

∑
cA

P̂[cA] · ψ̂(x′, cA)

and let q(x) = 1, and q(x′) = 0,∀x′ ̸= x. Note that this fixed policy would perform worser on expectation
than the context-specific policy learned by the agent in the main part of the paper. This, however, is a cost
that can be paid to achieve DP.

K Appendix: Information leakage when CB = ∅

Our formalism (Section 3) allows CB to be empty. In this case, there is still information leakage possible,
which our algorithm can exploit. To see this, consider the same graph we used for Experiment 1 (Section 5),
but let CA = {C1, C0}. Consider the two pairs (x, c0, c

′
1) and (x, c0, c1). It turns out that P[y|do(x), c0, c

′
1] =

P[y|do(x), c0, c1] = P[y|x, c0].

Thus, there is information leakage arising due to the conditional independencies arising from the causal
graph, even when CB = ∅. Our algorithm exploits this structure through Q(P[Y |x, c0],N).

L Appendix: Detailed plots

L.1 Related to Experiment 4

Figure 12 shows the breakdown on Figure 4 for each value of B. For B = 15, there is no clear pattern; this
is because the budget is so small that they all tend to learn poor policies. But when we increase B, we see
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Figure 12: Detailed plots related to Experiment 4 (Section L.1).

that our algorithm performs better when the graph is the most squeezed – like we had discussed in the main
part of the paper. Further, in the most squeezed setting (lowest value of x-axis), our algorithm’s difference
from the next best algorithm is larger for smaller B, and decreases as B increases; this is because a larger
budget reduces the advantage that our algorithm gains from better utilization of information leakage.

L.2 Related to Experiment 5

Figure 13 shows the breakdown of Figure 5 for each value of B. We see that for each value of B, as DL

val(CA×X)
increases, regret decreases – similar to what happens in the aggregated plot. Further, as B increases, 0 regret
is achieved faster – again in line with expectations.

L.3 Related to Experiment 7

Figure 14 shows the breakdown of Figure 7 for each value of B. For B = 15, there is no clear pattern; this
is because the budget is so small that they all tend to learn poor policies. But when we increase B, we see
that all algorithms perform worser when G does not match the true underlying causal graph. Further, our
algorithm continues retain its better performance over all baseline for all values of B.

Broader Impact Statement

This work provides an improved mathematical framework and general-purpose algorithm for contextual
bandits. We do not use any data that contains any personally identifiable information or sensitive personally
identifiable information. To the best of our knowledge, we do not believe there were any ethical issues
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Figure 13: Detailed plots related to Experiment 5 (Section L.2).

associated with the development of this work. Further, given the nature of the work as foundational and
introducing a new algorithm (and not specific to an application), we do not foresee any specific potential
negative ethical issues created by this work. However, we do point out that researchers utilizing this method
to their specific applications should adhere to ethical standards of their own (e.g., by avoiding targeting
interventions on subpopulations based on racial attributes, or by ensuring that rewards are not defined in a
way that incentivizes learning discriminatory behavior).
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Figure 14: Detailed plots related to Experiment 7 (Section L.3).
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