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Abstract

Machine unlearning has raised significant interest with the adoption of laws ensur-
ing the “right to be forgotten”. Researchers have provided a probabilistic notion
of approximate unlearning under a similar definition of Differential Privacy (DP),
where privacy is defined as statistical indistinguishability to retraining from scratch.
We propose Langevin unlearning, an unlearning framework based on noisy gradient
descent with privacy guarantees for approximate unlearning problems. Langevin
unlearning unifies the DP learning process and the privacy-certified unlearning
process with many algorithmic benefits. These include approximate certified
unlearning for non-convex problems, complexity saving compared to retraining,
sequential and batch unlearning for multiple unlearning requests.

1 Introduction

With recent demands for increased data privacy, owners of these machine learning models are respon-
sible for fulfilling data removal requests from users. Certain laws are already in place guaranteeing
the users’ “Right to be Forgotten”, including the European Union’s General Data Protection Regula-
tion (GDPR), the California Consumer Privacy Act (CCPA), and the Canadian Consumer Privacy
Protection Act (CPPA) [1]. Merely removing user data from the training data set is insufficient, as
machine learning models are known to memorize training data information [2]. It is critical to also
remove the information of user data subject to removal requests from the machine learning models.
This consideration gave rise to an important research direction, referred to as machine unlearning [3].

Naively, one may retrain the model from scratch after every data removal request to ensure a “perfect”
privacy guarantee. However, it is prohibitively expensive in practice when accommodating frequent
removal requests. To avoid complete retraining, various machine unlearning methods have been
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Figure 1: The geometric interpretation of relations between learning and unlearning. (Left) RDP
guarantee of the learning process induces a regular polyhedron. Smaller ε0 implies an “easier”
unlearning problem. (Right) Learning and unlearning processes on adjacent datasets. It illustrates our
main idea and results. More learning iteration gives worse privacy (privacy erosion [12]) while more
unlearning iteration gives better privacy, which we termed this phenomenon as privacy recuperation.

proposed, including exact [4–6] as well as approximate approaches [1, 7–10]. Exact approaches
ensure that the unlearned model would be identical to the retraining one in distribution. Approximate
approaches, on the other hand, allow for slight misalignment between the unlearned model and the
retraining one in distribution under a similar definition to Differential Privacy (DP) [11].

1.1 Our Contributions

Learning with noisy gradient methods, such as DP-SGD [13], is widely adopted for privatizing
machine learning models with DP guarantee. Intuitively, a learning process with a stronger DP
guarantee implies an “easier” unlearning problem as depicted in Figure 1. However, it is unclear if
fine-tuning with it on the updated dataset subject to the unlearning request provides an approximate
unlearning guarantee, how the DP learning guarantee affects unlearning, and computational benefit
compared to retraining. In this work, we provide an affirmative answer for the empirical risk
minimization problems with smooth objectives. We propose Langevin unlearning, an approximate
unlearning framework based on projected noisy gradient descent (PNGD). Our core idea can be
interpreted via a novel unified geometric view of the learning and unlearning processes in Figure 1,
which naturally bridges DP and unlearning. Given sufficient learning iterations via the learning
process M, we first show that PNGD converges to a unique stationary distribution νD for any dataset
D (Theorem 3.1). Comparing νD with the stationary distribution νD′ for any of its adjacent dataset
D′, the learning process shows Rényi DP with privacy loss1 ε0. Given a particular unlearning request
D → D′, the unlearning process U can be interpreted as moving from νD to νD′ from ε0-close to
ε-close. In practice, due to the unlearning process, the unlearning privacy loss ε can be set much
smaller than ε0, while on the other hand, a stronger initial RDP guarantee, i.e., smaller ε0, allows
for less unlearning iterations to achieve the desired ε. Besides the above DP-unlearning bridge, this
framework also brings many benefits including (1) a capability of dealing with non-convex problems
in theory, which to the best of our knowledge, no previous approximate unlearning framework
can tackle, (2) better privacy-utility trade-off in practice compared to state-of-the-art approximate
unlearning approach [8] in strongly convex settings, (3) a provably computational benefit compared
with model retraining, and (4) a friendly extension to sequential and batch settings with multiple
unlearning requests.

We prove the intuition in Fig. 1 formally in Theorem 3.2. We show that K unlearning iterations
lead to an exponentially fast privacy loss decay ε ≤ exp(− 1

α

∑K−1
k=0 Rk)ε0, where α is the order of

Rényi divergence and Rk is the strict privacy improving rate depends on the problem settings with
an iteration independent strictly positive lower bound R̄ > 0. Our result is based on convergence
analysis of Langevin dynamics [15]. The sampling essence of PNGD allows for a provable unlearning
guarantee for non-convex problems [16, 17]. Our characterization of ε0 allows an extension of the
recent results that PNGD learning satisfies Rényi DP for convex problems [12, 18, 19] to non-convex

1We refer privacy loss as two-sided Rényi divergence of two distributions, which is defined as Rényi difference
in Definition 2.2. Note that it is standard to define privacy loss for unlearning as the two-sided Rényi divergence
between the weight distribution of the unlearned model and the retrained model. Such a definition directly relates
to the power of the strongest possible adversary for distinguishing these two cases [14].
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problems as summarized in Theorem 3.3. Our key technique is to carefully track the constant of
log-Sobolev inequality [20] (LSI) along the learning and unlearning processes and leverage the
boundedness property of the projection step via results of [21].

Regarding the computational benefit compared to model retraining, we show iteration complexity
saving by comparing two Rényi differences, the one between initialization ν0 and νD′ , which is at
least Ω(1) in the worst case versus the other one between the learning convergent distribution νD
and νD′ , i.e., ε0 which is shown to be O(1/n2) for a dataset of size n. Such a gap demonstrates that
Langevin unlearning is more efficient than retraining, especially for the dataset with large n.

For sequential unlearning with multiple unlearning requests, we composite the privacy loss bound
for single-step requests via the weak triangle inequality of Rényi divergence [22], which yields a
sequential unlearning procedure that achieves privacy loss ε for each request (Corollary 3.4). For
batch unlearning, ε0 is changed to incorporate the batch size (Theorem 3.3).

Beyond theoretical contributions, we also conduct empirical evaluation. Despite the provable order-
wise improvement in n compared to re-training, our current theory has a limitation by relying on
some constants that are undetermined or can be only loosely determined in the non-convex setting.
Therefore, we focus on logistic regression tasks for empirical evaluation. Compared with the state-of-
the-art gradient-based certified approximate unlearning solution [8] that requires strong convexity, we
achieve a superior privacy-utility-complexity trade-off. Although success in the convex case may not
directly imply success in non-convex settings, we leave tightening these constants as a future study.
For this, we discuss potential alleviation and future direction in Appendix A and 5, respectively.

1.2 Related Works

Unlearning with privacy guarantees. Prior approximate unlearning works require (strong) convexity
of the objective function [1, 7, 8]. Their analysis is based on the sensitivity analysis of the optimal
parameter. Since the optimal parameter is not even unique in the non-convex setting, it is unclear
how their analysis can be generalized beyond convexity. In contrast, we show that the law of our
PNGD learning process admits a unique stationary distribution even for non-convex problems.Authors
of [1, 7] leverage a second-order update which requires computing Hessian inverse and thus is not
scalable for high-dimensional problems. While they only require one unlearning iteration, we show
in our experiment that one PNGD unlearning iteration is sufficient for strongly convex loss to achieve
satisfied privacy with comparable utility to retraining as well. Neel et al. [8] leverage PGD for
learning and unlearning, and achieve the privacy guarantee via publishing the final parameters with
additive Gaussian noise. We show in our experiment that our Langevin unlearning strategy provides a
better privacy-utility-complexity trade-off compared to this approach. Ullah et al. [5] focus on exact
unlearning by leveraging variants of noisy (S)GD. Their analysis is based on total variation stability
which is different from our analysis based on Rényi divergence. Also, their analysis does not directly
generalize to approximate unlearning. Several works focus on extending the unlearning problems
for adaptive unlearning requests [6, 9, 23]. While we focus on the non-adaptive setting, it is possible
to show that Langevin unlearning is also capable of adaptive unlearning requests as we do not keep
any non-private internal state. We left a rigorous discussion on this as future work. Chourasia et
al. [23] also leverage Langevin dynamic analysis in their work. However, their unlearning definition
is different from the standard literature as ours2.

Differential privacy of noisy gradient methods. A pioneer work [24] studied the DP properties
of Langevin Monte Carlo methods. Yet, they do not propose using noisy GD for general machine
learning problems. A recent line of work [12, 18, 25] shows that projected noisy (S)GD training
exhibits DP guarantees based on the analysis of Langevin dynamics [15, 26] under the strong
convexity assumption. In the meanwhile, Altschuler et al. [19] also provided the DP guarantees for
projected noisy SGD training but with analysis based on Privacy Amplification by Iteration [27]
under the convexity assumption. None of these works study how PNGD can be leveraged for machine
unlearning or DP guarantees for non-convex problems.

Sampling literature. Non-asymptotic convergence analysis for Langevin Monte Carlo has a long
history [28, 29]. The seminal works [15, 24] proved non-asymptotic convergence analysis in Rényi

2Their unlearning privacy definition does not compare with retraining and they only discuss one-side Rényi
divergence. As a result, their unlearning guarantee is less compatible with DP and cannot control both type I and
II errors simultaneously against the best possible adversary [14].
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divergence under strong convexity. Many works improve upon them by either working with weaker
isoperimetric inequalities or different notions of convergence [30, 31]. See [26] for a more thorough
review along this direction. While these works mainly focus on convergence to the unbiased limit
(i.e., the limiting distribution for an infinitesimal step size), we have biased limits (i.e., the limiting
distribution for a constant step size, such as our νD) in machine unlearning problems. Recently
Altschuler et al. [32] initiated the question of studying the properties and convergence to the biased
limit. Our work provides a new important application, machine unlearning, for these astonishing
theoretical results in the sampling literature.

The rest of the paper is organized as follows. In Section 2, we provide preliminaries and problem
setup. The theoretical results of Langevin unlearning are in Section 3. We conclude with experiments
in Section 4. Due to the space limit, all proofs and future directions are deferred to Appendices.

2 Preliminaries and Problem Setup

We consider the empirical risk minimization (ERM) problem. Let D = {di}ni=1 be a training dataset
with n data points di taken from the universe X . Let fD(x) = 1

n

∑n
i=1 f(x;di) be the objective

function. We aim to minimize with learnable parameter x ∈ CR, where CR = {x ∈ Rd | ∥x∥ ≤ R}
is a closed ball of radius R. We denote ΠCR

: Rd 7→ CR to be an orthogonal projection to CR.
The norm ∥ · ∥ is standard Euclidean ℓ2 norm if not specified. P(C) is denoted as the set of all
probability measures over a closed convex set C. Standard definitions such as convexity can be found
in Appendix C. Finally, we use x ∼ ν to denote that a random variable x follows the probability
distribution ν. To control the convergence behavior of (P)NGD, it is standard to check an isoperimetric
condition known as log-Sobolev inequality [20], described as follows.
Definition 2.1 (Log-Sobolev Inequality (CLSI-LSI)). A probability measure ν ∈ P(Rd) is said to
satisfy Logarithmic Sobolev Inequality with constant CLSI if

∀ ρ ∈ P(Rd), D1(ρ||ν) ≤
CLSI

2
Ex∼ρ

∥∥∥∥∇ log
ρ(x)

ν(x)

∥∥∥∥2 ,
where D1(ρ||ν) is the Kullback–Leibler divergence.

2.1 Privacy Definition for Learning and Unlearning

We say two datasets D = {di}ni=1 and D′ = {d′
i}ni=1 are adjacent if they “differ” only in one index

i0 ∈ [n] so that di = d′
i for all i ̸= i0 unless otherwise specified. Furthermore, we say two datasets D

and D′ are adjacent with a group size of S ≥ 1 if they differ in at most S indices. We next introduce
a useful idea termed Rényi difference.
Definition 2.2 (Rényi difference). Let α > 1. For a pair of probability measures ν, ν′ with the same
support, the α Rényi difference dα(ν, ν′) is defined as dα(ν, ν′) = max (Dα(ν||ν′), Dα(ν

′||ν)) ,
where Dα(ν||ν′) is the α Rényi divergence Dα(ν||ν′) defined as

Dα(ν||ν′) =
1

α− 1
log

(
Ex∼ν′

[
ν(x)

ν′(x)

]α)
.

We are ready to introduce the formal definition of differential privacy and unlearning.
Definition 2.3 (Rényi Differential Privacy (RDP) [22]). Let α > 1. A randomized algorithm
M : Xn 7→ Rd satisfies (α, ε)-RDP if for any adjacent dataset pair D,D′ ∈ Xn, the α Rényi
difference dα(ν, ν′) ≤ ε, where M(D) ∼ ν and M(D′) ∼ ν′.

It is known to the literature that an (α, ε)-RDP guarantee can be converted to the popular (ϵ, δ)-DP
guarantee [11] relatively tight [22]. As a result, we will focus on establishing results with respect to
α Rényi difference (and equivalently α Rényi divergence). Next, we introduce our formal privacy
definition of unlearning.
Definition 2.4 (Rényi Unlearning (RU)). Consider a randomized learning algorithm M : Xn 7→ Rd

and a randomized unlearning algorithm U : Rd × Xn × Xn 7→ Rd. We say (M,U) achieves
(α, ε)-RU if for any α > 1 and any adjacent datasets D,D′, the α Rényi difference dα(ρ, ν′) ≤ ε,
where U(M(D),D,D′) ∼ ρ and M(D′) ∼ ν′.
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Notably, our Definition 2.4 can be converted to the standard (ϵ, δ)-unlearning definition [1, 7, 8],
similar to RDP-DP conversion [22]. Since we work with the replacement definition of dataset
adjacency, to “erase” a data point di we can simply replace it with any data point d′

i ∈ X for the
updated dataset D′ in practice.

3 Langevin Unlearning: Main Results

We propose to leverage projected noisy gradient descent for our learning and unlearning algorithm
M and U . For M, we propose to optimize the objective fD(x) with PNGD:

xt+1 = ΠCR

(
xt − η∇fD(xt) +

√
2ησ2Wt

)
, (1)

where Wt
iid∼ N (0, Id) and η, σ2 > 0 are hyperparameters of step size and noise variance respectively.

The initialization x0 can be chosen arbitrarily in CR unless specified. We assume the learning
procedure will train the model until convergence x∞ = M(D) for simplicity, where we prove
in Theorem 3.1 that the law of this learning process (1) indeed converges to a unique stationary
distribution when ∇fD is continuous. A similar “well-trained” assumption has been also used in
prior unlearning literature [1, 7] and we will discuss the case of insufficient training later. After we
obtain a learned parameter M(D), an unlearning request arrives so that the training dataset changes
from D to D′. For the unlearning algorithm U , we propose to fine-tune the model parameters on the
new objective fD′(y) with K iterations of the same PNGD.

yk+1 = ΠCR

(
yk − η∇fD′(yk) +

√
2ησ2W̄k

)
, (2)

where W̄k
iid∼ N (0, Id) and y0 = x∞, which starts from the convergent point of the learning

procedure. Throughout our work, we assume f(x;d) is M -Lipschitz and L-smooth in x for any
d ∈ X . Nevertheless, one can apply per-sample gradient clipping in (1) and (2) so that the M -
Lipschitz assumption can be dropped. In this case, our learning and unlearning processes admit
the popular DP-SGD [13] without mini-batching. For the rest of the paper, we denote νt, ρk as the
laws of the processes xt, yk respectively. Recall that we also denote the limiting distribution of the
learning process (1) as νD for training dataset D.

3.1 Limiting Distribution and General Idea

A key component of the Langevin unlearning is the existence, uniqueness, and stationarity of the
limiting distribution νD of the training process. We start with proving that νD exists, is unique, and
is a stationary distribution. Our proof is relegated to Appendix F, which is based on showing the
ergodicity of the process (1) by leveraging results in [33].

Theorem 3.1. Suppose that the closed convex set CR ⊂ Rd is bounded with CR having a positive
Lebesgue measure and that ∇fD : CR → Rd is continuous. The Markov chain {xt} in (1) admits a
unique invariant probability measure νD on the Borel σ-algebra of CR. Furthermore, for any x ∈ CR,
the distribution of xt conditioned on x0 = x converges weakly to νD as t→ ∞.

If M is known to be (α, ε0)-RDP for a α > 1, by definition we know that for all adjacent dataset
D,D′, dα(νD, νD′) ≤ ε0. In the space of P(CR), this RDP guarantee gives a “regular polyhedron”,
where vertices are νD, νD′ and all adjacent vertices are of “lengths” ε0 at most in Rényi difference.
We caveat that Rényi difference is not a metric but the idea of the regular polyhedron is useful
conceptually. As a result, the RDP guarantee of the learning process controls the “distance” between
distribution induced from adjacent dataset D and D′. Once we finish the learning process, we receive
an unlearning request so that our dataset changes from D to an adjacent dataset D′. We need to move
from νD to νD′ at least ε close for a (α, ε)-RU guarantee. Intuitively, if the initial RDP guarantee is
stronger (i.e., ε0 is smaller), unlearning becomes “easier” at the cost of larger noise. When ε0 = ε,
we automatically achieve (α, ε)-RU without any unlearning update. One of our main contributions is
to characterize how many PNGD unlearning iteration is needed to reduce dα(ρk, νD′) from ε0 to ε,
where ρ0 = νD.

For the unlearning process, note that the initial Rényi difference between ρ0, νD′ is provided by the
RDP guarantees of the learning process. As a result, we are left to characterize the convergence of
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the process yk to its stationary distribution νD′ in Rényi difference (Theorem 3.2). Since the privacy
loss ε gradually decays with respect to unlearning iterations, we refer to this phenomenon as privacy
recuperation. This is in contrast to the learning process, where prior work [12] has shown the worse
privacy loss ε0 with respect to learning iterations and refers to that phenomenon as privacy erosion.

3.2 Unlearning Guarantees

Our first Theorem shows that (M,U) achieves (α, ε)-RU, where ε decays monotonically in K
unlearning iterations starting from ε0, condition on M being (α, ε0)-RDP. We provide the proof
sketch in Appendix G.1 and formal proofs are deferred to Appendix G.2.
Theorem 3.2 (RU guarantee of PNGD unlearning). Assume for all D ∈ Xn, fD is L-smooth,
M -Lipschitz and νD satisfies CLSI-LSI. Let the learning process follow the PNGD update (1). Given
M is (α, ε0)-RDP and y0 = x∞ = M(D), for α > 1, the output of the Kth unlearning iteration

along (2) (i.e., yK ) achieves (α, ε)-RU, where ε ≤ exp
(
− 1

α

∑K−1
k=0 Rk

)
ε0 and Rk > 0 depends on

the problem settings specified as follows:

1) For a general non-convex fD, we have Rk = 1
2

(
1

((1+ηL)2Ck)2
− 1

((1+ηL)2Ck+2ησ2)2

)
, where

Ck+1 ≤ min((1 + ηL)2Ck + 2ησ2, C̃), C̃ = 6(4(R + ηM)2 + 2ησ2) exp( 4(R+ηM)2

2ησ2 ), where
C0 = CLSI and R is the radius of the projected set CR.

2) Suppose fD is convex. By choosing η ≤ 2
L , we have Rk = 1

2

(
1

(Ck)2
− 1

(Ck+2ησ2)2

)
, where

Ck+1 ≤ min(Ck + 2ησ2, C̃).

3) Suppose fD is m-strongly convex. Let σ2

m < CLSI and choosing η ≤ min( 2
m (1− σ2

mCLSI
), 1

L ). Then,

Rk = 2σ2η
CLSI

.

Note that Rk can be interpreted as the strict privacy improving rate at step k and Ck is the LSI
constant upper bound of distribution of yk. The above theorem states that fine-tuning with PNGD
can decrease the privacy loss dα(ρK , νD′) exponentially fast with the unlearning iteration K. This is
because Rk is lower bounded away from 0 by a constant, thanks to the iteration independent upper
bound on Ck. Stronger assumptions on the objective function fD lead to a better rate, which implies
fewer unlearning iterations are needed to achieve the same RU guarantee. There are several remarks
for our Theorem 3.2. First, note that the result is dimension-free, which is favorable for problems
with many parameters to be learned. Second, note that the M -Lipschitzness assumption can be
dropped by clipping the gradient to norm M in the PNGD update (1) and (2) instead. As a result, our
Theorem 3.2 applies to neural networks with smooth activation functions in theory. Finally, our result
gives an upper bound on the LSI constants along the unlearning process (i.e., Ck) which may be
improved with more advanced analysis. We note that the exponential dependence in R for the bound
of Ck can be loose. It is possible to have a better constant with either more structural assumptions
or working with different isoperimetric inequalities such as (weak) Poicaré inequality [31]. A more
detailed discussion is in Appendix 5.

Initial RDP guarantees and LSI constant. Since Theorem 3.2 relies on M being (α, ε0)-RDP and
the νD satisfies LSI, the theorem below provides such results for the learning process, where the
formal proof is relegated to Appendix H.
Theorem 3.3 (RDP guarantee of PNGD learning). Assume f(·;d) be L-smooth and M -Lipschitz
for all d ∈ X . Also assume that the initialization of PNGD (1) satisfies C0-LSI. Then the learning
process (1) is (α, ε(S)

0 )-RDP of group size S ≥ 1 at T th iteration with

ε
(S)
0 ≤ 2αηS2M2

σ2n2

T∑
t=1

t−1∏
t′=0

(1 +
ησ2

Ct′,1
)−1,

where Ct,1 ≤ min
(
(1 + ηL)2Ct + ησ2, C̄

)
, C̄ = 6(4(R + ηM)2 + ησ2) exp( 4(R+ηM)2

ησ2 ) and
Ct+1 ≤ min

(
Ct,1 + ησ2, C̄

)
. Furthermore, νt satisfies Ct-LSI.

When we additionally assume f(·;d) is convex, by choosing η ≤ 2
L the same result hold with

Ct,1 ≤ min
(
Ct + ησ2, C̄

)
.
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When we additionally assume f(·;d) is m-strongly convex, by choosing 0 < η ≤ min( 2
m (1 −

σ2

mC0
), 1

L ) with a constant C0 >
σ2

m , we have ε(S)
0 ≤ 4αS2M2

mσ2n2 (1 − exp(−mηT )). Furthermore, νt
satisfies C0-LSI for all t ≥ 0.

Note that any initialization x0 ∈ CR can be viewed as sampling from N (x0, cId) with c→ 0, which
corresponds to C0-LSI for any C0 > 0. By taking T → ∞, Theorem 3.3 provides the initial (α, ε0)-
RDP guarantee and the LSI constant needed in Theorem 3.2. Since there is an iteration-independent
upper bound for Ct,1, one can show that ε0 ≤ 2αηS2M2

σ2n2c for some T -independent constant c ∈ (0, 1)
due to the finiteness of geometric series. Similar to our discussion for Theorem 3.2, the bound of Ct

may be loose and it is possible to further improve the LSI constant analysis. The goal of our results is
to demonstrate that it is possible to derive (finite) RDP and (arbitrarily small) RU guarantees even for
general non-convex problems.

Nevertheless, for the m-strongly convex case we have ε(S)
0 ≤ 4αS2M2

mσ2n2 for all T > 0, including
T → ∞. It shows that indeed the current learned distribution νD is close to the retraining distribution
νD′ for n sufficiently large. This also leads to the computational benefit of Langevin unlearning
compared to retraining from scratch, which we discuss below. On the other hand, we show by
experiments in Section 4 that our results provide a superior privacy-utility-complexity trade-off for
the strongly convex case compared to existing approximate unlearning approaches.

The computational benefit compared to retraining. While our Theorems 3.2 and 3.3 together
provide the privacy guarantee of Langevin unlearning, it is critical to check if our approach provides
a computational benefit compared to retraining from scratch as well. Let ν0 be the (data-independent)
initialization distribution of the learning process. Intuitively, starting with νD instead of ν0 (i.e.,
retraining) should converge faster to νD′ , since dα(νD, νD′) ≤ ε0 is likely to be much smaller than
dα(ν0, νD′). Thus, our Langevin unlearning needs less iterations than retraining for most cases,
except for a corner case when ν0 is already close to νD. From Theorem 3.2 we know that the
number of PNGD iterations we need to approach ε-close in dα to the target distribution νD′ is
roughly O(log( εIε )), where εI is the Rényi difference between the initial distribution and the target
distribution νD′ . From Theorem 3.3, we know that the initial Rényi difference of Langevin unlearning
is at most ε0 = O(1/n2) for any datasets D,D′ and any smooth Lipchitz loss. In contrast, even
if both the target distribution νD′ and the initialization of retraining ν0 are Gaussian distributions
with the same variance but mean difference Ω(1), their Rényi difference is Ω(1) [22]. As a result,
computational saving offered by Langevin unlearning is significant for sufficiently large n. A more
thorough discussion is in Appendix E.

3.3 Empirical Aspects of Langevin Unlearning
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Figure 2: Illustration of (a) sequential unlearning
and (b) batch unlearning. For sequential unlearn-
ing, we can leverage the weak triangle inequality
of Rényi divergence to connect all the error terms.
For batch unlearning, only the initial RDP guarantee
changes with a general group size. Notably, unlearn-
ing more samples at once implies ε0 being larger
(Theorem 3.3), and thus we need more unlearning
iteration to recuperate the privacy loss to a desired ε.

Insufficient training. While our theorem
assumes the learning process runs until con-
vergence, this assumption can be relaxed by
the geometric view of Langevin unlearning.
Assume the learning process M(D) ∼ νT
terminate with finite step T instead and we
only have dα(νT , νD) ≤ εT (α) for all possi-
ble D ∈ Xn. One can still apply the weak
triangle inequality of Rényi divergence [22]
twice to bound dα(ρk, ν′T ) with d4α(ρk, νD′),
εT (2α), and εT (4α) with additional factors
(α−0.5)/(α−1) and (2α−0.5)/(2α−1). In
practice, it is reasonable to require the model
parameters to be sufficiently trained so that
εT is negligible and a tighter weak triangle
inequality can be employed.

Sequential and batch unlearning. Langevin unlearning naturally supports sequential and batch
unlearning for unlearning multiple data points thanks to our geometric view of the unlearning problem,
see Figure 2 for a pictorial example. For sequential unlearning, we show that fine-tuning the current
model parameters on the updated datasets for sequential S ≥ 1 unlearning requests can achieve
(α, ε)-RU simultaneously. The formal proof is deferred to Appendix I.
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Figure 3: Main experiments, where the top and bottom rows are for MNIST and CIFAR10 respectively.
(a) Compare to D2D for unlearning one point using limited unlearning iteration. This demonstrates
the privacy-utility (ϵ-accuracy) tradeoff under the fixed unlearning complexity (K). For Langevin
unlearning, we use onlyK = 1 unlearning iterations. For D2D, we allow it not only to useK = 1, 2, 5
unlearning iterations but also to keep the non-private internal state information. (b) Compare to
D2D for unlearning 100 points, where all methods achieve (ϵ, 1/n)-unlearning guarantee with ϵ = 1.
For Langevin unlearning, we vary different unlearning batch sizes S and combine them with the
sequential unlearning result. For D2D, we do not allow it to keep the non-private internal state
information in this experiment so that there is an inherent lower bound on the unlearning iterations
per unlearning request. (c) A detailed investigation of the utility-complexity trade-off of Langevin
unlearning with unlearning S = 100 points at once under the fixed privacy constraint ϵ = 1. For each
σ, we report the corresponding ϵ0 (black dash line) for the initial (ϵ0, 1/n)-DP guarantee and the
utility after unlearning to ϵ = 1.

Corollary 3.4 (Sequential unlearning). Assume the unlearning requests arrive sequentially such
that our dataset changes from D0 → D1 → . . . → DS , where Ds,Ds+1 are adjacent. Let y(s)k be
the unlearned parameters for the sth unlearning request with k unlearning update following (2)
on Ds and y(s+1)

0 = y
(s)
Ks

∼ ν̄Ds , where y(1)0 = x∞ and Ks is the unlearning steps for the sth

unlearning request. Suppose we have achieved (α, ε(s)(α))-RU for the sth unlearning request, the
learning process (1) is (α, ε0(α))-RDP and ν̄Ds

satisfies CLSI-LSI, we achieve (α, ε(s+1)(α))-RU for
the (s+ 1)th unlearning request as well, where

ε(s+1)(α) ≤ exp(− 1

α

Ks+1−1∑
k=0

Rk)×
α− 1/2

α− 1

(
ε0(2α) + ε(s)(2α)

)
,

ε(0)(α) = 0 ∀α > 1 and Rk are defined in Theorem 3.2.

As a result, one can leverage Corollary 3.4 to recursively determine needed unlearning iterations for
each sequential unlearning request. For the batch unlearning setting, it only affects the initial Rényi
difference in Theorem 3.2. We can simply adopt Theorem 3.3 with a group size of S ≥ 1 for the
RDP guarantees of the learning process ε(S)

0 .

Utility-privacy-efficiency trade-off. An interesting aspect of the Langevin unlearning is its strong
connection to the initial RDP guarantee. From Theorem 3.3, we know that increasing σ leads to
smaller Rényi difference ε0 and thus better unlearning efficiency. However, this intuitively is at the
cost of the utility of νD, see for example the discussion in Section 5 of [12] under the strong convexity
assumption. To achieve the same (α, ε)-RU guarantee, one can either ensure smaller ε0 at the cost of
worst utility or run more unlearning iterations at the cost of unlearning efficiency. We investigate how
utility trade-off with privacy and unlearning complexity empirically in Section 4.
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4 Experiments

Benchmark datasets. We consider logistic regression with ℓ2 regularization. We focus on this strongly
convex setting since the non-convex unlearning bound in Theorem 3.2 currently is not tight enough
to be applied in practice due to its exponential dependence on various hyperparameters. However, we
emphasize its significant theoretical implication due to the lack of a certified non-convex approximate
unlearning framework in previous studies. Meanwhile, the existing baseline approach [8] also only
applies to strongly convex problems. We conduct experiments on MNIST [34] and CIFAR10 [35],
which contain 11,982 and 50,000 training instances respectively. We follow the setting of [7] to
distinguish digits 3 and 8 for MNIST so that the problem is a binary classification. For the CIFAR10
dataset, we use all classes and leverage the last layer of the public ResNet18 [36] embedding as the
data features, which follows the public feature extractor setting of [7]. Experiments on additional
datasets [37] are deferred to Appendix M and our code is publicly available3.

Baseline methods. Our baseline methods include Delete-to-Descent (D2D) [8], the state-of-the-art
gradient-based approximate unlearning method, and retraining from scratch using PNGD. For D2D,
we leverage Theorem 9 and 28 in [8] for privacy accounting depending on whether we allow D2D to
have an internal non-private state. Note that allowing an internal non-private state provides a weaker
notion of privacy guarantee [8] and our Langevin unlearning by default does not require it. We
include those theorems for D2D and a detailed explanation of its possible non-privacy internal state in
Appendix N for completeness. All experimental details can be found in Appendix M, including how
to convert (α, ε)-RU to the standard (ϵ, δ)-unlearning guarantee. Throughout this section, we choose
δ = 1/n for each dataset and require all tested unlearning approaches to achieve (ϵ, δ)-unlearning
with different ϵ. We report test accuracy for all experiments as the utility metric. For the initialization,
we sample from Gaussian distribution with mean 1000. This simulates the case that the initial
distribution is in a reasonable distance away from the convergent distribution νD. We set the learning
iteration T = 10, 000 to ensure all approaches converge. For Langevin unlearning, we leverage
Theorems 3.2, 3.3 and Corollay 3.4 for privacy accounting under different settings. All results are
averaged over 100 independent trials with standard deviation reported as shades in all figures.

Unlearning one data point with K = 1 iteration. We first consider the setting of unlearning one
data point using only K = 1 unlearning iteration for both Langevin unlearning and D2D (Figure 3a).
Since D2D cannot achieve a privacy guarantee with only 1 unlearning iteration without a non-private
internal state, we allow D2D to have it in this experiment. Even in this case, our Langevin unlearning
significantly outperforms D2D in utility for ϵ from 0.1 to 5 under the same unlearning complexity
(K = 1), but also achieves similar accuracy to retraining from scratch. Since retraining requires
T = 10, 000 PNGD iterations, Langevin unlearning is indeed much more efficient. We also show
that D2D can achieve better utility at the cost of a larger unlearning iteration K = 2, 5. Our Langevin
unlearning exhibits both smaller unlearning complexity and better utility compared to D2D.

1 2 3 4 5

0

1000

2000

3000
S= 1, acc=0.899
S= 50, acc=0.9
S= 100, acc=0.899

   
   

 K

           ε

Figure 4: Trade-off between privacy
(ϵ), unlearning complexity (K), and
the number of points to be unlearned
(S) in the batch unlearning setting
for MNIST. We fix σ = 0.03 so that
K can be determined given (ϵ, S).

Unlearning multiple data points. We now consider the sce-
nario of unlearning 100 data points, where the results are in
Figure 3b. We let all methods achieve the same (1, 1/n)-
unlearning guarantee for a fair comparison. Since D2D only
supports sequential unlearning, we directly apply its sequential
unlearning results [8]. Also, we do not allow D2D to have an in-
ternal non-private state in this experiment for a fair comparison.
On the other hand, since Langevin unlearning supports both
sequential and batch unlearning, we vary the number of points
per unlearning request S = 5, 10, 20 and report the accumu-
lated unlearning iterations for σ = 0.03. All methods achieve
a similar utility, with an accuracy of roughly 0.9 and 0.98 for
MNIST and CIFAR10 respectively. Langevine unlearning can
achieve a significantly better unlearning complexity compared
to D2D if one allows for a larger unlearning batch size. For
instance, when we are allowed to unlearn S = 20 points at
once, Langevine unlearning saves 40% unlearning iteration
compared to D2D. Nevertheless, we note that due to the use
of weak triangle inequality of Rényi divergence in our analysis, Langevin unlearning can be more

3https://github.com/Graph-COM/Langevin_unlearning
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expensive in complexity compared to D2D when one only allows for unlearning a small batch of
points (i.e, S = 5). We leave the improvement in this direction as the future work.

Privacy-utility-complexity trade-off. We further examine the inherent privacy-utility-complexity
trade-off provided by our Langevin unlearning with two experiments. In the first experiment, we
aim to achieve (ϵ, 1/n)-unlearning guarantee with ϵ = 1 for batch unlearning of 100 points. We
vary the choice of σ from 0.01 to 1.0. A smaller σ leads to a worse initial ϵ0 and thus requires more
unlearning iteration K to recuperate it to ϵ = 1. It is interesting to see that even if we choose a
small σ so that the initial (ϵ0, 1/n)-DP guarantee is extremely weak (i.e, ϵ0 ≈ 100 for σ = 0.05),
our unlearning iteration can recuperate ϵ0 to ϵ = 1.0 efficiently. On the other hand, a larger σ leads
to a worse utility which is the inherent privacy-utility-complexity trade-off of Langevin unlearning.
The results are illustrated in Figure 3c. Compared to retraining until convergence (T = 10, 000), we
achieve a similar utility but with much lower unlearning complexity with K roughly up to 2500.

In the second experiment, we investigate the effect of the number of points to be unlearned S in the
batch unlearning setting. In Figure 4, we can see that both larger S and smaller ϵ will require more
unlearning iterations K. It is worth noting that the resulting utility does not change significantly,
whereas Langevin unlearning always archives a similar utility compared to retraining (see Figure 5a
in Appendix M). Retraining requires T = 10, 000 PNGD iterations which is significantly larger than
the required unlearning iteration K even for ϵ = 0.5. We have shown that Langevin unlearning is a
promising unlearning solution.

5 Conclusions and Future Directions

We propose Langevin unlearning based on noisy gradient descent with privacy guarantees for
approximate unlearning problems. It unifies the DP learning process and the privacy-certified
unlearning process with many algorithmic benefits such as applicability to non-convex problems and
multiple unlearning requests. Below we discuss several future directions for Langevin unlearning.

Extension to projected noisy stochastic gradient descent. It is straightforward to extend our
analysis to the projected noisy SGD case. There are two possibilities for the SGD setting: 1)
randomly partition the indices [n] into a sequence of mini-batches, then fix this sequence for all the
learning and unlearning process [18]; 2) randomly draw a mini-batch for each update [19, 25]. The
analysis of [18] can be combined with our LSI constant analysis for RU guarantees, similar to the
proof of our Theorem 3.2. Unfortunately, the analysis [25] may lead to an extra large LSI constant
in the intermediate step even if R is small. We refer interested readers to Appendix C of [18] for a
detailed discussion. The technical difficulty here is to provide a tight analysis of the LSI constant for
a mixture of distributions, where each of them corresponds to a possible choice of mini-batch. The
analysis of [19] is based on privacy amplification by iteration, which does not directly generalize
to the non-convex cases. In our companion work [38], we exploit it not only to establish a better
unlearning result but also to enable the mini-batch setting under the convexity assumption. It is
currently an open problem whether a matching result can be established via Langevin dynamic
analysis as well.

Better convergence rate. While it is already exciting that Langevin dynamic analysis leads to
formal unlearning algorithms and guarantees even for general non-convex problems in theory, the
potential of this direction for a practical plug-and-play unlearning solution is even more interesting.
Several promising future directions can significantly improve the convergence rate and the unlearning
efficiency. Developing a better LSI constant bound under additional structural assumptions for the
non-convex problems is the most straightforward one. Another direction is to work with (weak)
Poincaré inequality instead. While a weaker tail assumption leads to slower convergence [31], the
corresponding (weak) Poincaré constant may be more tightly tracked. Finally, while we only discuss
the noisy GD which corresponds to Langevin Monte Carlo, some other advanced samplers are
off-the-shelf including the Metropolis-Hastings filter [39] and Hamiltonian Monte Carlo [40]. We
hope our work motivates further collaborations among the sampling and privacy communities and
pushes the boundaries of learning and unlearning with privacy guarantees.
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A Limitations

While our Langevin unlearning provides the first approximate unlearning solution for non-convex
problems, it is still not practical enough as we have stated in the main text. One limitation of our
unlearning guarantees (Theorem 3.2) is that the privacy bound for non-convex problems is not tight
and can potentially improved via advanced analysis, where some possible directions are discussed
in the future directions below. Currently, it is still only applicable in practice for strongly convex
problems as we have demonstrated in our experiment section if a privacy guarantee is required.
Nevertheless, recent studies have shown that a (ϵ, δ)-DP model provides strong empirical privacy
against popular attacks such as membership inference attacks even if ϵ ≈ 108 [41]. We conjecture a
similar phenomenon exists for Langevin unlearning, which allows Langevin unlearning to defend
against membership inference attacks for non-convex models as well in practice with a similar ϵ scale.
We leave this empirical study as our important future work.

B Broader Impact

Our work study the theoretical unlearning guarantees of projected noisy gradient descent algorithm
for convex problems. We believe our work is a foundational research and does not have a direct path
to any negative applications.

C Standard Definitions

Let f : Rd 7→ R be a mapping. We define smoothness, Lipschitzsness, and strong convexity as
follows:

L-smooth: ∀ x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ (3)

m-strongly convex: ∀ x, y ∈ Rd, ⟨x− y,∇f(x)−∇f(y)⟩ ≥ m∥x− y∥2 (4)

M -Lipschitzs: ∀ x, y ∈ Rd, ∥f(x)− f(y)∥ ≤M∥x− y∥. (5)

Furthermore, we say f is convex means it is 0-strongly convex.

D Additional Related Works

Bayesian Unlearning. Due to the relation between Langevin Monte Carlo and Bayes learning
approaches, our Langevin unlearning is also loosely related to the Bayesian unlearning literature.
See [42–44] for a series of empirical results. Along this line of work, [45] is the only one that
provides a certain unlearning guarantee in terms of KL divergence. However, they only provide a
bound for one direction of KL (similar to D1(ρk||ν′D)) which makes it fail to be directly connected
to the differential privacy. Note that it is crucial to ensure the bidirectional bound for KL or Rényi
divergence for the purpose of privacy. Otherwise, we cannot ensure the sufficiently large type I and
type II errors of the best possible attacker in membership inference attack [14]. Also, it is essential to
have a (relatively) tight conversion to DP, where the general α order in Rényi divergence is crucial.

E Detailed Discussion on Computational Benefit Against Retraining

In this section, we provide a more detailed discussion of the computational benefit of Langevin
unlearning against retraining from scratch. We start our discussion under strongly convex assumption
and then explain the non-convex case. Let us consider the case f(x;d) is m-strongly convex, L-
smooth and M -Lipschitz in x for all d ∈ X . Also, assume the initialization distribution ν0 =

N (x̃0,
2σ2

m Id) for some x̃0 ∈ CR. In this case, from Theorem 3.2 we know that running T PNGD
learning iteration (1), we have

dα(νT , νD′) ≤ exp(−2σ2ηT

αCLSI
)dα(ν0, νD′). (6)

Note that by Theorem 3.3, we know that CLSI =
2σ2

m by our choice of ν0 for an appropriate step size
η ≤ min( 1

m ,
1
L ). As a result, in order to be ε close to νD′ , we need α

mη log(dα(ν0,νD′ )
ε ) retraining
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iteration. On the other hand, for Langevin unlearning we need α
mη log( ε0ε ), where ε0 ≤ 4αM2

mσ2n2 . As a
result, Langevin unlearning the computational saving for Langevin unlearning against retraining is

α

mη
log(

dα(ν0, νD′)

ε
)− α

mη
log(

ε0
ε
) =

α

mη
log(

dα(ν0, νD′)

ε0
) ≥ α

mη
log(

mσ2n2 × dα(ν0, νD′)

4αM2
).

(7)

Clearly, this saving depends on νD′ . In some rare cases, ν0 might accidentally be close to
νD′ so that retraining is more efficient. However, even if νD′ = N (x⋆(D′), 2σ

2

m Id), we have

dα(ν0, νD′) = αm∥x̃0−x⋆(D′)∥
4σ2 . That is, even if we know the target distribution is Gaussian and

choose the initialization to have the same variance, the corresponding Rényi difference is Ω(1) for
∥x̃0 − x⋆(D′)∥ = Ω(1). As a result, if we uniformly at random sample x̃0 from CR, we have
∥x̃0 − x⋆(D′)∥ ≥ 1 with probability at least 1− 1

Rd . Plug this into the lower bound above we obtain
a data-independent lower bound on the computational savings with probability at least 1 − 1

Rd as
follows

α

mη
log(

dα(ν0, νD′)

ε
)− α

mη
log(

ε0
ε
) ≥ α

mη
log(

mσ2n2 × dα(ν0, νD′)

4αM2
) (8)

=
α

mη
log(

m2n2∥x̃0 − x⋆(D′)∥
16M2

) ≥ α

mη
log(

m2n2

16M2
). (9)

Here we can see that for larger problem size n, our computational benefit is more significant.

For the non-convex case, note that the convergence rate Rk in Theorem 3.2 will vary and depend
on the LSI constant of ν0 and νD in general. This makes it hard to have a direct characterization of
the computational benefit against retraining. To simplify the situation, we assume the convergence
rate Rk is a constant R̄ > 0 that is independent of n, k. In this case, the computational saving can be
characterized as

α

R̄
log(

dα(ν0, νD′)

ε0
). (10)

In this case, one can still leverage Theorem 3.3 to provide an upper bound on ε0, yet the obtained
bound can be weak due to the inaccurate estimate of LSI constants for the non-convex case. Instead,
we propose to use unbiased limits ν̃D to approximate the biased limit νD for a rough estimate instead,
since Dα(νD||ν̃D) → 0 as η → 0 [26]. From standard sampling literature [15], we know that
ν̃D ∝ exp(− fD

σ2 ). We provide the following result for bounding dα(ν̃D, ν̃D′).

Proposition E.1. Let ν̃D ∝ exp(−fD). Assume |f(x;d) − f(x;d′)| ≤ F for all x ∈ Rd and
d,d′ ∈ X . Then dα(ν̃D, ν̃D′) ≤ 2F

n for any adjacent dataset D,D′ and α > 1.

As a result, we know that ε0 is roughly at most 2F
σ2n when the step size η is sufficiently small. Thus

when dα(ν0, νD′) = Ω(1), we Langevin unlearning save Ω(log(n)) PNGD iterations.

F Proof of Theorem 3.1: Convergence of PNGD

Theorem. Suppose that the closed convex set CR ⊂ Rd is bounded with Leb(CR) > 0 where Leb
denotes the Lebesgue measure and that ∇fD : CR → Rd is continuous. The Markov chain {xt}
in (1) admits a unique invariant probability measure νD on B(CR) that is the Borel σ-algebra of CR.
Furthermore, for any x ∈ CR, the distribution of xt conditioned on x0 = x converges weakly to νD
as t→ ∞.

In this section, we prove that the learning process (1) with general closed convex set C that is restated
as follows for the reader’s convenience,

xt+1 = ΠC

(
xt − η∇fD(xt) +

√
2ησ2Wt

)
, (11)

will converge to an invariant probability measure. One observation is that (11) is a Markov chain and
some ergodicity results can be applied.
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Proposition F.1. Suppose that the closed convex set C ⊂ Rd is bounded with Leb(C) > 0 where
Leb denotes the Lebesgue measure and that ∇fD : C → Rd is continuous. Then the Markov chain
{xt} defined by (11) admits a unique invariant measure (up to constant multiples) on B(C) that is the
Borel σ-algebra of C.

Proof. This proposition is a direct application of results from [33]. According to Proposition 10.4.2
in [33], it suffices to verify that {xt} is recurrent and strongly aperiodic.

1. Recurrency. Thanks to the Gaussian noise Wt, {xt} is Leb-irreducible, i.e., it holds for any
x ∈ C and any A ∈ B(C) with Leb(A) > 0 that

L(x,A) := P(τA < +∞ | x0 = x) > 0,

where τA = inf{t ≥ 0 : xt ∈ A} is the stopping time. Therefore, there exists a Borel
probability measure ψ such that that {xt} is ψ-irreducible and ψ is maximal in the sense
of Proposition 4.2.2 in [33]. Consider any A ∈ B(C) with ψ(A) > 0. Since {xt} is
ψ-irreducible, one has L(x,A) = P(τA < +∞ | x0 = x) > 0 for all x ∈ C. This
implies that there exists T ≥ 0, δ > 0, and B ∈ B(C) with Leb(B) > 0, such that
P(xT ∈ A | x0 = x) ≥ δ, ∀ x ∈ B. Therefore, one can conclude for any x ∈ C that

U(x,A) :=

∞∑
t=0

P(xt ∈ A | x0 = x)

≥
∞∑
t=1

P(xt+T ∈ A | xt ∈ B, x0 = x) · P(xt ∈ B | x0 = x)

≥
∞∑
t=1

δ · inf
y∈C

P(xt ∈ B | xt−1 = y)

= +∞,

where we used the fact that infy∈C P(xt ∈ B | xt−1 = y) = infy∈C P(x1 ∈ B | x0 = y) >
0 that is implies by Leb(B) > 0 and the boundedness of C and ∇fD(C). Let us remark
that we actually have compact ∇fD(C) since C is compact and ∇fD is continuous. The
arguments above verify that {xt} is recurrent (see Section 8.2.3 in [33] for definition).

2. Strong aperiodicity. Since C and ∇fD(C) are bounded and the density of Wt has a uniform
positive lower bound on any bounded domain, there exists a non-zero multiple of the
Lebesgue measure, say ν1, satisfying that

P(x1 ∈ A | x0 = x) ≥ ν1(A), ∀ x ∈ C, A ∈ B(C).

Then {xt} is strongly aperiodic by the equation above and ν1(C) > 0 (see Section 5.4.3
in [33] for definition).

The proof is hence completed.

Theorem F.2. Under the same assumptions as in Proposition F.1, the Markov chain {xt} admits a
unique invariant probability measure νD on B(C). Furthermore, for any x ∈ C, the distribution of xt
generated by (11) conditioned on x0 = x converges weakly to νD as t→ ∞.

Proof. It has been proved in Proposition F.1 that {xt} is strongly aperiodic and recurrent with an
invariant measure. Consider any A ∈ B(C) with ψ(A) > 0 and use the same settings and notations
as in the proof of Proposition F.1. There exists T ≥ 0, δ > 0, and B ∈ B(C) with Leb(B) > 0, such
that P(xT ∈ A | x0 = x) ≥ δ, ∀ x ∈ B. This implies that for any t ≥ 0 and any x ∈ C,

P(xt+T+1 ∈ A | xt = x) = P(xT+1 ∈ A | x0 = x) ≥ P(xT+1 ∈ A | x1 ∈ B, x0 = x)·P(x1 ∈ B | x0 = x) ≥ ϵ,

where
ϵ = δ · inf

y∈C
P(x1 ∈ B | x0 = y) > 0,

which then leads to
Q(x,A) := P(xt ∈ A, infinitely often) = +∞.
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This verifies that the chain {xt} is Harris recurrent (see Section 9 in [33] for definition). It can be
further derived that for any x ∈ C,

E(τA | x0 = x) =

∞∑
t=1

P(τA ≥ t | x0 = x) ≤ (T + 1)

∞∑
k=0

P(τA > (T + 1)k | x0 = x)

≤ (T + 1)

∞∑
k=1

(1− ϵ)k < +∞.

The bound above is uniform for all x ∈ C and this implies that C is a regular set of {xt} (see Section
11 in [33] for definition). Finally, one can apply Theorem 13.0.1 in [33] to conclude that there exists
a unique invariant probability measure νD on B(C) and that the distribution of xt converges weakly
to νD conditioned on x0 = x for any x ∈ C.

G Proof of Theorem 3.2

G.1 Proof Sketch of Theorem 3.2

Given M is (α, ε0)-RDP, we aim to show the upper bound of dα(ρk, νD′) decays in k starting
from ε0 at k = 0. As a warm-up, we start with the strongly convex case. The analysis is inspired
by [15] and [24] and formal proof can be found in Appendix G.2. Roughly speaking, we characterize
how both α Rényi divergence Dα(ρk||νD′) and Dα(νD′ ||ρk) decay, given νD′ and ρk satisfy LSI
condition for some constants. Standard sampling literature only focuses on the part Dα(ρk||νD′) (i.e.,
Lemma 8 in [15]), where νD′ satisfies LSI implies exponential decay in Rényi divergence. The other
direction is necessary for meaningful privacy guarantee but more challenging as one to carefully
track the LSI constant of ρk for all k ≥ 0. We prove the following lemma for such LSI constant
characterization along the unlearning process, which specializes results of [26] to the PNGD update.
Lemma G.1 (LSI constant characterization). Consider the following PNGD update for a closed
convex set C:

xk,1 = h(xk), xk,2 = xk,1 + σWk, xk+1 = ΠC(xk,2),

where h is any M -Lipschitz map Rd 7→ Rd, Wk ∼ N (0, Id) independent of anything before step k,
and ΠC is the projection onto a closed convex set C. Let µk,1, µk,2 and µk be the distribution of xk,1,
xk,2 and xk respectively. Then we have the following LSI constant characterization of this process.
1) If µk satisfies c-LSI, µk,1 satisfies M2c-LSI. 2) If µk,1 satisfies c-LSI, µk,2 satisfies (c+ σ2)-LSI.
3) If µk,2 satisfies c-LSI, µk+1 satisfies c-LSI.

By leveraging Lemma G.1, we can characterize the LSI constant for all ρk. One key step is to
characterize the Lipschitz constant of the gradient update h(x) = x− η∇f(x). From Lemma 2.2
in [32] we know if f is m-strongly convex, L-smooth and η ≤ 1

L , then h is (1− ηm)-Lipschitz. Let
ρk satisfyCk-LSI, Lemma G.1 leads to the recursion expressionCk+1 ≤ (1−ηm)2Ck+2ησ2, C0 =

CLSI. By choosing η satisfying 0 < η ≤ min( 2
m (1− σ2

mCLSI
), 1

L ) and the assumption σ2

m < CLSI, Ck

is non-increasing and thus ρk is CLSI-LSI for all k ≥ 0. As a result, the decay of both Dα(ρk||νD′)
and Dα(νD′ ||ρk) can be shown.

Beyond strong convexity. To extend beyond strong convexity, one may naively apply Lemma G.1
for convex and non-convex settings. Unfortunately, both cases lead to monotonically increasing LSI
constantCk. As a result, given an ε0, proving to achieve an arbitrarily small ε is challenging even with
K → ∞ since the LSI constant may be unbounded. More specifically, if f is convex and η ≤ 2

L , then
h(x) = x−η∇f(x) is 1-Lipschitz. If f is L-smooth only, the map h is (1+ηL)-Lipschitz. Applying
Lemma G.1 leads to the recursions on Ck. For the convex case, we have Ck+1 ≤ Ck + 2ησ2. For
the non-convex case, we have Ck+1 ≤ (1 + ηL)2Ck + 2ησ2.

One of our contributions is to demonstrate that Ck has a universal upper bound which is independent
of the number of iterations. Hence, the exponential decay in Rényi difference still holds. The key is
to leverage the geometry of CR to establish an LSI upper bound that is independent of k using the
result of [21], which has not been explored in the prior privacy literature [12, 18, 25].
Lemma G.2 (Corollary 1 in [21]). Let µ be a probability measure supported on CR for some R ≥ 0.
Then, for each ξ ≥ 0, µ ∗ N (0, ξId) satisfy C-LSI with constant C ≤ 6(4R2 + ξ) exp( 4R

2

ξ ).
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[19] also leverage the geometry of CR for the DP guarantee of learning with projected noisy (S)GD,
but their analysis follows privacy amplification by iteration [27] and still require convexity. Our result
demonstrates the potential of Langevin dynamic analysis for unlearning guarantees of non-convex
problems.

G.2 Formal Proof

We will start with the proof for the strongly convex case and then extend it for convex and non-convex
cases. As indicated in our sketch of proof, there are two main parts of our proof. The first is to
characterize the decay in Rényi divergence between two processes yk, y′k under LSI conditions. The
second is to track the LSI constant of yk, y′k throughout the unlearning process. The analysis is a
modification of the proof of Lemma 8 in [15].

We first define some useful quantities and list all technical lemmas that we need to proof. For α > 0
and any two probability distribution ρ, ν with the same support, define

Fα(ρ; ν) = Eν [(
ρ

ν
)α] =

∫
ν(x)(

ρ

ν
)α(x) dx. (12)

Gα(ρ; ν) = Eν [(
ρ

ν
)α∥∇ log

ρ

ν
∥2] = Eν [(

ρ

ν
)α−2∥∇ρ

ν
∥2] = 4

α2
Eν [∥∇(

ρ

ν
)α/2∥2]. (13)

Note that Dα(ρ||ν) = 1
α−1 logFα(ρ; ν) by definition and Gα(ρ; ν) is known as the Rényi Informa-

tion, where the limit α = 1 recovers the relative Fisher information [15]. Now we introduce all the
technical lemmas we need. The first is data-processing inequality for Rényi divergence, which is the
Lemma 2.6 in [32]. The second and third lemmas are based on results in [15]. We note again that we
use the definition of LSI in [26], where the LSI constant is reciprocal to those defined in [15].
Lemma G.3 (Data-processing inequality for Rényi divergence [32]). For any α ≥ 1, any function
h : Rd 7→ Rd and any distribution µ, ν with support on Rd,

Dα(h#µ||h#ν) ≤ Dα(µ||ν). (14)

Lemma G.4 (Lemma 18 in [15], with customized variance). For any probability distribution ρ0, ν0
and for any t ≥ 0, let ρt = ρ0 ∗ N (0, 2tσ2Id) and νt = ν0 ∗ N (0, 2tσ2Id). Then for all α > 0 we
have

d

dt
Dα(ρt||νt) = −ασ2Gα(ρt; νt)

Fα(ρt; νt)
. (15)

Lemma G.5 (Low bound of G-F ratio, Lemma 5 [15]). Suppose ν satisfy CLSI-LSI. Let α ≥ 1. For
all probability distribution ρ we have

Gα(ρ; ν)

Fα(ρ; ν)
≥ 2

α2CLSI
Dα(ρ||ν). (16)

Now we are ready to prove Theorem 3.2 under strong convexity assumption.

Proof. For brevity and to make our proof succinct, we will only prove the harder direction
Dα(νD′ ||ρk). The proof of the other direction is not only simpler (due to νD′ being the stationary
distribution), but also the same analysis applies.

First, let us consider two processes:

yk+1 = ΠC

(
yk − η∇fD′(yk) +

√
2ησ2Wk

)
,where y0 ∼ ρ0 = νD (17)

y′k+1 = ΠC

(
y′k − η∇fD′(y′k) +

√
2ησ2Wk

)
,where y′0 ∼ νD′ . (18)

Note that yk is the process we would have during the unlearning process and y′k is an auxiliary
process. Let ρk,1, ρk,2, ρk be the probability distribution of yk,1, yk,2, yk respectively, where

yk,1 = yk − η∇fD′(yk), yk,2 = yk,1 +
√

2ησ2Wk, yk+1 = ΠC (yk,2) . (19)

Similarly, let ρ′k,1, ρ
′
k,2, ρ

′
k be the probability distribution of y′k,1, y

′
k,2, y

′
k respectively. By definition

νD′ is the stationary distribution of this process (in fact, both), we know that ρ′k = νD′ for all k ≥ 0.
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Also, without loss of generality, we assume ρk satisfies Ck-LSI for some value Ck to be determined.
Notably by assumption we have C0 = CLSI.

Observe that the gradient update h(y) = y − η∇fD′(y) is a (1− ηm)-Lipschitz map for fD′ being
L-smooth and m-strongly convex due to Lemma 2.2 in [32] when η ≤ 1

L . By Lemma G.1 we know
that ρk,1 satisfies ((1− ηm)2Ck)-LSI. Next, by Lemma G.3 we have

Dα(ρ
′
k,1||ρk,1) = Dα(h#ρ

′
k||h#ρk) ≤ Dα(ρ

′
k||ρk) = Dα(νD′ ||ρk). (20)

Next, consider ρk,1,t = ρk,1 ∗ N (0, 2tσ2Id) and ρ′k,1,t = ρk,1 ∗ N (0, 2tσ2Id) for t ∈ [0, η]. Clearly,
ρk,1,η = ρk,2 and ρ′k,1,η = ρ′k,2. By Lemma G.4 we have

d

dt
Dα(ρ

′
k,1,t||ρk,1,t) = −σ2α

Gα(ρ
′
k,1,t; ρk,1,t)

Fα(ρ′k,1,t; ρk,1,t)
. (21)

By Lemma G.1, we know that ρk,1,t satisfies ((1−ηm)2Ck+2ησ2)-LSI for all t ≤ η. By the choice
η ≤ 2

m (1− σ2

mCk
), we know that

(1− ηm)2Ck + 2ησ2 ≤ Ck. (22)

Clearly, this would require σ2

m < Ck for η > 0. Then by Lemma G.5, we have

Gα(ρ
′
k,1,t; ρk,1,t)

Fα(ρ′k,1,t; ρk,1,t)
≥ 2

α2Ck
Dα(ρ

′
k,1,t||ρk,1,t). (23)

This would imply

d

dt
Dα(ρ

′
k,1,t||ρk,1,t) ≤ − 2σ2

αCk
Dα(ρ

′
k,1,t||ρk,1,t). (24)

By Gronwall’s inequality [46], integrating over t ∈ [0, η] gives

Dα(ρ
′
k,2||ρk,2) ≤ exp(−2σ2η

αCk
)Dα(ρ

′
k,1||ρk,1). (25)

Apply Lemma G.3 for the mapping ΠC , we have

Dα(ρ
′
k+1||ρk+1) ≤ Dα(ρ

′
k,2||ρk,2). (26)

Note that by Lemma G.1, we have also shown that ρk+1 is Ck-LSI. This implies ρk is C0-LSI,
where C0 = CLSI by our assumption. Combining all results and the fact that νD′ is the stationary
distribution, we have

Dα(νD′ ||ρk+1) ≤ exp(− 2σ2η

αCLSI
)Dα(νD′ ||ρk). (27)

Iterating this over k we complete the proof.

The proof beyond strong convexity is similar, except the characterization of Ck is different. As we
mentioned in the main text, without strong convexity we can only prove an upper bound of the LSI
constant that grows monotonically with respect to the iterations. To prevent a diverging LSI constant,
we leverage the boundedness of the projected set CR to establish an iteration-independent bound for
the LSI constant. Below we give the proof of Theorem 3.2 without the strong convexity assumption.

Proof. As before, we will only prove the decay of the direction Dα(νD′ ||ρk), since it is more
challenging. We again assume ρk is Ck-LSI, where C0 = CLSI by our assumption. First, due to [47]
we know that the map h(y) = y − η∇fD′(y) is (1 + ηL)-Lipschitz for fD′ being L-smooth. By
Lemma G.1 we know that ρk,1 satisfies ((1 + ηL)2Ck)-LSI. Next, by Lemma G.3 we have

Dα(ρ
′
k,1||ρk,1) ≤ Dα(ρ

′
k||ρk) = Dα(D′||ρk). (28)

Next, by Lemma G.4 we have

d

dt
Dα(ρ

′
k,1,t||ρk,1,t) = −σ2α

Gα(ρ
′
k,1,t; ρk,1,t)

Fα(ρ′k,1,t; ρk,1,t)
. (29)
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Note that by Lemma G.1, ρk,1,t satisfies ((1 + ηL)2Ck + 2tσ2)-LSI. Then by Lemma G.5, we have

d

dt
Dα(ρ

′
k,1,t||ρk,1,t) ≤ − 2σ2

α((1 + ηL)2Ck + 2tσ2)
Dα(ρ

′
k,1,t||ρk,1,t). (30)

By Gronwall’s inequality [46], integrating over t ∈ [0, η] gives

Dα(ρ
′
k,2||ρk,2) ≤ exp(−

∫ η

t=0

2σ2

α((1 + ηL)2Ck + 2tσ2)
dt)Dα(ρ

′
k,1||ρk,1). (31)

Note the calculation∫ η

t=0

2σ2

α((1 + ηL)2Ck + 2tσ2)
dt =

∫ η

t=0

d(2σ2t)

α((1 + ηL)2Ck + 2tσ2)
(32)

=
1

2α

(
1

((1 + ηL)2Ck)2
− 1

((1 + ηL)2Ck + 2ησ2)2

)
(33)

By applying Lemma G.3 for the projection operator and combining all results we have

Dα(ρ
′
k+1||ρk+1) ≤ exp(− 1

2α

(
1

((1 + ηL)2Ck)2
− 1

((1 + ηL)2Ck + 2ησ2)2

)
)Dα(ρ

′
k||ρk).

(34)

Iterate this over K steps, we have

Dα(νD′ ||ρK) ≤ exp(− 1

2α

K−1∑
k=0

1

2α

(
1

((1 + ηL)2Ck)2
− 1

((1 + ηL)2Ck + 2ησ2)2

)
)Dα(νD′ ||ρ0)

(35)

= exp(− 1

2α

K−1∑
k=0

1

2α

(
1

((1 + ηL)2Ck)2
− 1

((1 + ηL)2Ck + 2ησ2)2

)
)Dα(νD′ ||ρ0). (36)

To complete the proof, we establish the recursion relation of Ck. If f is convex and η ≤ 2
L , then

h(x) = x−η∇f(x) is 1-Lipschitz. If f is L-smooth only, the map h is (1+ηL)-Lipschitz. Applying
Lemma G.1 leads to the following recursions on Ck

Convex: Ck+1 ≤ Ck + 2ησ2 Non-convex: Ck+1 ≤ (1 + ηL)2Ck + 2ησ2. (37)

On the other hand, the Corollary 1 in [21] states the following result.

Lemma G.6 (Corollary 1 in [21]). Let µ be a probability measure on Rd supported on CR for some
R ≥ 0. Then, for each t ≥ 0, µ ∗ N (0, tId) satisfy C-LSI with constant

C ≤ 6(4R2 + t) exp(
4R2

t
). (38)

Now, consider the following PNGD process similar to Lemma G.1

xk,1 = h(xk), xk,2 = xk,1 + 2ησ2Wk, xk+1 = ΠCR
(xk,2),

where h(x) = x− η∇fD(x) and Wk ∼ N (0, Id) as before. Clearly, due to the projection ΠCR
we

know that µk is supported on CR. By assumption that fD isM -Lipschitz, we know that ∥fD(x)∥ ≤M
and thus µk,1 is supported on CR+ηM . By applying Lemma G.6 we know that µk,2 satisfies LSI with
constant upper bounded by

6(4(R+ ηM)2 + 2ησ2) exp(
4(R+ ηM)2

2ησ2
). (39)

Finally, by Lemma G.1 we know that the projection ΠCR
does not increase the LSI constant so that

the same LSI constant upper bound holds for all µk. Combining with our previous recursive result
we complete the proof.

If we further have that fD′ being convex, then by Lemma 3.7 in [47] we know that when η ≤ 2
L the

gradient map is 1-Lipchitz. As a result, the factor (1 + ηL)2 can be reduced to 1.
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H Proof of Theorem 3.3

The proof is mainly modified from the analysis of [18] with our LSI constant analysis. First, we list
the all needed notations and technical lemmas adopted from [18]. Let us start with the PNGD process
with training dataset D and D′ as before

xt+1 = ΠCR

(
xt − η∇fD(xt) +

√
2ησ2Wt

)
, (40)

x′t+1 = ΠCR

(
x′t − η∇fD′(x′t) +

√
2ησ2Wt

)
, Wt

iid∼ N (0, Id), (41)

For each iteration, the above update is equivalent to the following two steps:

xt,1 = xt − η∇fD(xt) +
√
ησ2Wt, xt+1 = ΠCR

(
xt,1 +

√
ησ2Wt

)
. (42)

That is, it can be decomposed into another noisy GD update followed by a small additive noise with
projection. Let νt, νt,1, ν′t, ν

′
t,1 be the law of xt, xt,1, x′t, x

′
t,1 respectively. Finally, we introduce the

following technical lemma from [18] specialized to PNGD case.
Lemma H.1 (Simplification of Lemma 3.2 in [18]). For any ξt, ξ′t ∈ P(Rd) that both satisfyCt,1-LSI,
then we have

Dα(ξt ∗ N (0, ησ2Id)||ξ′t ∗ N (0, ησ2Id))

α
≤ Dα′(ξt||ξ′t)

α′ (1 +
ησ2

Ct,1
)−1, α′ =

α− 1

1 + ησ2

Ct,1

+ 1. (43)

The proof is an application of Lemma G.5 but with the integral involving time-dependent LSI constant.
Now we are ready to prove our Theorem 3.3.

Proof. We first provide a full characterization of the LSI constant of νt, νt,1 for all k ≥ 0, assuming
ν0 is C0-LSI to be chosen later. Let us denote the LSI constant of νt, νt,1 to be Ct, Ct,1 respectively.

By Lemma G.1, when fD is L-smooth we have that

Ct,1 ≤ (1 + ηL)2Ct + ησ2, Ct+1 ≤ Ct,1 + ησ2. (44)

Similarly, by leveraging the same analysis in the proof of Theorem 3.2, using Lemma G.6 with the
assumption that fD is M -Lipschitz gives the following k independent bound

Ct,1 ≤ 6(4(R+ ηM)2 + ησ2) exp(
4(R+ ηM)2

ησ2
), (45)

Ct+1 ≤ 6(4(R+ ηM)2 + 2ησ2) exp(
4(R+ ηM)2

2ησ2
). (46)

Now we establish the one iteration bound on the Rényi divergence. By composition theorem for RDP
(and equivalently Rényi divergence) [22] and the assumption that fD, fD′ are M -Lipschitz, we have

Dα(νt,1||ν′t,1)
α

≤ Dα(νt||ν′t)
α

+
2ηS2M2

σ2n2
. (47)

This is because the sensitivity of ∥∇fD(x) − ∇fD′(x)∥2 ≤ S2

n2 × (2ηM)2 for group size S ≥ 1.
More specifically, there are at most S different pairs of ∇f(x;di)−∇f(x;d′

i), and for each pair we
have ∥η∇f(x;di)− η∇f(x;d′

i)∥ ≤ 2ηM by triangle inequality and M -Lipschitzness. By triangle
inequality again, we have ∥∇fD(x)−∇fD′(x)∥2 ≤ ( 2ηSM

n )2. On the other hand, the variance of
the added Gaussian noise in this step (from xt to xt,1) is ησ2. Leveraging the standard result of
Gaussian mechanism [22] gives the α-Rényi divergence 4αη2S2M2/n2

2(σ2η) = 2αηS2M2

σ2n2 . Dividing it by α
gives the second term in (47).

Then by applying Lemma H.1, we have

Dα(νt+1||ν′t+1)

α
≤
Dα′(νt,1||ν′t,1)

α′ (1 +
ησ2

Ct,1
)−1, α′ =

α− 1

1 + ησ2

Ct,1

+ 1. (48)
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Combining these two bounds we have

Dα(νt+1||ν′t+1)

α
≤
(
Dα′(νt||ν′t)

α′ +
2ηS2M2

σ2n2

)
(1 +

ησ2

Ct,1
)−1, α′ =

α− 1

1 + ησ2

Ct,1

+ 1. (49)

Now, iterate this bound for all t and note that Dα(ν0||ν′0) = 0 for any α > 1 due to the same
initialization, we have

Dα(νT ||ν′T )
α

≤ 2ηS2M2

σ2n2

T∑
t=1

t−1∏
t′=0

(1 +
ησ2

Ct′,1
)−1. (50)

The same analysis applies to the other direction Dα(ν′
t+1||νt+1)

α . Together we complete the proof for
convex and non-convex cases. For the m-strongly convex case, it is a direct result of Theorem D.6
in [18], where the LSI constant analysis of Ct is exactly the same to those of Theorem 3.2. Together
we complete the proof.

I Proof of Corollary 3.4

Corollary I.1 (Sequential unlearning). Assume the unlearning requests arrive sequentially such that
our dataset changes from D = D0 → D1 → . . . → DS , where Ds,Ds+1 are adjacent. Let y(s)k

be the unlearned parameters for the sth unlearning request with k unlearning update following (2)
on Ds and y(s+1)

0 = y
(s)
Ks

∼ ν̄Ds
, where y(1)0 = x∞ and Ks is the unlearning steps for the sth

unlearning request. Suppose we have achieved (α, ε(s)(α))-RU for the sth unlearning request, the
learning process (1) is (α, ε0(α))-RDP and ν̄Ds

satisfies CLSI-LSI, we achieve (α, ε(s+1)(α))-RU for
the (s+ 1)th unlearning request as well, where

ε(s+1)(α) ≤ exp(− 1

α

Ks+1−1∑
k=0

Rk)
α− 1/2

α− 1

(
ε0(2α) + ε(s)(2α)

)
,

ε(0)(α) = 0 ∀α > 1 and Rk are defined in Theorem 3.2.

While our main theorems only discuss one unlearning request, we can generalize it to address multiple
unlearning requests. Consider the case where our learning process is trained with dataset D. At
the unlearning phase, we receive a sequence of unlearning requests so that our dataset becomes
D1,D2, . . . ,DS , where each consecutive dataset Ds,Ds+1 are adjacent (i.e., each unlearning request
ask for unlearning one data point). Let us denote νDs the output probability distribution of M(Ds)
for s ≥ 0, where we set D0 = D. Sequential unlearning can be viewed as transferring along
νD0 → νD1 · · · → νDS

, where for each request we will stop when we are “ε” away from the target
distribution in terms of Rényi difference. As a result, our actual path is νD0 → ν̄D1 · · · → ν̄DS

for some sequence of distribution {ν̄Ds
}Ss=1 such that the α Rényi difference dα(νDs

, ν̄Ds
) ≤ ε.

See Figure 2 for a pictorial example of the case S = 2. While we are unable to characterize the
convergence along ν̄Ds

→ ν̄Ds+1
directly, we can leverage the weak triangle inequality of Rényi

divergence to provide an upper bound of it.

Proposition I.2 (Weak Triangle Inequality of Rényi divergence, Corollary 4 in [22]). For any α > 1,
p, q > 1 satisfying 1/p+ 1/q = 1 and distributions P,Q,R with the same support:

Dα(P ||R) ≤
α− 1

p

α− 1
Dpα(P ||Q) +Dq(α−1/p)(Q||R).

22



Note that by choosing p = q = 2, we can also establish the weak triangle inequality for Rényi
difference dα as follows

Dα(P ||R) ≤
α− 1

2

α− 1
D2α(P ||Q) +D2α−1(Q||R) (51)

(a)

≤
α− 1

2

α− 1
d2α(P,Q) + d2α−1(Q,R) (52)

(b)

≤
α− 1

2

α− 1
d2α(P,Q) + d2α(Q,R) (53)

(c)

≤
α− 1

2

α− 1
(d2α(P,Q) + d2α(Q,R)) , (54)

(55)

where (a) is due to the definition of Rényi difference, (b) is due to the monotonicity of Rényi
divergence in α and (c) is due to the fact that for all α > 1, α− 1

2

α−1 ≥ 1. Repeat the same analysis for
Dα(R||P ) and combine with the bound above, one can show that

dα(P,R) ≤
α− 1

2

α− 1
(d2α(P,Q) + d2α(Q,R)) . (56)

The main idea is illustrated in Figure 2 (a). We first leverage Theorem 3.2 to upper bound the Rényi
difference dα(ν̄D2

, νD2
) in terms of the Rényi difference between dα(ν̄D1

, νD2
) (dash line) with a

decaying factor. Then by weak triangle inequality of Rényi difference we derived above, we can
further bound it with ε(1)(2α) (black line) and ε0(2α) (red line).

Proof. The proof is a direct combination of Theorem 3.2 and Proposition I.2. To achieve
(α, ε(s+1)(α))-RU for the (s+1)th unlearning request, we need to bound dα(ν̃Ds+1

, νDs+1
). Assume

we run Ks+1 unlearning iteration, from Theorem 3.2 we have

dα(ν̃Ds+1
, νDs+1

) ≤ exp(− 1

α

Ks+1−1∑
k=0

Rk)dα(ν̃Ds
, νDs+1

), (57)

where Rk is defined in Theorem 3.2. On the other hand, by weak triangle inequality of Rényi
difference, we have

dα(ν̃Ds
, νDs+1

) ≤ α− 1/2

α− 1

(
d2α(ν̃Ds

, νDs
) + d2α(νDs

, νDs+1
)
)
. (58)

By the initial RDP condition, we know that d2α(νDs
, νDs+1

) ≤ ε0(2α). On the other hand, by the
RU guarantee of the sth unlearning request, we have

d2α(ν̃Ds
, νDs

) ≤ ε(s)(2α). (59)

Together we have

dα(ν̃Ds
, νDs+1

) ≤ α− 1/2

α− 1

(
ε0(2α) + ε(s)(2α)

)
. (60)

Hence we complete the proof.

J Proof of Lemma G.1

Lemma (LSI constant characterization). Consider the following PNGD update for a closed convex
set C:

xk,1 = h(xk), xk,2 = xk,1 + σWk, xk+1 = ΠC(xk,2),

where h is any M -Lipschitz map Rd 7→ Rd, Wk ∼ N (0, Id) independent of anything before step k,
and ΠC is the projection onto C. Let µk,1, µk,2 and µk be the probability distribution of xk,1, xk,2
and xk respectively. Then we have the following LSI constant characterization of this process. 1) If
µk satisfies c-LSI, µk,1 satisfies M2c-LSI. 2) If µk,1 satisfies c-LSI, µk,2 satisfies (c+ σ2)-LSI. 3) If
µk,2 satisfies c-LSI, µk+1 satisfies c-LSI.
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Proof. The first statement is the direct result of Proposition 2.3.3. in [26]. See also Lemma 16 in [15]
but additionally require h being differentiable. The second statement is the direct result of Lemma 17
in [15]. The third statement is because ΠC is a 1-Lipchitz map. Together we complete the proof.

K Proof of Lemma G.4

Lemma (Lemma 18 in [15], with customized variance). For any probability distribution ρ0, ν0 and
for any t ≥ 0, let ρt = ρ0 ∗ N (0, 2tσ2Id) and νt = ν0 ∗ N (0, 2tσ2Id). Then for all α > 0 we have

d

dt
Dα(ρt||νt) = −ασ2Gα(ρt; νt)

Fα(ρt; νt)
. (61)

Proof. The proof is nearly identical to that in [15]. Let Xt ∼ ρt, then we have the following
stochastic differential equation.

dXt =
√
2σdWt. (62)

Thus ρt evolves following the Fokker-Planck equation:
∂ρt
∂t

= σ2∆ρt. (63)

Same for νt and just plug this into the first step in the proof of Lemma 18 in [15], which gives the
result.

L Proof of Proposition E.1

The proof is a direct manipulation of the Rényi divergence. Due to symmetry, we will only show that
Dα(ν̃D, ν̃D′) ≤ 2αF

(α−1)n , as the proof for the bound of Dα(ν̃D′ , ν̃D) is identical.

Define ZD =
∫
exp(−fD(x))dx be the normalizing constant. Then we have

Dα(ν̃D, ν̃D′) =
1

α− 1
logEx∼ν̃D′

(
ν̃D(x)

ν̃D′(x)

)α

=
1

α− 1
logEx∼ν̃D

(
ν̃D(x)

ν̃D′(x)

)α−1

(64)

=
1

α− 1
log

((
ZD′

ZD

)α−1

Ex∼ν̃D

(
exp(−fD(x))
exp(−fD′(x))

)α−1
)

(65)

= log(
ZD′

ZD
) +

1

α− 1
log(Ex∼ν̃D

(
exp(−fD(x))
exp(−fD′(x))

)α−1

). (66)

Recall that D and D′ are adjacent, thus they only differ in one index. Without loss of generality,
assume the index is n so that di = d′

i for all i < n. By definition,

fD′(x) =
1

n

n−1∑
i=1

f(x;d′
i) +

1

n
f(x;d′

n) (67)

=
1

n

n−1∑
i=1

f(x;d′
i) +

1

n
f(x;dn) +

1

n
f(x;d′

n)−
1

n
f(x;dn) (68)

= fD(x) +
1

n
(f(x;d′

n)− f(x;dn)). (69)

As a result, the ratio of the normalizing constant can be bounded as

ZD′

ZD
=

∫
exp(−fD′(x))dx

ZD
=

∫
exp(−fD′(x))dx

ZD
=

∫
exp(−fD(x) + f(x;d′

n)−f(x;dn)
n )dx

ZD
(70)

≤
∫
exp(−fD(x) + |f(x;d′

n)−f(x;dn)|
n )dx

ZD
(71)

≤
∫
exp(−fD(x) + F

n )dx

ZD
=

exp(Fn )
∫
exp(−fD(x))dx
ZD

=
exp(Fn )ZD

ZD
= exp(

F

n
). (72)
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On the other hand, for the second term we have

Ex∼ν̃D

(
exp(−fD(x))
exp(−fD′(x))

)α−1

= Ex∼ν̃D exp(−(α− 1)(fD(x)− fD′(x))) (73)

≤ Ex∼ν̃D exp((α− 1)(
F

n
)) = exp((α− 1)(

F

n
)). (74)

As a result, we can further simplify (64) as follows

Dα(ν̃D, ν̃D′) = log(
ZD′

ZD
) +

1

α− 1
log(Ex∼ν̃D

(
exp(−fD(x))
exp(−fD′(x))

)α−1

) (75)

≤ F

n
+

(α− 1)F

(α− 1)n
=

2F

n
. (76)

Together we complete the proof.

M Experiment Details

M.1 (α, ε)-RU to (ϵ, δ)-Unlearning Conversion

Let us first state the definition of (ϵ, δ)-unlearning from prior literature [1, 7, 8].

Definition M.1. Consider a randomized learning algorithm M : Xn 7→ Rd and a randomized
unlearning algorithm U : Rd × Xn × Xn 7→ Rd. We say (M,U) achieves (ϵ, δ)-unlearning if for
any adjacent datasets D,D′ and any event E, we have

P (U(M(D),D,D′) ⊆ E) ≤ exp(ϵ)P (M(D′) ⊆ E) + δ, (77)

P (M(D′) ⊆ E) ≤ exp(ϵ)P (U(M(D),D,D′) ⊆ E) + δ. (78)

Following the same proof of RDP-DP conversion (Proposition 3 in [22]), we have the following
(α, ε)-RU to (ϵ, δ)-unlearning conversion as well.
Proposition M.2. If (M,U) achieves (α, ε)-RU, it satisfies (ϵ, δ)-unlearning as well, where

ϵ = ε+
log(1/δ)

α− 1
. (79)

M.2 Datasets

MNIST [34] contains the grey-scale image of number 0 to number 9, each with 28× 28 pixels. We
follow [8] to take the images with the label 3 and 8 as the two classes for logistic regression. The
training data contains 11982 instances in total and the testing data contains 1984 samples. We spread
the image into an x ∈ Rd, d = 724 feature as the input of logistic regression.

CIFAR-10 [35] contains the RGB-scale image of ten classes for image classification, each with
32 × 32 pixels. For CIFAR-10-binary, we also select class #3 (cat) and class #8 (ship) as the
two classes for logistic regression. The training data contains 10000 instances and the testing data
contains 2000 samples. As to CIFAR-10-multi-class, we include all the classes for multi-class
logistic regression. The training data contains 50000 instances and the testing data contains 10000
samples. We apply data pre-processing on CIFAR-10 by extracting the compact feature encoding
from the last layer before pooling of an off-the-shelf pre-trained ResNet18 model [36] from Torch-
vision library [48, 49] as the input of our logistic regression. The compact feature encoding is
x ∈ Rd, d = 512.

All the inputs from the datasets are normalized with the ℓ2 norm of 1.

M.3 Experiment Settings

Hardware and Frameworks All the experiments run with PyTorch=2.1.2 [50] and
numpy=1.24.3 [51]. The codes run on a server with a single NVIDIA RTX 6000 GPU with AMD
EPYC 7763 64-Core Processor.
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Problem Formulation Given a binary classification task D = {xi ∈ Rd, yi ∈ {−1,+1}}ni=1, our
goal is to obtain a set of parameters w that optimizes the objective below:

L(w;D) =
1

n

n∑
i=1

l(w⊤xi, yi) +
λ

2
||w||22, (80)

where the objective consists of a standard logistic regression loss l(w⊤xi, yi) = − log σ(yiw⊤xi),
where σ(t) = 1

1+exp(−t) is the sigmoid function; and a ℓ2 regularization term where λ is a hyper-
parameter to control the regularization, and we set λ as 10−6 × n across all the experiments. By
simple algebra one can show that [7]

∇l(w⊤xi, yi) = (σ(yiw⊤xi)− 1)yixi + λw, (81)

∇2l(w⊤xi, yi) = σ(yiw⊤xi)(1− σ(yiw⊤xi))xixT
i + λId. (82)

Due to σ(yiw⊤xi) ∈ [0, 1], it is not hard to see that we have smoothness L = 1/4 + λ and strong
convexity λ.

The per-sample gradient with clipping w.r.t. the weights w of the logistic regression loss function is
given as:

∇clipl(w⊤xi, yi) = ΠCM

(
(σ(yiw⊤xi)− 1)yixi

)
+ λw, (83)

where ΠCM
denotes the gradient clipping projection into the Euclidean ball with the radius of M ,

to satisfy the Lipschitz constant bound. According to Proposition 5.2 of [18], the per-sampling
clipping operation still results in a L-smooth, m-strongly convex objective. The resulting Langevin
learning/unlearning update on the full dataset is as follows:

1

n

n∑
i=1

∇clipl(w
Txi, yi), (84)

Finally, we remark that in our specific case since we have normalized the features of all data points
(i.e., ∥x∥ = 1), by the explicit gradient formula we know that ∥(σ(yiw⊤xi)− 1)yixi∥ ≤ 1.

As to multi-class classification task D = {xi ∈ Rd, yi ∈ {−1,+1}c}ni=1, the loss function is denoted
as follows [18]:

L(w;D) =
1

n

n∑
i=1

l(w⊤xi, yi) +
λ

2
||w||22, (85)

where

l(w⊤xi, yi) = −y1 log( ew
⊤
1 xi

ew
⊤
1 xi + ...+ ew

⊤
c xi

)− ...− yc log(
ew

⊤
c xi

ew
⊤
1 xi + ...+ ew

⊤
c xi

). (86)

After similar derivations, the aforementioned objective function can also yield an explicit expression
for the gradient, as well as bounds for the constants.

The constant meta-data of the loss function in equation (80) and (85) above for the datasets is shown
in the table below:

Table 1: The constants for the loss function and other calculation on MNIST and CIFAR-10.
expression MNIST CIFAR10-binary CIFAR10-multi-class

smoothness constant L 1
4 + λ 1

4 + λ 1
4 + λ 1 + λ

strongly convex constant m λ 0.0119 0.0100 0.0499
Lipschitz constant M gradient clip 1 1 2

RDP constant δ 1/n 8.3458e-5 0.0001 2e-5
CLSI > σ2

m
2σ2

m
2σ2

m
2σ2

m

Learning from scratch set-up For the baselines and our Langevin unlearning framework, we all
sample the initial weight w randomly sampled from i.i.d Gaussian distribution N (µ0, CLSI), where
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µ0 is a hyper-parameter denoting the initialization mean and we set as 1000 to simulate the situation
where the initial w has a long distance towards the optimum alike most situations in real-world
applications. For the learning methods M, we set T = 10, 000 for all the methods to converge.

Unlearning request implementation. In our experiment, for an unlearning request of removing
data point i, we replace its feature with random features drawn from N (0, Id) and its label with a
random label drawn uniformly at random drawn from all possible classes. This is similar to the DP
replacement definition defined in [52], where they replace a point with a special null point ⊥.

General implementation of baseline D2D [8]

• Across all of our experiments involved with D2D, we follow the original paper to set the step size
as 2/(L+m).

• For the experiments in Fig. 3a, we calculate the noise to add after gradient descent with the non-
private bound as illustrated in Theorem. N.1 (Theorem 9 in [8]); For experiments with sequential
unlearning requests in Fig. 3b, we calculate the least step number and corresponding noise with the
bound in Theorem. N.2(Theorem 28 in [8]).

• The implementation of D2D follows the pseudo code shown in Algorithm 1,2 in [8] as follows:

Algorithm 1 D2D: learning from scratch

1: Input: dataset D
2: Initialize w0

3: for t = 1, 2, . . . , 10000 do
4: wt = wt−1 − 2

L+m × 1
n

∑n
i=1(∇clipl(w

T
t−1xi, yi))

5: end for
6: Output: ŵ = wT

Algorithm 2 D2D: unlearning

1: Input: dataset Di−1, update ui; model wi

2: Update dataset Di = Di−1 ◦ ui
3: Initialize w′

0 = wi

4: for t = 1, . . . , I do
5: w′

t = w′
t−1 − 2

L+m × 1
n

∑n
i=1 ∇clipl((w

′
t−1)

Txi, yi))
6: end for
7: Calculate γ = L−m

L+m

8: Draw Z ∼ N (0, σ2Id)
9: Output ŵi = w′

Ti
+ Z

The settings and the calculation of I, σ in Algorithm. 2 are discussed in the later part of this section
and could be found in Section. N.
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General Implementation of Langevin Unlearning

• We set the step size η for Langevin unlearning framework across all the experiments as 1/L.

• The pseudo code for Langevin unlearning framework is as follows:

Algorithm 3 Langevin unlearning framework, learning / unlearning

1: Input: dataset D
2: if Learn from scratch then
3: Initialize w0 ∈ N (µ0, CLSIId)
4: else
5: Initialize w0 with the pre-trained parameters
6: end if
7: for t = 1, 2, . . . ,K do
8: Draw W

iid∼ N (0, Id)

9: wt = wt−1 − 1
L × 1

n

∑n
i=1(∇clipl(w

T
t−1xi, yi)) +

√
2σ2

L W

10: end for
11: Output: ŵ = wK

M.4 Implementation Details for Fig. 3a

In this experiment, we first train the methods on the original dataset D from scratch to obtain the
initial weights w0. Then we randomly remove a single data point (S = 1) from the dataset to get
the new dataset D′, and unlearn the methods from the initial weights ŵ and test the accuracy on the
testing set.

we set the target ϵ̂ with 6 different values as [0.05, 0.1, 0.5, 1, 2, 5]. For each target ϵ̂:

• For D2D, we set three different unlearning gradient descent step budgets as I = 1, 2, 5, and
calculate the corresponding noise to be added to the weight after gradient descent on D according to
Theorem. N.1, where the detailed noise information is shown in the table below:

Table 2: Baseline σ details in Fig. 3a
0.05 0.1 0.5 1 2 5

CIFAR-10-binary
1 59.5184 29.7994 6.0233 3.0504 1.5626 0.6663
2 28.1340 14.0859 2.8472 1.4419 0.7386 0.3149
5 9.4523 4.7325 0.9565 0.4844 0.2481 0.1058

CIFAR-10-multi-class
1 5.9612 2.9840 0.6022 0.3044 0.1554 0.0657
2 2.8386 1.4209 0.2867 0.1449 0.0740 0.0313
5 0.9764 0.4887 0.0986 0.0498 0.0254 0.0107

MNIST
1 36.8573 18.4620 3.7310 1.8890 0.9673 0.4120
2 17.3030 8.6229 1.7507 0.8864 0.4538 0.1933
5 5.6774 2.8424 0.5744 0.2908 0.1489 0.0634

• For the Langevin unlearning framework, we set the unlearning fine-tune step budget as K̂ = 1 only,
and calculate the smallest σ that could satisfy the fine-tune step budget and target ϵ̂ at the same time.
The calculation follows the binary search algorithm as follows:
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Algorithm 4 Langevin Unlearning: binary search σ that satisfy K̂ and target ϵ̂ budget

1: Input:target ϵ̂, unlearn step budget K, lower bound σlow, upper bound σhigh
2: while σlow ≤ σhigh do
3: σmid = (σlow + σhigh)/2
4: call Alg. 5 to find the least K that satisfies ϵ̂ with σ = σmid

5: if K == K̂ then
6: Return K
7: else if K ≤ K̂ then
8: σhigh = σmid
9: else

10: σlow = σmid
11: end if
12: end while

Algorithm 5 Langevin Unlearning: find the least unlearn step K that satisfies the target ϵ̂

1: Input:target ϵ̂, σ
2: Initialize K = 1, ϵ > ϵ̂
3: while ϵ > ϵ̂ do
4: ϵ = minα>1[exp(− 2Kσ2η

αCLSI
) 4αS

2M2

mσ2n2 +
log( 1

δ )

α−1 ]
5: K = K + 1
6: end while
7: Return K

The σ found is reported in the table below:

Table 3: The σ found with different target ϵ̂
ϵ̂ 0.05 0.1 0.5 1 2 5

CIFAR-10-binary 0.2431 0.1220 0.0250 0.0125 0.0064 0.0028
CIFAR-10-multi-class 0.0473 0.0238 0.0049 0.0025 0.0012 0.0005

MNIST 0.1872 0.094 0.0190 0.0096 0.0049 0.0021

M.5 Implementation Details for Fig. 3b

In this experiment, we fix the target ϵ̂ = 1, we set the total number of data removal as 100. We show
the accumulated unlearning steps w.r.t. the number of data removed. We first train the methods from
scratch to get the initial weight w0, and sequentially remove data step by step until all the data points
are removed. We count the accumulated unlearning steps K needed in the process.

• For D2D, According to the original paper, only one data point could be removed a time. We
calculate the least required steps and the noise to be added according to Theorem. N.2.

• For Langevin unlearning, we fix the σ = 0.03, and we let the model unlearn [5, 10, 20] per time
thanks to our theory. We obtain the least required unlearning steps for each removal operation Klist
following corollary. 3.4. The pseudo code is shown in Algorithm. 6.
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Algorithm 6 Langevin Unlearning: find the least unlearn step K in sequential settings

1: Input:target ϵ̂, σ, total removal S, removal batch size b per time
2: Klist = []
3: for i in range(S/b) do
4: Initialize Klist[i− 1] = 1, ϵ > ϵ̂
5: while ϵ > ϵ̂ do
6: ϵ = minα>1[ε(α, σ, b, i,Klist) + log(1/δ)/(α− 1)]
7: Klist[i− 1] = Klist[i− 1] + 1
8: end while
9: end for

10: Return Klist

Algorithm 7 ε(α, σ, b, i,Klist)

1: Input:target α, σ, removal batch size b per time, i-th removal in the sequence
2: if i==1 then
3: Return exp(−ηmKlist[0]

α )× ε0(α, b, σ)
4: else
5: Return exp(−ηmKlist[i−1]

α )× α−0.5
α−1 (ε0(2α, b, σ) + ε(2α, σ, b, i− 1,Klist))

6: end if

Algorithm 8 ϵ0(α, S, σ)

1: Return 4αS2M2

mσ2n2

M.6 Implementation Details for Fig. 3c

In this study, we set the σ of the Langevin unlearning framework as [0.05, 0.1, 0.2, 0.5, 1]. For each
σ, we calculate the corresponding ϵ0. We train the Langevin unlearning framework from scratch to
get the initial weight w0. Then we remove 100 data points from the dataset and unlearn the model.
We here also call Algorithm. 5 to obtain the least required unlearning steps K.

M.7 Implementation Details for Fig. 4

In this study, we set different target ϵ̂ as [0.5, 1, 2, 5] and set different number of data to remove
S = [1, 50, 100]. We train the Langevin unlearning framework from scratch to get the initial weight,
then remove some data, unlearn the model and report the accuracy. We calculate the least required
unlearning steps K by again calling Algorithm. 5.

M.8 Additional experiments

N Unlearning Guarantee of Delete-to-Descent [8]

Theorem N.1 (Theorem 9 in [8], with internal non-private state). Assume for all d ∈ X , f(x;d)
is m-strongly convex, M -Lipschitz and L-smooth in x. Define γ = L−m

L+m and η = 2
L+m . Let the

learning iteration T ≥ I + log( 2Rmn
2M )/ log(1/γ) for PGD (Algorithm 1 in [8]) and the unlearning

algorithm (Algorithm 2 in [8], PGD fine-tuning on learned parameters before adding Gaussian noise)
run with I iterations. Assume ϵ = O(log(1/δ)), let the standard deviation of the output perturbation
gaussian noise σ to be

σ =
4
√
2MγI

mn(1− γI)(
√
log(1/δ) + ϵ−

√
log(1/δ))

. (87)

Then it achieves (ϵ, δ)-unlearning for add/remove dataset adjacency.
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Figure 5: (a) The utility results that correspond to Figure 4. Since σ is fixed the utility is roughly the
same. (b) The privacy-utility tradeoff for unlearning one point restricting to one (or K) unlearning
update on the Adult dataset.

Theorem N.2 (Theorem 28 in [8], without internal non-private state). Assume for all d ∈ X , f(x;d)
is m-strongly convex, M -Lipschitz and L-smooth in x. Define γ = L−m

L+m and η = 2
L+m . Let the

learning iteration T ≥ I + log( 2Rmn
2M )/ log(1/γ) for PGD (Algorithm 1 in [8]) and the unlearning

algorithm (Algorithm 2 in [8], PGD fine-tuning on learned parameters after adding Gaussian noise)
run with I + log(log(4di/δ))/ log(1/γ) iterations for the ith sequential unlearning request, where I
satisfies

I ≥
log

( √
2d(1−γ)−1√

2 log(2/δ)+ϵ−
√

2 log(2/δ)

)
log(1/γ)

. (88)

Assume ϵ = O(log(1/δ)), let the standard deviation of the output perturbation gaussian noise σ to
be

σ =
8MγI

mn(1− γI)(
√
2 log(2/δ) + 3ϵ−

√
2 log(2/δ) + 2ϵ)

. (89)

Then it achieves (ϵ, δ)-unlearning for add/remove dataset adjacency.

Note that the privacy guarantee of D2D [8] is with respect to add/remove dataset adjacency and ours
is the replacement dataset adjacency. However, by a slight modification of the proof of Theorem N.1
and N.2, one can show that a similar (but slightly worse) bound of the theorem above also holds for
D2D [8]. For simplicity and fair comparison, we directly use the bound in Theorem N.1 and N.2 in
our experiment. Note that [52] also compares a special replacement DP with standard add/remove
DP, where a data point can only be replaced with a null element in their definition. In contrast,
our replacement data adjacency allows arbitrary replacement which intuitively provides a stronger
privacy notion.

The non-private internal state of D2D. There are two different versions of the D2D algorithm
depending on whether one allows the server (model holder) to save and leverage the model parameter
before adding Gaussian noise. The main difference between Theorem N.1 and N.2 is whether their
unlearning process starts with the “clean” model parameter (Theorem N.1) or the noisy model
parameter (Theorem N.2). Clearly, allowing the server to keep and leverage the non-private internal
state provides a weaker notion of privacy [8]. In contrast, our Langevin unlearning approach by
default only keeps the noisy parameter so that we do not save any non-private internal state. As a
result, one should compare Langevin unlearning to D2D with Theorem N.2 for a fair comparison.

31



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims are provided with corresponding theorems (i.e., Theorem 3.2 for
unlearning guarantees) and we demonstrate superior privacy-utility-complexity tradeoff via
experiments in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a detailed discussion on the limitation of our work in Section A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All assumptions are clearly stated in our theorems, see Theorem 3.2 and 3.3
for instance. The proofs for every theoretical statements are provided in Appendix F to L.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the experiment code in our supplementary materials and details
about our settings in Section M.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the experiment code in our supplementary materials and all data
used in our experiments are cited with public access.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details are included in Appendix M.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All results are provided with 1 standard deviation error bar, which is gathered
over 100 independent trials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources used for our experiments are detailed in Appendix M.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute worker CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the NeurIPS Code of Ethics and affirm that this work
conforms with it in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We briefly discuss why our work does not have any negative societal impacts
in B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets used in our experiments are properly cited with proper open access
license, see Section 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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