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ABSTRACT

Designing and optimizing neural network architectures typically require extensive
expertise, starting from handcrafted designs followed by manual or automated
refinement, which significantly hinders rapid innovation. To address these chal-
lenges, Younger is introduced as a comprehensive dataset derived from over 174K
real-world models across more than 30 tasks from various public model hubs. After
extensive processing and filtering, Younger includes 7,629 unique architectures,
each represented as a directed acyclic graph with detailed operator-level informa-
tion based on ONNX operator definitions, enabling compatibility across different
deep learning frameworks. The dataset is designed to support the emerging research
area of Artificial Intelligence-Generated Neural Network Architecture (AIGNNA),
which aims to automate their generation and refinement. Comprehensive statistical
analysis, including architecture component analyses, highlights the diversity and
complexity of architectures in Younger, revealing the potential for future research
in this domain. Initial experiments, including operator and dataflow predictions,
demonstrate the dataset’s utility for architecture exploration and evaluation, and
highlight its potential as a benchmark for graph neural networks. Furthermore,
an online platform ensures continuous maintenance and expansion of the dataset,
supporting global researchers in their endeavors. The dataset and source code are
publicly available to encourage further research and lower entry barriers in this
challenging domain.

1 INTRODUCTION

The proliferation of large language models like ChatGPT (OpenAI et al., 2023) has decisively
demonstrated the critical importance of large-scale data collection and innovative neural network
architecture design in advancing Artificial Intelligence (AI) (Schuhmann et al., 2022; Tang et al.,
2024), which has further highlighted the need for more efficient and effective architecture design
processes. As a result, in recent years, neural architecture search (NAS) has garnered significant
attention and research focus, aiming to address the limitations of manual architecture design in
handling increasingly complex AI tasks.

Despite the significant research attention NAS has received, it has not produced revolutionary results.
Major architectural shifts, such as the transition from RNNs and CNNs to Transformers, were
primarily driven by human designers (Vaswani et al., 2017). NAS frameworks such as DARTS (Liu
et al., 2018b) and datasets like NAS-Bench-* (e.g., NAS-Bench-101 (Ying et al., 2019), NAS-
Bench-NLP (Klyuchnikov et al., 2022), DeepNets-1M (Knyazev et al., 2021)) have automated the
architecture search process. Yet, they remain constrained by predefined search spaces, which refer to
specific macro-architecture topologies and a limited set of operator types. This limitation restricts the
diversity and novelty of architectures that can be explored, leaving significant room for improvement
in neural network architecture design innovation. Instead of creating fundamentally new designs,
NAS has primarily focused on pushing model performance within predefined architectural patterns,
limiting its ability to generate groundbreaking architectures.

To overcome the limitations of existing NAS frameworks and datasets, and to explore more diverse
and innovative architectures, the Younger dataset was developed. Unlike the predefined, constrained
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architecture search spaces in NAS datasets such as NAS-Bench-* and NAS frameworks like DARTS,
Younger offers a more flexible and diverse exploration space, enabling researchers to break free from
rigid macro-architecture topologies and a limited set of operator types.

The Younger dataset is constructed based on the Open Neural Network Exchange (ONNX) operator
definitions (Bai et al., 2019), ensuring compatibility across various deep learning frameworks.
Derived from approximately 174K real-world models across more than 30 tasks from multiple public
repositories (as listed in Table 3), these models are first converted into the ONNX format, then
transformed into directed acyclic graphs (DAGs), where nodes represent ONNX operators with
detailed configurations and hyperparameters, and edges represent data flows between operators. To
ensure uniqueness, isomorphic architectures are filtered out. Additionally, model parameter values
are excluded due to concerns about privacy and security. Finally, Younger includes 7,629 distinct
neural network architectures and supports all operator types defined by ONNX (about 200 types),
striking a balance between the limited operator types in traditional NAS spaces, which typically
define only a few operators, and the extensive operator sets in deep learning frameworks like PyTorch,
which contains over 2,000 operators, as shown in Table 1. This balance provides a wider range of
operator types and data flow configurations than existing NAS spaces while maintaining a manageable
exploration space. This flexibility enables researchers to explore novel architectures better suited to
the rapidly evolving demands of AI tasks, overcoming the constraints of traditional search spaces.

Extensive statistical analyses were conducted at the operator, component, and architecture levels,
validating Younger’s capacity to support various design patterns and configurations. These analyses
confirmed the dataset’s potential for advancing neural architecture research, demonstrating its rich
prior knowledge and feasibility in real-world applications. The diversity and complexity of the
architectures in Younger provide a robust foundation for exploring new paradigms in neural network
design and optimization.

Based on these findings, the Younger dataset has provided a strong foundation for introducing the
concept of Artificial Intelligence-Generated Neural Network Architecture (AIGNNA), a powerful
approach to automate the generation of neural architectures. This process is characterized by two
paradigms: 1) Local, which focuses on fine-tuning and optimizing components of pre-existing
architectures by selecting the most suitable operator types and data flows; and 2) Global, which
represents the more challenging task of generating entire neural network architectures from scratch,
fully automating the design process.

Initial experiments have demonstrated the success of the Local paradigm in optimizing pre-existing
architectures, particularly in selecting the most suitable operator types and data flows. However,
as the Global paradigm involves generating entire architectures from scratch, it remains an open
challenge without readily available methods to automate this process fully. Consequently, while
the potential of Younger to support such a paradigm is clear, further research and development are
required before comprehensive experiments can be conducted in this area.

To support global collaboration and continuous dataset expansion, Younger is publicly available
along with a platform that allows researchers worldwide to upload their models. These models are
automatically converted into DAG format and integrated into future releases of Younger, ensuring
the dataset remains up-to-date. This open platform lowers the barriers to entry for research in neural
architecture generation, empowering researchers worldwide to contribute to and benefit from this
evolving field.

2 RELATED WORK

2.1 ARTIFICIAL INTELLIGENCE-GENERATED NEURAL NETWORK ARCHITECTURE

The design and optimization of neural network architectures have historically been labor-intensive
tasks, relying heavily on the intuition and expertise of human researchers. This process has evolved
from manual designs, exemplified by early architectures such as AlexNet (Krizhevsky et al., 2012),
ResNet (He et al., 2016), LSTM (Hochreiter & Schmidhuber, 1997), and Transformer (Vaswani et al.,
2017), to more automated methods employing neural architecture search (NAS) like NASNet (Zoph
et al., 2018) and DARTS (Liu et al., 2018b).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Although these manually designed architectures were groundbreaking at the time, they were con-
strained by the reliance on expert knowledge and required significant time and effort to design.
This inefficiency became a growing challenge as the scale and diversity of AI tasks expanded. The
emergence of NAS frameworks marked a significant advancement in automating the design process,
aiming to improve the efficiency and adaptability of architecture generation.

NAS frameworks such as DARTS (Liu et al., 2018b) and benchmarks like NAS-Bench-101 (Ying
et al., 2019) and NATS-Bench Dong et al. (2021) introduced methods that automate the exploration
of predefined search spaces, typically consisting of fixed macro-architectures and limited operator
types. While these frameworks automate the search for optimal cells (building blocks or micro-
architectures) (Zoph et al., 2018; Real et al., 2019; Liu et al., 2018a;b; Pham et al., 2018; Tan & Le,
2019; Klein & Hutter, 2019), they are inherently restricted by these predefined search spaces. As a
result, the innovation potential is constrained, limiting the diversity and novelty of the architectures
that can be explored.

Addressing these challenges, the Younger dataset and the AIGNNA methodology offer a revolutionary
departure from these constraints. By eliminating the need for predefined macro-architectures, Younger
allows for a more explorative approach to architecture design, supporting various operator types and
data flow configurations, as seen in Table 1. This flexibility facilitates the generation of innovative,
customized architectures better suited to specific applications and more adaptable to emerging
challenges in neural network design.

Table 1: The difference between Younger and NAS frameworks or datasets

Dataset / Framework #op-types #tasks
NAS-Bench-101 (Ying et al., 2019) 3 (CNN) 1 (Image)

NAS-Bench-201 (Dong & Yang, 2019) 5 (CNN) 1 (Image)
NAS-Bench-NLP (Klyuchnikov et al., 2022) 6 (RNN) 1 (Text)

NAS-Bench-ASR (Mehrotra et al., 2020) 6 (CNN) 1 (Audio)
DeepNets-1M (Knyazev et al., 2021) 15 (CNN) 1 (Image)

NASNet (Zoph et al., 2018) 13 (CNN) 1 (Image)
DARTS (Liu et al., 2018b) 4 (RNN) + 7 (CNN) 2 (Image & Text)

Younger ∼ 200 (ONNX) 31 (Unlimited)

2.2 BENCHMARKING GRAPH NEURAL NETWORK

Graph neural networks (GNNs) have become a powerful tool for processing graph-structured data
across various domains, such as social network analysis, recommendation systems, and molecular
chemistry. Traditional benchmark datasets for GNN research, such as Cora, CiteSeer, PubMed (Yang
et al., 2016), QM9 (Wu et al., 2018), and ZINC (Gómez-Bombarelli et al., 2018), typically contain
graphs with relatively simple and small-scale node and edge structures.

Table 2: The difference between Younger and GNN datasets

Dataset #graphs #nodes #edges #node-types
Cora (Yang et al., 2016) 1 2,708 10,556 N/A

CiteSeer (Yang et al., 2016) 1 3,327 9,104 N/A
PubMed (Yang et al., 2016) 1 19,717 88,648 N/A

ZINC (Gómez-Bombarelli et al., 2018) 49,456 ∼ 23.2 ∼ 49.8 10
QM9 (Wu et al., 2018) 130,831 ∼ 18.0 ∼ 37.3 5

Younger 7,629 ∼ 1,658 ∼ 2,113 ∼ 200

Younger introduces a new challenge for GNN research. As shown in Table 2, unlike traditional GNN
datasets, Younger features significantly more complex and diverse graph structures, with a notable
increase in the number of nodes and edges per graph. Additionally, it supports up to 200 operator
types defined by ONNX, far surpassing the node types found in existing datasets. This increased
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complexity requires GNNs to handle more extensive and intricate graph topologies, diverse operator
types, and data flow configurations.

Despite the increased complexity, Younger maintains a high overall number of DAGs, providing a bal-
anced dataset that offers researchers a broad range of diversity and test scenarios. This balance makes
Younger an ideal benchmark for evaluating the scalability, robustness, and generalizability of GNN
algorithms while presenting new challenges and opportunities for advancing GNN methodologies.

3 DATASET CONSTRUCTION

Collecting real-world neural network architectures is a complex task that demands expertise in deep
learning frameworks, especially ONNX (Bai et al., 2019), along with significant computational and
human resources. These challenges can be prohibitive for many researchers. A suite of automated
tools has been developed to streamline the neural network architecture collection process, facilitate
broad support for AIGNNA, and reduce the labor and computational costs associated with data
collection.

The dataset construction process involves four key steps: (1) retrieving neural network models, (2)
converting models to ONNX format, (3) extracting DAGs from ONNX models, and (4) filtering out
isomorphic DAGs to ensure the uniqueness of the architectures. Figure 1 illustrates the entire pipeline.
Below is a detailed description of each step:
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Figure 1: Overview of the construction pipeline

3.1 STEP 1: RETRIEVING NEURAL NETWORK MODELS

This study draws from four prominent open-source model repositories to ensure a broad and diverse
selection of neural network models. Kaggle Models1, PyTorch Hub2, ONNX Model Zoo3, and Hug-
ging Face Hub4 are leveraged, collectively encompassing over 30 distinct deep learning tasks. These
repositories span diverse deep learning tasks and frameworks, including PyTorch and TensorFlow,
ensuring comprehensive coverage of current deep learning models.

To accommodate the rapid growth of repositories like Hugging Face Hub, automated model acquisition
tools were implemented to enable continuous updates and ensure timely iteration of the Younger
dataset. Although Kaggle Models, PyTorch Hub, and ONNX Model Zoo update frequency is slower,
automation tools have also been developed to facilitate efficient model retrieval from these sources.
Table 3 provides detailed information about the selected repositories.

1Kaggle Models: https://www.kaggle.com/models
2PyTorch Hub: https://pytorch.org/hub/
3ONNX Model Zoo: https://onnx.ai/models/
4Hugging Face Hub: https://huggingface.co/models
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3.2 STEP 2: CONVERTING MODELS TO ONNX FORMAT

Different deep learning frameworks define distinct operators, which can lead to increased dataset
usage costs and inefficiencies in architecture design when models lack a unified representation. To
address this issue, the Open Neural Network Exchange (ONNX) format was adopted as the standard
representation for models in the Younger dataset. ONNX provides a standardized set of operators,
enabling model exchange and deployment across various deep learning frameworks (such as PyTorch
and TensorFlow).

In addition to standardizing operator definitions, ONNX serves as a unified representation, sig-
nificantly reducing the complexity of neural architecture representation by consolidating operator
definitions across frameworks. For instance, ONNX reduces the 2,000+ PyTorch operators to approx-
imately 200 standard operators. Several open-source tools, including Optimum5 and tf2onnx6, were
utilized to convert models into ONNX format.

3.3 STEP 3: EXTRACTING DAGS FROM ONNX MODELS

To address security and privacy concerns, and because neural network architecture design does
not require specific parameter values, all parameter data were removed from the ONNX models.
Removing parameter data not only addresses security and privacy concerns but also reflects the focus
on architecture design, independent of parameterization. Additionally, ONNX models defined in
Protocol Buffers7 format are less suited for direct analysis by standard graph processing tools (e.g.,
NetworkX (Hagberg et al., 2008)) or deep learning frameworks (e.g., PyTorch Geometric (Fey &
Lenssen, 2019)) compared to directed acyclic graphs (DAGs). A tool was developed to convert ONNX
models into DAGs to improve compatibility and streamline analysis. This transformation ensures
architecture designs can be shared while maintaining parameter privacy and avoiding unnecessary
parameter information.

In these DAGs, each operator within a neural network architecture is represented as a node, with
detailed information such as the operator type and its attribute definitions recorded. Directed edges
represent the data flows between operators, and each node’s inflow and outflow order is meticulously
documented. The DAGs are represented using the open-source graph library NetworkX, enabling
seamless integration with various analysis tools.

Table 3: Statistical information during the construction process of Younger

Public Model Hubs Retrievable Convertable Retrieved Converted Filtered
Hugging Face Hub 691K 325K 143.5K 96K

N/AONNX Model Zoo 12K 12K 12K 74K
PyTorch Hub N/A 121 121 121

Kaggle Models 5K 4K 4K 4K
Total 743.5K 341K 159.5K 174K 7,629

3.4 STEP 4: FILTERING OUT ISOMORPHIC DAGS

Public model hubs often contain many isomorphic neural network architectures, making it necessary
to filter these architectures to ensure the uniqueness of each architecture in the dataset. The Weisfeiler-
Lehman (WL) graph hash algorithm (Shervashidze et al., 2011) was employed to compute the hash of
extracted DAG and identify heterogeneous architectures. The WL algorithm ensures that isomorphic
graphs receive identical hash values while heterogeneous graphs are assigned distinct hashes, firmly
guaranteeing architectural diversity.

Operator types and their attributes, represented in the nodes, were used as iteration objects within the
WL hash algorithm. This process ensures that all architectures in the dataset are heterogeneous, both
in terms of hyperparameters and operator types. After applying this filtering method, 7,629 unique
neural network architectures were retained from an initial pool of about 174K real-world models.

5Optimum: https://github.com/huggingface/optimum
6tf2onnx: https://github.com/onnx/tensorflow-onnx
7Protocol Buffers https://protobuf.dev/
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3.5 OPEN-SOURCE CONTRIBUTION AND GLOBAL COLLABORATION

After the whole process, the resulting dataset serves as a foundation for global collaboration and open-
source contribution. Overall, the open-source nature of Younger alleviates the need for researchers
to invest significant resources in constructing similar datasets. The creation of Younger required
substantial computational resources, approximately 8,000 CPU hours, and considerable human effort,
including the development of around 24K lines of specialized code. By making both the dataset and
its construction methodology open-source, along with accessible interfaces and websites, researchers
worldwide can easily contribute to the maintenance and expansion of Younger or build similar
datasets. This global collaboration ensures that Younger can continuously evolve to meet the needs
of the research community.

When the first version of Younger began construction, there were 743.5K publicly available models,
of which 341K could be converted into ONNX format. As of its first release, 174K models were
extracted for processing, resulting in 7,629 unique heterogeneous neural network architectures.
Despite the vast number of available deep learning models and their rapid growth, less than 1% of
these models represent heterogeneous and effective architectures. This notably low proportion of
heterogeneous architectures highlights the limitations of current neural network design methods,
both manual and NAS-based, in fostering architectural innovation. Younger breaks through these
limitations by offering a foundational platform for more flexible and expansive neural architecture
design research. It also lays the groundwork for the development of Artificial Intelligence-Generated
Neural Network Architecture (AIGNNA), an initiative aimed at exploring new design methods
beyond traditional frameworks.

4 EXPERIMENTS

The experiments are divided into two parts: one focuses on the statistical analysis of the Younger
dataset, and the other involves an initial exploratory experiment based on the Younger dataset to
investigate the proposed AIGNNA.

4.1 EXPERIMENTAL SETUP

4.1.1 HOMOGENEOUS OR HETEROGENEOUS?

Neural network operators vary significantly in their attributes. For example, a Convolution (Conv)
operator may include attributes such as dilations, kernel shape, and strides, whereas a Batch Nor-
malization operator contains attributes like epsilon and momentum. This diversity poses a critical
question in graph-based neural network architecture design: should these architectures be treated as
homogeneous or heterogeneous graphs?

In the homogeneous graph approach, all nodes represent the same type (i.e., "operator"), ignoring
the specific operator type or its attributes. In contrast, a heterogeneous graph treats the nodes as
distinct operator types, capturing the full diversity of operator behaviors and configurations. Although
heterogeneous graphs more accurately reflect the complexity of neural network architectures, they
introduce additional challenges in analysis and design.

For this study, all architectures in the Younger dataset are treated as homogeneous graphs. This sim-
plification allows the focus to remain on the structural and topological properties of the architectures
without introducing excessive variables into the analysis. Future work may explore the treatment of
Younger as a heterogeneous graph dataset.

4.1.2 OPERATOR CONFIGURATIONS IN THE DAGS

Given that the DAG nodes contain discrete information such as operator types and integer attributes,
processing node features using conventional approaches can be challenging. To address this, two
configurations are explored for handling operator attributes:

Operator w/o Attributes: This configuration treats all nodes based solely on their operator types
without considering the detailed attribute configurations. This reduces the number of node features to
match the size of the ONNX operator set, streamlining the analysis.

6
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Operator w/ Attributes: In this approach, operators of the same type but with different attribute
configurations are treated as distinct node features. This significantly increases the number of
node features, adding complexity to the learning process but more accurately reflecting the detailed
structure of the operators. The subsequent experiments will evaluate these two configurations to
determine their impact on the learning process.

4.2 STATISTICAL ANALYSIS

Statistical analysis is conducted from two perspectives: 1) analyzes lower-dimension statistical
information, such as the distribution of the number of nodes in each graph and the operator distribution
in Younger. 2) analyzes high-dimension statistical information, including the distribution of three
different level granularity: operator, subgraph, and graph.

4.2.1 LOW-DIMENSIONAL STATISTICAL INFORMATION

The statistics between Younger and conventional graph datasets are compared. From Table 2 and
Figure 2 (a), Younger contains the most extensive distribution of the number of nodes in the graph,
ranging from graphs containing only a dozen nodes to graphs containing hundreds of thousands of
nodes. In addition, Younger also contains enough graphs compared to most graph datasets, which
makes it further challenging to conduct GNNs on Younger. Figure 2 (b) shows Younger’s top 30
operators with the highest frequency. The dataset has a great diversity of operator types, including
tensor deformations (e.g., Unsequeeze, Reshape), arithmetic operations (e.g., Add, Conv, MatMul),
logical operations (e.g., Equal), and quantization (e.g., DynamicQuantizeLinear).
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Figure 2: Distribution of #nodes and #edges and top 30 ONNX operators. (a) The distribution of
the number of graph nodes and edges in Younger; (b) The top 30 ONNX operators have the highest
frequency in Younger.

4.2.2 HIGH-DIMENSIONAL STATISTICAL INFORMATION

Due to the nonlinear nature of the graph, embedding techniques were utilized to study the distribution
properties of architectures in Younger. Specifically, the GCN Kipf & Welling (2017) network trained
in subsection 4.3.2 for operator design is used to obtain the specific embeddings. In Figure 3 and 4,
orange dots represent the operators that appear in Younger’s top 500 frequencies. After training,
GCN gradually extracts the high-frequency operators from the original distribution and aggregates
them. This reveals that learning the distribution of long-tailed operators in the dataset is a highly
challenging problem. The appendix provides more detailed experimental content.

Node Embedding Figure 3-4 show the t-SNE visualization results of node embeddings before and
after training from GCN with node features denoted as ‘Operator w/ Attributes.’ The orange points
represent Younger’s top 500 most frequently occurring operators. It can be observed that before
training, the distribution of node embeddings is relatively concentrated and chaotic. After training,
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the distribution of embeddings representing high-frequency nodes selected and other low-frequency
nodes from Younger was well distinguished. This indicates an uneven distribution of node quantities
among different types, which introduces bias and challenges to the learning process of baseline
models.
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Figure 3: Node embeddings before training
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Figure 4: Node embeddings after training
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Figure 5: Subgraph embeddings
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Figure 6: Graph embeddings

Subgraph Embedding Figure 5 shows the t-SNE visualization results of all subgraph embeddings
under the GCN model. As can be seen, the GCN model have distinguished the embeddings of
subgraphs well, but due to data bias, node embeddings were not learned particularly well. Therefore,
the model only distinguished the embeddings of subgraphs well in a part of the spatial distribution
(the boundary of the space).

Graph Embedding Figure 6 shows the t-SNE visualization results of all graph embeddings under the
GCN model. The embeddings of several commonly used models in figures are marked in different
colors. Several architectures have shown almost similar results. It can be seen that, on the one hand,
the embeddings of DAGs based on the same architecture are very close or even overlap in the graph;
for example, there are many points of the RoBERTa (Liu et al., 2019) and ViT (Dosovitskiy et al.,
2020) architectures, which are Transformer-based (Vaswani et al., 2017) architectures, that are close
in distance or overlap. On the other hand, it can be seen that the Younger dataset covers multiple
common architectures well, indicating that Younger covers most of the neural network architectures

8
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in the real world. In addition, the same architecture has multiple points of the same color in the
figures, indicating that the dataset contains various variants of this type of architecture.

4.3 AIGNNA EXPLORATION

Experiments were conducted on the Younger dataset for global and local paradigms to verify the
feasibility and effectiveness of the proposed two paradigms for AIGNNA. The results indicate that
exploring AIGNNA based on Younger is feasible, demonstrating Younger’s potential as a benchmark
dataset for graph neural networks.

4.3.1 OVERVIEW OF AIGNNA PARADIGMS

To advance the development of AIGNNA based on the Younger dataset, two paradigms for neural
network architecture design are introduced, each tailored to different real-world application scenarios.
Figure 7 provides an intuitive visualization of these paradigms.
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Figure 7: Paradigms of the AIGNNA

Local: Architecture Refinement In Detail.The local paradigm addresses the need to fine-tune
specific aspects of existing neural network architectures. This approach is divided into operator and
data flow designs, as shown in Figure 7. Operator Design involves determining the most suitable type
of operator for a given node based on local or global architectural information, as illustrated in the
leftward of Figure 7. This design assesses potential replacements for current operators and suggests
appropriate operators for new nodes based on neighboring structural information.

The second type, data flow design, evaluates the existence of data flows between operators. This
fine-tuning method determines whether a directed edge representing data flow should connect any
two nodes, utilizing insights from local and global architectural contexts.

Challenges within the local paradigm arise from the vast diversity of operators and the binary nature
of data flow decisions (existing or not). The efficacy of this paradigm is assessed by employing five
different graph neural networks as baselines, focusing on operator and data flow design. Operator
design presents a greater challenge than data flow design.

Global: Architecture Design From Scratch. Designing neural network architectures from scratch
is an open and complex challenge. Unlike neural architecture search, which limits the search
space to a predefined macro-architecture while optimizing micro-architectural elements for specific
performances, the global paradigm seeks to generate comprehensive neural network architectures
incorporating detailed operator-level elements from the ground up.

As shown in the rightward flowchart of Figure 7, this generative process is conditioned on specific
properties, denoted by z in Figure 7, such as a noise that represents the architecture’s intended
application or required characteristics. Moreover, the architecture’s design objectives are defined
by the goals it needs to achieve. Importantly, global paradigms can also iteratively leverage local
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paradigms to progressively achieve their comprehensive design objectives. To assess the potential
and feasibility of the global paradigm, a robust baseline is implemented for validation.

4.3.2 LOCAL PARADIGM

Data Flow Design: GCN, GAT (Brody et al., 2022), and GraphSAGE (Hamilton et al., 2017) are
employed under the data flow design paradigm to evaluate the effectiveness of neural architecture
refinement on the Younger dataset. The results are shown in Table 4. All models have achieved good
performance on the Younger dataset, which proves that existing graph neural networks are more
suitable for predicting data flows in neural network architectures. Additionally, it can be seen that
almost all models perform better without attributes because reducing the number of node features on
the graph makes learning them easier.

Table 4: Local paradigm: data flow design

Model Operator w/ Attributes Operator w/o Attributes
AUC↑ F1↑ AP↑ AUC↑ F1↑ AP↑

GCN 0.9922 0.7881 0.9913 0.9938 0.7791 0.9929
GAT 0.8997 0.8079 0.8720 0.9094 0.7964 0.8901

SAGE 0.9169 0.8033 0.8940 0.9252 0.8002 0.9026

Operator Design: Five different baselines, GCN, GAT, GAE (Kipf & Welling, 2016), VGAE (Kipf &
Welling, 2016), and GraphSAGE, are utilized for ten experiments under the operator design paradigm,
as shown in Table 5. Despite the high accuracy achieved by all baselines, the F1 score, Precision, and
Recall remain low. This is primarily attributed to the complex graph structures in Younger, which
are characterized by many operator types. Among these, multiple kinds of operators infrequently
occur, posing challenges to achieving robust multi-classification performance. In experiments without
attributes, higher values for F1, Precision, and Recall were observed compared to scenarios with
attributes. This result further highlights the inherent complexity of the dataset and its influence on
classification performance.

Table 5: Local paradigm: operator design

Model Operator w/ Attributes Operator w/o Attributes
ACC↑ F1↑ Prec.↑ Recall↑ ACC↑ F1↑ Prec.↑ Recall↑

GCN 0.8684 0.1451 0.1713 0.1466 0.8360 0.2987 0.3657 0.2788
GAT OOM OOM OOM OOM 0.7139 0.2022 0.2532 0.2039
GAE 0.9016 0.0537 0.0728 0.0513 0.9073 0.1745 0.2036 0.1700

VGAE 0.8243 0.0716 0.0891 0.0707 0.9137 0.2207 0.2654 0.2132
SAGE 0.8984 0.2028 0.2383 0.1996 0.9250 0.3646 0.4323 0.3532

4.3.3 GLOBAL PARADIGM

In the global paradigm, the graph generation model DiGress, which employs a diffusion model
for graph generation, was adopted. Due to computing resource constraints and the fact that some
architectures in Younger have node counts reaching hundreds of thousands, only architectures with
node counts in the range of [1, 300] were selected for training. The DiGress model achieved a
negative log-likelihood of at least 345.4988 on the test set. As the global paradigm presents a highly
challenging task, further research in this area is planned for the future.

5 CONCLUSION AND FUTURE WORK

This article introduces Younger, a dataset of neural network architectures extracted from real-world
models across various public model repositories. This dataset proposes a new challenging field:
Artificial Intelligence-Generated Neural Network Architecture (AIGNNA). Two critical challenges
regarding neural network architecture design are introduced within this field: the Global Design
Paradigm and the Local Design Paradigm. Preliminary experiments have demonstrated the potential
and effectiveness of Younger’s neural architecture design in this emerging field, encouraging more
researchers to explore this promising.
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A EXPERIMENTAL DETAILS

This section offers a more detailed examination of the experiments discussed in the main paper.
Specifically, it addresses five critical components: Local Data Flow Design and Local Operator
Design within the Local Paradigm and Node, Subgraph, and Graph Embedding in the context of
Statistical Analysis. It offers a comprehensive introduction and discussion of dataset splits, training
details, model selection, results, and analytical insights.

A.1 LOCAL DATA FLOW DESIGN

A.1.1 DATASET SPLITS

Before splitting the dataset, we removed graphs with nodes or edges less than one from the ‘Filter’
dataset. Subsequently, the dataset was divided into training, validation, and test sets in a ratio of
8:1:1 with a random seed to be set as 1234. To better meet the need for local data flow design, we
removed graphs in the validation set and test set with operator type not appearing in the training set
to maintain training performance. Ultimately, there were 5994, 690, and 685 unique architectures
in training, validation, and test sets for node features denoted as ‘Operator w/ Attributes.’ For node
features denoted as ‘Operator w/o Attributes,’ there were 5612, 639, and 648 unique architectures in
training, validation, and test sets, respectively.

A.1.2 BASELINE MODEL CONFIGURATION

The architectures of three baseline models represented by topological diagrams under the local data
flow design paradigm are shown in Figure 8 and Table A.1.2 indicates the number of parameters.
It is worth mentioning that the outputs of multi-head attention of GAT are averaged instead of
concatenated.

Table 6: Number of Parameters of Local Data Flow Design Baseline Models.

Model Operator w/ Attributes Operator w/o Attributes
Number of Parameters Number of Parameters

GCN 5,360,384 849,664
GAT 9,960,192 5,449,472

SAGE 6,015,744 1,505,024

A.1.3 TRAINING CONFIGURATION

In this version, we set the random seed to 12345 and chose Adam as the optimizer for the local data
flow design training process. Other hyperparameters were set as shown in Table 7. The experiments
for local operator design were conducted on a server running Ubuntu 22.04.1 LTS. It has four identical
A800-80GB GPUs and an Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz with 112 cores. All the
baseline models for data flow design were trained on four identical A800-80GB GPUs.
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Figure 8: Topological diagram of three baseline models: GCN, GAT, and SAGE .

Table 7: Training Details of Local Data Flow Design. ‘LR,’ ‘WD,’ and ‘BS’ in the header represent
Learning Rate, Weight Decay, and Batch Size, respectively

Model Operator w/ Attributes Operator w/o Attributes
LR WD BS LR WD BS

GCN (Kipf & Welling, 2017) 1e-4 5e-5 1 1e-4 5e-5 1
GAT (Brody et al., 2022) 1e-4 5e-5 1 1e-4 5e-5 1

SAGE (Hamilton et al., 2017) 1e-4 5e-5 1 1e-4 5e-5 1

A.1.4 METRICS

Area under the Receiver Operating Characteristic Curve (AUC):

TPR =
TP

TP + FN
, (1)

FPR =
FP

FP + TN
. (2)

For the Receiver Operating Characteristic (ROC) Curve, the Y axis represents the true positive rate
(TPR) while the X axis represents the false positive rate (FPR). A value of AUC close to 1 represents
a better classification prediction performance.

F1 Score (F1):
F1 =

2 · TP
2 · TP + FP + FN

, (3)

where TP, FP, and FN represent the number of true positives, false positives, and false negatives,
respectively.

Average Precision (AP):

AP =

N∑
n=1

(Rn −Rn−1)Pn, (4)

where R and P represent the precision and recall, while n denotes the nth threshold.

A.1.5 CHECKPOINT SELECTION

We chose checkpoints to test the performance of baseline models based on the weighted average of all
the metrics reported during validation. The weighted averages of AUC, F1, and AP were calculated
to measure the performance of baseline models. In this version, all weights are set to be the same.
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A.1.6 RESULTS AND ANALYSIS

We set up our configuration as stated in Section A.1.3 and used GCN, GAT, and GraphSAGE for
six experiments under the data flow design paradigm on Younger. As shown in Table 8, these three
baseline models perform well on all metrics. It is worth noting that GCN outperforms other models
in all metrics except F1 Score, regardless of whether the operators have attributes.

Table 8: Local paradigm: data flow design. Bold values represent the best-performing results.

Model Operator w/ Attributes Operator w/o Attributes
AUC↑ F1↑ AP↑ AUC↑ F1↑ AP↑

GCN (Kipf & Welling, 2017) 0.9933 0.7893 0.9924 0.9949 0.7907 0.9942
GAT (Brody et al., 2022) 0.9195 0.8023 0.8974 0.9133 0.7960 0.8937

SAGE (Hamilton et al., 2017) 0.9702 0.8005 0.9682 0.8991 0.8053 0.8591

A.2 LOCAL OPERATOR DESIGN

A.2.1 DATASET SPLITS

Due to the lack of relevant research on extracting building blocks for neural network architecture.
Therefore, we performed community detection on all DAGs (Neural Network Architecture) in the
‘Filter’ dataset to extract the building blocks of the neural network architecture. Through community
detection, we can identify the closely connected node sets in the graph to help identify subsets of
nodes with specific correlations or functional associations. Although there is no evidence to suggest
that the subgraphs extracted by community detection are effective building blocks for neural network
architecture, in this paper, it is reasonable to use this method to extract subgraphs for preliminary
validation to test the feasibility of Local Operator Design.

We adopt the Clauset Newman Moore Grey modularity maximization method (Clauset et al., 2004)
as the community detection algorithm and set it to detect at least one community, the DAG itself. For
each community, we simultaneously query its node boundary and label it as the node to be predicted.
The community and node boundary form a new subgraph, and the definition of node boundary is
shown in Formula A.2.1.

B = {v|v ∈ D − C, u ∈ C, (u, v) ∈ E}, (5)

where D, C, and E represent the node set of DAG and the node set of community and edge set of
DAG, respectively, and (u, v) indicates two directed edges < u, v > and < v, u >.

Finally, we will deduplicate the subgraphs formed by all community and node boundary pairs, i.e.,
remove isomorphic subgraphs. Finally, 38,803 and 29,581 non-isomorphic subgraphs were obtained
under the configurations of ‘Operator w/ Attributes’ and ‘Operator w/o Attributes’, respectively.
To obtain the final training, validation, and test sets, we split all non-isomorphic subgraphs in an
8:1:1 ratio. Specifically, under the ‘Operator w/ Attribute’ configuration, the training, validation, and
testing sets contain 31,282, 3,769, and 3,752 subgraphs, respectively, while under the ‘Operator w/o
Attribute’ configuration, they include 23,775, 2,907 and 2,899 subgraphs, respectively.

A.2.2 BASELINE MODEL CONFIGURATION

The architectures of baseline models represented by topological diagrams under the local operator
design paradigm are shown in Figure 9 and Table A.2.2 indicates the number of parameters. For
experiments with GAE and VGAE under the local operator design paradigm, we first pre-trained the
encoders of GAE and VGAE, then trained the linear layers for classification using the output from
encoders. For GAT, the outputs of multi-head attention of GAT are averaged instead of concatenated.
A.2.3 TRAINING CONFIGURATION

In this version, we set the random seed to 12345 and chose Adam as the optimizer for the local
operator design training process. Other hyperparameters were set as shown in the Table 10. The
experiments for local operator design were conducted on a server running Ubuntu 22.04.1 LTS. It has
four identical A800-80GB GPUs and an Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz with 112
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Table 9: Number of Parameters of Local Operator Design Baseline Models.

Model Operator w/ Attributes Operator w/o Attributes
Number of Parameters Number of Parameters

GCN 7,301,433 809,145
GAT 26,852,041 5,153,353

SAGE 10,083,129 1,428,153
GAE-Encoder 6,089,216 1,763,840

GAE-Classification 2,261,817 94,905
VGAE-Encoder 6,614,016 2,288,640

VGAE-Classification 2,261,817 94,905
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Figure 9: Topological diagram of five baseline models: GCN, GAT, SAGE, GAE, and VGAE .
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cores. GAT, GCN, and SAGE were trained on four A800-80GB GPUs, while GAE and VGAE were
trained on one A800-80GB GPU.

Table 10: Training Details of Local Operator Design. ‘LR,’ ‘WD,’ and ‘BS’ in the header represent
Learning Rate, Weight Decay, and Batch Size, respectively.

Model Operator w/ Attributes Operator w/o Attributes
LR WD BS LR WD BS

GCN 1e-3 5e-5 512 1e-3 5e-5 512
GAT OOM OOM OOM 1e-3 5e-5 512

SAGE 1e-3 5e-5 512 1e-3 5e-5 512
GAE-Encoder 1e-4 5e-5 512 1e-4 5e-5 512

GAE-Classification 1e-3 5e-4 512 1e-3 5e-4 512
VGAE-Encoder 1e-4 5e-5 512 1e-4 5e-5 512

VGAE-Classification 1e-3 5e-4 512 1e-3 5e-4 512

A.2.4 METRICS

Accuracy (ACC): The ratio of correctly predicted instances to the total instances.

F1 Score (F1):

F1 =
2 · TP

2 · TP + FP + FN
, (6)

where TP, FP, and FN represent the number of true positives, false positives, and false negatives,
respectively.

Precision (Prec):

Precision =
TP

TP + FP
, (7)

where TP and FP represent the number of true positives and false positives.

Recall:
Recall =

TP
TP + FN

, (8)

where TP and FN represent the number of true positives and false negatives.

A.2.5 CHECKPOINT SELECTION

We chose checkpoints to test the performance of baseline models based on the weighted average of
ACC, F1 Score, Precision, and Recall reported during validation. In this version, all weights are set
to be the same. For the encoder of GAE and VGAE, we chose the checkpoint on training step 4000,
whose training loss remained stable.

A.2.6 RESULTS AND ANALYSIS

We set configuration as stated in Section A.2.3. Baseline models, including GCN, GAT, GAE, VGAE,
and SAGE, were used under the operator design paradigm. As shown in Table 11, all baseline
models achieve high accuracy but perform poorly in other metrics. The reason can be attributed
to the complexity of Younger and further to the complexity of the neural network architectures
in the real world. Another reason is that some typical types of operators appear more frequently
while others appear less frequently, causing the model to be biased toward predicting the majority of
operators. It can be seen that all baseline models in experiments w/o attributes achieve higher F1,
Precision, and Recall compared to those in experiments w/ attributes. This indicates that reducing the
variety of operators and making their distribution more uniform can improve the multi-classification
performance. In addition, among these baseline models, SAGE performs excellently on almost all
metrics. Notice that GAT lacks experiments with Operator w/ Attributes due to excessively large
parameter counts as shown in Table 9, resulting in out-of-memory issues during execution.
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Table 11: Local paradigm: operator design. Bold values represent the best-performing results. ‘Prec.’
in the header represents Precision.

Model Operator w/ Attributes Operator w/o Attributes
ACC↑ F1↑ Prec.↑ Recall↑ ACC↑ F1↑ Prec.↑ Recall↑

GCN 0.7454 0.1294 0.1666 0.1323 0.7627 0.2988 0.3750 0.2941
GAT OOM OOM OOM OOM 0.7163 0.2007 0.2519 0.1979
GAE 0.8173 0.0484 0.0658 0.0467 0.8179 0.1514 0.1815 0.1438

VGAE 0.8224 0.0724 0.0924 0.0712 0.8243 0.1969 0.2500 0.1881
SAGE 0.8049 0.1927 0.2385 0.1878 0.9238 0.3477 0.4144 0.3375

A.3 NODE EMBEDDING

A.3.1 CHECKPOINT SELECTION

To better illustrate the distribution of operators in Younger in high-dimensional space, we selected
checkpoints of baseline models according to the method from section A.2.5 and then extracted the
embeddings of operators with attributes and those without attributes from node embedding layer of
baseline models. Due to the problem about memory overflow, the visualization of ‘Operator w/o
Attributes’ about GAT is not presented. To compare the training effectiveness, we also extracted the
embeddings from the initial node embedding layer without loading any checkpoints.

A.3.2 VISUALIZATION

Figure 10-13 show the t-SNE visualization results of node embeddings before and after training
from GCN and SAGE with node features denoted as ‘Operator w/ Attributes.’ The orange points
represent Younger’s top 500 most frequently occurring operators. It can be observed that before
training, the distribution of node embeddings is relatively concentrated and chaotic. After training,
the distribution of embeddings representing high-frequency nodes selected and other low-frequency
nodes from Younger was well distinguished. This indicates an uneven distribution of node quantities
among different types, which introduces bias into the learning process of baseline models.
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Figure 10: Node embeddings before training
(GCN - Operator w/ Attributes)
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Figure 11: Node embeddings after training
(GCN - Operator w/ Attributes)

Figure 14-19 show the t-SNE visualization results of node embeddings before and after training from
GCN, GAT, and SAGE with node features denoted as ‘Operator w/ Attributes.’ The orange points
represent Younger’s top 20 most frequently occurring operators. It can be seen that the distribution of
node embeddings is relatively concentrated before training, while the distribution of all embeddings
is uniform after training. This result indicates baseline models learned the features of different nodes
well.
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Figure 12: Node embeddings before training
(SAGE - Operator w/ Attributes)
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Figure 13: Node embeddings after training
(SAGE - Operator w/ Attributes)
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Figure 14: Node embeddings before training
(GCN - Operator w/o Attributes)
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Figure 15: Node embeddings after training
(GCN - Operator w/o Attributes)
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Figure 16: Node embeddings before training
(GAT - Operator w/o Attributes)
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Figure 17: Node embeddings after training
(GAT - Operator w/o Attributes)
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Figure 18: Node embeddings before training
(SAGE - Operator w/o Attributes)
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Figure 19: Node embeddings after training
(SAGE - Operator w/o Attributes)

100 50 0 50 100
Dimension 1

100

50

0

50

100

Di
m

en
sio

n 
2

t-SNE visualization

Figure 20: Subgraph embeddings
(GCN - Operator w/ Attributes)
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Figure 21: Subgraph embeddings
(GCN - Operator w/o Attributes)
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Figure 22: Subgraph embeddings
(SAGE - Operator w/ Attributes)
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Figure 23: Subgraph embeddings
(SAGE - Operator w/o Attributes)
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Figure 24: Subgraph embeddings
(GAT - Operator w/o Attributes)
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Figure 25: Graph embeddings
(GCN - Operator w/ Attributes)
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Figure 26: Graph embeddings
(GCN - Operator w/o Attributes)
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Figure 27: Graph embeddings
(SAGE - Operator w/ Attributes)
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Figure 28: Graph embeddings
(SAGE - Operator w/o Attributes)
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Figure 29: Graph embeddings
(SAGE - Operator w/o Attributes)

A.4 SUBGRAPH EMBEDDING

A.4.1 CHECKPOINT SELECTION

To better illustrate the distribution of subgraphs in Younger in high-dimensional space, we selected
checkpoints of baseline models according to the method from Section A.2.5. Then, we calculated the
embeddings of these subgraphs using operators with attributes and those without attributes.

A.4.2 VISUALIZATION

Figure 20-24 show the t-SNE visualization results of all subgraph embeddings under the GCN, GAT,
and SAGE models. Due to memory overflow in ‘Operator w/ Attributes’ of GAT, we only present
the visualization of ‘Operator w/o Attributes’ about GAT. As can be seen, all three models have
distinguished the embeddings of subgraphs well, but due to data bias, node embeddings were not
learned particularly well. Therefore, the models only distinguished the embeddings of subgraphs well
in a part of the spatial distribution (the boundary of the space). In addition, compared to ‘Operator w/o
Attributes,’ ‘Operator w/ Attributes’ has a finer granularity in distinguishing subgraph embeddings,
i.e., different clusters occupy less space.

A.5 GRAPH EMBEDDING

A.5.1 OBTAINING METHOD

We obtain the graph embeddings by averaging the embeddings of all subgraphs in each DAG.
Therefore, each baseline model can generate two types of graph embeddings: ‘Operator w/Attributes’
and ‘Operator w/o Attributes.’ However, due to memory overflow in ‘Operator w/ Attributes’ of GAT,
we only present the visualization of ‘Operator w/o Attributes’ about GAT.

A.5.2 VISUALIZATION

Figure 25-29 show the t-SNE visualization results of all graph embeddings under the GCN, GAT, and
SAGE models. We mark the embeddings of several commonly used models in figures in different
colors. Several architectures have shown almost similar results. It can be seen that, on the one hand,
the embeddings of DAGs based on the same architecture are very close or even overlap in the graph;
for example, there are many points of the RoBERTa (Liu et al., 2019) and ViT (Dosovitskiy et al.,
2020) architectures, which are Transformer-based (Vaswani et al., 2017) architectures, that are close
in distance or overlap. On the other hand, it can be seen that the Younger dataset covers multiple
common architectures well, indicating that Younger covers most of the neural network architectures
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in the real world. In addition, the same architecture has multiple points of the same color in the
figures, indicating that the dataset contains various variants of this type of architecture.
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