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ABSTRACT

Unsupervised anomaly detection is highly desirable in industrial manufacturing
processes due to the rarity of anomalies in real-world scenarios. Recent research
has been focused on developing a unified framework for achieving multi-class
anomaly detection. However, existing advanced feature-reconstruction-based
methods often suffer from a lack of sufficient contextual awareness, thereby com-
promising the quality of the reconstruction. To address this challenge, we intro-
duce a novel Reconstruction as Sequence (RAS) framework, which enhances the
contextual correspondence during feature reconstruction through a sequence mod-
elling perspective. In particular, based on the transformer technique, we integrate
a specialized RASFormer block into the RAS framework. This block enables
the capture of spatial relationships among different image regions and enhances
temporal dependencies throughout the reconstruction process. By incorporating
the RASFormer block, our RAS method achieves superior contextual awareness
capabilities, leading to exceptional performance and faster inference speed. Ex-
perimental results show that our proposed RAS method significantly outperforms
competing methods while exhibiting a maximal improvement of 29% in inference
throughput. These results indicate the best trade-off between effectiveness and
efficiency, further demonstrating the superiority and practicality of our method.

1 INTRODUCTION

Anomaly detection (AD) aims to identify outliers or abnormal regions for an input image. It is
widely used in various fields such as industrial manufacturing (Bergmann et al., 2019a), health-
care (Fernando et al., 2021), and surveillance (Xia et al., 2020). Developing optimal AD models is
challenging due to the rarity of anomalies in real-world scenarios. Researchers have explored un-
supervised learning paradigms for AD without requiring anomaly-specific data. Nonetheless, they
often build separate models for each class, which becomes inefficient as the number of classes in-
creases. To overcome this limitation, recent research focuses on developing a unified AD framework
capable of achieving unsupervised multi-class anomaly detection.

Recent works follow a feature-reconstruction paradigm to distinguish anomaly regions. Specifically,
given an image I , they try to reconstruct its visual features f through an encoder-decoder framework
θ: min ||f − θ(f + ϵ)|| where ϵ represents the disturbance noise. UniAD (You et al., 2022) first
incorporates the transformer architecture to construct the feature reconstruction model, ending up
with superior performance. Wang et al. (2023) propose a unilaterally aggregated contrastive learning
to obtain the concentrated inlier distribution as well as the dispersive outlier distribution. Lin et al.
(2023) reconstruct the latent feature with the auto-encoder and the geometric transformation scheme.

Despite the promising performance, we observe that the existing advanced feature-reconstruction
method, i.e.,UniAD (You et al., 2022), easily encounters difficulties in accurately reconstructing the
original image. To visually demonstrate this problem, we train an image decoder, denoted as Θ1,
to generate a reconstructed image I′ based on its reconstructed features, i.e.,I′ = Θ[θ(f)]. We
then compare this reconstructed image I′ with the original image I . Upon examining Fig. 1, we
can see that some crucial object details, such as edges and lighting, are not adequately captured by

1Θ is designed to over-fit the test distribution, allowing it to perfectly map the features into the RGB image.
Hence, it can reflect the quality of the reconstructed features.
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UniAD. This observation suggests that UniAD is not able to align the reconstructed features θ(f)
well with the image feature f . Consequently, this limitation may result in false positive predictions
for anomaly detection and ultimately lead to inferior performance.
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Figure 1: Top: inspection of the reconstruction failure of
UniAD. Bottom: illustration of the superior reconstruction
quality of our proposed RAS method. I is an anomalous
metal nut.

To gain a deeper understanding of the
reconstruction process, we encourage
each decoding step to reconstruct the
original image and inspect their dif-
ference. As depicted in the images at
the top of Fig. 1, we can see that the
differences among the successively
reconstructed images are minimal in
UniAD. This suggests that the de-
coder fails to capture the intricate
patterns already reconstructed by the
preceding decoder, resulting in lim-
ited contextual awareness throughout
the reconstruction process. This naturally raises a question: can we enhance the contextual corre-
spondence during the feature reconstruction?

In this paper, we answer this question through a novel Reconstruction as Sequence (RAS) frame-
work, which rethinks the feature reconstruction process from the perspective of sequence modelling
for the unified unsupervised anomaly detection. Specifically, we consider each decoder layer as one
step in the sequence model. Then, we specially design a RASFormer block which adapts the trans-
former architecture to the sequential feature reconstruction. Particularly, within the RASFormer
block, we devise a novel strategy of adaptive gating to learn the contextual dynamics during fea-
ture reconstruction. By combining it with a transformer layer, our RASFormer block effectively
captures spatial discrepancies and strengthens temporal dependencies, thereby enhancing the con-
textual awareness capability and achieving superior reconstruction quality (see Fig. 1).

To demonstrate the effectiveness of our RAS, we conduct comprehensive experiments and visualiza-
tion analysis on two widely used benchmark datasets, i.e.,MVTec-AD (Bergmann et al., 2019a) and
CIFAR-10 (Krizhevsky, 2009). Experimental results indicate that our proposed RAS can outperform
competing methods while enjoying favorable throughput, leading to the best trade-off between the
performance and efficiency. Quality visualization results demonstrate that the proposed RAS can
well reconstruct images with high quality due to its effective enhancement of the contextual aware-
ness capability. These results well demonstrate the effectiveness and superiority of our proposed
RAS method.

Our contributions are summarized as follows:

• We thoroughly consider the contextual awareness capability during the feature reconstruc-
tion for the unified unsupervised AD. A novel Reconstruction as Sequence (RAS) method is
proposed, which rethinks the feature reconstruction process from the sequence perspective.

• We introduce a generic RASFormer block to effectively enhance the contextual correspon-
dence during the feature reconstruction, resulting in remarkable reconstruction outcomes.

• Experimental results validate the effectiveness of our method on two benchmark datasets,
exhibiting a great trade-off between the performance and the efficiency.

2 RELATED WORK

Unsupervised anomaly detection. Due to the limited availability of anomalous samples, unsuper-
vised learning methods are commonly employed in industrial quality inspection. Some works in-
corporate patch-level embedding (Yi & Yoon, 2020), geometric transformation (Golan & El-Yaniv,
2018), and elastic weight consolidation (Reiss et al., 2021), resulting in great improvement. Some
works assume that a pre-trained network can extract discriminative features for anomaly detec-
tion (Defard et al., 2021; Rippel et al., 2021). For example, PaDiM (Defard et al., 2021) and
MDND (Rippel et al., 2021) extract pre-trained features to model the normal distribution, subse-
quently utilizing a distance metric to identify anomalies. Nonetheless, these methods require mem-
orizing all normal features, making them computationally expensive. Recent works are mostly based
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on reconstruction-based anomaly detection, with an assumption that reconstruction models trained
solely on normal samples perform well in normal regions but fail in anomalous regions (Bergmann
et al., 2019b; Chen et al., 2022; Liu et al., 2020).

Unified anomaly detection. Many existing methods require training separate models for each class,
which can become costly as the number of classes increases. Recently, the idea of constructing a
unified model for multi-class anomaly detection has gained popularity in the research community.
RegAD (Huang et al., 2022) addresses few-shot anomaly detection by training a single generalizable
model, utilizing a limited number of normal images for each category during training. UniAD (You
et al., 2022) employs a feature-reconstruction approach to pinpoint anomalous regions with the trans-
former architecture. OmniAL (Zhao, 2023) presents a panel-guided method to synthesize anomalies
and achieve image reconstruction using dilated channel and spatial attention blocks.

Our RAS method shares a similar objective with UniAD (You et al., 2022) in identifying anomalies
by aligning reconstructed features with the original image features. However, our method treats
feature reconstruction as a sequence modeling problem and introduces the RASFormer block to
enhance the contextual correspondence across different reconstruction steps. As a result, compared
to UniAD, our RAS is more effective and efficient.

3 METHOD

3.1 PRELIMINARY

Image feature extraction. In the feature-reconstruction-based model, the goal is to align the recon-
structed feature with the original image feature. To accomplish this, we follow previous method (You
et al., 2022) by employing a pretrained convolutional neural network as the backbone for extract-
ing the original image feature. This backbone is denoted as ϕ, and the process of deriving features
from the image I can be represented as {f1, ...,fn} = ϕ(I), where n represents the number of
feature levels. Consequently, for each feature level, we apply a 3×3 average pooling operation, re-
size them to the same size, and concatenate all the features along the channel dimension, yielding a
comprehensive feature map:

forg ∈ RCorg×(H×W ) = concat{fk|k = 1, .., n} (1)

where Corg, H and W are the feature dimension, height and width of the feature map, respectively.

Transformer layer. Transformer (Vaswani et al., 2017; Devlin et al., 2018) has emerged as a founda-
tional architecture in the field of artificial intelligence. A transformer layer comprises two essential
sub-layers: the multi-head self-attention (MHSA) and the feed-forward network (FFN). To enhance
training efficiency and performance, residual connections (He et al., 2016) and layer normalization
(LN) (Ba et al., 2016) are applied to each sub-layer independently. Here, we utilize a post-LN
transformer architecture (Xiong et al., 2020) to construct the transformer layer:

Transformer(xq,xk,xv) = LN(FFN(LN(MHSA(Wqxq,Wkxk,Wvxv)))) (2)

where xq , xk, and xv are input sequences of tokens. Wq , Wk, and Wv are all learnable parameters.
For ease of description, we omit the residual connection in the above equation.

3.2 RECONSTRUCTION AS SEQUENCE (RAS)

3.2.1 RETHINKING THE FEATURE RECONSTRUCTION FROM THE SEQUENCE PERSPECTIVE

Denoised encoding. The proposed RAS framework employs an encoder-decoder structure to re-
construct the image feature, i.e.,forg, which is derived by a CNN backbone, as depicted in Eq. 1.
The encoder is constructed by several transformer layers with feature jittering and neighbor masked
attention mechanism as You et al. (2022):

f ′ ∈ RCrec×(H×W ) = Wf (forg + ϵ) (3)

oe ∈ RCrec×(H×W ) = TransformerTe(...Transformer1(f
′,f ′,f ′)) (4)

where Wf ∈ RCrec×Corg and Crec is the dimension of the latent reconstruction space. Te is the
number of encoders. ϵ = {ϵi, i ∈ [0, H ×W )} is the noisy features added to forg during training,
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Figure 2: Overview of the proposed RAS framework, which follows an encoder-decoder archi-
tecture to perform feature reconstruction. We enhance the contextual awareness capability during
feature reconstruction via a specially designed RASFormer block, denoted by the dotted box.

allowing the model to learn features of normal images through denoising:

ϵi ∼ N(µ = 0, σ2 = (α
||f i

org||2
Corg

)2) (5)

where f i
org ∈ RCorg is one element in forg. α is the jittering scale to control the degree of noise.

During the test phase, ϵ is not applied following You et al. (2022).

Sequence decoding. UniAD (You et al., 2022) adopts conventional transformer layers to construct
the decoder for feature reconstruction. Nonetheless, it is constrained in effectively capturing the
contextual correspondence among decoding layers (see Fig. 1). In contrast, our proposed RAS
framework considers the feature reconstruction process from a sequence perspective. Specifically,
at each decoding step of t, we input an individual context embedding xt ∈ RCrec×(H×W ) and the
previously reconstructed features ht−1 into the decoder θtdec. θtdec performs feature aggregation and
mapping from the latent reconstruction space into the image feature space:

ht ∈ RCrec×(H×W ),ot ∈ RCorg×(H×W ) = θtdec(xt,ht−1) (6)

The aforementioned process can be repeated several times, resulting in a sequence of reconstruc-
tions. We randomly initialize xt as previous works (You et al., 2022; Carion et al., 2020). ht−1 is
the hidden state of previous decoder. We initialize the first hidden state with the output of the last
encoder layer in Eq. 4, i.e.,h0 = oe. The reconstructed feature frec can be denoted as frec = oTd

,
where Te is the number of decoders. Noted that xt can be considered the spatial version of image
feature forg at the time step t, and ht can be regarded as the temporal version after aggregating xt.
The hidden states ht and ht−1 are responsible for memorization of reconstruction knowledge, as in
GRU (Cho et al., 2014).

To enhance the capability of contextual correspondence within the reconstruction sequence, we
introduce a novel RASFormer block as the fundamental building block for decoders θtdec. For
ease of understanding, here we briefly represent the RASFormer block as a function, i.e.,θtdec =
RASFormert(·). Details are provided in section 3.2.2.

3.2.2 RASFORMER BLOCK

The RASFormer block serves as a fundamental module in the decoder, playing a crucial role in cap-
turing contextual correspondence within the sequential feature reconstruction process. We adhere
to two guiding principles when designing the RASFormer block: 1) temporal dynamics, ensuring
awareness of the previously captured information, alleviating the need to readdress it in subsequent
reconstruction processes; 2) spatial dynamics, enabling the capture of relationships between the cur-
rent input context embedding xt and the previous knowledge ht−1 at the spatial level. To achieve
this, we introduce a novel strategy of adaptive gating with transformers.

Specifically, given prior knowledge, i.e.,the previous hidden state h, and the current input x (for
ease of description, we leave out the subscript t), we first design a reset gate rreset to filter the prior
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knowledge as follows:
rreset = σ(Wr(h⊕ x)) (7)
hreset = rreset ⊗ h (8)

where ⊕ is the concatenation of two feature maps along the channel dimension. ⊗ represents the
element-wise multiplication between two matrices. Wr is a learned weight matrix. σ is a sigmoid
function. Noted that all output tensors have the same shape as h, i.e.,RCrec×(H×W ).

We then incorporate the filtered knowledge hreset with the current input information x through a
transformer layer:

hcurr = Transformer(x,hreset,hreset) (9)
With the reset gate rreset, the current hidden state hcurr can adaptively discard the previous hidden
state h and reset itself based on the remained prior knowledge and the current input x. As a result,
prior knowledge that is deemed irrelevant in subsequent steps can be largely disregarded, leading to
a more effective reconstruction process.

Moreover, we additionally utilize an update gate to refresh the reconstruction knowledge:
zupdate = σ(Wz(h⊕ x)) (10)
hupdate = LN[(1− zupdate)⊗ h+ zupdate ⊗ hcurr]. (11)

where LN(·) means the layer normalization. The reconstruction output for the RASFormer block
can be derived as follows:

o = Wohupdate. (12)

The update gate zupdate governs the extent to which information from the previous hidden state h
is incorporated into the current hidden state hcurr. This enables our RASFormer to retain important
contextual information, thereby enhancing the quality of the reconstruction output.

Summing it up, the RASFormer block can be summarized into a function:
h∗,o = RASFormer(x,h) (13)

where h∗ = hupdate is the updated hidden state.

Remarks. The reset gate can help filter out the previously reconstructed information, thus pre-
venting wastage of the decoder’s reconstruction capacity. The update gate enables the decoder to
fully consider the discrepancy between the previously reconstructed information and the currently
to-be-reconstructed information, thereby achieving remarkable reconstruction results. Additionally,
the MHSA in the transformer layer can facilitate the effective interaction between each element in
x and other elements in h, enabling the capture of spatial dynamics. As a result, our RASFormer
can effectively capture both temporal dependencies and spatial discrepancies, greatly enhancing the
model’s ability to establish contextual correspondence during feature reconstruction.

Our RASFormer block bears certain similarities to GRU (Cho et al., 2014), which is proposed for
natural language processing. However, there are notable differences between these two methods.
Unlike GRU, which operates on two-dimensional vector-like word embeddings, our RASFormer
processes inputs with three-dimensional spatial feature maps. Besides, RASFormer further incorpo-
rates the transformer to explore the spatial relationships within the input feature maps, which is not
managed in GRU.

3.2.3 LOSS AND INFERENCE

Objective function. The objective function for training RAS is to calculate the MSE loss between
the original feature forg and the reconstructed feature frec.

L =
1

H ×W
∥forg − frec∥22 (14)

Inference. During the inference phase, the feature-level anomaly map S feat is computed by mea-
suring the L2 norm of the difference between forg and frec.

S feat = ∥forg − frec∥2 ∈ RH×W (15)

The anomaly map is then up-sampled to the size of the original image using bi-linear interpolation
to obtain the pixel-level anomaly map. The image-level anomaly score is derived by taking the
maximum value of the averaged pooled pixel-level anomaly map.
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Table 1: Image-level AUROC for anomaly detection on MVTec-AD (unified / separate).
Category US PaDiM CutPaste MKD DRAEM UniAD RAS (ours)

O
bject

Bottle 84.0 / 99.0 97.9 / 99.9 67.9 / 98.2 98.7 / 99.4 97.5 / 99.2 99.7/ 100 100 ± 0.00 / 100
Cable 60.0 / 86.2 70.9 / 92.7 69.2 / 81.2 78.2 / 89.2 57.8 / 91.8 95.2/ 97.6 99.2 ± 0.12 / 99.7

Capsule 57.6 / 86.1 73.4 / 91.3 63.0 / 98.2 68.3 / 80.5 65.3 / 98.5 86.9/ 85.3 92.6 ± 0.32 / 95.6
Hazelnut 95.8 / 93.1 85.5 / 92.0 80.9 / 98.3 97.1 / 98.4 93.7 / 100 99.8 / 99.9 100 ± 0.00 / 100
Metal Nut 62.7 / 82.0 88.0 / 98.7 60.0 / 99.9 64.9 / 73.6 72.8 / 98.7 99.2 / 99.0 99.9 ± 0.02 / 99.4

Pill 56.1 / 87.9 68.8 / 93.3 71.4 / 94.9 79.7 / 82.7 82.2 / 98.9 93.7 / 88.3 96.3 ± 0.35 / 96.2
Screw 66.9 / 54.9 56.9 / 85.8 85.2 / 88.7 75.6 / 83.3 92.0 / 93.9 87.5/ 91.9 95.3 ± 0.40 / 95.6

Toothbrush 57.8 / 95.3 95.3 / 96.1 63.9 / 99.4 75.3 / 92.2 90.6 / 100 94.2/ 95.0 98.7 ± 0.30 / 94.8
Transistor 61.0 / 81.8 86.6 / 97.4 57.9 / 96.1 73.4 / 85.6 74.8 / 93.1 99.8/ 100 99.2 ± 0.00 / 100

Zipper 78.6 / 91.9 79.7 / 90.3 93.5 / 99.9 87.4 / 93.2 98.8 / 100 95.8 / 96.7 98.4 ± 0.07 99.4

Texture

Carpet 86.6 / 91.6 93.8 / 99.8 93.6 / 93.9 69.8 / 79.3 98.0 / 97.0 99.8 / 99.9 99.5 ± 0.05 / 100
Grid 69.2 / 81.0 73.9 / 96.7 93.2 / 100 83.8 / 78.0 99.3 / 99.9 98.2/ 98.5 99.8 ± 0.16 / 100

Leather 97.2 / 88.2 99.9 / 100 93.4 / 100 93.6 / 95.1 98.7 / 100 100 / 100 100 ± 0.00 / 100
Tile 93.7 / 99.1 93.3 / 98.1 88.6 / 94.6 89.5 / 91.6 99.8 / 99.6 99.3/ 99.0 100 ± 0.02 / 99.9

Wood 90.6 / 97.7 98.4 / 99.2 80.4 / 99.1 93.4 / 94.3 99.8 / 99.1 98.6/ 97.9 98.7 ± 0.23 / 98.5

Mean 74.5 / 87.7 84.2 / 95.5 77.5 / 96.1 81.9 / 87.8 88.1 / 98.0 96.5 / 96.6 98.4 ± 0.08 / 98.6

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

MVTec-AD. MVTec-AD is a widely used benchmark for image anomaly detection, including 15
categories of industrial products and defects. It consists of 3,629 anomaly-free images for training
and 1,725 images for the test set. For the test set, both normal and anomalous samples are provided.

CIFAR-10. CIFAR-10 is an image classification dataset consisting of 60,000 images of 32×32
pixels, distributed across 10 classes with 6,000 images per class. Following previous work (You
et al., 2022), we employ a many-versus-many setting, where half of the classes are used as normal
samples during training, while the remaining half are used as anomalies during testing.

Evaluation Metrics. The performance of anomaly detection models is typically measured by AU-
ROC. Following previous works (You et al., 2022; Defard et al., 2021; Chen et al., 2022), we report
the image-level AUROC and the pixel-level AUROC on MVTec-AD. On CIFAR-10, model perfor-
mance is evaluated using image-level AUROC.

Implementation details. For a fair comparison, we use EfficientNet-B4 as the backbone following
UniAD (You et al., 2022). Images are resized to 224× 224 before input into the backbone. Feature
maps of the image are extracted from levels 1 to 4. We align them to the size of their highest-level
feature map, i.e.,14 × 14. We utilize the AdamW optimizer with a learning rate of 7e − 4 and a
weight decay of 1e− 4. The batch size is set to 64. All models are trained with 500 epochs.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

In this section, we present a comparison between our proposed RAS method and existing methods.
Specifically, for the one-class competing models, we directly leverage the baseline models reported
in UniAD. As for the unified AD baseline methods, we focus on ensuring a fair comparison with
feature-reconstruction methods2.

Performance comparison on MVTec-AD. We compare our method with several classical methods
under both the unified and separate settings. We report the performance at the image level and pixel
level on MVTec-AD in Table 1 and Table 2. Among these baseline methods, UniAD is specifically
designed for the unified setting, while the others follow the separate setting. We can see that, for the
unified unsupervised anomaly detection, our method can outperform UniAD with a significant im-
provement of 1.9% AUROC for image-level anomaly detection and of 0.7% AUROC for pixel-level

2OmniAL (Zhao, 2023) introduces pseudo-synthesized anomalies and utilizes a computationally expensive
image segmentation framework, and is thus ignored for a fair comparison.
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Table 2: Pixel-level AUROC for anomaly localization on MVTec-AD (unified / separate).
Category US PaDiM FCDD MKD DRAEM UniAD RAS (ours)

O
bject

Bottle 67.9 / 97.8 96.1 / 98.2 56.0 / 97 91.8 / 96.3 87.6 / 99.1 98.1 / 98.1 98.4 ± 0.02 / 98.5
Cable 78.3 / 91.9 81.0 / 96.7 64.1 / 90 89.3 / 82.4 71.3 / 94.7 97.3 / 96.8 98.7 ± 0.03 / 98.6

Capsule 85.5 / 96.8 96.9 / 98.6 67.6 / 93 88.3 / 95.9 50.5 / 94.3 98.5 / 97.9 98.6 ± 0.01 / 98.6
Hazelnut 93.7 / 98.2 96.3 / 98.1 79.3 / 95 91.2 / 94.6 96.9 / 99.7 98.1 / 98.8 98.5 ± 0.02 / 98.7
Metal Nut 76.6 / 97.2 84.8 / 97.3 57.5 / 94 64.2 / 86.4 62.2 / 99.5 94.8 / 95.7 97.3 ± 0.12 / 98.1

Pill 80.3 / 96.5 87.7 / 95.7 65.9 / 81 69.7 / 89.6 94.4 / 97.6 95.0 / 95.1 98.3 ± 0.11 / 98.2
Screw 90.8 / 97.4 94.1 / 98.4 67.2 / 86 92.1 / 96.0 95.5 / 97.6 98.3 / 97.4 99.1 ± 0.03 / 99.1

Toothbrush 86.9 / 97.9 95.6 / 98.8 60.8 / 94 88.9 / 96.1 97.7 / 98.1 98.4 / 97.8 98.4 ± 0.01 / 98.5
Transistor 68.3 / 73.7 92.3 / 97.6 54.2 / 88 71.7 / 76.5 64.5 / 90.9 97.9 / 98.7 98.9 ± 0.03 / 99.1

Zipper 84.2 / 95.6 94.8 / 98.4 63.0 / 92 86.1 / 93.9 98.3 / 98.8 96.8 / 96.0 97.8 ± 0.03 / 97.7

Texture

Carpet 88.7 / 93.5 97.6 / 99.0 68.6 / 96 95.5 / 95.6 98.6 / 95.5 98.5/ 98.0 97.9 ± 0.07 / 98.7
Grid 64.5 / 89.9 71.0 / 97.1 65.8 / 91 82.3 / 91.8 98.7 / 99.7 96.5 / 94.6 97.1 ± 0.03 / 97.2

Leather 95.4 / 97.8 84.8 / 99.0 66.3 / 98 96.7 / 98.1 97.3 / 98.6 98.8 / 98.3 98.7 ± 0.05 / 99.2
Tile 82.7 / 92.5 80.5 / 94.1 59.3 / 91 85.3 / 82.8 98.0 / 99.2 91.8 / 91.8 92.9 ± 0.14 / 94.1

Wood 83.3 / 92.1 89.1 / 94.1 53.3 / 88 80.5 / 84.8 96.0 / 96.4 93.2 / 93.4 92.0 ± 0.23 / 92.9

Mean 81.8 / 93.9 89.5 / 97.4 63.3 / 92 84.9 / 90.7 87.2 / 97.3 96.8 / 96.6 97.5 ± 0.01 / 97.8

Table 3: Image-level AUROC for anomaly detection under the unified case on CIFAR-10.

Normal Indices US FCDD PANDA MKD UniAD RAS (ours)

{01234} 51.3 55.0 66.6 64.2 84.4 85.8 ± 0.14
{56789} 51.3 50.3 73.2 69.3 80.9 84.1 ± 0.04
{02468} 63.9 59.2 77.1 76.4 93.0 93.4 ± 0.03
{13579} 56.8 58.5 72.9 78.7 90.6 92.4 ± 0.08

Mean 55.9 55.8 72.4 72.1 87.2 88.9 ± 0.03

anomaly localization. Although our RAS is not specifically designed for the conventional separate
setting, it achieves comparable performance to conventional advanced methods, e.g.,DRAEM (Za-
vrtanik et al., 2021). Compared to UniAD, our method can also obtain a 2.0% improvement in
image-level AUROC and a 1.2% increase in terms of the pixel-level AUROC in the seperate setting.

Performance comparison on CIFAR-10. Following You et al. (2022), we select four different
combinations of classes for training and testing. In Table 3, normal indices {0,1,2,3,4} means that
classes with indices 0-4 are used as normal samples in the training set, while classes with indices
5-9 are treated as anomalies during testing. Similar explanations apply for the other combinations.
We can observe that the proposed RAS method can consistently outperform all competing methods,
achieving the best results in each case. The average AUROC across the 4 combinations reaches
88.9%, which presents a 1.7% improvement over UniAD.

Table 4: Efficiency comparison between UniAD and RAS.
model Te - Td Performance Throughput Improvement

UniAD 4 - 4 96.5 / 96.8 115 fps -

RAS 0 - 1 96.5 / 97.2 148 fps 29%
2 - 4 98.4 / 97.5 125 fps 9%

Efficiency comparison. We
also conduct a comparison be-
tween our method and UniAD in
terms of inference efficiency. As
illustrated in Table 4, our RAS
model significantly outperforms
UniAD with higher throughput.
Specifically, when equipped with only a single decoder layer, RAS achieves better performance
than UniAD while exhibiting a remarkable throughput with an improvement of 29%. Moreover,
when the number of encoders and decoders is increased to 2 and 4 respectively, RAS can obtain an
improvement of 9% in terms of the inference throughput, while maintaining notable improvements
of 1.9% and 0.7% in image-level and pixel-level performance. These results strongly demonstrate
the favorable efficiency of our proposed method compared to the baseline model, highlighting the
potential for practical applications where computational resources are constrained.

Summary. Overall, our proposed RAS method exhibits substantial superiority over competing
methods on both benchmark datasets, with a noticeable margin. In addition to its superior perfor-
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Table 5: Component analysis from the macro and micro aspects.
(a) Macro: number of encoder and decoder

Td = 1 Td = 2 Td = 3 Td = 4

Te = 0 96.5 / 97.2 97.7 / 97.3 97.9 / 97.3 98.0 / 97.4
Te = 1 97.1 / 97.3 97.8 / 97.4 98.2 / 97.5 98.3 / 97.4
Te = 2 97.6 / 97.4 98.0 / 97.5 98.2 / 97.5 98.4 / 97.5

(b) Micro: gate and transformer
gate transformer AUROC

✓ 97.5 / 97.3
✓ 96.1 / 97.2

✓ ✓ 98.4 / 97.5

Table 6: Robustness analysis on the feature reconstruction. Values in parentheses is the difference
compared to the result of jittering scale of 0.

jittering scale, i.e.,α 0 10 20 30 40 50

image-level UniAD 96.5 96.4 (-0.1) 96.2 (-0.3) 95.1 (-1.4) 90.9 (-5.6) 83.7 (-12.8)
RAS 98.4 98.4 (-0.0) 98.2 (-0.2) 97.6 (-0.8) 96.6 (-1.8) 91.9 (-6.5)

pixel-level UniAD 96.8 96.8 (-0.0) 96.7 (-0.1) 96.5 (-0.3) 95.5 (-1.3) 92.0 (-4.8)
RAS 97.5 97.5 (-0.0) 97.5 (-0.0) 97.4 (-0.1) 97.2 (-0.3) 96.4 (-1.1)

mance, RAS also shows favorable efficiency with a remarkable inference throughput. These results
well demonstrate the effectiveness and superiority of our proposed RAS method.

4.3 MODEL ANALYSIS

Component analysis. We investigate the impact of components in the proposed RAS framework
from two aspects. (1) Macro: we investigate the performance of RAS with different numbers of
encoder-decoder pairs in Table 5(a). We can observe that increasing the number of encoder layers
or decoder layers can bring a substantial performance improvement. However, as the layer number
increases, the performance gradually saturates. (2) Micro: we analyze the impact of the adaptive
gating strategy and the transformer in the RASFormer block in Table 5(b). We can observe that no
gate or no transformer can severely degrade the model performance, indicating their positive roles.
It can also demonstrate the benefit of capturing the spatial dynamics and the temporal dynamics
during the feature reconstruction.

Figure 3: Loss and performance during training.

Training convergence. We present a visual-
ization of the changes in the loss function and
performance during the entire training process.
As depicted in Fig. 3, we can observe that
our RAS consistently achieves lower loss val-
ues compared to UniAD. This demonstrates the
remarkable feature reconstruction capability of
RAS for unified unsupervised anomaly detec-
tion. Furthermore, our RAS exhibits rapid con-
vergence to high performance, indicating its
ability to effectively utilize limited training data
and significantly improve training efficiency.

Robustness of reconstruction. In this exper-
iment, we evaluate the robustness of the re-
construction capability of the anomaly detec-
tion model when exposed to noisy test data. To
achieve this, we introduce various levels of per-
turbed noise into the input image by adjusting the jittering scale factor, i.e.,α in Eq. 5, and analyze
the resulting changes in performance. The experimental results are presented in Table 6. We observe
that when α = 10, RAS performs nearly on par with the condition where no feature jitter is applied,
while UniAD experiences a slight 0.1% decrease in image-level AUROC. However, as we increase
the scale of noise starting from 20, the performance gap between the two models gradually widens.
Notably, when subjected to strong noise at α = 50, UniAD’s performance degradation exceeds that
of RAS by more than 4.0× in image-level AUROC and approximately 2.0× in pixel-level AUROC.
These results effectively demonstrate the robustness of our proposed method, highlighting its ability
to handle noisy test data and maintain superior performance under challenging conditions.
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Normal Anomaly GT UniAD RAS

(a)

(c)

(e)

Normal Anomaly GT UniAD RAS

(b)

(d)

(f)

Figure 4: Qualitative results for anomaly localization on MVTec-AD. We turn the anomaly
map into the heat map for better visualization. Regions with higher anomaly scores are depicted in
vibrant red colors. Best viewed in colors.

Image UniAD RAS

✓

(a)

(d)

✓

Image UniAD RAS Image UniAD RAS

✓

✓

(b)

(e)

(c)

(f)

✓

✓

Figure 5: Visualization comparison of image reconstruction between UniAD and RAS. We
utilize bounding boxes to visually differentiate between the worse (red) and better (green) regions.

4.4 QUALITATIVE RESULTS

Anomaly map. To better reveal the advantage of our proposed RAS model, we also conduct a
qualitative investigation of the anomaly maps generated by UniAD and our RAS. As shown in Fig.
4, it is evident that our RAS can better localize the anomaly regions. For instance, in examples
(a), (c), and (e), our proposed method generates more accurate anomaly maps compared to UniAD.
Moreover, in examples (b), (d), and (f), compared to UniAD, our RAS successfully emphasize
the salience of anomalous regions by yielding higher anomaly scores. These qualitative findings
effectively demonstrate the benefits of enhancing the contextual awareness capability during feature
reconstruction, highlighting the superiority of our proposed RAS model.

Quality of image reconstruction. The superiority of our method is not only evident in the anomaly
maps but also reflected in the detailed image reconstruction. Fig. 5 presents a side-by-side com-
parison of the reconstructed images generated by RAS and UniAD. It is clearly observed that RAS
provides more accurate reconstruction of image details. For example, in (a), RAS accurately repro-
duces the reflection of the cable wire in the left-bottom area. In (e), RAS correctly replicates the head
and tail of the screw, while UniAD fails to do so. These results demonstrate that the reconstructed
features in RAS are more aligned with the ground truth, resulting in superior image reconstruction
and anomaly detection performance.

5 CONCLUSION

In this paper, we propose a novel Reconstruction as Sequence (RAS) framework for the unified unsu-
pervised anomaly detection. RAS rethinks the feature reconstruction from the sequence perspective.
Therefore, a generic RASFormer block is designed to capture the contextual dependencies among
the sequential reconstruction. Thanks to the RASFormer block, our RAS can enhance the contextual
awareness capability during feature reconstruction, leading to superior performance. Experimental
results on standard benchmark datasets show that the proposed RAS can consistently outperform
competing methods with a notable margin. Additionally, efficiency analysis demonstrate that the
proposed RAS can achieve remarkable inference throughput compared with baseline methods as
well. These results well demonstrate the effectiveness and superiority of the proposed method.
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