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Abstract—Quickly and reliably finding accurate inverse kine-
matics (IK) solutions remains a challenging problem for robotic
manipulation. Existing numerical solvers typically produce a sin-
gle solution only and rely on local search techniques to minimize
a highly nonconvex objective function. Recently, learning-based
approaches that approximate the entire feasible set of solutions
have shown promise as a means to generate multiple fast and
accurate IK results in parallel. However, existing learning-based
techniques have a significant drawback: each robot of interest
requires a specialized model that must be trained from scratch.
To address this shortcoming, we investigate a novel distance-
geometric robot representation coupled with a graph structure
that allows us to leverage the flexibility of graph neural networks
(GNNs). We use this approach to train a generative graphical
inverse kinematics solver (GGIK) that is able to produce a large
number of diverse solutions in parallel while also generalizing
well—a single learned model can be used to produce IK solutions
for a variety of different robots. The graphical formulation
elegantly exposes the symmetry and Euclidean equivariance of
the IK problem that stems from the spatial nature of robot
manipulators. We exploit this symmetry by encoding it into the
architecture of our learned model, yielding a flexible solver that
is able to produce sets of IK solutions for multiple robots.

I. INTRODUCTION

Robotic manipulation tasks are naturally defined in terms
of end-effector poses (for, e.g., bin-picking or path follow-
ing). However, the configuration of a manipulator is typically
specified in terms of joint angles, and determining the joint
configuration(s) that correspond to a given end-effector pose
requires solving the inverse kinematics (IK) problem. For
redundant manipulators (i.e., those with more than six degrees
of freedom, or DOF), target poses may be reachable by
an infinite set of feasible configurations. While redundancy
allows high-level algorithms such as motion planners to choose
configurations that best fit the overall task, it makes solving
IK substantially more involved.

Since the full set of IK solutions cannot, in general, be
derived analytically for redundant manipulators, individual
configurations reaching a target pose are found by locally
searching the configuration space using numerical optimiza-
tion methods and geometric heuristics. These limitations have
motivated the use of learned models that approximate the
entire feasible set of solutions. In terms of success rate, learned
models that output individual solutions are able to compete
with the best numerical IK solvers when high accuracy is not
required [TY9]. Data-driven methods are also useful for integrat-
ing abstract criteria such as “human-like” poses or motions [Z].

Generative approaches [E, 5] have demonstrated the ability to
rapidly produce a large number of approximate IK solutions
and even model the entire feasible set for specific robots [[I].
Unfortunately, these learned models, parameterized by deep
neural networks (DNNs), require specific configuration and
end-effector input-output vector pairs for training (by design).
In turn, it is not possible to generalize learned solutions to
robots that vary in link geometry or DOF. Ultimately, this
drawback limits the utility of learning for IK over well-
established numerical methods that are easier to implement
and generalize [B].

In this paper, we describe a novel generative inverse kine-
matics solver and explain its capacity to simultaneously repre-
sent general (i.e., not tied to a single robot manipulator model
or geometry) IK mappings and to produce approximations of
entire feasible sets of solutions. In contrast to existing DNN-
based approaches [, B, [T, I3, T9], we explore a new path to-
wards learning generalized IK by adopting a graphical model
of robot kinematics [I3, T4]. This graph-based description
allows us to make use of graph neural networks (GNNs) to
capture varying robot geometries and DOF within a single
model. Furthermore, crucial to the success of our method, the
graphical formulation exposes the symmetry and Euclidean
equivariance of the IK problem that stems from the spatial
nature of robot manipulators. We exploit this symmetry by
encoding it into the architecture of our learned model, which
we call GGIK (for generative graphical inverse kinematics),
to produce accurate IK solutions.

II. GRAPH REPRESENTATION FOR INVERSE KINEMATICS

The mapping /K : T — C from task space 7 to config-
uration space C defines the inverse kinematics of the robot,
connecting a target pose T € SE(3) to one or more feasible
configurations @ € C. In this paper, we consider the associated
problem of determining this mapping for manipulators with
n > 6 DOF (also known as redundant manipulators), where
each end-effector pose corresponds to a set of configurations

IK(T) = {6 € C| FK(8) = T} (1)

that we refer to as the full set of IK solutions.

We eschew the common angle-based representation of the
configuration space in favour of a distance-geometric model
of robotic manipulators comprised of revolute joints [I4]. This
allows us to represent configurations € as complete graphs
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Fig. 1: The process of defining an IK problem as an incomplete or partial graph G of inter-point distances. (a) Conventional forward
kinematics model parameterized by joint angles and joint rotation axes. (b) The point placement procedure for the distance based description,
first introduced in [13]. Note that the four distances between points associated with pairs of consecutive joints remain constant regardless
of the of configuration. (c) A structure graph of the robot based on inter-point distances. (d) Addition of distances in red describing the
robot end-effector pose using auxiliary points to define the base coordinate system, completing the graphical IK problem description. All
configurations of the robot reaching this end-effector pose will result in a partial graph of distances shown in (c) and (d).
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Fig. 2: Our GGIK solver is based on the CVAE framework. GNN.,. encodes a complete manipulator graph into a latent graph representation
and GNNge. “reconstructs” it. The prior network, GNN,;o, €ncodes the partial graph into a latent embedding that is near the embedding
of the full graph. At inference time, we decode the latent embedding of a partial graph into a complete graph to generate a solution.

G = (V, E). The edges E are weighted by distances d between
a collection of N points p = {p,}}, € RV*D indexed by
vertices V, where D € {2,3} is the workspace dimension.
The coordinates of points corresponding to these distances are
recovered by solving the distance geometry problem (DGP):

Distance Geometry Problem ([I2]). Given an integer D > 0,
a set of vertices V, and a simple undirected graph G = (V, E)
whose edges {u,v} € E are assigned non-negative weights
{u,v} = dyu € Ry, find a function p : V.— RP such that
the Euclidean distances between neighbouring vertices match
their edges’ weights (i.e., ¥V {u,v} € E, ||p(u)—p(v)|| = dy)-

It was shown in [I[3] that any solution p € DG P(G) may be
mapped to a unique corresponding configuration 0.0 Crucially,
this allows us to a construct a partial graph G = (V, E), with
E C E corresponding to distances determined by an end-
effector pose T and the robot’s structure (i.e., those common
to all elements of TK(T)), where each p € DGP(G)
corresponds to a particular IK solution § € IK(T). The
generic procedure for constructing G is demonstrated for a
simple manipulator in Fig. . A more detailed overview of the
distance-geometric graph representation and graph construc-
tion is available in [I3].

1Up to any Euclidean transformation of p, since distances are invariant to
such a transformation.

For a complete graph GG, we define the GNN node features
as a combination of point positions p = {p,;}}¥, € RV*P
and general features h = {h;}Y,, where each h; is a
feature vector containing extra information about the node.
We use a three-dimensional one-hot-encoding, h; € {0,1}?
and Z?:l h;,; = 1, that indicates whether the node defines
the base coordinate system, a general joint or link, or the end-
effector. Similarly, we define the M known point positions
of the partial graph G as p = {p;}M, € RM*P and
set the remaining unknown N — M node positions to zero.
The partial graph shares the same general features h as the
complete graph. In both cases, the edge features are simply
the corresponding inter-point distances between known node
point positions or initialized to zero if unknown.

III. GENERATIVE GRAPHICAL INVERSE KINEMATICS

At its core, GGIK is a conditional variational autoencoder
(CVAE) model [I7] that parameterizes the conditional distri-
bution p(G | G) using GNNs. By introducing an unobserved
stochastic latent variable z, our generative model is defined as

(G| G) = / pr(G| G, 2) ps (2| G) da,

where p+ (G | G, z) is the likelihood of the full graph, P (2z | G)
is the prior, and + are the learnable generative parameters. The
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Fig. 3: Sampled conditional distributions from GGIK for various robotic manipulators. From left to right: KUKA IIWA, Franka Emika
Panda, Schunk LWA4D, Schunk LWA4P, and Universal Robots UR10. Note that the end-effector poses are nearly identical in all
cases, highlighting kinematic redundancy. Our model is able to capture the discrete solution set for the two non-redundant robots as well.

likelihood is given by

N ~
=\|1p,(p; |G, z;), with
E ! 3)

p’)’(pi |éazi) = N(pz | p’i7I)a

where p = {p,;}}Y, are the positions of all N nodes,

= {z;}}¥, are the latent embeddings of each node, and
p = {p;} X, are the predicted means of the distribution of
node positions. We parametrize the likelihood distribution with
a GNN decoder, that is, g is the output of GNNg..(G,z).
In practice, for the input of GNNg..(-), we concatenate each
latent node with the respective position node features p of
the original partial graph G when available and the general
features h. If unavailable, we concatenate the latent nodes with
the initialized point positions set to zero. The prior distribution
is given by

p,(G| G, 2)

N
py(2z]|G) = pr(zi |G), with

il
Z1|G Z’/TkZ

Here, we parameterize the prior as a Gaussian mixture model
with K components. Each Gaussian is in turn parameterized
by a mean p;, = {p;,;},, diagonal covariance o) =
{ok:}Y,, and a mixing coefficient 7 = {my;}~ ;, where
Zszl T = 1, ¢ = 1,...,N. We chose a mixture model
to have an expressive prior capable of capturing the latent
distribution of multiple solutions. We parameterize the prior
distribution with a multi-headed GNN encoder GNN,,;or (G)

“)
z’L | 122> Nl dlag( ))

Algorithm 1: GGIK

Parameters: @, Tyoar, K, L
Result: Solution configurations with the lowest pose
error O € REXjoints,

> Sample L latents z from GNN,.;o,-.

21, ~ py(2] G)

pL ~py(P|G.2L)
61, + fromPoints(p;)
0" < selectSolution(T 404,01, K)

> Get L solutions via GNN ..
> Recover L configurations.
> Choose best K.

that outputs parameters {ft;,, ok, Tk }5_;.

The goal of learning is to maximize the marginal likelihood
or evidence of the data as shown in Eq. D As is commonly
done in the variational inference literature [9], we instead
maximize a tractable evidence lower bound (ELBO):

L =By c0logp(G| G, 2)] = KL(ge(z| GlIpy (2| G)),
)
where KL(:||) is the Kullback-Leibler (KL) divergence and
the inference model g4(z | G) with learnable parameters ¢ is

94(z| G) = Hq¢ z;|G), with

95 (i | G) = (Zi | p;, diag(a7)).
As with the prior distribution, we parameterize the inference
distribution with a multi-headed GNN encoder, GNNe,w(G)
that outputs parameters p = {p;}¥, and o = {o;}Y,. We
summarize the full sampling procedure in Algorithm 0 and
we visualize samples of these IK solutions in Fig. B. This
procedure can be done quickly and in parallel on the GPU.

(6)

IV. E(n) EQUIVARIANCE AND SYMMETRY

We are interested in mapping partial graphs G into full
graphs G. Once trained, our model maps partial point sets to
full point sets f : RM*P — RVNXD where f is a combination
of networks GNN,,,;o» and GNNy.. applied sequentially. The
point positions (i.e., p and p) of each node in the distance
geometry problem contain underlying geometric relationships
that we would like to preserve with our choice of architecture.
Most importantly, the point sets are equivariant to the Eu-
clidean group E(n) of rotations, translations, and reflections.
Let S : RMXD 5 RMXD be 3 transformation consisting of
some combination of rotations, translations and reflections on
the initial partial point set p. Then, there exists an equivalent
transformation 7' : RV*P — RNXD on the complete point
set p such that:

f(S(p)) = T(f(p))- ©)

To leverage this structure or geometric prior in the data, we
use E(n)-equivariant graph neural networks (EGNNs) [[[6] for
GNNge., GNNy,, and GNN,,;,-. The EGNN layer splits up
the node features into an equivariant coordinate or position-
based part and a non-equivariant part. We treat the positions



Robot

Err. Pos. [mm)]

Err. Rot. [deg]

mean min max Q Q3 mean min max Q; Q3
KUKA 53 1.7 9.7 3.8 6.6 04 0.1 0.6 03 05
Lwadd 47 14 9.1 32 59 04 0.1 0.6 03 05
Lwadp 57 22 102 4.1 7.1 04 0.1 0.7 03 0.6
Panda 123 32 255 79 159 1.0 02 1.8 07 13
UR10 9.2 42 147 73 11.1 05 02 09 04 07
UR10 with DT [I9] 35.0 - - - - 16.0 - - - -
Panda with IKFlow [0] 7.7 - - - - 2.8 - - - -
Panda with IKNet [d] 31.0 - - 135 48.6 - - - - -

TABLE I: Performance of GGIK on 2,000 randomly generated IK problems for a single model trained on five different robotic manipulators.
Taking 32 samples from the learned distribution, the error statistics are presented as the mean and mean minimum and maximum error per
problem and the two quartiles of the distribution. Note that all solutions were produced by a single GGIK model. We include baseline results
from various other models that were trained on a single robot type. Dashed results were unavailable.

Model Name Err. Pos. [mm] Err. Rot. [deg] Test ELBO
mean  min max Q Q3 mean min max Q: Qs

EGNN [IH] 4.6 1.5 8.5 33 5.8 04 01 06 03 04 -0.05

MPNN [5] 1432 629 2737 113.1 169.1 177 53 136 21.6 34.1 -8.3

GAT [IR] - - - - - - - - - - -12.41

GCN [I0] - - -12.42

GRAPHsage [[] - - -10.5

TABLE II: Comparison of different network architectures. EGNN outperforms existing architectures that are not equivariant in terms of
overall accuracy and test ELBO. Dashed results are models with output point sets that were too far from a valid joint configuration and

diverged during the configuration reconstruction procedure.

p and p as the equivariant portion and the general features
h as non-equivariant. As an example, a single EGNN layer [
from GNNg,,. is then defined as:

m;; = ¢.(h}, b}, [|p} — p}|?)
p/t' =pl+C> (pl - p})es(mi))
#i
m; = Z mij
i
h§+1 - (bh(hév mi)a

®)

where, m € Rf» with a message embedding dimension
of fm, 0o : Rfm — R C = ﬁ divides the sum by
the number of elements, and ¢. and ¢; are typical edge
and node operations approximated by multilayer perceptrons
(MLPs). For more details about the model and a proof of the
equivariance property, we refer readers to [I6].

V. EXPERIMENTS

We evaluate GGIK’s capability to learn accurate solutions
and generalize within a class of manipulator structures, and
investigate the importance of capturing the Euclidean equiv-
ariance of the graphical formulation of inverse kinematics.

A. Accuracy and Generalization

In Table I, we evaluate the accuracy of GGIK for a variety of
existing commercial manipulators featuring different structures
and numbers of joints: the Kuka ITWA, Schunk LWA4D,
Schunk LWAA4P, Universal Robots UR10, and Franka Emika
Panda. We trained a single instance of GGIK on a total of
2,560,000 IK problems uniformly distributed over all five
manipulators. We compare GGIK to other learned IK baselines
[, @, 09] that are trained specifically for each robot. GGIK
achieves better or comparable accuracy to all baselines despite
generalizing across multiple manipulator types.

B. Ablation Study on the Equivariant Network Architecture

We conducted an ablation experiment to evaluate the im-
portance of capturing the underlying E(n) equivariance of
the distance geometry problem (Problem M) in our learning
architecture. We compare the use of the EGNN network [[[f] to
four common and popular GNN layers that are not E(n) equiv-
ariant: GRAPHsage [7], GAT [I8], GCN [I0] and MPNN [B].
We match the number of parameters for each GNN architec-
ture as closely as possible and keep all other experimental
parameters fixed. Out of the five different architectures that
we compare, only the EGNN and MPNN output point sets
that can be successfully mapped to valid joint configurations.
The equivariant EGNN model outperforms all other models in
terms of the ELBO value attained on a held-out test set.

VI. CONCLUSION

GGIK is a step towards learned ‘“general” IK, that is,
a solver (or initializer) that can provide multiple diverse
solutions and can be used with any manipulator in a way
that complements or replaces numerical optimization. The
graphical formulation of IK naturally leads to the use of
a GNN for learning, since the GNN can accept problems
for arbitrary robots with different kinematic structures and
degrees of freedom. Our formulation also exposes the Eu-
clidean equivariance of the problem, which we exploit by
encoding it into the architecture of our learned model. While
our architecture demonstrates a capacity for generalization and
an ability to produce diverse solutions, GGIK outputs may
require post-processing via local optimization for applications
with low error tolerances. As future work, we would like
to learn constrained distributions of robot configurations that
account for obstacles in the task space and for self-collisions;
obstacles can be easily incorporated in the distance-geometric
formulation of IK [8, I3].
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