
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

YOUNGER: THE FIRST DATASET FOR ARTIFICIAL
INTELLIGENCE-GENERATED NEURAL NETWORK AR-
CHITECTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing and optimizing neural network architectures typically require extensive
expertise, starting from handcrafted designs followed by manual or automated
refinement, which significantly hinders rapid innovation. To address these chal-
lenges, Younger is introduced as a comprehensive dataset derived from over 174K
real-world models across more than 30 tasks from various public model hubs. After
extensive processing and filtering, Younger includes 7,629 unique architectures,
each represented as a directed acyclic graph with detailed operator-level informa-
tion based on ONNX operator definitions, enabling compatibility across different
deep learning frameworks. The dataset is designed to support the emerging research
area of Artificial Intelligence-Generated Neural Network Architecture (AIGNNA),
which aims to automate their generation and refinement. Comprehensive statistical
analysis, including architecture component analyses, highlights the diversity and
complexity of architectures in Younger, revealing the potential for future research
in this domain. Initial experiments, including operator and dataflow predictions,
demonstrate the dataset’s utility for architecture exploration and evaluation, and
highlight its potential as a benchmark for graph neural networks. Furthermore,
an online platform ensures continuous maintenance and expansion of the dataset,
supporting global researchers in their endeavors. The dataset and source code are
publicly available to encourage further research and lower entry barriers in this
challenging domain.

1 INTRODUCTION

The proliferation of large language models like ChatGPT (OpenAI et al., 2023) has decisively
demonstrated the critical importance of large-scale data collection and innovative neural network
architecture design in advancing Artificial Intelligence (AI) (Schuhmann et al., 2022; Tang et al.,
2024), which has further highlighted the need for more efficient and effective architecture design
processes. As a result, in recent years, neural architecture search (NAS) has garnered significant
attention and research focus, aiming to address the limitations of manual architecture design in
handling increasingly complex AI tasks.

Despite the significant research attention NAS has received, it has not produced revolutionary results.
Major architectural shifts, such as the transition from RNNs and CNNs to Transformers, were
primarily driven by human designers (Vaswani et al., 2017). NAS frameworks such as DARTS (Liu
et al., 2018b) and datasets like NAS-Bench-* (e.g., NAS-Bench-101 (Ying et al., 2019), NAS-
Bench-NLP (Klyuchnikov et al., 2022), DeepNets-1M (Knyazev et al., 2021)) have automated the
architecture search process. Yet, they remain constrained by predefined search spaces, which refer to
specific macro-architecture topologies and a limited set of operator types. This limitation restricts the
diversity and novelty of architectures that can be explored, leaving significant room for improvement
in neural network architecture design innovation. Instead of creating fundamentally new designs,
NAS has primarily focused on pushing model performance within predefined architectural patterns,
limiting its ability to generate groundbreaking architectures.

To overcome the limitations of existing NAS frameworks and datasets, and to explore more diverse
and innovative architectures, the Younger dataset was developed. Unlike the predefined, constrained

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

architecture search spaces in NAS datasets such as NAS-Bench-* and NAS frameworks like DARTS,
Younger offers a more flexible and diverse exploration space, enabling researchers to break free from
rigid macro-architecture topologies and a limited set of operator types.

The Younger dataset is constructed based on the Open Neural Network Exchange (ONNX) operator
definitions (Bai et al., 2019), ensuring compatibility across various deep learning frameworks.
Derived from approximately 174K real-world models across more than 30 tasks from multiple public
repositories (as listed in Table 3), these models are first converted into the ONNX format, then
transformed into directed acyclic graphs (DAGs), where nodes represent ONNX operators with
detailed configurations and hyperparameters, and edges represent data flows between operators. To
ensure uniqueness, isomorphic architectures are filtered out. Additionally, model parameter values
are excluded due to concerns about privacy and security. Finally, Younger includes 7,629 distinct
neural network architectures and supports all operator types defined by ONNX (about 200 types),
striking a balance between the limited operator types in traditional NAS spaces, which typically
define only a few operators, and the extensive operator sets in deep learning frameworks like PyTorch,
which contains over 2,000 operators, as shown in Table 1. This balance provides a wider range of
operator types and data flow configurations than existing NAS spaces while maintaining a manageable
exploration space. This flexibility enables researchers to explore novel architectures better suited to
the rapidly evolving demands of AI tasks, overcoming the constraints of traditional search spaces.

Extensive statistical analyses were conducted at the operator, component, and architecture levels,
validating Younger’s capacity to support various design patterns and configurations. These analyses
confirmed the dataset’s potential for advancing neural architecture research, demonstrating its rich
prior knowledge and feasibility in real-world applications. The diversity and complexity of the
architectures in Younger provide a robust foundation for exploring new paradigms in neural network
design and optimization.

Based on these findings, the Younger dataset has provided a strong foundation for introducing the
concept of Artificial Intelligence-Generated Neural Network Architecture (AIGNNA), a powerful
approach to automate the generation of neural architectures. This process is characterized by two
paradigms: 1) Local, which focuses on fine-tuning and optimizing components of pre-existing
architectures by selecting the most suitable operator types and data flows; and 2) Global, which
represents the more challenging task of generating entire neural network architectures from scratch,
fully automating the design process.

Initial experiments have demonstrated the success of the Local paradigm in optimizing pre-existing
architectures, particularly in selecting the most suitable operator types and data flows. However,
as the Global paradigm involves generating entire architectures from scratch, it remains an open
challenge without readily available methods to automate this process fully. Consequently, while
the potential of Younger to support such a paradigm is clear, further research and development are
required before comprehensive experiments can be conducted in this area.

To support global collaboration and continuous dataset expansion, Younger is publicly available
along with a platform that allows researchers worldwide to upload their models. These models are
automatically converted into DAG format and integrated into future releases of Younger, ensuring
the dataset remains up-to-date. This open platform lowers the barriers to entry for research in neural
architecture generation, empowering researchers worldwide to contribute to and benefit from this
evolving field.

2 RELATED WORK

2.1 ARTIFICIAL INTELLIGENCE-GENERATED NEURAL NETWORK ARCHITECTURE

The design and optimization of neural network architectures have historically been labor-intensive
tasks, relying heavily on the intuition and expertise of human researchers. This process has evolved
from manual designs, exemplified by early architectures such as AlexNet (Krizhevsky et al., 2012),
ResNet (He et al., 2016), LSTM (Hochreiter & Schmidhuber, 1997), and Transformer (Vaswani et al.,
2017), to more automated methods employing neural architecture search (NAS) like NASNet (Zoph
et al., 2018) and DARTS (Liu et al., 2018b).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Although these manually designed architectures were groundbreaking at the time, they were con-
strained by the reliance on expert knowledge and required significant time and effort to design.
This inefficiency became a growing challenge as the scale and diversity of AI tasks expanded. The
emergence of NAS frameworks marked a significant advancement in automating the design process,
aiming to improve the efficiency and adaptability of architecture generation.

NAS frameworks such as DARTS (Liu et al., 2018b) and benchmarks like NAS-Bench-101 (Ying
et al., 2019) and NATS-Bench Dong et al. (2021) introduced methods that automate the exploration
of predefined search spaces, typically consisting of fixed macro-architectures and limited operator
types. While these frameworks automate the search for optimal cells (building blocks or micro-
architectures) (Zoph et al., 2018; Real et al., 2019; Liu et al., 2018a;b; Pham et al., 2018; Tan & Le,
2019; Klein & Hutter, 2019), they are inherently restricted by these predefined search spaces. As a
result, the innovation potential is constrained, limiting the diversity and novelty of the architectures
that can be explored.

Addressing these challenges, the Younger dataset and the AIGNNA methodology offer a revolutionary
departure from these constraints. By eliminating the need for predefined macro-architectures, Younger
allows for a more explorative approach to architecture design, supporting various operator types and
data flow configurations, as seen in Table 1. This flexibility facilitates the generation of innovative,
customized architectures better suited to specific applications and more adaptable to emerging
challenges in neural network design.

Table 1: The difference between Younger and NAS frameworks or datasets

Dataset / Framework #op-types #tasks
NAS-Bench-101 (Ying et al., 2019) 3 (CNN) 1 (Image)

NAS-Bench-201 (Dong & Yang, 2019) 5 (CNN) 1 (Image)
NAS-Bench-NLP (Klyuchnikov et al., 2022) 6 (RNN) 1 (Text)

NAS-Bench-ASR (Mehrotra et al., 2020) 6 (CNN) 1 (Audio)
DeepNets-1M (Knyazev et al., 2021) 15 (CNN) 1 (Image)

NASNet (Zoph et al., 2018) 13 (CNN) 1 (Image)
DARTS (Liu et al., 2018b) 4 (RNN) + 7 (CNN) 2 (Image & Text)

Younger ∼ 200 (ONNX) 31 (Unlimited)

2.2 BENCHMARKING GRAPH NEURAL NETWORK

Graph neural networks (GNNs) have become a powerful tool for processing graph-structured data
across various domains, such as social network analysis, recommendation systems, and molecular
chemistry. Traditional benchmark datasets for GNN research, such as Cora, CiteSeer, PubMed (Yang
et al., 2016), QM9 (Wu et al., 2018), and ZINC (Gómez-Bombarelli et al., 2018), typically contain
graphs with relatively simple and small-scale node and edge structures.

Table 2: The difference between Younger and GNN datasets

Dataset #graphs #nodes #edges #node-types
Cora (Yang et al., 2016) 1 2,708 10,556 N/A

CiteSeer (Yang et al., 2016) 1 3,327 9,104 N/A
PubMed (Yang et al., 2016) 1 19,717 88,648 N/A

ZINC (Gómez-Bombarelli et al., 2018) 49,456 ∼ 23.2 ∼ 49.8 10
QM9 (Wu et al., 2018) 130,831 ∼ 18.0 ∼ 37.3 5

Younger 7,629 ∼ 1,658 ∼ 2,113 ∼ 200

Younger introduces a new challenge for GNN research. As shown in Table 2, unlike traditional GNN
datasets, Younger features significantly more complex and diverse graph structures, with a notable
increase in the number of nodes and edges per graph. Additionally, it supports up to 200 operator
types defined by ONNX, far surpassing the node types found in existing datasets. This increased

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

complexity requires GNNs to handle more extensive and intricate graph topologies, diverse operator
types, and data flow configurations.

Despite the increased complexity, Younger maintains a high overall number of DAGs, providing a bal-
anced dataset that offers researchers a broad range of diversity and test scenarios. This balance makes
Younger an ideal benchmark for evaluating the scalability, robustness, and generalizability of GNN
algorithms while presenting new challenges and opportunities for advancing GNN methodologies.

3 DATASET CONSTRUCTION

Collecting real-world neural network architectures is a complex task that demands expertise in deep
learning frameworks, especially ONNX (Bai et al., 2019), along with significant computational and
human resources. These challenges can be prohibitive for many researchers. A suite of automated
tools has been developed to streamline the neural network architecture collection process, facilitate
broad support for AIGNNA, and reduce the labor and computational costs associated with data
collection.

The dataset construction process involves four key steps: (1) retrieving neural network models, (2)
converting models to ONNX format, (3) extracting DAGs from ONNX models, and (4) filtering out
isomorphic DAGs to ensure the uniqueness of the architectures. Figure 1 illustrates the entire pipeline.
Below is a detailed description of each step:

Public
 Model Hubs

ReLU

Conv

BatchNormalization

ReLU

Conv

BatchNormalization

Add

Conv

BatchNormalization

ReLU

Conv

BatchNormalization

ReLU

Conv

BatchNormalization

Add

Conv

BatchNormalization

ReLU

Conv

BatchNormalization

ReLU

Conv

BatchNormalization

Add

Conv

BatchNormalization

ReLU

Conv

BatchNormalization

ReLU

Conv

BatchNormalization

Add

Conv

BatchNormalization

Convert ONNX to DAGs

Younger
Dataset

Filter Out Unique DAGs

Retrieve Models

Convert Models to ONNX

Publicly Available

Release Online

Figure 1: Overview of the construction pipeline

3.1 STEP 1: RETRIEVING NEURAL NETWORK MODELS

This study draws from four prominent open-source model repositories to ensure a broad and diverse
selection of neural network models. Kaggle Models1, PyTorch Hub2, ONNX Model Zoo3, and Hug-
ging Face Hub4 are leveraged, collectively encompassing over 30 distinct deep learning tasks. These
repositories span diverse deep learning tasks and frameworks, including PyTorch and TensorFlow,
ensuring comprehensive coverage of current deep learning models.

To accommodate the rapid growth of repositories like Hugging Face Hub, automated model acquisition
tools were implemented to enable continuous updates and ensure timely iteration of the Younger
dataset. Although Kaggle Models, PyTorch Hub, and ONNX Model Zoo update frequency is slower,
automation tools have also been developed to facilitate efficient model retrieval from these sources.
Table 3 provides detailed information about the selected repositories.

1Kaggle Models: https://www.kaggle.com/models
2PyTorch Hub: https://pytorch.org/hub/
3ONNX Model Zoo: https://onnx.ai/models/
4Hugging Face Hub: https://huggingface.co/models

4

https://www.kaggle.com/models
https://pytorch.org/hub/
https://onnx.ai/models/
https://huggingface.co/models

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 STEP 2: CONVERTING MODELS TO ONNX FORMAT

Different deep learning frameworks define distinct operators, which can lead to increased dataset
usage costs and inefficiencies in architecture design when models lack a unified representation. To
address this issue, the Open Neural Network Exchange (ONNX) format was adopted as the standard
representation for models in the Younger dataset. ONNX provides a standardized set of operators,
enabling model exchange and deployment across various deep learning frameworks (such as PyTorch
and TensorFlow).

In addition to standardizing operator definitions, ONNX serves as a unified representation, sig-
nificantly reducing the complexity of neural architecture representation by consolidating operator
definitions across frameworks. For instance, ONNX reduces the 2,000+ PyTorch operators to approx-
imately 200 standard operators. Several open-source tools, including Optimum5 and tf2onnx6, were
utilized to convert models into ONNX format.

3.3 STEP 3: EXTRACTING DAGS FROM ONNX MODELS

To address security and privacy concerns, and because neural network architecture design does
not require specific parameter values, all parameter data were removed from the ONNX models.
Removing parameter data not only addresses security and privacy concerns but also reflects the focus
on architecture design, independent of parameterization. Additionally, ONNX models defined in
Protocol Buffers7 format are less suited for direct analysis by standard graph processing tools (e.g.,
NetworkX (Hagberg et al., 2008)) or deep learning frameworks (e.g., PyTorch Geometric (Fey &
Lenssen, 2019)) compared to directed acyclic graphs (DAGs). A tool was developed to convert ONNX
models into DAGs to improve compatibility and streamline analysis. This transformation ensures
architecture designs can be shared while maintaining parameter privacy and avoiding unnecessary
parameter information.

In these DAGs, each operator within a neural network architecture is represented as a node, with
detailed information such as the operator type and its attribute definitions recorded. Directed edges
represent the data flows between operators, and each node’s inflow and outflow order is meticulously
documented. The DAGs are represented using the open-source graph library NetworkX, enabling
seamless integration with various analysis tools.

Table 3: Statistical information during the construction process of Younger

Public Model Hubs Retrievable Convertable Retrieved Converted Filtered
Hugging Face Hub 691K 325K 143.5K 96K

N/AONNX Model Zoo 12K 12K 12K 74K
PyTorch Hub N/A 121 121 121

Kaggle Models 5K 4K 4K 4K
Total 743.5K 341K 159.5K 174K 7,629

3.4 STEP 4: FILTERING OUT ISOMORPHIC DAGS

Public model hubs often contain many isomorphic neural network architectures, making it necessary
to filter these architectures to ensure the uniqueness of each architecture in the dataset. The Weisfeiler-
Lehman (WL) graph hash algorithm (Shervashidze et al., 2011) was employed to compute the hash of
extracted DAG and identify heterogeneous architectures. The WL algorithm ensures that isomorphic
graphs receive identical hash values while heterogeneous graphs are assigned distinct hashes, firmly
guaranteeing architectural diversity.

Operator types and their attributes, represented in the nodes, were used as iteration objects within the
WL hash algorithm. This process ensures that all architectures in the dataset are heterogeneous, both
in terms of hyperparameters and operator types. After applying this filtering method, 7,629 unique
neural network architectures were retained from an initial pool of about 174K real-world models.

5Optimum: https://github.com/huggingface/optimum
6tf2onnx: https://github.com/onnx/tensorflow-onnx
7Protocol Buffers https://protobuf.dev/

5

https://github.com/huggingface/optimum
https://github.com/onnx/tensorflow-onnx
https://protobuf.dev/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.5 OPEN-SOURCE CONTRIBUTION AND GLOBAL COLLABORATION

After the whole process, the resulting dataset serves as a foundation for global collaboration and open-
source contribution. Overall, the open-source nature of Younger alleviates the need for researchers
to invest significant resources in constructing similar datasets. The creation of Younger required
substantial computational resources, approximately 8,000 CPU hours, and considerable human effort,
including the development of around 24K lines of specialized code. By making both the dataset and
its construction methodology open-source, along with accessible interfaces and websites, researchers
worldwide can easily contribute to the maintenance and expansion of Younger or build similar
datasets. This global collaboration ensures that Younger can continuously evolve to meet the needs
of the research community.

When the first version of Younger began construction, there were 743.5K publicly available models,
of which 341K could be converted into ONNX format. As of its first release, 174K models were
extracted for processing, resulting in 7,629 unique heterogeneous neural network architectures.
Despite the vast number of available deep learning models and their rapid growth, less than 1% of
these models represent heterogeneous and effective architectures. This notably low proportion of
heterogeneous architectures highlights the limitations of current neural network design methods,
both manual and NAS-based, in fostering architectural innovation. Younger breaks through these
limitations by offering a foundational platform for more flexible and expansive neural architecture
design research. It also lays the groundwork for the development of Artificial Intelligence-Generated
Neural Network Architecture (AIGNNA), an initiative aimed at exploring new design methods
beyond traditional frameworks.

4 EXPERIMENTS

The experiments are divided into two parts: one focuses on the statistical analysis of the Younger
dataset, and the other involves an initial exploratory experiment based on the Younger dataset to
investigate the proposed AIGNNA.

4.1 EXPERIMENTAL SETUP

4.1.1 HOMOGENEOUS OR HETEROGENEOUS?

Neural network operators vary significantly in their attributes. For example, a Convolution (Conv)
operator may include attributes such as dilations, kernel shape, and strides, whereas a Batch Nor-
malization operator contains attributes like epsilon and momentum. This diversity poses a critical
question in graph-based neural network architecture design: should these architectures be treated as
homogeneous or heterogeneous graphs?

In the homogeneous graph approach, all nodes represent the same type (i.e., "operator"), ignoring
the specific operator type or its attributes. In contrast, a heterogeneous graph treats the nodes as
distinct operator types, capturing the full diversity of operator behaviors and configurations. Although
heterogeneous graphs more accurately reflect the complexity of neural network architectures, they
introduce additional challenges in analysis and design.

For this study, all architectures in the Younger dataset are treated as homogeneous graphs. This sim-
plification allows the focus to remain on the structural and topological properties of the architectures
without introducing excessive variables into the analysis. Future work may explore the treatment of
Younger as a heterogeneous graph dataset.

4.1.2 OPERATOR CONFIGURATIONS IN THE DAGS

Given that the DAG nodes contain discrete information such as operator types and integer attributes,
processing node features using conventional approaches can be challenging. To address this, two
configurations are explored for handling operator attributes:

Operator w/o Attributes: This configuration treats all nodes based solely on their operator types
without considering the detailed attribute configurations. This reduces the number of node features to
match the size of the ONNX operator set, streamlining the analysis.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Operator w/ Attributes: In this approach, operators of the same type but with different attribute
configurations are treated as distinct node features. This significantly increases the number of
node features, adding complexity to the learning process but more accurately reflecting the detailed
structure of the operators. The subsequent experiments will evaluate these two configurations to
determine their impact on the learning process.

4.2 STATISTICAL ANALYSIS

Statistical analysis is conducted from two perspectives: 1) analyzes lower-dimension statistical
information, such as the distribution of the number of nodes in each graph and the operator distribution
in Younger. 2) analyzes high-dimension statistical information, including the distribution of three
different level granularity: operator, subgraph, and graph.

4.2.1 LOW-DIMENSIONAL STATISTICAL INFORMATION

The statistics between Younger and conventional graph datasets are compared. From Table 2 and
Figure 2 (a), Younger contains the most extensive distribution of the number of nodes in the graph,
ranging from graphs containing only a dozen nodes to graphs containing hundreds of thousands of
nodes. In addition, Younger also contains enough graphs compared to most graph datasets, which
makes it further challenging to conduct GNNs on Younger. Figure 2 (b) shows Younger’s top 30
operators with the highest frequency. The dataset has a great diversity of operator types, including
tensor deformations (e.g., Unsequeeze, Reshape), arithmetic operations (e.g., Add, Conv, MatMul),
logical operations (e.g., Equal), and quantization (e.g., DynamicQuantizeLinear).

Edge Node
0

50000

100000

150000

200000

250000

Fr
eq

ue
nc

y

(a)

Mean = 2113.32 Mean = 1658.15

Unsq
ue

ezeAd
dMul

Sh
ap

e

Re
sha

pe
Con

cat

Gath
erCast

MatM
ul

Tra
nsp

oseSlic
e Div

Re
du

ceM
ea

n
Su

b
PowSq

rt
Con

v

MatM
ulI

nte
ge

r

Ide
nti

ty

Dyn
am

icQ
ua

nti
zeL

ine
ar

Sq
ue

eze

Ex
pa

nd

Con
sta

ntO
fSh

ap
e

So
ftm

ax
Whe

reRe
lu
Eq

ua
l

Sig
moid Erf

Ra
ng

e0

200000

400000

600000

800000

1000000

1200000

1400000

Fr
eq

ue
nc

y

(b)

Figure 2: Distribution of #nodes and #edges and top 30 ONNX operators. (a) The distribution of
the number of graph nodes and edges in Younger; (b) The top 30 ONNX operators have the highest
frequency in Younger.

4.2.2 HIGH-DIMENSIONAL STATISTICAL INFORMATION

Due to the nonlinear nature of the graph, embedding techniques were utilized to study the distribution
properties of architectures in Younger. Specifically, the GCN Kipf & Welling (2017) network trained
in subsection 4.3.2 for operator design is used to obtain the specific embeddings. In Figure 3 and 4,
orange dots represent the operators that appear in Younger’s top 500 frequencies. After training,
GCN gradually extracts the high-frequency operators from the original distribution and aggregates
them. This reveals that learning the distribution of long-tailed operators in the dataset is a highly
challenging problem. The appendix provides more detailed experimental content.

Node Embedding Figure 3-4 show the t-SNE visualization results of node embeddings before and
after training from GCN with node features denoted as ‘Operator w/ Attributes.’ The orange points
represent Younger’s top 500 most frequently occurring operators. It can be observed that before
training, the distribution of node embeddings is relatively concentrated and chaotic. After training,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the distribution of embeddings representing high-frequency nodes selected and other low-frequency
nodes from Younger was well distinguished. This indicates an uneven distribution of node quantities
among different types, which introduces bias and challenges to the learning process of baseline
models.

4 2 0 2 4
Dimension 1

4

2

0

2

4

Di
m

en
sio

n
2

t-SNE visualization
Other operators
Selected operators

Figure 3: Node embeddings before training

12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Dimension 1

6

4

2

0

2

4

6

Di
m

en
sio

n
2

t-SNE visualization
Other operators
Selected operators

Figure 4: Node embeddings after training

100 50 0 50 100
Dimension 1

100

50

0

50

100

Di
m

en
sio

n
2

t-SNE visualization

Figure 5: Subgraph embeddings

100 75 50 25 0 25 50 75 100
Dimension 1

75

50

25

0

25

50

75

Di
m

en
sio

n
2

t-SNE visualization

Other models
resnet-101
resnet-50
resnet-18
roberta
vit-base
vit-large

Figure 6: Graph embeddings

Subgraph Embedding Figure 5 shows the t-SNE visualization results of all subgraph embeddings
under the GCN model. As can be seen, the GCN model have distinguished the embeddings of
subgraphs well, but due to data bias, node embeddings were not learned particularly well. Therefore,
the model only distinguished the embeddings of subgraphs well in a part of the spatial distribution
(the boundary of the space).

Graph Embedding Figure 6 shows the t-SNE visualization results of all graph embeddings under the
GCN model. The embeddings of several commonly used models in figures are marked in different
colors. Several architectures have shown almost similar results. It can be seen that, on the one hand,
the embeddings of DAGs based on the same architecture are very close or even overlap in the graph;
for example, there are many points of the RoBERTa (Liu et al., 2019) and ViT (Dosovitskiy et al.,
2020) architectures, which are Transformer-based (Vaswani et al., 2017) architectures, that are close
in distance or overlap. On the other hand, it can be seen that the Younger dataset covers multiple
common architectures well, indicating that Younger covers most of the neural network architectures

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

in the real world. In addition, the same architecture has multiple points of the same color in the
figures, indicating that the dataset contains various variants of this type of architecture.

4.3 AIGNNA EXPLORATION

Experiments were conducted on the Younger dataset for global and local paradigms to verify the
feasibility and effectiveness of the proposed two paradigms for AIGNNA. The results indicate that
exploring AIGNNA based on Younger is feasible, demonstrating Younger’s potential as a benchmark
dataset for graph neural networks.

4.3.1 OVERVIEW OF AIGNNA PARADIGMS

To advance the development of AIGNNA based on the Younger dataset, two paradigms for neural
network architecture design are introduced, each tailored to different real-world application scenarios.
Figure 7 provides an intuitive visualization of these paradigms.

Local Operator Design

ReLU

Conv

BatchNormalization

ReLU

Conv

BatchNormalization

ReLUorAdd ?ReLUorAdd ?

ReLU

Conv

BatchNormalization

ReLU

Conv

BatchNormalization

ReLUorAdd ?

ReLU

Conv

BatchNormalization

ReLU

Conv

BatchNormalization

ReLUorAdd ?

Local Data Flow Design

Generator

Global Architecture Design

???

???

???

???

???

???

???

???

???

???

???

???

?

?

? ?

?

?

?
???

???

???

???

???

???

?

?

? ?

?

?

?
???

???

???

???

???

???

?

?

? ?

?

?

? ???

???

???

???

???

???

???

???

???

???

???

???

?

?

? ?

?

?

?
???

???

???

???

???

???

?

?

? ?

?

?

?
???

???

???

???

???

???

?

?

? ?

?

?

? ???

???

???

???

???

???

???

???

???

???

???

???

?

?

? ?

?

?

?
???

???

???

???

???

???

?

?

? ?

?

?

?
???

???

???

???

???

???

?

?

? ?

?

?

?

DAGs

???

???

???

???

???

???

?

?

? ?

?

?

? ???

???

???

???

???

???

?

?

? ?

?

?

? ???

???

???

???

???

???

?

?

? ?

?

?

?

DAGs

z

ReLU

Conv

BatchNormalization

ReLU

Conv

BatchNormalization

Add

ReLU

Conv

BatchNormalization

Data Flow A?

Data Flow B?

ReLU

Conv

BatchNormalization

ReLU

Conv

BatchNormalization

Add

ReLU

Conv

BatchNormalization

Data Flow A?

Data Flow B?

ReLU

Conv

BatchNormalization

ReLU

Conv

BatchNormalization

Add

ReLU

Conv

BatchNormalization

Data Flow A?

Data Flow B?

Figure 7: Paradigms of the AIGNNA

Local: Architecture Refinement In Detail.The local paradigm addresses the need to fine-tune
specific aspects of existing neural network architectures. This approach is divided into operator and
data flow designs, as shown in Figure 7. Operator Design involves determining the most suitable type
of operator for a given node based on local or global architectural information, as illustrated in the
leftward of Figure 7. This design assesses potential replacements for current operators and suggests
appropriate operators for new nodes based on neighboring structural information.

The second type, data flow design, evaluates the existence of data flows between operators. This
fine-tuning method determines whether a directed edge representing data flow should connect any
two nodes, utilizing insights from local and global architectural contexts.

Challenges within the local paradigm arise from the vast diversity of operators and the binary nature
of data flow decisions (existing or not). The efficacy of this paradigm is assessed by employing five
different graph neural networks as baselines, focusing on operator and data flow design. Operator
design presents a greater challenge than data flow design.

Global: Architecture Design From Scratch. Designing neural network architectures from scratch
is an open and complex challenge. Unlike neural architecture search, which limits the search
space to a predefined macro-architecture while optimizing micro-architectural elements for specific
performances, the global paradigm seeks to generate comprehensive neural network architectures
incorporating detailed operator-level elements from the ground up.

As shown in the rightward flowchart of Figure 7, this generative process is conditioned on specific
properties, denoted by z in Figure 7, such as a noise that represents the architecture’s intended
application or required characteristics. Moreover, the architecture’s design objectives are defined
by the goals it needs to achieve. Importantly, global paradigms can also iteratively leverage local

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

paradigms to progressively achieve their comprehensive design objectives. To assess the potential
and feasibility of the global paradigm, a robust baseline is implemented for validation.

4.3.2 LOCAL PARADIGM

Data Flow Design: GCN, GAT (Brody et al., 2022), and GraphSAGE (Hamilton et al., 2017) are
employed under the data flow design paradigm to evaluate the effectiveness of neural architecture
refinement on the Younger dataset. The results are shown in Table 4. All models have achieved good
performance on the Younger dataset, which proves that existing graph neural networks are more
suitable for predicting data flows in neural network architectures. Additionally, it can be seen that
almost all models perform better without attributes because reducing the number of node features on
the graph makes learning them easier.

Table 4: Local paradigm: data flow design

Model Operator w/ Attributes Operator w/o Attributes
AUC↑ F1↑ AP↑ AUC↑ F1↑ AP↑

GCN 0.9922 0.7881 0.9913 0.9938 0.7791 0.9929
GAT 0.8997 0.8079 0.8720 0.9094 0.7964 0.8901

SAGE 0.9169 0.8033 0.8940 0.9252 0.8002 0.9026

Operator Design: Five different baselines, GCN, GAT, GAE (Kipf & Welling, 2016), VGAE (Kipf &
Welling, 2016), and GraphSAGE, are utilized for ten experiments under the operator design paradigm,
as shown in Table 5. Despite the high accuracy achieved by all baselines, the F1 score, Precision, and
Recall remain low. This is primarily attributed to the complex graph structures in Younger, which
are characterized by many operator types. Among these, multiple kinds of operators infrequently
occur, posing challenges to achieving robust multi-classification performance. In experiments without
attributes, higher values for F1, Precision, and Recall were observed compared to scenarios with
attributes. This result further highlights the inherent complexity of the dataset and its influence on
classification performance.

Table 5: Local paradigm: operator design

Model Operator w/ Attributes Operator w/o Attributes
ACC↑ F1↑ Prec.↑ Recall↑ ACC↑ F1↑ Prec.↑ Recall↑

GCN 0.8684 0.1451 0.1713 0.1466 0.8360 0.2987 0.3657 0.2788
GAT OOM OOM OOM OOM 0.7139 0.2022 0.2532 0.2039
GAE 0.9016 0.0537 0.0728 0.0513 0.9073 0.1745 0.2036 0.1700

VGAE 0.8243 0.0716 0.0891 0.0707 0.9137 0.2207 0.2654 0.2132
SAGE 0.8984 0.2028 0.2383 0.1996 0.9250 0.3646 0.4323 0.3532

4.3.3 GLOBAL PARADIGM

In the global paradigm, the graph generation model DiGress, which employs a diffusion model
for graph generation, was adopted. Due to computing resource constraints and the fact that some
architectures in Younger have node counts reaching hundreds of thousands, only architectures with
node counts in the range of [1, 300] were selected for training. The DiGress model achieved a
negative log-likelihood of at least 345.4988 on the test set. As the global paradigm presents a highly
challenging task, further research in this area is planned for the future.

5 CONCLUSION AND FUTURE WORK

This article introduces Younger, a dataset of neural network architectures extracted from real-world
models across various public model repositories. This dataset proposes a new challenging field:
Artificial Intelligence-Generated Neural Network Architecture (AIGNNA). Two critical challenges
regarding neural network architecture design are introduced within this field: the Global Design
Paradigm and the Local Design Paradigm. Preliminary experiments have demonstrated the potential
and effectiveness of Younger’s neural architecture design in this emerging field, encouraging more
researchers to explore this promising.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange, 2019.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=F72ximsx7C1.

Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community structure in very
large networks. Phys. Rev. E, 70:066111, Dec 2004. doi: 10.1103/PhysRevE.70.066111. URL
https://link.aps.org/doi/10.1103/PhysRevE.70.066111.

Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the Scope of Reproducible Neural Architec-
ture Search. In International Conference on Learning Representations, September 2019. URL
https://openreview.net/forum?id=HJxyZkBKDr.

Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. NATS-Bench: Benchmarking NAS
Algorithms for Architecture Topology and Size. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–1, 2021. ISSN 0162-8828, 2160-9292, 1939-3539. doi: 10.1109/
TPAMI.2021.3054824. URL http://arxiv.org/abs/2009.00437.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric,
April 2019. URL http://arxiv.org/abs/1903.02428.

Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel,
Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven con-
tinuous representation of molecules. ACS Central Science, 4(2):268–276, 2018. doi: 10.1021/
acscentsci.7b00572. URL https://doi.org/10.1021/acscentsci.7b00572. PMID:
29532027.

Aric A. Hagberg, Daniel A. Schult, Pieter Swart, and JM Hagberg. Exploring network structure,
dynamics, and function using networkx. 2008. URL https://api.semanticscholar.
org/CorpusID:16050699.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, June 2016. doi: 10.1109/CVPR.2016.90.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9
(8):1735–1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Aaron Klein and Frank Hutter. Tabular Benchmarks for Joint Architecture and Hyperparameter
Optimization, May 2019. URL http://arxiv.org/abs/1905.04970.

11

https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://link.aps.org/doi/10.1103/PhysRevE.70.066111
https://openreview.net/forum?id=HJxyZkBKDr
http://arxiv.org/abs/2009.00437
http://arxiv.org/abs/1903.02428
https://doi.org/10.1021/acscentsci.7b00572
https://api.semanticscholar.org/CorpusID:16050699
https://api.semanticscholar.org/CorpusID:16050699
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://arxiv.org/abs/1905.04970

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Salnikov, Maxim Fedorov, Alexan-
der Filippov, and Evgeny Burnaev. NAS-Bench-NLP: Neural Architecture Search Benchmark
for Natural Language Processing. IEEE Access, 10:45736–45747, 2022. ISSN 2169-3536. doi:
10.1109/ACCESS.2022.3169897. URL https://ieeexplore.ieee.org/document/
9762315.

Boris Knyazev, Michal Drozdzal, Graham W Taylor, and Adriana Romero Soriano. Pa-
rameter Prediction for Unseen Deep Architectures. In Advances in Neural Infor-
mation Processing Systems, volume 34, pp. 29433–29448. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
hash/f6185f0ef02dcaec414a3171cd01c697-Abstract.html.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep Con-
volutional Neural Networks. In Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012. URL https://papers.nips.cc/paper_files/paper/
2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Vittorio
Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (eds.), Computer Vision – ECCV
2018, pp. 19–35, Cham, 2018a. Springer International Publishing. ISBN 978-3-030-01246-5.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Architecture Search.
In International Conference on Learning Representations, September 2018b. URL https:
//openreview.net/forum?id=S1eYHoC5FX.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Abhinav Mehrotra, Alberto Gil C. P. Ramos, Sourav Bhattacharya, Łukasz Dudziak, Ravichander
Vipperla, Thomas Chau, Mohamed S. Abdelfattah, Samin Ishtiaq, and Nicholas Donald Lane. NAS-
Bench-ASR: Reproducible Neural Architecture Search for Speech Recognition. In International
Conference on Learning Representations, October 2020. URL https://openreview.net/
forum?id=CU0APx9LMaL.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mo Bavarian, Jeff
Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bog-
donoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles
Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston
Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni,
Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene,
Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He,
Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn,
Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David

12

https://ieeexplore.ieee.org/document/9762315
https://ieeexplore.ieee.org/document/9762315
https://proceedings.neurips.cc/paper_files/paper/2021/hash/f6185f0ef02dcaec414a3171cd01c697-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/f6185f0ef02dcaec414a3171cd01c697-Abstract.html
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=CU0APx9LMaL
https://openreview.net/forum?id=CU0APx9LMaL

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew
Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira
Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr Pong, Tolly Powell, Alethea Power, Boris
Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond,
Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario
Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl,
Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers,
Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian,
Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea
Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang,
Ben Wang, Jonathan Ward, Jason Wei, C. J. Weinmann, Akila Welihinda, Peter Welinder, Jiayi
Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah
Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin
Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia
Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 Technical Report,
December 2023. URL http://arxiv.org/abs/2303.08774.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4095–4104. PMLR, 10–15 Jul 2018. URL https://proceedings.
mlr.press/v80/pham18a.html.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. In Proceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19.
AAAI Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33014780. URL https:
//doi.org/10.1609/aaai.v33i01.33014780.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmar-
czyk, and Jenia Jitsev. LAION-5B: An open large-scale dataset for training next generation
image-text models. Advances in Neural Information Processing Systems, 35:25278–25294,
December 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_
and_Benchmarks.html.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research,
12(77):2539–2561, 2011. ISSN 1533-7928. URL http://jmlr.org/papers/v12/
shervashidze11a.html.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Net-
works. In Proceedings of the 36th International Conference on Machine Learning, pp. 6105–6114.
PMLR, May 2019. URL https://proceedings.mlr.press/v97/tan19a.html.

Fei Tang, Wanling Gao, LuZhou Peng, and Jianfeng Zhan. AGIBench: A Multi-granularity, Mul-
timodal, Human-Referenced, Auto-Scoring Benchmark for Large Language Models. In Sascha
Hunold, Biwei Xie, and Kai Shu (eds.), Benchmarking, Measuring, and Optimizing, pp. 137–152,
Singapore, 2024. Springer Nature. ISBN 978-981-9703-16-6. doi: 10.1007/978-981-97-0316-6_9.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In

13

http://arxiv.org/abs/2303.08774
https://proceedings.mlr.press/v80/pham18a.html
https://proceedings.mlr.press/v80/pham18a.html
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://proceedings.neurips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
http://jmlr.org/papers/v12/shervashidze11a.html
http://jmlr.org/papers/v12/shervashidze11a.html
https://proceedings.mlr.press/v97/tan19a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://papers.nips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chem. Sci., 9:513–530, 2018. doi: 10.1039/C7SC02664A. URL http://dx.doi.org/10.
1039/C7SC02664A.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 40–48, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/yanga16.html.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-
Bench-101: Towards Reproducible Neural Architecture Search. In Proceedings of the 36th
International Conference on Machine Learning, pp. 7105–7114. PMLR, May 2019. URL https:
//proceedings.mlr.press/v97/ying19a.html.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition, 2018.

14

https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://dx.doi.org/10.1039/C7SC02664A
http://dx.doi.org/10.1039/C7SC02664A
https://proceedings.mlr.press/v48/yanga16.html
https://proceedings.mlr.press/v97/ying19a.html
https://proceedings.mlr.press/v97/ying19a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix
CONTENTS

A Experimental Details i

A.1 Local Data Flow Design . i

A.2 Local Operator Design . iii

A.3 Node Embedding . vi

A EXPERIMENTAL DETAILS

This section offers a more detailed examination of the experiments discussed in the main paper.
Specifically, it addresses five critical components: Local Data Flow Design and Local Operator
Design within the Local Paradigm and Node, Subgraph, and Graph Embedding in the context of
Statistical Analysis. It offers a comprehensive introduction and discussion of dataset splits, training
details, model selection, results, and analytical insights.

A.1 LOCAL DATA FLOW DESIGN

A.1.1 DATASET SPLITS

Before splitting the dataset, we removed graphs with nodes or edges less than one from the ‘Filter’
dataset. Subsequently, the dataset was divided into training, validation, and test sets in a ratio of
8:1:1 with a random seed to be set as 1234. To better meet the need for local data flow design, we
removed graphs in the validation set and test set with operator type not appearing in the training set
to maintain training performance. Ultimately, there were 5994, 690, and 685 unique architectures
in training, validation, and test sets for node features denoted as ‘Operator w/ Attributes.’ For node
features denoted as ‘Operator w/o Attributes,’ there were 5612, 639, and 648 unique architectures in
training, validation, and test sets, respectively.

A.1.2 BASELINE MODEL CONFIGURATION

The architectures of three baseline models represented by topological diagrams under the local data
flow design paradigm are shown in Figure 8 and Table A.1.2 indicates the number of parameters.
It is worth mentioning that the outputs of multi-head attention of GAT are averaged instead of
concatenated.

Table 6: Number of Parameters of Local Data Flow Design Baseline Models.

Model Operator w/ Attributes Operator w/o Attributes
Number of Parameters Number of Parameters

GCN 5,360,384 849,664
GAT 9,960,192 5,449,472

SAGE 6,015,744 1,505,024

A.1.3 TRAINING CONFIGURATION

In this version, we set the random seed to 12345 and chose Adam as the optimizer for the local data
flow design training process. Other hyperparameters were set as shown in Table 7. The experiments
for local operator design were conducted on a server running Ubuntu 22.04.1 LTS. It has four identical
A800-80GB GPUs and an Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz with 112 cores. All the
baseline models for data flow design were trained on four identical A800-80GB GPUs.

i

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Node Embedding
(*, 1024)

SAGEConv
(1024, 512)

ReLU

Dropout
(0.5)

SAGEConv
(512, 256)

Node Embedding
(*, 1024)

SAGEConv
(1024, 512)

ReLU

Dropout
(0.5)

SAGEConv
(512, 256)

SAGE

Node Embedding
(*, 1024)

SAGEConv
(1024, 512)

ReLU

Dropout
(0.5)

SAGEConv
(512, 256)

SAGEGAT

Node Embedding
(*, 1024)

GATConv
(1024, 512, heads=8)

ReLU

Dropout
(0.5)

GATConv
(512, 256, heads=8)

Node Embedding
(*, 1024)

GATConv
(1024, 512, heads=8)

ReLU

Dropout
(0.5)

GATConv
(512, 256, heads=8)

GAT

Node Embedding
(*, 1024)

GATConv
(1024, 512, heads=8)

ReLU

Dropout
(0.5)

GATConv
(512, 256, heads=8)

GCN

Node Embedding
(*, 1024)

GCNConv
(1024, 512)

ReLU

Dropout
(0.5)

GCNConv
(512, 256)

Node Embedding
(*, 1024)

GCNConv
(1024, 512)

ReLU

Dropout
(0.5)

GCNConv
(512, 256)

GCN

Node Embedding
(*, 1024)

GCNConv
(1024, 512)

ReLU

Dropout
(0.5)

GCNConv
(512, 256)

Figure 8: Topological diagram of three baseline models: GCN, GAT, and SAGE .

Table 7: Training Details of Local Data Flow Design. ‘LR,’ ‘WD,’ and ‘BS’ in the header represent
Learning Rate, Weight Decay, and Batch Size, respectively

Model Operator w/ Attributes Operator w/o Attributes
LR WD BS LR WD BS

GCN (Kipf & Welling, 2017) 1e-4 5e-5 1 1e-4 5e-5 1
GAT (Brody et al., 2022) 1e-4 5e-5 1 1e-4 5e-5 1

SAGE (Hamilton et al., 2017) 1e-4 5e-5 1 1e-4 5e-5 1

A.1.4 METRICS

Area under the Receiver Operating Characteristic Curve (AUC):

TPR =
TP

TP + FN
, (1)

FPR =
FP

FP + TN
. (2)

For the Receiver Operating Characteristic (ROC) Curve, the Y axis represents the true positive rate
(TPR) while the X axis represents the false positive rate (FPR). A value of AUC close to 1 represents
a better classification prediction performance.

F1 Score (F1):
F1 =

2 · TP
2 · TP + FP + FN

, (3)

where TP, FP, and FN represent the number of true positives, false positives, and false negatives,
respectively.

Average Precision (AP):

AP =

N∑
n=1

(Rn −Rn−1)Pn, (4)

where R and P represent the precision and recall, while n denotes the nth threshold.

A.1.5 CHECKPOINT SELECTION

We chose checkpoints to test the performance of baseline models based on the weighted average of all
the metrics reported during validation. The weighted averages of AUC, F1, and AP were calculated
to measure the performance of baseline models. In this version, all weights are set to be the same.

ii

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.1.6 RESULTS AND ANALYSIS

We set up our configuration as stated in Section A.1.3 and used GCN, GAT, and GraphSAGE for
six experiments under the data flow design paradigm on Younger. As shown in Table 8, these three
baseline models perform well on all metrics. It is worth noting that GCN outperforms other models
in all metrics except F1 Score, regardless of whether the operators have attributes.

Table 8: Local paradigm: data flow design. Bold values represent the best-performing results.

Model Operator w/ Attributes Operator w/o Attributes
AUC↑ F1↑ AP↑ AUC↑ F1↑ AP↑

GCN (Kipf & Welling, 2017) 0.9933 0.7893 0.9924 0.9949 0.7907 0.9942
GAT (Brody et al., 2022) 0.9195 0.8023 0.8974 0.9133 0.7960 0.8937

SAGE (Hamilton et al., 2017) 0.9702 0.8005 0.9682 0.8991 0.8053 0.8591

A.2 LOCAL OPERATOR DESIGN

A.2.1 DATASET SPLITS

Due to the lack of relevant research on extracting building blocks for neural network architecture.
Therefore, we performed community detection on all DAGs (Neural Network Architecture) in the
‘Filter’ dataset to extract the building blocks of the neural network architecture. Through community
detection, we can identify the closely connected node sets in the graph to help identify subsets of
nodes with specific correlations or functional associations. Although there is no evidence to suggest
that the subgraphs extracted by community detection are effective building blocks for neural network
architecture, in this paper, it is reasonable to use this method to extract subgraphs for preliminary
validation to test the feasibility of Local Operator Design.

We adopt the Clauset Newman Moore Grey modularity maximization method (Clauset et al., 2004)
as the community detection algorithm and set it to detect at least one community, the DAG itself. For
each community, we simultaneously query its node boundary and label it as the node to be predicted.
The community and node boundary form a new subgraph, and the definition of node boundary is
shown in Formula A.2.1.

B = {v|v ∈ D − C, u ∈ C, (u, v) ∈ E}, (5)

where D, C, and E represent the node set of DAG and the node set of community and edge set of
DAG, respectively, and (u, v) indicates two directed edges < u, v > and < v, u >.

Finally, we will deduplicate the subgraphs formed by all community and node boundary pairs, i.e.,
remove isomorphic subgraphs. Finally, 38,803 and 29,581 non-isomorphic subgraphs were obtained
under the configurations of ‘Operator w/ Attributes’ and ‘Operator w/o Attributes’, respectively.
To obtain the final training, validation, and test sets, we split all non-isomorphic subgraphs in an
8:1:1 ratio. Specifically, under the ‘Operator w/ Attribute’ configuration, the training, validation, and
testing sets contain 31,282, 3,769, and 3,752 subgraphs, respectively, while under the ‘Operator w/o
Attribute’ configuration, they include 23,775, 2,907 and 2,899 subgraphs, respectively.

A.2.2 BASELINE MODEL CONFIGURATION

The architectures of baseline models represented by topological diagrams under the local operator
design paradigm are shown in Figure 9 and Table A.2.2 indicates the number of parameters. For
experiments with GAE and VGAE under the local operator design paradigm, we first pre-trained the
encoders of GAE and VGAE, then trained the linear layers for classification using the output from
encoders. For GAT, the outputs of multi-head attention of GAT are averaged instead of concatenated.
A.2.3 TRAINING CONFIGURATION

In this version, we set the random seed to 12345 and chose Adam as the optimizer for the local
operator design training process. Other hyperparameters were set as shown in the Table 10. The
experiments for local operator design were conducted on a server running Ubuntu 22.04.1 LTS. It has
four identical A800-80GB GPUs and an Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz with 112

iii

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 9: Number of Parameters of Local Operator Design Baseline Models.

Model Operator w/ Attributes Operator w/o Attributes
Number of Parameters Number of Parameters

GCN 7,301,433 809,145
GAT 26,852,041 5,153,353

SAGE 10,083,129 1,428,153
GAE-Encoder 6,089,216 1,763,840

GAE-Classification 2,261,817 94,905
VGAE-Encoder 6,614,016 2,288,640

VGAE-Classification 2,261,817 94,905

GCN

Node Embedding
(*, 1024)

GCNConv
(1024, 512)

ReLU

Dropout
(0.5)

GCNConv
(512, *)

Dropout
(0.5)

Softmax

GCN

Node Embedding
(*, 1024)

GCNConv
(1024, 512)

ReLU

Dropout
(0.5)

GCNConv
(512, *)

Dropout
(0.5)

Softmax

SAGE

Node Embedding
(*, 1024)

SAGEConv
(1024, 512)

ReLU

Dropout
(0.5)

SAGEConv
(512, *)

Dropout
(0.5)

Softmax

SAGE

Node Embedding
(*, 1024)

SAGEConv
(1024, 512)

ReLU

Dropout
(0.5)

SAGEConv
(512, *)

Dropout
(0.5)

Softmax

GAT

Node Embedding
(*, 1024)

GATConv
(1024, 512, heads=8)

ReLU

Dropout
(0.5)

GATConv
(512, *, heads=8)

Dropout
(0.5)

Softmax

GAT

Node Embedding
(*, 1024)

GATConv
(1024, 512, heads=8)

ReLU

Dropout
(0.5)

GATConv
(512, *, heads=8)

Dropout
(0.5)

Softmax

VGAE

Linear
(512, *)

VGAE Encoder

Node Embedding
(*, 1024)

GCNConv
(1024, 1024)

ReLU

GCNConv
(1024, 512)

GCNConv
(1024, 512)

GCNConv
(1024, 512)

GCNConv
(1024, 512)

Node Embedding
(*, 1024)

GCNConv
(1024, 1024)

ReLU

GCNConv
(1024, 512)

GCNConv
(1024, 512)

VGAE

Linear
(512, *)

VGAE Encoder

Node Embedding
(*, 1024)

GCNConv
(1024, 1024)

ReLU

GCNConv
(1024, 512)

GCNConv
(1024, 512)

GAE

Node Embedding
(*, 1024)

GCNConv
(1024, 1024)

ReLU

GCNConv
(1024, 512)

Linear
(512, *)

GAE Encoder

GAE

Node Embedding
(*, 1024)

GCNConv
(1024, 1024)

ReLU

GCNConv
(1024, 512)

Linear
(512, *)

GAE Encoder

Figure 9: Topological diagram of five baseline models: GCN, GAT, SAGE, GAE, and VGAE .

iv

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

cores. GAT, GCN, and SAGE were trained on four A800-80GB GPUs, while GAE and VGAE were
trained on one A800-80GB GPU.

Table 10: Training Details of Local Operator Design. ‘LR,’ ‘WD,’ and ‘BS’ in the header represent
Learning Rate, Weight Decay, and Batch Size, respectively.

Model Operator w/ Attributes Operator w/o Attributes
LR WD BS LR WD BS

GCN 1e-3 5e-5 512 1e-3 5e-5 512
GAT OOM OOM OOM 1e-3 5e-5 512

SAGE 1e-3 5e-5 512 1e-3 5e-5 512
GAE-Encoder 1e-4 5e-5 512 1e-4 5e-5 512

GAE-Classification 1e-3 5e-4 512 1e-3 5e-4 512
VGAE-Encoder 1e-4 5e-5 512 1e-4 5e-5 512

VGAE-Classification 1e-3 5e-4 512 1e-3 5e-4 512

A.2.4 METRICS

Accuracy (ACC): The ratio of correctly predicted instances to the total instances.

F1 Score (F1):

F1 =
2 · TP

2 · TP + FP + FN
, (6)

where TP, FP, and FN represent the number of true positives, false positives, and false negatives,
respectively.

Precision (Prec):

Precision =
TP

TP + FP
, (7)

where TP and FP represent the number of true positives and false positives.

Recall:
Recall =

TP
TP + FN

, (8)

where TP and FN represent the number of true positives and false negatives.

A.2.5 CHECKPOINT SELECTION

We chose checkpoints to test the performance of baseline models based on the weighted average of
ACC, F1 Score, Precision, and Recall reported during validation. In this version, all weights are set
to be the same. For the encoder of GAE and VGAE, we chose the checkpoint on training step 4000,
whose training loss remained stable.

A.2.6 RESULTS AND ANALYSIS

We set configuration as stated in Section A.2.3. Baseline models, including GCN, GAT, GAE, VGAE,
and SAGE, were used under the operator design paradigm. As shown in Table 11, all baseline
models achieve high accuracy but perform poorly in other metrics. The reason can be attributed
to the complexity of Younger and further to the complexity of the neural network architectures
in the real world. Another reason is that some typical types of operators appear more frequently
while others appear less frequently, causing the model to be biased toward predicting the majority of
operators. It can be seen that all baseline models in experiments w/o attributes achieve higher F1,
Precision, and Recall compared to those in experiments w/ attributes. This indicates that reducing the
variety of operators and making their distribution more uniform can improve the multi-classification
performance. In addition, among these baseline models, SAGE performs excellently on almost all
metrics. Notice that GAT lacks experiments with Operator w/ Attributes due to excessively large
parameter counts as shown in Table 9, resulting in out-of-memory issues during execution.

v

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: Local paradigm: operator design. Bold values represent the best-performing results. ‘Prec.’
in the header represents Precision.

Model Operator w/ Attributes Operator w/o Attributes
ACC↑ F1↑ Prec.↑ Recall↑ ACC↑ F1↑ Prec.↑ Recall↑

GCN 0.7454 0.1294 0.1666 0.1323 0.7627 0.2988 0.3750 0.2941
GAT OOM OOM OOM OOM 0.7163 0.2007 0.2519 0.1979
GAE 0.8173 0.0484 0.0658 0.0467 0.8179 0.1514 0.1815 0.1438

VGAE 0.8224 0.0724 0.0924 0.0712 0.8243 0.1969 0.2500 0.1881
SAGE 0.8049 0.1927 0.2385 0.1878 0.9238 0.3477 0.4144 0.3375

A.3 NODE EMBEDDING

A.3.1 CHECKPOINT SELECTION

To better illustrate the distribution of operators in Younger in high-dimensional space, we selected
checkpoints of baseline models according to the method from section A.2.5 and then extracted the
embeddings of operators with attributes and those without attributes from node embedding layer of
baseline models. Due to the problem about memory overflow, the visualization of ‘Operator w/o
Attributes’ about GAT is not presented. To compare the training effectiveness, we also extracted the
embeddings from the initial node embedding layer without loading any checkpoints.

A.3.2 VISUALIZATION

Figure 10-13 show the t-SNE visualization results of node embeddings before and after training
from GCN and SAGE with node features denoted as ‘Operator w/ Attributes.’ The orange points
represent Younger’s top 500 most frequently occurring operators. It can be observed that before
training, the distribution of node embeddings is relatively concentrated and chaotic. After training,
the distribution of embeddings representing high-frequency nodes selected and other low-frequency
nodes from Younger was well distinguished. This indicates an uneven distribution of node quantities
among different types, which introduces bias into the learning process of baseline models.

4 2 0 2 4
Dimension 1

4

2

0

2

4

Di
m

en
sio

n
2

t-SNE visualization
Other operators
Selected operators

Figure 10: Node embeddings before training
(GCN - Operator w/ Attributes)

12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Dimension 1

6

4

2

0

2

4

6

Di
m

en
sio

n
2

t-SNE visualization
Other operators
Selected operators

Figure 11: Node embeddings after training
(GCN - Operator w/ Attributes)

Figure 14-19 show the t-SNE visualization results of node embeddings before and after training from
GCN, GAT, and SAGE with node features denoted as ‘Operator w/ Attributes.’ The orange points
represent Younger’s top 20 most frequently occurring operators. It can be seen that the distribution of
node embeddings is relatively concentrated before training, while the distribution of all embeddings
is uniform after training. This result indicates baseline models learned the features of different nodes
well.

vi

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

4 2 0 2 4
Dimension 1

4

2

0

2

4

Di
m

en
sio

n
2

t-SNE visualization

Other operators
Selected operators

Figure 12: Node embeddings before training
(SAGE - Operator w/ Attributes)

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5
Dimension 1

4

2

0

2

4

6

Di
m

en
sio

n
2

t-SNE visualization
Other operators
Selected operators

Figure 13: Node embeddings after training
(SAGE - Operator w/ Attributes)

2 1 0 1 2 3
Dimension 1

4

3

2

1

0

1

2

Di
m

en
sio

n
2

t-SNE visualization
Other operators
Selected operators

Figure 14: Node embeddings before training
(GCN - Operator w/o Attributes)

300 200 100 0 100 200 300
Dimension 1

300

200

100

0

100

200

300

Di
m

en
sio

n
2

t-SNE visualization
Other operators
Selected operators

Figure 15: Node embeddings after training
(GCN - Operator w/o Attributes)

5 4 3 2 1 0 1 2 3
Dimension 1

4

3

2

1

0

1

2

3

4

Di
m

en
sio

n
2

t-SNE visualization
Other operators
Selected operators

Figure 16: Node embeddings before training
(GAT - Operator w/o Attributes)

40 30 20 10 0 10 20 30
Dimension 1

30

20

10

0

10

20

30

40

50

Di
m

en
sio

n
2

t-SNE visualization
Other operators
Selected operators

Figure 17: Node embeddings after training
(GAT - Operator w/o Attributes)

vii

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

3 2 1 0 1 2 3 4
Dimension 1

3

2

1

0

1

2

3

Di
m

en
sio

n
2

t-SNE visualization
Other operators
Selected operators

Figure 18: Node embeddings before training
(SAGE - Operator w/o Attributes)

200 100 0 100 200
Dimension 1

200

100

0

100

200

Di
m

en
sio

n
2

t-SNE visualization
Other operators
Selected operators

Figure 19: Node embeddings after training
(SAGE - Operator w/o Attributes)

100 50 0 50 100
Dimension 1

100

50

0

50

100

Di
m

en
sio

n
2

t-SNE visualization

Figure 20: Subgraph embeddings
(GCN - Operator w/ Attributes)

100 50 0 50 100
Dimension 1

100

50

0

50

100

Di
m

en
sio

n
2

t-SNE visualization

Figure 21: Subgraph embeddings
(GCN - Operator w/o Attributes)

150 100 50 0 50 100
Dimension 1

100

50

0

50

100

Di
m

en
sio

n
2

t-SNE visualization

Figure 22: Subgraph embeddings
(SAGE - Operator w/ Attributes)

100 50 0 50 100
Dimension 1

100

50

0

50

100

Di
m

en
sio

n
2

t-SNE visualization

Figure 23: Subgraph embeddings
(SAGE - Operator w/o Attributes)

viii

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

100 50 0 50 100
Dimension 1

100

50

0

50

100

Di
m

en
sio

n
2

t-SNE visualization

Figure 24: Subgraph embeddings
(GAT - Operator w/o Attributes)

100 75 50 25 0 25 50 75 100
Dimension 1

75

50

25

0

25

50

75

Di
m

en
sio

n
2

t-SNE visualization

Other models
resnet-101
resnet-50
resnet-18
roberta
vit-base
vit-large

Figure 25: Graph embeddings
(GCN - Operator w/ Attributes)

75 50 25 0 25 50 75 100
Dimension 1

75

50

25

0

25

50

75

Di
m

en
sio

n
2

t-SNE visualization

Other models
resnet-101
resnet-50
resnet-18
roberta
vit-base
vit-large

Figure 26: Graph embeddings
(GCN - Operator w/o Attributes)

75 50 25 0 25 50 75 100
Dimension 1

75

50

25

0

25

50

75

100

Di
m

en
sio

n
2

t-SNE visualization
Other models
resnet-101
resnet-50
resnet-18
roberta
vit-base
vit-large

Figure 27: Graph embeddings
(SAGE - Operator w/ Attributes)

80 60 40 20 0 20 40 60 80
Dimension 1

75

50

25

0

25

50

75

Di
m

en
sio

n
2

t-SNE visualization

Other models
resnet-101
resnet-50
resnet-18
roberta
vit-base
vit-large

Figure 28: Graph embeddings
(SAGE - Operator w/o Attributes)

ix

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

75 50 25 0 25 50 75
Dimension 1

80

60

40

20

0

20

40

60

80

Di
m

en
sio

n
2

t-SNE visualization
Other models
resnet-101
resnet-50
resnet-18
roberta
vit-base
vit-large

Figure 29: Graph embeddings
(SAGE - Operator w/o Attributes)

A.4 SUBGRAPH EMBEDDING

A.4.1 CHECKPOINT SELECTION

To better illustrate the distribution of subgraphs in Younger in high-dimensional space, we selected
checkpoints of baseline models according to the method from Section A.2.5. Then, we calculated the
embeddings of these subgraphs using operators with attributes and those without attributes.

A.4.2 VISUALIZATION

Figure 20-24 show the t-SNE visualization results of all subgraph embeddings under the GCN, GAT,
and SAGE models. Due to memory overflow in ‘Operator w/ Attributes’ of GAT, we only present
the visualization of ‘Operator w/o Attributes’ about GAT. As can be seen, all three models have
distinguished the embeddings of subgraphs well, but due to data bias, node embeddings were not
learned particularly well. Therefore, the models only distinguished the embeddings of subgraphs well
in a part of the spatial distribution (the boundary of the space). In addition, compared to ‘Operator w/o
Attributes,’ ‘Operator w/ Attributes’ has a finer granularity in distinguishing subgraph embeddings,
i.e., different clusters occupy less space.

A.5 GRAPH EMBEDDING

A.5.1 OBTAINING METHOD

We obtain the graph embeddings by averaging the embeddings of all subgraphs in each DAG.
Therefore, each baseline model can generate two types of graph embeddings: ‘Operator w/Attributes’
and ‘Operator w/o Attributes.’ However, due to memory overflow in ‘Operator w/ Attributes’ of GAT,
we only present the visualization of ‘Operator w/o Attributes’ about GAT.

A.5.2 VISUALIZATION

Figure 25-29 show the t-SNE visualization results of all graph embeddings under the GCN, GAT, and
SAGE models. We mark the embeddings of several commonly used models in figures in different
colors. Several architectures have shown almost similar results. It can be seen that, on the one hand,
the embeddings of DAGs based on the same architecture are very close or even overlap in the graph;
for example, there are many points of the RoBERTa (Liu et al., 2019) and ViT (Dosovitskiy et al.,
2020) architectures, which are Transformer-based (Vaswani et al., 2017) architectures, that are close
in distance or overlap. On the other hand, it can be seen that the Younger dataset covers multiple
common architectures well, indicating that Younger covers most of the neural network architectures

x

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

in the real world. In addition, the same architecture has multiple points of the same color in the
figures, indicating that the dataset contains various variants of this type of architecture.

xi

	Introduction
	Related Work
	Artificial Intelligence-Generated Neural Network Architecture
	Benchmarking Graph Neural Network

	Dataset Construction
	Step 1: Retrieving Neural Network Models
	Step 2: Converting Models to ONNX Format
	Step 3: Extracting DAGs From ONNX models
	Step 4: Filtering Out Isomorphic DAGs
	Open-Source Contribution and Global Collaboration

	Experiments
	Experimental Setup
	Homogeneous or Heterogeneous?
	Operator Configurations in the DAGs

	Statistical Analysis
	Low-Dimensional Statistical Information
	High-Dimensional Statistical Information

	AIGNNA Exploration
	Overview of AIGNNA Paradigms
	Local Paradigm
	Global Paradigm

	Conclusion and Future Work
	Experimental Details
	Local Data Flow Design
	Local Operator Design
	Node Embedding
	Subgraph Embedding
	Graph Embedding

