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Abstract

In recent years, the state-of-the-art in deep learn-
ing has been dominated by very large models
that have been pre-trained on vast amounts of
data. The paradigm is very simple: investing
more computational resources (optimally) leads
to better performance, and even predictably so;
neural scaling laws have been derived that accu-
rately forecast the performance of a network for a
desired level of compute. This leads to the notion
of a ‘compute-optimal’ model, i.e. a model that
allocates a given level of compute during train-
ing optimally to maximize performance. In this
work, we extend the concept of optimality by al-
lowing for an ‘adaptive’ model, i.e. a model that
can change its shape during training. By doing
so, we can design adaptive models that optimally
traverse between the underlying scaling laws and
outpace their ‘static’ counterparts, leading to a
significant reduction in the required compute to
reach a given target performance. We show that
our approach generalizes across modalities and
different shape parameters.

1. Introduction

Deep learning has gradually undergone a paradigm shift,
where instead of training specialized models for a
given task, a so-called frontier model is prompted/few-
shoted/fine-tuned for different desired downstream tasks.
Frontier models are typically defined by their large-scale
architectures, often rooted in the Transformer architec-
ture (Vaswani et al., 2017), and their exposure to extensive
and diverse data during their pre-training process, yield-
ing remarkable advancements in both natural language un-
derstanding (OpenAl, 2023; Kopf et al., 2023) and com-
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puter vision tasks (Dehghani et al., 2023a; Chen et al.,
2023b). An inherent and pivotal feature of such models
lies in their scalability, whereby their performance can be
reliably predicted as a power law across the number of pa-
rameters and the volume of data or computational resources
utilized (Cortes et al., 1993; Hestness et al., 2017; Rosen-
feld et al., 2019; Kaplan et al., 2020). These principles are
succinctly encapsulated by the neural scaling laws that mo-
tivate the choice of a particular model and dataset size given
a fixed budget of training compute (Hoffmann et al., 2022).
The ability to accurately predict performance offers an un-
deniable reassurance in the often uncertain world of deep
learning. It nevertheless, introduces an intimidating real-
ization;

Given a training scheme, a fixed further improvement in
performance requires exponentially more compute or
parameters.

Finding solutions to address this issue becomes increas-
ingly paramount, as staying competitive in the realm of
deep learning increasingly depends on the availability of
substantial computational resources. Delving deeper into
the preceding statement, we highlight a pivotal assump-
tion: the shape of the model, and therefore the number
of FLOPs for a forward pass, remains fixed throughout the
training process. By ‘shape’ we refer to any characteristic
of a model that can be smoothly varied throughout train-
ing without leading to strong deterioration in performance.
Such a static approach (i.e. where every model shape re-
mains fixed) may however not always be optimal. For ex-
ample, it has already been observed that the optimal model
size grows smoothly with the loss target and the compute
budget (Kaplan et al., 2020).

This paper challenges the assumption of a static model
outlined above and explores adaptable training methodolo-
gies designed to surpass conventional scaling laws. In
other words, our aim is to achieve equivalent performance
for a specified model with fewer computational resources
(FLOPs) than initially projected. To that end, we adapt the
shape of the model throughout training, allowing the opti-
mal traversal between different scaling laws. This enables
us to leverage the optimality of all shape configurations in
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different regions of compute, leading to a more efficient
scaling of the model.

We train Vision Transformers (Dosovitskiy et al., 2020)
and Language Models (Radford et al., 2019) and showcase
how an adaptive training scheme can lead to substantial
training FLOPs reduction, in some cases more than 50%.
Our contributions can be summarized as follows:

* We introduce a simple and effective strategy to choose
when to adapt a model and traverse scaling laws, opt-
ing for the one that leads to the faster descent, i.e.
maximum performance gain for the same amount of
compute.

* We showcase the efficiency of our approach by opti-
mally scheduling the patch size for ViTs as well as the
context size for language models, leading to signifi-
cant reductions in the required amount of compute to
reach optimal performance.

* We further confirm the validity of our approach by
adapting other shape parameters such as width, batch
size, and overall training objective of a Vision Trans-
former.

2. Related Work

Neural scaling laws (Cortes et al., 1993), describe how a
neural network’s performance varies as a power law E =
a(P + d)® + c where P can be either the number of pa-
rameters in the model, the number of training samples or
simply the number of FLOPs used for training (Rosenfeld
etal., 2019). Recently, scaling laws have been successfully
demonstrated in a range of different applications, including
language (Kaplan et al., 2020; Hoffmann et al., 2022) and
vision (Zhai et al., 2022; Bachmann et al., 2023), as well as
numerous learning settings, including supervised training,
generative modeling (Henighan et al., 2020) and transfer
learning (Hernandez et al., 2021). The predictive power of
scaling laws has also been leveraged to determine compute-
optimal models before training; the size of the Chinchilla
model and the number of training tokens were chosen based
on the underlying scaling law and indeed, Chinchilla out-
performed its larger but sub-optimally trained counterpart
Gopher (Hoffmann et al., 2022). The training of state-of-
the-art models has also been guided by scaling laws built
from training runs of smaller models (OpenAl, 2023; Team
et al., 2023).

In this paper, we focus on the Transformer architecture
and evaluate our methodology on both vision and natu-
ral language tasks. While the Transformer has been the
default model in language for years, ViTs have more re-
cently established themselves as the predominant vision ar-
chitecture for large-scale pretraining tasks (Dehghani et al.,
2023a). Different from convolutions, a ViT initially par-
titions the input image into patches and processes these

through self-attention and MLP blocks. This lack of in-
ductive bias (Smith et al., 2023) can be partially overcome
through the introduction of ‘soft’ inductive bias, which
proves to be beneficial, especially during the early phase
of their training (d’Ascoli et al., 2021). Similarly to their
counterparts in natural language processing, ViTs also ex-
hibit predictable scaling behavior (Zhai et al., 2022; De-
hghani et al., 2023a; Alabdulmohsin et al., 2023).

In this work, we delve into models that feature adap-
tive ‘shape’ parameters, specifically focusing on the patch
size for image processing and model width. The con-
cept of training with different patch sizes, which Beyer
et al. (2023) have explored, leads to a model robust to
various patch sizes. Another common approach involves
pre-training a ViT model at a lower resolution, followed
by fine-tuning at a higher resolution while maintaining
the same patch size (Dosovitskiy et al., 2020; Zhai et al.,
2022; Alabdulmohsin et al., 2023). Analogously, large lan-
guage models (LLMs) can be pre-trained with a shorter and
fixed context length and subsequently fine-tuned on longer
ones (Chen et al., 2023c;a; Tworkowski et al., 2023).

Another way to change the model is by adding new pa-
rameters. Expanding a model under composable function-
preserving operations has been a case of study for a long
time in machine learning (Ash, 1989; Mitchell et al., 2023).
The principal objective in this case is to accelerate train-
ing (Kaddour et al., 2023; Geiping & Goldstein, 2023).
Such expansion operations have also been proposed for the
Transformer architecture (Gesmundo & Maile, 2023; Chen
et al.,, 2022) and have exhibited notable training speed-
ups (Gong et al., 2019; Yao et al., 2023; Wang et al., 2023;
Lee et al., 2022; Shen et al., 2022; Li et al., 2022). Apart
from determining how and where in the model this expan-
sion should occur, a primary challenge is to resolve when
to add new neurons. We advocate that an effective strategy
for adjustments to the model shape should be informed by
considerations of scaling laws and the performance gains
achieved per additional unit of computational resources.

Orthogonal to our approach, various techniques have been
proposed to accelerate both inference and training, par-
ticularly in the context of Transformer models. These
methods encompass a spectrum of strategies, including
weight quantization (Dettmers et al., 2022; Frantar et al.,
2022) and pruning weights and context (Frantar & Alistarh,
2023; Anagnostidis et al., 2023) among others. Specifi-
cally for ViTs, Bolya et al. (2022) propose to merge to-
kens at different layers in the architecture and Dehghani
et al. (2023b) propose to pack sequences of tokens together
to optimize hardware utilization. Additionally, d’Ascoli
et al. (2021) proposes to initialize ViTs differently, mak-
ing them look more like convolutions. Other methods have
also been proposed to beat scaling laws, including data
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(a) Patch sizes affect how ViTs process input images.
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Figure 1. Patch sizes define (left) how images are processed, while (right) impacting the compute of a forward pass.

pruning (Sorscher et al., 2022) or shaping models (depth vs
width) more optimally (Alabdulmohsin et al., 2023). These
approaches are supplementary to our methodology and can
be effectively employed in conjunction to further enhance
the efficiency of the training process.

3. ViTs and Optimal Patch Sizes

We first focus the discussion on Vision Transformers —
the de-facto dominant architecture for vision — and the
choice of patch size to introduce the notion of an adap-
tive model. In Sec. 5 we will showcase how our strategy
can also be leveraged to train language models with adap-
tive context lengths. ViTs process images x € RIxwxe
where h and w are the height and width of the image in
pixels and c is the number of channels. Images are ‘patchi-
fied’ into a sequence of n tokens based on a specified patch
size p € N, where n = |w/p| x |h/p], leading to a rep-
resentation Xpached € R™*P°¢. We illustrate the effect of
different patch sizes in Fig. 1a. Each token is linearly em-
bedded with learnable parameters W,,,;, € RP’exd where
d € N is the embedding dimension or width of the ViT.
These embeddings are further enhanced with learnable po-
sitional encodings W,,,s € R™ ¢ which enable a ViT to
learn the spatial structure of the tokens. The resulting em-
beddings are then processed by L transformer blocks, con-
sisting of a self-attention layer followed by an MLP that
is shared across tokens. This specific structure of the ar-
chitecture allows a ViT to generate predictions for token
sequences of variable lengths, as is the case when dealing
with images of different patch sizes.

Fixed patch size training. Different patch sizes come
at different computational costs; the number of tokens
n scales with O(1/p?) and thus processing inputs scales
with O(1/p*) due to quadratic dependence on the input
sequence length of the self-attention operation'. Conse-
quently, a reduction in the patch size results in a substantial

increase in the computational requirements for a forward

"The exact complexity is O(1/p* x d + 1/p* x d*) for patch
sizes d > n where, unless packing is performed, O(1/p? x d*)
is the dominant term.

pass. We present our empirical analysis in Fig. 1b. Us-
ing smaller patch sizes is often desirable as it yields su-
perior model performance when paired with enough com-
pute. To explore this trade-off, we pre-train Vision Trans-
formers of different sizes (see Fig. 2(b) for a summary)
on the public ImageNet-21k dataset (Ridnik et al., 2021),
employing various patch sizes that remain fixed through-
out training. To enhance computational efficiency and pre-
vent bottlenecks caused by data transfer, we resize im-
ages to dimensions where h = w = 120, utilizing
the FFCV data loader (Leclerc et al., 2023) 2. This ap-
proach enables the application of a variety of patch sizes
p € {120,60,30,24,20,15,12,10,8,6,4,3,2,1}, each
of which perfectly divides the input resolution. During
the training phase, we perform data augmentation, specif-
ically random cropping, and horizontal flipping, and mea-
sure the 10-shot error (denoted as E) on the ImageNet-1k
dataset (Deng et al., 2009). This is because upstream per-
formance metrics may not reliably indicate model effec-
tiveness (Tay et al., 2022; Zhai et al., 2022). While mul-
tiple epochs over the same dataset have been identified as
less effective in language modeling tasks (Xue et al., 2023;
Muennighoff et al., 2023), the use of augmentations in this
work supports the feasibility of multi-epoch training with-
out significant degradation in performance. This observa-
tion holds for the data and computational scales (up to 10
EFLOPs) that we consider (Zhai et al., 2022).

When calculating compute C, we exclude the computa-
tions associated with the ‘head’ of the network that maps
the embedding dimension to the number of classes (Kaplan
et al., 2020). Additionally, we adopt the approximation of
previous work that the FLOPs required for the backward
pass are approximately equivalent to twice the FLOPs in-

2We expect a small decrease in performance due to this de-
creased resolution. Our most compute-intensive models (ViT
Base variant) achieve top-1 accuracy on ImageNet-1k 79.2 %
when fine-tuned and 77.2 % when linear probed on top of the
extracted embeddings. Steiner et al. (2021) report 80.42% fine-
tuning performance for a ViT-B/16 model on 224 x 224 images
trained for 30 epochs on ImageNet-21k, which already surpasses
our maximum compute budget.
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(a) We optimize batch size, learning rate, and
weight decay for each model configuration by run-
ning a greed search, for a small compute budget.
More details are presented in the Appendix.

(b) Details on the ViT models we are training. We use the standard s, S, 7i, B
model sizes, as well as other intermediate model sizes. To simplify and unify
notation, we adopt the naming convention Vd-L/X for a Vision Transformer
of depth L and embedding dimension d. Here X refers to the patch size.

Figure 2. (Left) Hyperparameters are optimized across model classes. (Right) The ViT models used for this study.

curred during the forward pass. Here, we are optimizing
for FLOPs, and do not account for different types of hard-
ware accelerators. For highly parallel neural architectures,
FLOPs in general exhibit a strong correlation with acceler-
ator time (see e.g. Fig. 4 (right) by Alabdulmohsin et al.
(2023) for ViTs specifically and our results in App. F).
In our study, we focus exclusively on Transformer mod-
els which are very hardware-efficient (Dosovitskiy et al.,
2020). More details regarding the experimental setup are
provided in App. B.

For a fixed model shape, we fit power laws for every patch
size in terms of compute (which is proportional to the num-
ber of examples seen in this case). The power law takes the
form?

Ep = fp(C) =ap(C +dp)~"" + cp. ()

where the exponent bp dictates the decay speed and
cp corresponds to the maximal reachable performance
given infinite compute.  After fitting the parameters
ap,dp,bp,cp € R, we can predict downstream perfor-
mance Ep (ImageNet-1k 10-shot top-1 unless otherwise
stated) as a function of compute C' measured in FLOPs.
We display the results for the V640-12 model in Fig. 4 and
Fig. 5. We provide analogous plots for all model sizes in
App. C. From those scaling trends, it is evident that differ-
ent patch sizes are optimal for different amounts of com-
pute. In other words, given the same compute, different
patch sizes yield different improvements at specific levels
of performance. Given that insight, a very natural question
emerges:

Can we traverse between the scaling laws more efficiently
by allowing for adaptive patch sizes?

3 As aforementioned, our models are bound by data rather than
the number of parameters.

4. Adaptive Patch Sizes and Traversing
Scaling Laws

Adaptive patch size. To allow for a smooth traversal of
different laws, we first need a mechanism that enables map-
ping a ViT fp with patch size P to a ViT fg with patch size
Q, while ideally not degrading performance, i.e. fp ~ fg.
FlexiViT introduced by Beyer et al. (2023) achieves this.
It redefines both the patch embedding W,,,;, and the posi-
tional encodings W, for a fixed base patch size. In every
forward pass, depending on the patch size, the base embed-
ding parameters W,,; are resized based on the pseudo in-
verse of the resizing matrix. Similarly, the base positional
encodings W,,,, are bi-linearly interpolated, enabling the
model to change the patch size without a strong perfor-
mance degradation. For further information, we direct
readers to the work by Beyer et al. (2023).

Traversing scaling laws. Let the set of scaling laws be
{fp} with P denoting the patch size. Each law maps
a given level of compute C' to the predicted downstream
performance Ep = fp(C). Consider the inverted laws
[ (E) which predict for a given level of desired perfor-
mance F, how much compute C' needs to be invested. For
a given error level E*, we aim to reach a lower error E* — e
for e > 0, while spending the minimal amount of compute
C to achieve this, i.e. we want the least change in f, ! To
solve this problem, we simply compute the partial deriva-

tives o1\ (B)
*\ L P
ar(E7) = OE ‘E:E*

Maximising gp over the patch size P, partitions the error
space disjointly (e.g. if we assume E is the classification
error taking values in [0, 1]),

0,1] == J Ep,

VP, )
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Figure 3. (Left) Different scaling law curves (function f in Eq. 1) corresponding to different training configurations. Black arrows
indicate points of transition between scaling laws. (Middle) We illustrate the inverse of the above function f~! for the same scaling law
curves. (Right) We visualize the gradient of the inverse df ' (E)/OF for the same scaling laws. Taking the curve that maximizes the
aforementioned gradient, leads to a partition of the space. From this partition, we can deduce a strategy determining which scaling law

to ‘follow’ for each performance level.

where Ep C [0, 1] denotes the set where the patch size
P achieves the most efficient improvement. This partition
naturally gives rise to a scheduler for the patch size, which
empirically turns out to be monotonic (i.e. starting from
the largest patch size for large classification error values
and ending with the smallest for small classification errors),
which is expected based on the observations in Fig. 4. We
visualize the strategy in Fig. 3. Required assumptions for
our scheduler to work — which might hold or not in practice
— are that (1) we can traverse between models of different
shapes without performance degradation and (2) the power
laws only depend on the current performance, and not the
history of training so far.
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Figure 4. Downstream performance as a function of compute for
the V640-12 model and different patch sizes. We use a log-log
scale.

Scheduled training. We now test the devised strategy
in a practical setting by pre-training variously-sized ViTs
on ImageNet-21k using our patch size scheduler. We use
the same training setup as for the fixed patch size exper-
iments and let the scheduler consider patch sizes P €
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Figure 5. Downstream performance of the V640-12 trained with
our patch size scheduler, and its potential benefits.

{60, 40, 30,24, 20,15,12,10,8}. We display ImageNet-
1k 10-shot error rate as a function of compute C' for the
model V640-12 in Fig. 5 and provide plots for all other
models in the App. C. The crosses denote the points where
the scheduler switches patch size. We observe a signifi-
cant improvement in terms of compute efficiency, allowing
for up to —60% FLOPs to achieve the same performance.
While switching patch sizes may initially result in a slight
decrease, attributed to changes in the entropy within the
self-attention layers, this minor setback is rapidly offset as
the image is parsed in a more fine-grained manner. Such
degradation is thus not even visible in Fig. 5*. To facilitate
comparison across all model sizes at once, we further visu-
alize the compute-optimal barrier for both fixed and sched-
uled training in Fig. 6. By compute-optimal, we refer to a
model that optimally trades off model size, patch size, and

“Differences in the effective receptive field of each patch are
typically mitigated by cropping as a component of the training
procedure.
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number of samples seen for a given level of compute C,
i.e. achieving the lowest error . We observe that the op-
timally scheduled models significantly outperform the op-
timal static models, halving the required compute to opti-
mally train a ViT-Base model (for our compute budget).

ImageNet 10-shot error rate [%]

e
Our ViT \\ w'\r Base
-62% FLOPs "% o

30

Patch size: emm Scheduler emm 60 e 40 == 30 24 20

15 e 12 e=e 10 e== §

1015 1016 1017 1018 1019
FLOPs

Figure 6. Compute-optimal static and scheduled models for vari-
ous patch and model sizes. We plot using a log-log scale.

Is the schedule optimal? While our scheduler improves
over the individual models, it is not clear yet that it does
so in an optimal sense, i.e. can other schedules achieve
similar benefits? Beyer et al. (2023) also employ a patch
size scheduler but use a uniformly random sampling of the
patch size at every step. We compare against their model
FlexiViT in Fig. 7 and observe that our scheduler indeed
outperforms FlexiViTas expected; FlexiViT targets a lower
inference cost by making the model robust to many patch
sizes (hence the random scheduler). Compute-optimality is
not their objective. Additionally, we conduct comparisons
with straightforward patch size scheduling strategies—both
linear and logarithmic. Specifically, for a predetermined to-
tal computational budget, we distribute the transition points
evenly or according to a logarithmic scale across the train-
ing process. This way, we assess whether simply any
monotonic scheduler leads to the same improvements, or
whether the position of the transition points matter. We dis-
play the results in Fig. 7. We again observe that our sched-
uler remains more efficient, carefully determining the tran-
sition points based on the scaling laws, thus indeed leading
to a significant improvement.

Smaller patch sizes. Undeniably, the choice of patch
size affects the inductive bias of ViTs — in general, the
mechanism of ‘tokenization’ in the input affects the induc-
tive bias of any Transformer model — by controlling the
amount of compute and the level of details we are inter-
ested in extracting from an image. The patch size also con-
trols the overall sequence length n processed by the Trans-

60

ImageNet 10-shot error rate [%]
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e Patch size scheduler e FlexiViT emm» Other Schedulers
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Figure 7. We compare performance as a function of training com-
pute against the scheduler of FlexiViT and other schedulers. Ir-
respective of the current patch size in the scheduler, we use the
smallest patch size (i.e. 8), when evaluating FlexiViT.

former model, and therefore the degree of weight sharing
between the parameters. Our previous laws clearly show
that smaller patch sizes lead to better performance in high-
compute areas. But does this trend also extend to even
smaller patch sizes? We explore this question empirically
by using the same experimental setup and pre-training on
even smaller patch sizes P € {6,4} in addition to the pre-
vious results. We display the results in Fig. 8.

We observe that while some absolute gains in performance
can still be achieved with patch size 6, the additional re-
quired amount of compute is extremely high. For the even
smaller patch size 4, one actually starts to lose in perfor-
mance, as can be seen from plotting the intercepts cp of
the corresponding scaling laws. The behavior of perfor-
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Figure 8. We train the V256-6 with smaller patch sizes. This does
not lead to a monotonically better performance.

mance with respect to patch size is thus only monotonic up
to a certain point, and performance may actually worsen
beyond that. This is in contrast to other scaling parame-
ters such as the number of samples or the model size that
usually offer a monotonic behavior in performance when



Navigating Scaling Laws

scaled appropriately.
5. Adaptive Context Size of an LLM

While the previous chapter focused on Vision Transform-
ers, the aforementioned intuitions and results generalize
also to other domains. In this section we present a com-
pelling case for the training of a Transformer-based lan-
guage model. A critical consideration in training such a
model is determining the optimal context size, as most
Transformer models do not inherently support context ex-
trapolation out of the box (Kazemnejad et al., 2023). The
context size determines the amount of information the
model can use when making predictions, with an expanded
context being essential for enhanced performance in cer-
tain downstream tasks (Dao et al., 2022; Tay et al., 2020).
A larger context size, however, comes with increased com-
putational requirements, similar to the patch size in ViTs.

To mitigate the significant training overhead associated
with long contexts — where the quadratic complexity of
self-attention becomes a bottleneck — a common strategy
involves initially training with shorter contexts. Subse-
quently, the model is fine-tuned on longer contexts, em-
ploying a modest computational budget to balance per-
formance and efficiency (Chen et al., 2023c). Here, we
demonstrate how different context sizes lead to differ-
ent learning improvements at different scales of compute,
and navigating across the optimal scaling law can lead to
substantial performance gains given the same amount of
compute. We train Transformer models (Touvron et al.,
2023a;b) on English Wikpedia and Books (more details in
App. B.S).

The findings illustrated in Fig. 9 align with our hypothesis:
smaller context sizes prove to be more optimal at the be-
ginning of the training process, while larger contexts yield
greater efficiency as training progresses. Employing a sim-
ilar approach to that used with patch sizes, we introduce a
scheduler that is adjusted in accordance with scaling laws.
This strategy, akin to our adjustments in patch size, results
in substantial computational savings, enabling a reduction
in FLOPs of up to 40%.

6. Other Shape Parameters

To further verify the efficiency of our approach, we study
different ‘shape’ parameters when training a Vision Trans-
former.

6.1. Adapting Model Width

Similarly to the patch size, we need a mechanism that maps
a transformer of smaller width d; to a transformer of larger
width ds. This is a very well-studied problem, especially in
the case of natural language processing, and many schemes
have been proposed (Gesmundo & Maile, 2023; Chen et al.,
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Figure 9. We compare model performance throughout training
with dynamic (magenta) and fixed context sizes.

2022; Gong et al., 2019; Yao et al., 2023; Wang et al., 2023;
Leeetal., 2022; Shen et al., 2022; Li et al., 2022). Here, we
focus on the simplest approach, where we expand the ini-
tial model d; by adding randomly initialized weights (see
App. C for details). Although our expansion is not function
preserving — i.e. we can expect a small drop in perfor-
mance immediately after adapting the model (see Fig. 11)
— we found that the model quickly recovers, and hence
conclude that while not ideal, this simple expansion mech-
anism suffices for our setting®.

Scaling width. The role of the model width and its as-
sociated scaling properties have been long analysed in the
literature (Zhai et al., 2022; Alabdulmohsin et al., 2023).
We repeat the scaling study for our own experimental setup
and pre-train Vision Transformers of various widths and
training durations on ImageNet-21k, using the same exper-
imental setup as detailed in Sec. 3. In Fig. 10 we report 10-
shot ImageNet-1k error as a function of compute for a fixed
patch size P = 20 (more details and results for other patch
sizes are provided in the App. C). We again observe that
different model widths are optimal for different levels of
compute, similarly offering the potential for computational
speed-ups by adapting the shape throughout training.

Scheduling width. It is worth noting that strategies for
expanding models during training have been previously ex-
plored. However, the critical question of when this expan-
sion should occur has largely remained unanswered. Our
approach then offers a straightforward and principled solu-
tion. We consider three width settings d € {192, 384, 768}
and devise our scheduler based on the scaling law as out-
lined in Sec. 4. We display the obtained optimal sched-

In practice we found that proposed function preserving
schemes that depend on zero-initializing weights in the network,
e.g. by Gesmundo & Maile (2023), perform suboptimally.
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Figure 10. Downstream performance as a function
of compute for ViT of different size, trained with a
patch size of 20. We use a log-log scale.

ule and the actual resulting performance in Fig. 11. As
remarked previously, changing the model width does lead
to a momentary deterioration of the performance, but it
smoothly recovers back to the predicted performance. We
again observe that the scheduled model remains optimal
throughout training when compared to the static models.
Note that adapting multiple shape parameters — namely
both patch size and model size — is possible and leads to
further improvements, as we showcase in App. D.

6.2. Adapting the Training Objective

In previous experiments, we have fixed training hyperpa-
rameters and focused on adapting the model’s shape. Train-
ing hyperparameters can nonetheless also be altered opti-
mally. Previous work has already established that bigger
batch sizes are beneficial during later stages in training (Ka-
plan et al., 2020; Hoffmann et al., 2022; Zhai et al., 2023).
Different training objectives are also known to contribute
differently to downstream performance at distinct stages in
training (Zhai et al., 2023; Singh et al., 2023). Previous
work has relied on heuristics and brute force exploration
to determine when these should change. Here, we demon-
strate how scaling laws can help decide when to change
these parameters and descend based on the optimal one.

Batch size. We first focus on the batch size used during
training. We train two Vision Transformers, one at a larger
batch size and the other at a smaller batch size. We find
that in terms of number of FLOPs, the smaller batch size
initially dominates but again is surpassed at later stages
in training by the large batch size run (Fig. 12 left). Our
strategy allows us to maximally take advantage of this dif-
ference by optimally transitioning between the two batch
sizes, leading to a more optimal model.

Distillation. We additionally train ViT models by dis-
tilling from a powerful teacher, a bigger pre-trained ViT
(Fig. 12 right). Distilled labels naturally come at an addi-

V192-12 -> V384-12

=== Model scheduler ~ —> Transition points

=== Predicted Model scheduler ~—— Actual Model scheduler

30
107 10 10 10v7 108
FLOPs

Figure 11. The theoretically predicted scheduled performance (left) and the em-
pirical obtained (right) performance. While transitions are less smooth, the model
based on the scheduler quickly recovers back to the predicted law.

ImageNet 10-shot error rate [%]

ImageNet 10-shot err

Figure 12. (Left) ViTs with small and big batch sizes and using
(right) different upstream objectives. Different optimality regimes
are observed for the different settings. Changing between them
leads to optimal performance gain for a fixed compute budget.

tional computational cost, due to queries to the teacher, and
lead to slower convergence in terms of FLOPs initially in
training (FLOPs here include the teacher compute). Distil-
lation objectives, however, were found to lead to increases
in performance (Hinton et al., 2015; Furlanello et al., 2018;
Touvron et al., 202x21). Thus, in later stages of training,
such an objective will dominate the standard supervised
loss. We again leverage this discrepancy and optimally
switch from the standard to the distilled loss, allowing us
to reach the same level of performance with fewer FLOPs.

7. Conclusion

We have explored strategies to train models with variable
shape parameters throughout the training process. By effi-
ciently traversing scaling laws, we have illustrated the op-
timal scheduling of shape parameters — including patch
size, context length, model width, and other hyperparam-
eters — yielding notable computational efficiency for a
given performance level. We further observe that mod-
els with dynamically scheduled shape parameters consis-
tently outperform their static counterparts in terms of com-
putational efficiency during training. This underscores the
effectiveness of our method. Our scheduling approach is
highly adaptable and applies to any shape parameter that
allows for a smooth transition between models of vary-
ing configurations. This opens up many opportunities for



Navigating Scaling Laws

future research, applying our scheduling method to other
shape parameters such as model depth, sparsity, or a combi-
nation of multiple parameters. Given the increased compu-
tational demand for deep learning, we believe our findings
make a crucial contribution to the field.

Impact Statement

Our method provides insights into the growing challenges
associated with the exponential scaling of compute re-
sources for the training of frontier models. By making
the training of large models more accessible, our approach
opens doors to a broader audience of researchers and prac-
titioners, fostering innovation and breakthroughs in artifi-
cial intelligence. Importantly, this alternative strategy con-
tributes to a reduction in environmental impact, showcas-
ing a commitment to sustainable and responsible advance-
ments in the field. In App. E we provide concrete insights
on the expected reduction in C'O5 emissions for our exper-
imental setup.
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A. Limitations

We detail the limitations of our work to the best of our
knowledge.

* We used greedy search with a small compute budget
to get optimal hyper-parameters per model class. In
practice, optimal parameters can change if larger lev-
els of compute are available, as also hinted in Sec. 6.2.

¢ In order to determine the optimal scheduler for a given
shape parameter, knowledge of its scaling behavior is
needed, which comes at a high computational cost. On
the other hand, the scaling behavior of many shape
parameters has already been established (e.g. width,
depth, MLP-dimension (Alabdulmohsin et al., 2023))
and can readily be used in our scheduler.

* Accurately predicting compute-optimal models, re-
quires one to accurately schedule the learning rate
throughout training. As we are interested in what
happens during training for low-budgets of computes
we do not schedule the learning rate nor embark on a
cooldown phase (Zhai et al., 2022), as this would con-
stitute a large fraction of the overall training time. We
expect learning rate schedulers may shift our conclu-
sion but not the outcome and takeaway message.

* While we observe that the scheduled models are
compute-optimal throughout all of training, we ob-
serve the largest gains earlier on throughout train-
ing. Indeed, we do not expect our scheduled models
to reach better performance for an infinite amount of
compute.

B. Experimental Setup

We provide more details on the basis on which the experi-
ments were conducted.

B.1. Training Details

In Tab. 1 we showcase hyper-parameters used when train-
ing on ImageNet-21k. We optimized each of the parameters
for the different model classes by training for different con-
figurations for a fixed, small amount of compute, namely
4 x 10'7 FLOPs. Some examples of such hyper-parameter
search are illustrated in Fig 13. All experiments were con-
ducted using bfloat16.

B.2. Finetuning Details

In Tab. 2 we showcase hyper-parameters used when fine-
tuning on ImageNet-1k. For the few-shot results, we use the
linear_model.Ridge function from scikit-learn with a regu-
larization parameter of 1le 2.

13

PARAMETER VALUE
OPTIMIZER ADAMW
BETAS (0.9,0.999)
LABEL SMOOTHING 0.2
WEIGHT-DECAY HEAD 0.01
WEIGHT-DECAY BODY 0.01
WARM-UP 1000 STEPS
CLIP GRADIENTS’ NORM 1.0
UNDERLYING PATCH-SIZE SHAPE 12
UNDERLYING POSEMB SHAPE 8

Table 1. Hyper-parameters during training. ‘Underlying patch-
size’ and ‘Underlying posemb shape’ refer to the flexible modules
when training under a flexible patch size scheduler.

optimal
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Figure 13. Hyper-parameter search for a fixed (and small) budget
of compute.

PARAMETER VALUE
OPTIMIZER SGD
LEARNING RATE 0.03
MOMENTUM 0.9
WEIGHT DECAY 0.0
NUMBER OF STEPS 20000
CLIP GRADIENTS’ NORM 1.0
SCHEDULER COSINE

Table 2. Hyper-parameters during fine-tuning on ImageNet-1k.

B.3. Dataset Description

For the ViT experiments, we follow the protocol of Rid-
nik et al. (2021) to preprocess ImageNet-21k. It consists
of roughly 12 million images and 11 thousand different
classes. This is still considerably lower than the > 29, 593
classes in the JFT-3B dataset. We experimented using dif-
ferent weight decay values for the body and the head, as
proposed in Zhai et al. (2022) but found no significant dif-
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ference. We attribute this to the lower number of classes in
the dataset we are training in and our value of label smooth-
ing.

B.4. Scaling Laws

We fit functions of the form
E=a(C+d)~"+ec 3)

Similar to previous work, we resample points to be almost
equidistant in the log-domain, in terms of FLOPs. We mini-
mize different initializations using the minimize function in
scipy (Virtanen et al., 2020), and choose the one that leads
to the smallest error. The function to minimize is based on
the Huber loss with § = 1e™3.

B.5. Sec. 5 Details

In Sec. 5, we train Llama (Touvron et al., 2023a;b) models,
following the Transformer++ training recipe, as displayed
in Tab. 3. Due to compute constraints, we train models
with embedding dimension 768 and depth 12. We train on
a subset of the English Wikipedia 20220301.en and English
bookcorpus datasets. As done for the ViT models, we select
for each configuration the batch size that leads to the most
efficient — in terms of FLOPs — convergence.

We evaluate on a held-out validation set. Although the
validation samples are the same across different runs, we
truncate them to match the context size of the respectively
trained model. Models with longer contexts are thus ex-
pected to achieve lower test loss due to the enhanced con-
text size (conditioned on longer contexts, subsequent to-
kens are more predictable). As during inference we are in-
terested in the validation cross entropy loss over the longer
contexts, we do not adjust for this discrepancy.

PARAMETER VALUE
OPTIMIZER ADAMW
BETAS (0.9,0.95)
CLIP GRADIENT’S NORM 1.0
WEIGHT DECAY 0.1
DroOPOUT 0.0
WARMUP 1000
NORM RMSNorm
Bias No

PEAK LEARNING RATE GPT-3 VALUES

Table 3. Hyper-parameters during training of the language mod-
els.

Extrapolating to longer contexts is a very active area of re-
search with exciting work published recently (Qin et al.,
2023; Ruoss et al., 2023; Press et al., 2021; Peng et al.,
2023). In our case, we are training using RoPE positional

encodings (Su et al., 2024), which are known to extrapolate
easier compared to other ones, such as absolute positional
encodings.

The exact number for the most compute-intensive point in
Fig. 91s 17825792000 tokens. The exact model size includ-
ing the embedding parameters is 137841408 parameters.
That leads to an approximate token per parameter value of
129.3, past the optimal ”Chinchilla” point, leading thus to
model that are more inference efficient.

B.6. Sec. 6.2 Details

In Sec. 6.2, we train ViT models using the same hyper-
parameters found as described above. For the batch-size
experiments, we train V384-20/12 models with batch size
in {256,2048} and navigate across the scaling laws cor-
responding to the same values. For the different training
objective experiments, we train a V384-20//2 model us-
ing either supervised training or distillation from a power-
ful teacher. We use as a teacher a pre-trained V640-10/12
model and train using only distillation loss as in Hinton
et al. (2015), with a temperature of 7' = 2. When calculat-
ing the FLOPs of the single step, we include the FLOPs of
the teacher only for the forward pass.

C. Additional Experiments

Patch size scheduler. We present additional experiments
on patch size schedulers in Fig. 14. For FlexiViT — sim-
ilar to the original paper — we sample uniformly at every
step a patch size from the set {8,10,12,15,20,24}. We
did not use smaller patch sizes due to computational con-
straints. Note that our patch size scheduler leads to sig-
nificantly faster convergence across the model classes we
are analyzing. We also present in Fig. 15, the fitted scaling
curves and the points where changing the patch size leads
to the steepest descent for different scaling laws.

Model width scheduler. Supplementary to the results in
Sec. 6.1, we provide additional examples of width exam-
ples in Fig. 16. Note that we do not touch on the (1) where
to add the new weights and (2) how to initialize these new
weights. Our approach simly defines a strategy on the when
to expand the model and can be used in conjunction with
any related works that provide answers to the previous (1)
and (2) questions.

Regarding (1), we focus on models with constant depth (re-
member we are using the established Ti, S, and B Vision
Transformer sizes). Therefore, we do not add new layers
but merely expand the weight matrices to the new embed-
ding dimension. Our method is agnostic to where these
weights are added, just on the final form of the scaling law.
Note that there exist more optimal ways to expand the dif-



Navigating Scaling Laws

@
o

~
o

=3
Sy

ImageNet 10-shot error rate [%]

«
)

40

o
©

I
)

ImageNet 10-shot error rate [%]

IS
)

30

® ©
S o

~
=)

o
=]

o
=)

IS
S

ImageNet 10-shot error rate [%]

w
o

N

@ Patch size scheduler X Patch size decreased e FlexiViT

Patch size: emm 60 emm 40 = 30 24 20 15 eme 12 @ 10 == 8

0.0

0.5 1.0 1.5 2.0
FLOPs lels

(a) Model V256-6.

\\\i\

\k

@ Patch size scheduler X Patch size decreased — emmm FlexiViT

Patch size; emm 60 e 40 === 30 24 20 15 eme 12 eme 0 @== g

0.0 0.

5 1.0 15 2.0 25
FLOPs lel8

(c) Model V256-12.

@ Patch size scheduler X Patch size decreased e FlexiViT

Patch size: emm 60 emm 40 = 30 24 20 15 eme 12 @ 10 == 8

0 1

2 3 4 5
FLOPs lels

(e) Model V512-12.

@
©

~
©

o
©

o
©

«
)

ImageNet 10-shot error rate [%]

IS
S

30

® ©
S o

~
=)

o
<)

o
=)

IS
S

ImageNet 10-shot error rate [%]

w
5]

20

® ©
S o

~
=)

o
=]

«
o

IS
)

ImageNet 10-shot error rate [%]

w
=3

20

Patch size: emm 60 emm 40 e== 30 24 20 15 e 12 e=e 10 e==8

N

@ Patch size scheduler X Patch size decreased e FlexiViT

0.00 0.25

0.50 0.75 1.00 1.25

FLOPs

(b) Model V192-12.

1.50

@ Patch size scheduler X Patch size decreased — emmm FlexiViT

Patch size; emm 60 em 40 e 30 24 20 15 e 12 e=s 10 @ 8

0.0

0.5 1.0 15 2.0 2.5
FLOPs
(d) Model V384-12.
R
S
\\
@mmm Patch size scheduler X Patch size decreased e FlexiViT

3.0

Patch size: emm 60 emm 40 == 30 24 20 15 eme 12 @ 10 =8

0.0

0.2

0.4 0.6
FLOPs

(f) Model V768-12.

Figure 14. Patch size schedulers for all the remaining model classes analysed.
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Figure 16. Width scheduler for models trained with different patch sizes. We expand the model width twice, as done in Sec. 6.1. The
transition points of the expansion are found through our maximum descent rule.

ferent components of a ViT model (Alabdulmohsin et al., we expand the weights matrices by initializing the new en-
2023). tries in the weight matrices randomly based on the norm of
the weights of the already learned weights. In more detail,

Regarding (2), there are numerous works on sow to initial- .
linear layers are expanded as:

ize the weights under a function preservation criterion. In
our case, we found that zero-initializing weights, as com-

monly proposed, is significantly suboptimal. In practice, W' = wow
W, Ws,
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where Wy, Wy, W3 ~ N(0, 0I), and o2 is calculated
from W. This ensures better signal propagation in the net-
work (He et al., 2015; Noci et al., 2022). The effect of this
initialization can be important, but not detrimental, as illus-
trated in Fig. 17. When expanding the self-attention lay-
ers, we simply concatenate new heads, i.e. leave the heads
that correspond to the previous embedding dimension un-
changed. Again we stress that our method does not attempt
to answer the question on kow to initialize, and any method
established in the literature can be used for this purpose.

We also include additional commonly used downstream
performance metrics. In particular, we report 5/10-shot re-
sults on ImageNet/Pets/Birds as done in Zhai et al. (2022).
Results can be seen in Fig. 18.

D. Adapting Multiple Model Shape
Parameters Concurrently

We first present more results on which model configuration
(number of parameters or patch size) leads to the most effi-
cient training for different levels of performance in Fig. 20
and 21.

Motivated by these insights, we ask the question: Can we
change both the model size and patch size during training,
leading to even greater training compute savings?

We present preliminary experiments here, and more specif-
ically in Fig. 19. We compare results when changing only
the model width, only the patch size, or both the model
width and patch size simultaneously. In every case, we
find the transition points, when the model shape should be
adapted, using our proposed methodology. Changing both
patch size and model width leads to the most significant
improvements. For simplicity and clarity, we here consider
model sizes in the set {V192-12, V256-12, V384-12} and
patch sizes in the set {10, 20, 30, 40}.

18

We note that our method does not take into account mo-
mentary performance boost, when reducing the patch size
and momentary performance deterioration when changing
the model size, due to reasons highlighted in the main text.
This justifies why changing only patch size can be better in
some cases for the short term. As more compute is invested
into the new model shape, these changes are counteracted.

E. Environmental Impact

To estimate the carbon footprint of our training, we follow
the recipe detailed in Touvron et al. (2023a). Specifically,
we approximate the Watt-hours (Wh) used as

Wh = GPU-hours x GPU-power-consumption x PUE

where PUE refers to Power Usage Effectiveness. Follow-
ing Touvron et al. (2023a) we set this quantity to 1.1. In
order to enable comparisons across different works, we
use the national US average carbon intensity factor of
0.385 kg COseq/ KW h and we thus estimate the amounts
of carbon emissions as

tCOzeq = MW h x 0.385.

We compare our adaptively trained model against standard
training of the compute-optimal model, in this case, the ViT
Base model with patch size 8. The model requires ~ 120
GPU-hours with an average consumption of ~ 280W with
the default training. Our adaptive training requires roughly
40% of GPU-hours, i.e. ~ 48 GPU-hours while enjoy-
ing the same average consumption ~ 280W. This leads
to = 0.036 MW h for ViT-Base and =~ 0.014 M W h for our
adaptive training. Thus, the default training of the ViT Base
model causes carbon emissions of 0.014¢tC'Oseq and our
training 0.006tC' Ozeq.
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Figure 18. We include more downstream performance metrics for the V384-12 model.

Figure 19. Changing both model width and patch size during
training, further accelerates training.

F. Time Measurement

Although we focused on FLOPS, a similar hardware-aware
analysis can take place, where the desired quantity to min-
imize is time instead of FLOPs. We note that time and
FLOPs are usually highly correlated (Alabdulmohsin et al.,
2023). This relationship also depends on the type of hard-
ware and the mode it is operating in, i.e. whether we are
memory-bound, whether data loading is the bottleneck etc.
As an additional result, we replicate Fig. 6 from the main
text but with time on the x-axis. Results can be seen in
Fig. 22.
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G. Discussion

Although our approach is not directly comparable or in-
spired by them, we discuss some further interesting con-
nections.

Neural Architecture Search. The discovery of optimal
architectures has also been explored in the line of work of
neural architecture search (Elsken et al., 2019). Neural ar-
chitecture search explores a collection of techniques to au-
tomate the selection of an optimal architecture. We are in-
terested in more efficient training for a fixed architecture,
the Transformer, that has established itself across different
modalities.

Curriculum Learning.  Curriculum learning argues that
the order in which samples are presented plays a crucial
role in the learning efficiency of a model (Soviany et al.,
2022). The role of training data undoubtedly played a cru-
cial role in the convergence speed (Sorscher et al., 2022).
Recently, other techniques for data selection have been pro-
posed to accelerate large-scale pre-training (Evans et al.,
2023). Our technique does not filter or select data, just
chooses to invest different amounts of compute to differ-
ent data, based on the current stage of training. Popula-
tion based training is also a related area of work (Jaderberg
etal., 2017).
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