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ABSTRACT

Traditional OCR systems (OCR-1.0) are increasingly unable to meet people’s
usage due to the growing demand for intelligent processing of man-made optical
characters. In this paper, we collectively refer to all artificial optical signals
(e.g., plain texts, math/molecular formulas, tables, charts, sheet music, and even
geometric shapes) as ”characters” and propose the General OCR Theory along
with an excellent model, namely GOT, to promote the arrival of OCR-2.0. The
GOT, with 580M parameters, is a unified, elegant, and end-to-end model, consisting
of a high-compression encoder and a long-contexts decoder. As an OCR-2.0 model,
GOT can handle all the above ”characters” under various OCR tasks. On the
input side, the model supports commonly used scene- and document-style images
in slice and whole-page styles. On the output side, GOT can generate plain or
formatted results (markdown/tikz/smiles/kern) via an easy prompt. Besides, the
model enjoys interactive OCR features, i.e., region-level recognition guided by
coordinates or colors. Furthermore, we also adapt dynamic resolution and multi-
page OCR technologies to GOT for better practicality. In experiments, we provide
sufficient results to prove the superiority of our model.

1 INTRODUCTION

Optical Character Recognition (OCR) is a widely used technology that extracts the characters
embedded in an optical image into an editable format. Typical OCR systems Du et al. (2021) in
the OCR-1.0 era are mainly designed based on a multi-modular pipeline style, commonly including
element detection, region cropping, and character recognition parts. Each module is prone to falling
into local optima, making the whole system incur high maintenance costs. Moreover, traditional OCR
methods have insufficient general ability, reflected as different OCR-1.0 networks usually designed
for different sub-tasks. Nevertheless, choosing a suitable one from diverse OCR models for a special
task is always inconvenient for users.

In the past year, Large Vision Language models (LVLMs) OpenAI (2023); Liu et al. (2023b); Ye et al.
(2023a) have developed rapidly and showcased impressive performance. As a highly anticipated
ability, the OCR performance of current LVLMs is continuously improving. Based on CLIP Radford
et al. (2021), LLaVA Liu et al. (2023b) naturally acquires the English OCR ability after the instruct
tuning phase. To lift the OCR accuracy and support other languages, e.g., Chinese, Qwen-VL Bai
et al. (2023b) unfreezes its image encoder (a CLIP-G) and uses lots of OCR data in its stage-two
training. Innovatively, Vary Wei et al. (2023) generates a new high-resolution OCR vision vocabulary
paralleling the CLIP branch to deal with document-level dense OCR. By contrast, InternVL-1.5 Chen
et al. (2024b) and other models Liu et al. (2024d); Ye et al. (2023b) utilize a sliding window manner to
crop the whole image into multiple sub-patches for high-resolution OCR. Hence, a consensus is that
optical character perception and recognition are the foundation of text-driven image understanding,
drawing many researchers to pay more attention to LVLMs’ OCR booster.

However, the popular designs of LVLMs may not be suitable for diverse OCR tasks for the following
reasons: 1) The conflicts between perception and reasoning. LVLMs mainly focus on visual reasoning
performance, e.g., VQA Singh et al. (2019); Mathew et al. (2021), because that is what the LLM
excels at. To quickly obtain the QA-gain benefits from LLMs, most LVLMs Liu et al. (2023b); Ye
et al. (2023a); Li et al. (2023a) align image tokens to text ones. However, it is unreasonable to do
this for pure perception OCR tasks, especially high-density text scenes, because each aligned vision
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Figure 1: On the input side, GOT supports various optical image types, such as commonly used
photographs and documents. Besides, as a general OCR-2.0 model, GOT can handle more tasks, e.g.,
sheet music, molecular formulas, easy geometric shapes, charts, etc. Moreover, the model can adapt
to region-focus OCR, high-resolution OCR, and multiple-page OCR. GOT mainly supports English
and Chinese and can control the structure results (Mathpix markdown/tikz/smiles/kern) via a prompt.

token (biased towards text token) cannot compress enough characters. Imagine how wasteful it is
to use thousands of image tokens, e.g., the image-cropping manner Chen et al. (2024b); Liu et al.
(2024c), to encode an equal amount of optical characters (e.g., texts within only an A4-PDF page).
2) High iteration and deployment costs. LVLM often enjoys billions of parameters, leading to the
post-training and deployment costs being too high. Generally speaking, for LVLMs, fine-tuning is
not enough once we want to add a new OCR pattern, e.g., a new language, instead of enough GPU
resources for pre-training. However, rerunning the pre-training with billions of parameters, only to
introduce a new OCR feature, is also wasteful.
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Accordingly, we propose the general OCR theory, i.e., OCR-2.0, to break the bottlenecks of both
traditional and LVLM manners on OCR tasks. We think that a model of OCR 2.0 should have the
following essential characteristics:

• End-to-end. Compared to OCR-1.0 models with complex procedures, the OCR-2.0 model should
enjoy a unified and end-to-end architecture to ensure lower maintenance costs. It is cool that a
beginner can quickly master the entire OCR system in the 2.0 era.

• Low training and inference costs. The OCR-2.0 model should not be a chatbot, like LVLM, that
focuses on reasoning tasks. Its focus should be on strong perception and recognition of optical
characters, so it needs a reasonable number of model parameters in exchange for lower training
and inference costs.

• Versatility. The OCR-2.0 model’s other important point is versatility, including recognizing more
general artificial optical “characters”, e.g., sheet music, charts, geometric shapes, etc. Besides, the
model should support the output format with stronger readability, e.g., LATEX/Markdown format for
formulas and tables.

Based on the proposed general OCR theory, we present a primary OCR-2.0 model (GOT) to bridge
the gap between OCR-1.0 models and people’s higher optical character processing demands. In
architecture, we adopt the unsophisticated encoder-decoder paradigm for the model. Specifically,
GOT enjoys a high compression rate encoder to transfer the optical image to tokens as well as a
long context length decoder to output the corresponding OCR results. The encoder has approx-
imately 80M parameters posing 1024×1024 input size which is enough to deal with commonly
used photo/document input styles. Each input image will be compressed to tokens with 256×1024
dimensions. The decoder of GOT, with 0.5B parameters, supports 8K max length tokens to ensure
it can tackle long-context scenarios. We devise an effective and efficient training strategy for GOT,
which can be divided into three procedures, i.e., decoupled pre-training of the encoder, joint-training
of the encoder with a new decoder, and further post-training of the decoder. Besides, to further lift
the practicality of GOT, we additionally adapt the fine-grained OCR feature for better interactivity,
dynamic resolution strategy for ultra-high-resolution images (e.g., over 2K), and the multi-page OCR
technology to alleviate the problem of difficulty in breaking pages in PDF image-text pairs (e.g.,
page breaks in .tex files). To support each training stage, we do many data engines for synthetic data
production, which is the key to the success of GOT and will be described in detail in this paper. The
main input data format supported by our model can be seen in Figure 1.

As a model for envisioning OCR-2.0, GOT demonstrates promising performance in our experiments
in various OCR tasks. We hope the proposed simple and elegant GOT can draw more researchers to
invest in the research of OCR-2.0. Of course, the path to OCR-2.0 is still long and GOT also enjoys
much improvement room, such as supporting more languages, more general artificial signals, and
more complex geometries. In this new era led by LVLMs, we are convinced that the pure OCR model
is not over, it may even be a new beginning.

2 RELATED WORK

2.1 TRADITIONAL OCR

Optical Character Recognition (OCR) is a classic research topic that aims to convert the image’s
optical contents into an editable format for further downstream processing. Traditional OCR systems,
called OCR-1.0, typically use a framework that is assembled from multiple expert modules. For
instance, to handle diverse optical characters, the OCR system Du et al. (2021) is usually developed
by integrating several domain expert networks, such as layout analysis Zhong et al. (2019), text
detection Liao et al. (2022); Liu et al. (2019b); Zhang et al. (2021), region extraction, and contents
recognition Li et al. (2023b). The reason for using such a pipeline scheme is that the text recognition
module (the OCR part) failed to scale up successfully, which can only deal with the image format of
small slices, resulting in the entire OCR process being in the form of first detecting texts/cropping
regions, and then recognizing the results within the slice. However, a system with complicated
procedures may suffer potential systematic errors and high maintenance costs. Although some
OCR-1.0 models, e.g., Nougat Blecher et al. (2023) can directly process documents at the whole page
level, they are often designed and trained for a specific sub-task, leading to unsatisfactory general
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Figure 2: The framework of the proposed GOT. Stage 1: We pre-train the vision encoder using a
tiny OPT-125M to adapt the OCR tasks efficiently. Stage 2: GOT is built by connecting the vision
encoder to Qwen-0.5B and sufficient OCR-2.0 knowledge of more general optical characters is used
in this stage. Stage 3: No modification of the vision encoder is required, and GOT is customized to
new character recognition features.

ability. In the OCR-1.0 era, one inconvenient thing is that we usually need to switch different models
according to various OCR needs.

2.2 LVLM-DRIVEN OCR

Large Vision-Language Models Liu et al. (2023b); Bai et al. (2023b); Wei et al. (2023); Ye et al.
(2023a); Chen et al. (2024b); Liu et al. (2024d;a) have attracted lots of attention in the AI-community
due to their powerful generalization capabilities. For the current LVLMs owning perception-reasoning
comprehensive capacity, the OCR ability has become a hot spot with the increasing demand for
text-driven visual understanding. Most LVLMs’ OCR capabilities come from the ready-made
CLIP Radford et al. (2021), especially those that freeze CLIP encoder Liu et al. (2023b) to complete
the entire LVLM training. For such models, the vanilla CLIP, mainly with English scene text
knowledge, is the bottleneck for the OCR performance to out-of-domain tasks, such as other languages
or documents. Some other LVLMs Ye et al. (2023a); Bai et al. (2023b) choose to unfreeze the encoder
and freeze the LLM for training to enhance the CLIP-encoder and align the image tokens to text ones.
These models will face the problem of low optical character compression rate, as it is difficult for
frozen LLM to decode too much text from an aligned image token. To alleviate this problem, some
models Chen et al. (2024b); Liu et al. (2024d); Ye et al. (2023b) adopt a sliding window manner to
decompose input images into smaller patches. Although this dynamic resolution approach is highly
effective in processing high-resolution input images, e.g., PDF, it will result in excessive image tokens
and limit the max length of the generated OCR result to some extent.

3 GENERAL OCR THEORY

In this work, we propose the general OCR theory, i.e., OCR-2.0 (as expounded in Section 1) to
promote the development of the OCR field. Based on the proposed new theory, we present a novel
OCR model (GOT). In this section, we will introduce the technical details of our model.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 FRAMEWORK

As illustrated in Figure 2, GOT comprises three modules, i.e., an image encoder, a linear layer, and
an output decoder. The linear layer acts as the connector to map the channel dimension between
the vision encoder and the language decoder. We utilize three main steps in optimizing the whole
GOT model. First, we conduct the pure text recognition task to pre-train the vision encoder. To lift
training efficiency and save GPU resources, we choose a tiny decoder to pass gradients to the encoder.
In this stage, we feed images containing scene texts and manual images containing document-level
characters into the model to allow the encoder to gather the two most commonly used characters’
encoding abilities. In the next stage, we form the architecture of GOT by connecting the trained
vision encoder to a new larger decoder. We prepare lots of more general OCR data (e.g., sheet music,
math/molecular formulas, and geometric shapes) to scale up the OCR-2.0 knowledge for this stage. In
the final stage, we intend to improve the generalization and applicability of GOT further. Specifically,
fine-grained and muti-crop/page synthetic data are generated and added for GOT to support region
prompt OCR Liu et al. (2024a), huge image OCR, and batched PDF OCR features.

3.2 PRE-TRAIN THE OCR-EARMARKED VISION ENCODER

As aforementioned, GOT enjoys the encoder-decoder structure. Inspired by the LVLMs design, the
decoder can be initialized by a well-trained language model. However, we did not find a suitable
pre-trained encoder for an OCR-2.0 model, so we must train one ourselves. We hope the new OCR
encoder can work well on commonly used scene and document text recognition in various input
shapes (both slices and whole pages).

3.2.1 THE VISION ENCODER GENERATION.

The encoder structure we selected is VitDet Li et al. (2022) (base version with about 80M parameters)
due to its local attention can greatly reduce the computational cost of high-resolution images. We
follow the Vary-tiny setting Wei et al. (2023) to design the last two layers of the encoder, which will
transfer a 1024×1024×3 input image to 256×1024 image tokens. Then, these image tokens are
projected into language model (OPT-125M Zhang et al. (2022)) dimension via a 1024×768 linear
layer. Unlike the Vary encoder which only focuses on a single document task under a relatively
unitary input shape, we incorporated natural scenes and cropped slices during our pre-training. In
the pre-processing stage, images of each shape are directly resized to 1024×1024 squares, as square
shapes can be used to adapt to images of various aspect ratios with a compromise.

3.2.2 DATA ENGINE TOWARDS ENCODER PRE-TRAINING

In such an encoder pre-training stage, we use about 5M image-text pairs, including 3M scene text
OCR data and 2M document OCR data. Their acquisition methods are as follows:

For the natural scene data, the English/Chinese images are sampled from Laion-2B Schuhmann et al.
(2022) and Wukong Gu et al. (2022) datasets, respectively. Then, the pseudo ground truth in these
diverse real scenes is captured using PaddleOCR Du et al. (2021) tools. Overall, we obtain 2M dat
with half in Chinese and half in English. For text ground truth, we perform two types of processing:
1) remove the bounding box and combine each text content in order from top to bottom and left to
right. 2) crop the text region from the original image according to the bounding box and save it as
image slices. The later method 2) allows us to obtain another 1M slice-type image-text pairs.

For the document-level data, we first collect open-source PDF-style files from the Common Crawl and
employ the Fitz Python package to extract corresponding dense text content. In such a process, we
gain 1.2M full-page PDF-style image-text pairs and 0.8M image slice data. The slice data, including
line- and paragraph-level, is cropped from the PDF image via the parsed bounding box.

3.3 SCALING UP THE OCR-2.0 KNOWLEDGE VIA MULTI-TASK JOINT-TRAINING

3.3.1 THE FINAL ARCHITECTURE OF GOT

After the pre-training step of the vision encoder, we connect it to a larger language model with more
powerful capabilities to build the final architecture of GOT. Here, we adopt the Qwen Bai et al.
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(2023a) with 500M parameters as the decoder because it has a relatively small number of parameters
while incorporating prior knowledge of multiple languages. The dimension of the connector (i.e., the
linear embedding layer) is adjusted into 1024×1024 to align with the input channels of the Qwen-
0.5B. Hence, GOT enjoys the seamless encoder-decoder paradigm with about 580M parameters in
total, which is more computationally resource-friendly and easier to deploy on a consumer-grade
GPU with 4G memory. The high compression rate (1024×1024 optical pixels to 256 image tokens)
of the encoder saves a lot of token space for the decoder to generate new tokens. Meanwhile, the
satisfactory decoding context length (we use about 8K max-length) of the decoder ensures that the
GOT can effectively output OCR results under dense scenes.

3.3.2 DATA ENGINE FOR JOINT-TRAINING

To inject sufficient OCR-2.0 knowledge into GOT, instead of the above-mentioned plain OCR data,
we carefully explore several synthesis methods and data engines in this stage, as shown in Figure 3.
We will delve into the details of each type of synthetic data in the following paragraphs.

Plain OCR data. We use 80% of the data mentioned in Section 3.2.2 as plain OCR data. To
further enhance the robustness of GOT, we also add the handwritten text recognition sub-task, which
involves various styles of handwriting from letters and diaries in different languages. We collect the
Chinese CASIA-HWDB2 Tek (2024a), English IAM Tek (2024b), and Norwegian NorHand-v3 Tek
(2024c) datasets to meet our requirements. For the original image-text pairs with the line-level slice
format, 6∼8 pairs are grouped and randomly pasted into a blank document page to achieve longer-text
handwriting recognition and improve training efficiency.

Mathpix-markdown formatted data. Preserving the optical content format is critical to maintain-
ing strong readability for the output results, especially for mathematical formulas and tables. To this
end, we use multiple approaches to gather as much formatted data as possible. The details of data
collection and production are as follows:

• Math formulas. We crawl a large number of LATEX source .tex files on Arxiv and extract about 1M
formula fragments from them. Next, we transfer the formula sources to Mathpix format and use
the Chorme-driver to call Mathpix-markdown-it tool to render the sources to HTML format. We
then convert the HTML files to SVGs and save them as PNG images. We find that this rendering
method is more than 20× faster than directly using the LATEX.

• Molecular formulas. We first download the ChEMBL 25 file that contains 2M smile sources. Then
we use the Mathpix-markdown-it tool and rdkit.Chem package to gather about 1M of molecular
formula image-text pairs.

• Table. From the crawled .tex files, we extract about 0.3M table sources and render them into
images. Instead of Mathpix-markdown-it, we directly utilize the LATEX as the rendering tool due to
its better rendering effects for advanced tables.

• Full page data. Using the Nougat Blecher et al. (2023) method, we obtain about 0.5M English
markdown PDF-text pairs. Besides, following Vary Wei et al. (2023; 2024), we gather another
0.5M Chinese markdown pairs. We transfer their contents to Mathpix format. Furthermore, we
additionally add 0.2M in-house data, which is directly labeled using Mathpix, including books,
papers, and financial reports.

More general OCR data. We hope GOT can deal with more general optical artificial “characters”.
Accordingly, we collect three related challenging tasks and generate the corresponding data. They
are sheet music, geometric shapes, and charts, respectively.

• Sheet music. Music is a precious part of the cultural heritage and optical music recognition Calvo-
Zaragoza et al. (2020); Rı́os-Vila et al. (2024) plays an important role in achieving automatic
recognition and transcription of sheet music. We choose the GrandStaff Rı́os-Vila et al. (2023)
dataset as the source to render. The dataset of polyphonic music scores provides the Humdrum
**kern transcriptions from the excerpts of music. In addition to the existing approximately 100K
image-text samples, we also extract some text samples to re-render via the Verovio Python Package.
We mainly add new backgrounds from white to real paper styles and randomly add the title and
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Text sources

.tex

geometry codes

smiles

humdrum **kern

chart codes

Rendering tools

mathpixpdftex

matplotlib tikz

verovio pyecharts

Results

Figure 3: We use six rendering tools to run data engines to make the GOT work well on diverse OCR
tasks. We utilize the LATEX for tables, Mathpix-markdown-it for math/molecular formulas, Tikz for
simple geometric shapes, Verovio for sheet music, and Matplotlib/Pyecharts for charts, respectively.

author information. Note that we only render single-system sheet music due to we don’t have
professionals in the relevant field and we do not know how to assemble single-system sheets to a
full page. After rendering, we collect about 0.5M samples.

• Geometric shape. Geometry is a key capability of LVLMs and is a necessary step towards AGI.
GOT is expected to transform optical geometric elements into TikZ Mertz & Slough (2007) text
format. TikZ contains some concise commands to produce basic geometric elements and they can
be compiled using LATEX. We employ TikZ-style points and lines and use the simplest point-line
spatial relationship to construct simple basic geometric shapes (e.g., circles, rectangles, triangles,
and combined shapes) as well as simple function curves (e.g., straight lines, parabolas, ellipses,
hyperbolas, and so on). Through this method, we obtained approximately 1M geometric Tikz data.
The geometric rendering is complicated, and our current work is only a preliminary attempt. GOT
can only recognize basic geometry at present, yet we believe that with the development of synthetic
data technology and OCR-2.0, future models will be able to identify complex geometric shapes.

• Chart. Charts are crucial in data visualization and data analysis of several research fields. The
proposed GOT refers to the chart structural extraction sub-task as “Chart OCR”, which converts
the visual knowledge (e.g., title, source, x-title, y-title, and values) on the chart image into an
editable output with a table/Python-dict format. Following OneChart Chen et al. (2024a), the chart
image-text pairs are rendered using Matplotlib and Pyecharts tools. Because GOT is only an OCR
model, we don’t need the elements of the chart synthesized to be semantically related. Thus, we
just randomly extract entity texts (for the title, source, x-title, y-title, etc) from the open-access
NLP corpus. The numerical values are random numbers under a controlled distribution. Through
this method, we obtained 2M chart data, with half from Matplotlib and half from Pyecharts.

3.4 CUSTOMIZING NEW OCR FEATURES BY POST-TRAINING THE DECODER

After compressing the general visual information of the diverse OCR-2.0 optical signals via the
above two steps, GOT is ready to perform image-level OCR tasks in various scenarios. Based on
this perceptually savvy vision encoder, GOT can be easily tuned to meet the users’ needs for input
and output. Here, we customize GOT to enable three new features, i.e., fine-grained, multi-page, and
dynamic resolution OCR, by only post-training the decoder part.

3.4.1 FINE-GRAINED DATA ENGINE FOR INTERACTIVE OCR

As a high-interactivity feature, fine-grained OCR Liu et al. (2024a) is the region-level visual perception
controlled by spatial coordinates or colors. The user can add box coordinates or color text in the
question prompt to request recognition within the region of interest (RoI), avoiding the output of
other irrelevant characters. For the natural fine-grained OCR, the source images are from opensource
datasets, including RCTW Shi et al. (2017), ReCTS Liu et al. (2019a), and ShopSign Zhang et al.
(2019), and COCO-Text Veit et al. (2016) dataset. The datasets mentioned above provide the text
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bounding boxes, so we can use them to produce fine-grained (region/color prompt) OCR data directly.
For the document-level fine-grained OCR, following Fox Liu et al. (2024a), we filter out those
with the scanned format in the downloaded PDF files and parse the left part using Python packages
(Fitz/PDFminer). We record the page-level images, bounding boxes of each line/paragraph, and the
corresponding texts to produce the ground truth of the box-guided OCR sub-task. For such a task,
each coordinate value is first normalized and then magnified 1000 times. For the color-guided task,
we choose the most commonly used colors (red, green, and blue) as the frame colors and draw them
via the corresponding bounding box on the original image. Overall, we gather about 600K samples.

3.4.2 MULTI-CROP DATA ENGINE FOR ULTRA-LARGE-IMAGE OCR

GOT supports 1024×1024 input size, which is enough for commonly used OCR tasks, e.g., scene
OCR or A4-page PDF OCR. However, dynamic resolution is required for some scenes with huge
images, such as two-page PDF horizontal stitching (commonly occurring when reading papers).
Thanks to our high compression rate encoder, the dynamic resolution of GOT is achieved under a
large sliding window (1024×1024), ensuring that our model can complete extreme resolution OCR
tasks with acceptable image tokens. We use the InternVL-1.5 Chen et al. (2024b) cropping method
with tiles max to 12. The ultra-resolution images are synthesized using the single-page PDF data
mentioned above, including horizontal and vertical stitching, leading to 500K image-text pairs.

3.4.3 MULTI-PAGE DATA ENGINE FOR BATCHED PDF-FILE OCR

For OCR tasks, it is reasonable to use a “for loop” for multi-page processing. We introduce the
multi-page OCR (without “for loop”) feature for GOT due to some formatted PDF data making it
difficult to break pages (to obtain text that is completely incompatible with each page) to further scale
up, such as .tex in Arxiv. We hope that with GOT, researchers no longer have to worry about PDF
ground truth page breaks (e.g., Nougat Blecher et al. (2023)), as they can train on multiple pages
directly. To realize such a feature, we randomly sample 2-8 pages from our Mathpix formatted PDF
data and join them together to form a single round OCR task. Each selected page contains text that is
less than 650 tokens, to ensure that the overall length does not exceed 8K. In total, we generate about
200K multi-page OCR data, most of which are interlaced between Chinese and English pages.

4 EXPERIMENTS

4.1 IMPLEMENT DETAILS

We use 8×8 L40s GPUs to train GOT. In the pre-training stage, we optimize all parameters with a
global batch size of 128 and train for 3 epochs. We utilize the AdamW Loshchilov & Hutter (2019)
optimizer and a cosine annealing scheduler Loshchilov & Hutter (2016) with a start learning rate of
1e-4. The max token length in this stage is set to 4096. In the joint-training stage, we put the max
token length to 6000 and train the model with the same optimizer settings as stage 1 for 1 epoch. In
the last post-training stage, we expand the max token length to 8192 to allow the model to support
multi-patch/page OCR features. In this stage, the beginning learning rate is 2e-5, and the epoch is 1.
During each train-data process, 80% of the data from the previous stage is sampled for the following
stage to ensure that the basic ability does not degrade when adding new features.

4.2 MAIN RESULTS

In this section, we verify the performance of GOT on 5 different OCR tasks, including 1) plain
document OCR; 2) scene text OCR; 3) fine-grained document OCR; 4) formatted (Mathpix mark-
down) document OCR; 5) more general character OCR. Note that the test data for each benchmark
undergoes strict text similarity filtering to ensure that it is not included in the training data. Sources
of each test benchmark and model performance analysis are as follows.

4.2.1 PLAIN DOCUMENT OCR PERFORMANCE

We use the open-source Fox Liu et al. (2024a) benchmark to test the performance of GOT and popular
LVLMs on both Chinese and English PDF OCR. The metrics we used are those commonly in OCR

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison of dense English (en) and Chinese (zh) OCR on document-level
pages. The results of other models are from the previous work Liu et al. (2024a).

Method Size Edit Distance↓ F1-score↑ Precision↑ Recall↑ BLEU↑ METEOR↑

en zh en zh en zh en zh en zh en zh

UReader Ye et al. (2023b) 7B 0.718 - 0.344 - 0.296 - 0.469 - 0.103 - 0.287 -
LLaVA-NeXT Liu et al. (2024c) 34B 0.430 - 0.647 - 0.573 - 0.881 - 0.478 - 0.582 -
InternVL-ChatV1.5Chen et al. (2024b) 26B 0.393 0.265 0.751 0.816 0.698 0.784 0.917 0.866 0.568 0.622 0.663 0.717
Nougat Blecher et al. (2023) 250M 0.255 - 0.745 - 0.720 - 0.809 - 0.665 - 0.761 -
TextMonkey Liu et al. (2024d) 7B 0.265 - 0.821 - 0.778 - 0.906 - 0.671 - 0.762 -
DocOwl1.5 Hu et al. (2024) 7B 0.258 - 0.862 - 0.835 - 0.962 - 0.788 - 0.858 -
Vary Wei et al. (2023) 7B 0.092 0.113 0.918 0.952 0.906 0.961 0.956 0.944 0.885 0.754 0.926 0.873
Vary-toy Wei et al. (2024) 1.8B 0.082 0.142 0.924 0.914 0.919 0.928 0.938 0.907 0.889 0.718 0.929 0.832
Qwen-VL-Plus Bai et al. (2023b) - 0.096 0.121 0.931 0.895 0.921 0.903 0.950 0.890 0.893 0.684 0.936 0.828
Qwen-VL-Max Bai et al. (2023b) >72B 0.057 0.091 0.964 0.931 0.955 0.917 0.977 0.946 0.942 0.756 0.971 0.885
Fox Liu et al. (2024a) 1.8B 0.046 0.061 0.952 0.954 0.957 0.964 0.948 0.946 0.930 0.842 0.954 0.908
GOT 580M 0.035 0.038 0.972 0.980 0.971 0.982 0.973 0.978 0.947 0.878 0.958 0.939

tasks, i.e., edict distance, F1-score, precision, recall, BLEU, and METEOR. Due to the lengthy text
of the document, we use word-level segmentation to calculate each indicator. As shown in Table 1,
with only 580M, GOT achieves advanced performance on pure text OCR in the document, proving
the excellent PDF text perception and recognition ability.

Table 2: Performance of English (en) and Chinese (zh) OCR for scene texts. On these common
image-level OCR tasks, GOT can achieve better results compared to other popular models.

Method Size Edit Distance↓ F1-score↑ Precision↑ Recall↑ BLEU↑ METEOR↑

en zh en zh en zh en zh en zh en zh

UReader Ye et al. (2023b) 7B 0.568 - 0.661 - 0.843 - 0.569 - 0.258 - 0.488 -
LLaVA-NeXT Liu et al. (2024c) 34B 0.499 - 0.558 - 0.637 - 0.538 - 0.379 - 0.678 -
TextMonkey Liu et al. (2024d) 7B 0.331 - 0.743 - 0.827 - 0.710 - 0.521 - 0.728 -
DocOwl1.5 Hu et al. (2024) 7B 0.334 - 0.788 - 0.887 - 0.751 - 0.525 - 0.708 -
InternVL-ChatV1.5Chen et al. (2024b) 26B 0.267 0.123 0.834 0.913 0.942 0.934 0.790 0.902 0.587 0.588 0.744 0.876
Qwen-VL-Max Bai et al. (2023b) >72B 0.182 0.168 0.881 0.867 0.891 0.878 0.888 0.873 0.586 0.572 0.848 0.845
GOT 580M 0.112 0.096 0.926 0.928 0.934 0.914 0.927 0.954 0.676 0.641 0.896 0.928

4.2.2 SCENE TEXT OCR PERFORMANCE

We collect 400 natural images, half in Chinese and half in English, as the scene text OCR benchmark.
All the ground truth in this benchmark are manually corrected. Because the text in the scene image
is relatively short, we use character-level segmentation to calculate various metrics. As shown in
Table 2, we can see that GOT also works well on natural images, demonstrating the model’s excellent
performance on most basic OCR tasks (both document and scene texts).

4.2.3 FORMATTED DOCUMENT OCR PERFORMANCE

Converting the optical PDF image to a markdown-like format is an important feature of an OCR
model. To verify this ability of GOT, we carefully prepare 90 pages of samples as a high-quality
benchmark. The benchmark, containing both Chinese and English document pages, is first generating
pseudo-labels via Mathpix, and then manually correcting for errors. In Table 3, we can see the
single-scale (1024×1024) GOT can yield satisfactory results. When we use multi-crop inference,
the performance of GOT is further lifted especially on formulas and tables with small texts. The
results prove the effectiveness of GOT on documents with formatted outputs. Besides, the dynamic
resolution scheme is a good choice when processing higher-resolution images.

4.2.4 FINE-GRAINED OCR PERFORMANCE

We report the fine-grained OCR metrics of GOT. As shown in Table 4, the GOT is overall better
than Fox Liu et al. (2024a) on both the bounding box-based and color-based referential OCR tasks,
indicating that our model enjoys excellent interactive OCR capabilities.
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Table 3: Performances of formatted document (Chinese/English) and more general OCR. Single
means the input is the vanilla image and multi-crop represents the dynamic resolution strategy.

Types Edit Distance↓ F1-score↑ Precision↑ Recall↑ BLEU↑ METEOR↑

Markdown
document

single:
All text 0.097 0.942 0.944 0.942 0.877 0.876
Formula 0.269 0.749 0.771 0.751 0.512 0.716

Table 0.254 0.867 0.857 0.897 0.756 0.760
muti-crop:

All text 0.086 0.953 0.948 0.960 0.896 0.903
Formula 0.159 0.865 0.858 0.882 0.628 0.828

Table 0.220 0.878 0.861 0.919 0.779 0.811

Geneal Sheet music 0.046 0.939 0.963 0.939 0.900 0.923
Geometry 0.061 0.884 0.882 0.888 0.766 0.882

Table 4: Comparison of fine-grained document OCR. Without the need to tune the vision encoder,
GOT can easily achieve excellent capabilities of box-guided OCR and color-guided OCR.

Metrics
English Chinese

box color box color

DocOwl1.5 Fox GOT Fox GOT Fox GOT Fox GOT

Edit Distance ↓ 0.435 0.059 0.041 0.064 0.034 0.042 0.033 0.114 0.040
F1-score ↑ 0.670 0.957 0.970 0.940 0.966 0.955 0.965 0.884 0.957
Precision ↑ 0.886 0.962 0.973 0.942 0.970 0.966 0.974 0.902 0.969
Recall ↑ 0.617 0.955 0.969 0.942 0.964 0.947 0.958 0.873 0.948
BLEU ↑ 0.478 0.914 0.926 0.868 0.910 0.885 0.898 0.778 0.884
METEOR ↑ 0.569 0.955 0.966 0.938 0.961 0.934 0.942 0.848 0.931

Table 5: Performance on number-centric chart OCR. With sufficient optimization of visual perception
and dense information compression, GOT surpasses the popular models by a large margin.

Metric Deplot
(1.3B)

UniChart
(0.26B)

ChartVLM
(7.3B)

GPT-4V
(>100B)

Qwen-VL
(>72B)

GOT
(0.58B)

ChartQA-SE
AP@strict 0.614 0.423 0.718 0.504 0.586 0.747
AP@slight 0.709 53.18 0.814 0.606 0.685 0.845
AP@high 0.729 0.560 0.842 0.643 0.727 0.867

PlotQA-SE
AP@strict 0.031 0.105 0.038 0.073 0.005 0.133
AP@slight 0.165 0.260 0.468 0.194 0.042 0.596
AP@high 0.265 0.269 0.540 0.223 0.120 0.640

4.2.5 MORE GENERAL OCR PERFORMANCE

We utilize the sheet music, geometry, and chart benchmarks to verify GOT’s more general OCR
performance. For the first two tasks, we separately render 100 and 180 additional samples as
benchmarks, and as can be seen in Table 3, GOT still performs well on these new OCR tasks. For
chart OCR, we use structure-extraction version Chen et al. (2024a) ChartQA Masry et al. (2022) and
PlotQA Methani et al. (2020) as benchmarks. In Table 5, the chart OCR ability of GOT is even much
better than the chart-specific models Liu et al. (2023a); Masry et al. (2023); Xia et al. (2024) and
popular LVLMs OpenAI (2023); Bai et al. (2023b). All results demonstrate the effectiveness of our
model on more general OCR tasks.

5 CONCLUSION

This paper presents a primary OCR-2.0 model that is structurally simpler than OCR-1.0 systems,
focuses more on pure OCR tasks than LVLMs, and enjoys superior performance. OCR-2.0 integrates
various pan-OCR tasks into one model and is a valuable research direction in model design, data
engineering, and application scenarios. We want the simple, elegant, effective, and promising GOT
OCR-2.0 model to attract more attention to such a task.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Casia-hwdb2-line. https://huggingface.co/datasets/Teklia/
CASIA-HWDB2-line, 2024a.

Iam-line. https://huggingface.co/datasets/Teklia/IAM-line, 2024b.

Norhand-v3-line. https://huggingface.co/datasets/Teklia/NorHand-v3-line,
2024c.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint arXiv:2309.16609,
2023a.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023b.

Lukas Blecher, Guillem Cucurull, Thomas Scialom, and Robert Stojnic. Nougat: Neural optical
understanding for academic documents. arXiv preprint arXiv:2308.13418, 2023.
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A APPENDIX

In this section, we provide sufficient output results of GOT to show its outstanding OCR performance.
We also demonstrate the format of the corresponding input prompt for different types of OCR tasks.

Prompt: OCR with format: Output: 

Figure 4: The formatted text OCR ability of GOT. GOT works well on full-page texts and ta-
ble/formula slice texts. These input forms are the most commonly used in document OCR, which
proves that GOT has great prospects in application.
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Prompt: OCR: Output: 

[21], and GuidedBackpropagation [22]) to explain image cap-

tioning predictions with respect to the image content and the

words of the sentence generated so far. These approaches

provide high-resolution image explanations for CNN models

[22], [23], LRP also provides plausible explanations for LSTM

architectures [24], [25]. Figure 1 shows an example of the

explanation results of attention-guided image captioning mod-

els. Taking LRP as an example, both positive and negative

evidence is shown in two aspects: 1) for image explanations,

the contribution of the image input is visualized as heatmaps;

2) for linguistic explanations, the contribution of the previously

generated words to the latest predicted word is shown.

The explanation results in Figure 1 exhibit intuitive corres-

spondence of the explained word to the image content and the

related sequential input. However, to our best knowledge, few-

works quantitatively analyze how accurate the image explana-

tions are grounded to the relevant image content and whether

the highlighted inputs are used as evidence by the model to

make decisions. We study the two questions by quantifying

the grounding property of attention and explanation methods

and by designing an ablation experiment for both the image

explanations and linguistic explanations. We will demonstrate

that explanation methods can generate image explanations with

accurate spatial grounding property, meanwhile, reveal more

related inputs (pixels of the image input and words of the

linguistic sequence input) that are used as evidence for the

model decisions. Also, explanation methods can disentangle

the contributions of the image and text inputs and provide more

interpretable information than purely image-centered attention.

With explanation methods [26], we have a deeper under-

standing of image captioning models beyond visualizing the

attention. We also observe that image captioning models some-

times hallucinate words from the learned sentence correlations

without looking at the images and sometimes use irrelevant

evidence to make predictions. The hallucination problem is

also discussed in [27], where the authors state that it is possibly

caused by language priors or visual mis-classification, which

could be partially due to the biases present in the dataset.

The image captioning models tend to generate those words

and sentence patterns that appear more frequently during

training. The language priors are helpful, though, in some

cases. [28] incorporates the inductive bias of natural language

with scene graphs to facilitate image captioning. However,

language bias is not always correct, for example, not only

men ride snowboards [29] and bananas are not always yellow

[30], [31]. To this end, [29] and [31] attempted to generate

more grounded captions by guiding the model to make the

right decisions using the right reasons. They adopted additional

annotations, such as the instance segmentation annotation and

the human-annotated rank of the relevant image patches, to

design new losses for training.

In this paper, we reduce object hallucination by a simple

LRP-inference fine-tuning (LRP-IFT) strategy, without any

additional annotations .We firstly show that the explanations,

especially LRP, can weakly differentiate the grounded (true-

positive) and hallucinated (false-positive) words. Secondly,

based on the findings that LRP reveals the related features of

the explained words and that the sign of its relevance scores

indicates supporting versus opposing evidence (as shown

in Figure 1), we utilize LRP explanations to design a re-

weighting mechanism for the context representation. During

fine-tuning, we up-scale the supporting features and down-

scale the opposing ones using a weight calculated from LRP

relevance scores. Finally, we use the re-weighted context

representation to predict the next word for fine-tuning.

LRP-IFT is different from standard fine-tuning which

weights the gradients of parameters with small learning rates to

gradually adapt the model parameters. Instead, it pinpoints the

related features/evidence for a decision and guides the model

to tune more on those related features .This fine-tuning strategy

resembles how we correct our cognition bias. For example,

when we see a green banana, we will update the color feature

of bananas and keep the other features such as the shape.

We will demonstrate that LRP-IFT can help to de-bias

image captioning models from frequently occurring object

words. Though language bias is intrinsic, we can guide the

model to be more precise when generating frequent object

words rather than hallucinate them. We implement the LRP-

IFT on top of pre-trained image captioning models trained

with Flickr30K [32] and MSCOCO2017 [33] datasets and

effectively improve the mean average precision (mAP) of

predicted frequent object words evaluated across the test

set. At the same time, the overall performance in terms of

sentence-level evaluation metrics is maintained.

The contributions of this paper are as follows:

• We establish explanation methods that disentangle the

contributions of the image and text inputs and explain

image captioning models beyond visualizing attention.

• We quantitatively measure and compare the properties of

explanation methods and attention mechanisms, including

tasks of finding the related features/evidence for model

decisions, grounding to image content, and the capability

of debugging the models (in terms of providing possible

reasons for object hallucination and differentiating hallu-

cinated words).

• We propose an LRP-inference fine-tuning strategy that

reduces object hallucination and guides the models to

be more precise and grounded on image evidence when

predicting frequent object words .Our proposed fine-

tuning strategy requires no additional annotations and

successfully improves the mean average precision of

predicted frequent object words.

In the rest of this paper, Section II introduces recent image

captioning models, the state-of-the-art explanation methods for

neural networks, and other related works. In Section III, we

will introduce the image captioning model structures applied

in this paper. The adaptations of explanation methods to

attention-guided image captioning models are summarized in

Section IV. The analyses of attention and explanations and our

proposed LRP-inference fine-tuning strategy are introduced in

Section V.

Figure 5: The plain text (document) OCR ability of GOT. For double-column documents with high
text density, GOT can still handle them well, proving the excellent text perception ability.
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Under review as a conference paper at ICLR 2025

Prompt: OCR/ [green]OCR/ OCR with format:

双十二 返场狂欢 12.13-12.15 爆款6折起

返场狂欢

双十二返场狂欢
12.13-12.15
爆款6折起

Prompt: OCR

禾不锈钢６米剪板折弯

Tiredness

The same source quotes yet another 

as stating, “You cannot be saved

if you don’t believe in the Trinity.”

Output: 

Prompt: [x1,y1,x2,y2] OCR with format:

[x1,y1]

[x2,y2]

\text{饸饹面}

Figure 6: Scene OCR and fine-grained OCR results of GOT. We equip GOT with more interactive
fine-grained OCR tasks, allowing it to output OCR results of regions of interest based on prompts.
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Under review as a conference paper at ICLR 2025

Prompt: OCR  with format upon the patch reference: 

Output:

Figure 7: Dynamic resolution of GOT for high-resolution images. In the dual-page paper reading
mode shown in the figure (data is from Liu et al. (2024b)), the input resolution of the original GOT is
not sufficient to handle it. Therefore, we adapt dynamic resolution technology to make the model no
longer limited to the size of the image.
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Under review as a conference paper at ICLR 2025

Prompt: OCR with format across multi pages:  

Output:

Figure 8: Multi-page (document) OCR ability of GOT. With this feature, researchers can continue to
train the GOT with multi-page PDF-text pairs, such as Arxiv paper with .tex file.

Prompt: OCR with format: Output: 

{

    "title": "None",

    "source": "None",

    "x_title": "X-label",

    "y_title": "Y-label",

    "values": {

        "Ann": {

            "Mon": "815",

            "Tue": "250",

            "Wed": "160",

            "Thu": "475",

            "Fri": "158",

            "Sat": "845",

            "Sun": "950"

        },

        "Bob": {

            "Mon": "928",

            "Tue": "245",

            "Wed": "165",

            "Thu": "487",

            "Fri": "250",

            "Sat": "650",

            "Sun": "1023"

        },

        "Carl": {

            "Mon": "896",

            "Tue": "637",

            "Wed": "478",

            "Thu": "162",

            "Fri": "148",

            "Sat": "156",

            "Sun": "1512"

        }

    }

}

{

    "title": "None",

    "source": "None",

    "x_title": "X-label",

    "y_title": "Y-label",

    "values": {

        "Ann": {

            "Mon": "815",

            "Tue": "250",

            "Wed": "160",

            "Thu": "475",

            "Fri": "158",

            "Sat": "845",

            "Sun": "950"

        },

        "Bob": {

            "Mon": "928",

            "Tue": "245",

            "Wed": "165",

            "Thu": "487",

            "Fri": "250",

            "Sat": "650",

            "Sun": "1023"

        },

        "Carl": {

            "Mon": "896",

            "Tue": "637",

            "Wed": "478",

            "Thu": "162",

            "Fri": "148",

            "Sat": "156",

            "Sun": "1512"

        }

    }

}

Figure 9: More general OCR results. GOT can process molecular formulas, sheet music, and charts.
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Under review as a conference paper at ICLR 2025

Prompt: OCR with format: Output: 

Figure 10: We do not specifically introduce additional OCR capabilities for GOT other than Chinese
and English. Yet the PDF data we crawled may contain a small amount of text in other languages,
leading to the GOT seeming to have the ability to recognize other languages. However, we cannot
guarantee the OCR quality of other languages. Therefore, we recommend fine-tuning the model with
corresponding data if this feature is needed.
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