
Diffusion On Syntax Trees For Program Synthesis

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language models generate code one token at a time. Their autoregressive1

generation process lacks the feedback of observing the program’s output. Training2

LLMs to suggest edits directly can be challenging due to the scarcity of rich3

edit data. To address these problems, we propose neural diffusion models that4

operate on syntax trees of any context-free grammar. Similar to image diffusion5

models, our method also inverts “noise” applied to syntax trees. Rather than6

generating code sequentially, we iteratively edit it while preserving syntactic7

validity, which makes it easy to combine this neural model with search. We8

apply our approach to inverse graphics tasks, where our model learns to convert9

images into programs that produce those images. Combined with search, our10

model is able to write graphics programs, see the execution result, and debug them11

to meet the required specifications. We additionally show how our system can12

write graphics programs for hand-drawn sketches. Video results can be found at13

https://td-anon.github.io.14

1 Introduction15

Large language models (LLMs) have made remarkable progress in code generation, but their au-16

toregressive nature presents a fundamental challenge: they generate code token by token, without17

access to the program’s runtime output from the previously generated tokens. This makes it difficult18

to correct errors, as the model lacks the feedback loop of seeing the program’s output and adjusting19

accordingly. While LLMs can be trained to suggest edits to existing code [6, 42, 17], acquiring20

sufficient training data for this task is difficult.21

In this paper, we introduce a new approach to program synthesis using neural diffusion models that22

operate directly on syntax trees. Diffusion models have previously been used to great success in23

image generation [14, 22, 31]. By leveraging diffusion, we let the model learn to iteratively refine24

programs while ensuring syntactic validity. Crucially, our approach allows the model to observe the25

program’s output at each step, effectively enabling a debugging process.26

In the spirit of systems like AlphaZero [29], the iterative nature of diffusion naturally lends itself27

to search-based program synthesis. By training a value model alongside our diffusion model, we28

can guide the denoising process toward programs that are likely to achieve the desired output. This29

allows us to efficiently explore the program space, making more informed decisions at each step of30

the generation process.31

We implement our approach for inverse graphics tasks, where we posit domain-specific languages for32

drawing images. Inverse graphics tasks are naturally suitable for our approach since small changes in33

the code produce semantically meaningful changes in the rendered image. For example, a misplaced34

shape on the image can be easily seen and fixed in program space.35

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

https://td-anon.github.io

Figure 1: Examples of programs recovered by our system. The top row shows a hand-drawn sketch of
an icon (left), the recovered program (middle), and the compilation of the recovered program (right).
The top two rows are for the constructive solid geometry language (CSG2D-Sketch). The last row
is an example output from our TinySVG environment that learns to invert hierarchical programs of
shapes and colors. Video examples can be found at https://td-anon.github.io.

Our main contributions for this work are (a) a novel approach to program synthesis using diffusion on36

syntax trees and (b) an implementation of our approach for inverse graphics tasks that significantly37

outperforms previous methods.38

2 Background & Related Work39

Neural program synthesis Neural program synthesis is a prominent area of research, in which40

neural networks generate programs from input-output examples. Early work, such as Parisotto et al.41

[23], demonstrated the feasibility of this approach. While modern language models can be directly42

applied to program synthesis, combining neural networks with search strategies often yields better43

results and guarantees. In this paradigm, the neural network guides the search process by providing44

proposal distributions or scoring candidate programs. Examples of such hybrid methods include45

Balog et al. [2], Ellis et al. [12], and Devlin et al. [9]. A key difference from our work is that these46

methods construct programs incrementally, exploring a vast space of partial programs. Our approach,47

in contrast, focuses on editing programs, allowing us to both grow programs from scratch and make48

corrections based on the program execution.49

Neural diffusion Neural diffusion models, a class of generative models, have demonstrated im-50

pressive results for modeling high-dimensional data, such as images [14, 22, 31]. A neural diffusion51

model takes samples from the data distribution (e.g. real-world images), incrementally corrupts the52

data by adding noise, and trains a neural network to incrementally remove the noise. To generate new53

samples, we can start with random noise and iteratively apply the neural network to denoise the input.54

Diffusion for discrete data Recent work extends diffusion to discrete and structured data like55

graphs [35], with applications in areas such as molecule design [15, 27, 8]. Notably, Lou et al. [20]56

proposed a discrete diffusion model using a novel score-matching objective for language modeling.57

Another promising line of work for generative modeling on structured data is generative flow networks58

(GFlowNets) [3], where neural models construct structured data one atom at a time.59

2

https://td-anon.github.io

Figure 2: An overview of our method. Analogously to adding noise in image diffusion, we randomly
make small mutations to the syntax trees of programs. We then train a conditional neural model to
invert these small mutations. In the above example, we operate in a domain-specific language (DSL)
for creating 2D graphics using a constructive solid geometry language. The leftmost panel (z0) shows
the target image (bottom) alongside its program as a syntax tree (top). The y value of the circle gets
mutated from 16 to 10 in the second panel, making the black circle "jump" a little higher. Between z1
and z2, we see that we can mutate the Subtract (−) node to a Circle node, effectively deleting it.

Diffusion for code generation Singh et al. [30] use a diffusion model for code generation. However,60

their approach is to first embed text into a continuous latent space, train a continuous diffusion model61

on that space, and then unembed at the end. This means that intermediate stages of the latent62

representation are not trained to correspond to actual code. The embedding tokens latch to the nearest63

embeddings during the last few steps.64

Direct code editing using neural models has also been explored. Chakraborty et al. [6] use a graph65

neural network for code editing, trained on a dataset of real-world code patches. Similarly, Zhang66

et al. [42] train a language model to edit code by modifying or inserting [MASK] tokens or deleting67

existing tokens. They further fine-tune their model on real-world comments and patches. Unlike these68

methods, our approach avoids the need for extensive code edit datasets and inherently guarantees69

syntactic validity through our pretraining task.70

Program synthesis for inverse graphics We are inspired by previous work by Sharma et al.71

[28], Ellis et al. [10, 11], which also uses the CSG2D language. Sharma et al. [28] propose a72

convolutional encoder and a recurrent model to go from images to programs. Ellis et al. [11] propose73

a method to provide a neural model with the intermediate program execution output in a read–eval–74

print loop (REPL). Unlike our method, the ability to execute partial graphics programs is a key75

requirement for their work. Our system operates on complete programs and does not require a custom76

partial compiler. As mentioned in their work, their policies are also brittle. Once the policy proposes77

an object, it cannot undo that proposal. Hence, these systems require a large number of particles in a78

Sequential Monte-Carlo (SMC) sampler to make the system less brittle to mistakes.79

3 Method80

The main idea behind our method is to develop a form of denoising diffusion models analogous to81

image diffusion models for syntax trees.82

Consider the example task from Ellis et al. [11] of generating a constructive solid geometry (CSG2D)83

program from an image. In CSG2D, we can combine simple primitives like circles and quadrilaterals84

3

using boolean operations like addition and subtraction to create more complex shapes, with the85

context-free grammar (CFG),86

S→ S+ S | S− S | Circlerx,y | Quad
w,h
x,y,θ.

In Figure 2, z0 is our target program, and x0 is the rendered version of z0. Our task is to invert x087

to recover z0. Our noising process randomly mutates y=16 to y=10. It then mutates the whole⃝−88

sub-tree with two shapes with a new sub-tree with just one shape. Conditioned on the image x0, and89

starting at z3, x3, we would like to train a neural network to reverse this noising process to get to z0.90

In the following sections, we will first describe how “noise” is added to syntax trees. Then, we will91

detail how we train a neural network to reverse this noise. Finally, we will describe how we use this92

neural network for search.93

3.1 Sampling Small Mutations94

Let zt be a program at time t. Let pN (zt+1|zt) be the distribution over randomly mutating program95

zt to get zt+1. We want pN mutations to be: (1) small and (2) produce syntactically valid zt+1’s.96

To this end, we turn to the rich computer security literature on grammar-based fuzzing [41, 13, 32, 36].97

To ensure the mutations are small, we first define a function σ(z) that gives us the “size” of program z.98

For all our experiments, we define a set of terminals in our CFG to be primitives. As an example, the99

primitives in our CSG2D language are {Quad, Circle}. In that language, we use σ(z) = σprimitive(z),100

which counts the number of primitives. Other generic options for σ(z) could be the depth, number of101

nodes, etc.102

We then follow Luke [21] and Zeller et al. [41] to randomly sample programs from our CFG under103

exact constraints, σmin < σ(z) ≤ σmax. We call this function ConstrainedSample(σmin, σmax).104

Setting a small value for σmax allows us to sample small programs randomly. We set σmax = σsmall105

when generating small mutations.106

To mutate a given program z, we first generate a set of candidate nodes in its tree under some σsmall,107

C = {n ∈ SyntaxTree(z) | σ(n) ≤ σsmall}.
Then, we uniformly sample a mutation node from this set,108

m ∼ Uniform[C].
Since we have access to the full syntax tree and the CFG, we know which production rule produced109

m, and can thus ensure syntactically valid mutations. For example, if m were a number, we know to110

replace it with a number. If m were a general subexpression, we know we can replace it with any111

general subexpression. Therefore, we sample m′, which is m’s replacement as,112

m′ ∼ ConstrainedSample(ProductionRule(m), σsmall).

3.2 Policy113

3.2.1 Forward Process114

We cast the program synthesis problem as an inference problem. Let p(x|z) be our observation model,115

where x can be any kind of observation. For example, we will later use images x produced by our116

program, but x could also be an execution trace, a version of the program compiled to bytecode, or117

simply a syntactic property. Our task is to invert this observation model, i.e. produce a program z118

given some observation x.119

We first take some program z0, either from a dataset, D = {z0, z1, . . .}, or in our case, a randomly120

sampled program from our CFG. We sample z0’s such that σ(z0) ≤ σmax. We then add noise to z0121

for s ∼ Uniform[1, smax], steps, where smax is a hyper-parameter, using,122

zt+1 ∼ pN (zt+1|zt).
We then train a conditional neural network that models the distribution,123

qϕ(zt−1|zt, xt;x0),

where ϕ are the parameters of the neural network, zt is the current program, xt is the current output124

of the program, and x0 is the target output we are solving for.125

4

3.2.2 Reverse Mutation Paths126

Since we have access to the ground-truth mutations, we can generate targets to train a neural127

network by simply reversing the sampled trajectory through the forward process Markov-Chain,128

z0 → z1 → At first glance, this may seem a reasonable choice. However, training to simply129

invert the last mutation can potentially create a much noisier signal for the neural network.130

Consider the case where, within a much larger syntax tree, a color was mutated as,131

Red→ Blue→ Green.

The color in our target image, x0, is Red, while the color in our mutated image, x2, is Green. If we132

naively teach the model to invert the above Markov chain, we are training the network to turn the133

Green to a Blue, even though we could have directly trained the network to go from Green to a Red.134

Therefore, to create a better training signal, we compute an edit path between the target tree and the135

mutated tree. We use a tree edit path algorithm loosely based on the tree edit distance introduced by136

Pawlik and Augsten [25, 24]. The general tree edit distance problem allows for the insertion, deletion,137

and replacement of any node. Unlike them, our trees can only be edited under an action space that138

only permits small mutations. For two trees, zA and zB , we linearly compare the syntax structure.139

For changes that are already ≤ σsmall, we add that to our mutation list. For changes that are > σsmall,140

we find the first mutation that reduces the distance between the two trees. Therefore, for any two141

programs, zA and zB , we can compute the first step of the mutation path in O(|zA|+ |zB |) time.142

3.3 Value Network & Search143

We additionally train a value network, vϕ(xA, xB), which takes as input two rendered images, xA144

and xB , and predicts the edit distance between the underlying programs that generated those images.145

Since we have already computed edit paths between trees during training, we have direct access to146

the ground-truth program edit distance for any pair of rendered images, allowing us to train this value147

network in a supervised manner.148

Using our policy, qϕ(zt−1|zt, xt;x0), and our value, vϕ(xtA , xtB), we can perform beam-search for149

a given target image, x0, and a randomly initialized program zt. At each iteration, we maintain a150

collection of nodes in our search tree with the most promising values and only expand those nodes.151

3.4 Architecture152

Figure 3 shows an overview of our neural architecture. We use a vision-language model described153

by Tsimpoukelli et al. [33] as our denoising model, qϕ(zt−1|zt, xt;x0). We use an off-the-shelf154

implementation [38] of NF-ResNet-26 as our image encoder, which is a normalizer-free convolutional155

architecture proposed by Brock et al. [4] to avoid test time instabilities with Batch-Norm [40]. We156

implement a custom tokenizer, using the terminals of our CFG as tokens. The rest of the edit model157

is a small decoder-only transformer [34, 26].158

We add two additional types of tokens: an <EDIT> token, which serves as a start-of-sentence token159

for the model; and <POS x> tokens, which allow the model to reference positions within its context.160

Given a current image, a target image, and a current tokenized program, we train this transformer161

model to predict the edit position and the replacement text autoregressively. While making predictions,162

the decoding is constrained under the grammar. We mask out the prediction logits to only include edit163

positions that represent nodes in the syntax tree, and only produce replacements that are syntactically164

valid for the selected edit position.165

We set σsmall = 2, which means the network is only allowed to produce edits with fewer than two166

primitives. For training data, we sample an infinite stream of random expressions from the CFG.167

We choose a random number of noise steps, s ∈ [1, 5], to produce a mutated expression. For some168

percentage of the examples, ρ, we instead sample a completely random new expression as our mutated169

expression. We trained for 3 days for the environments we tested on a single Nvidia A6000 GPU.170

5

Figure 3: We train qϕ(zt−1|zt, xt;x0) as a decoder only vision-language transformer following
Tsimpoukelli et al. [33]. We use an NF-ResNet as the image encoder, which is a normalizer-free
convolutional architecture proposed by Brock et al. [4]. The image encoder encodes the current
image, xt, and the target images, x0. The current program is tokenized according to the vocabulary
in our context-free grammar. The decoder first predicts an edit location in the current program, and
then tokens that replace what the edit location should be replaced by. We constrain the autoregressive
decoding by our context-free grammar by masking only the valid token logits.

4 Experiments171

4.1 Environments172

We conduct experiments on four domain-specific graphics languages, with complete grammar173

specifications provided in Appendix B.174

CSG2D A 2D constructive solid geometry language where primitive shapes are added and subtracted175

to create more complex forms, as explored in our baseline methods [11, 28]. We also create176

CSG2D-Sketch, which has an added observation model that simulates hand-drawn sketches using177

the algorithm from Wood et al. [39].178

TinySVG A language featuring primitive shapes with color, along with Arrange commands for179

horizontal and vertical alignment, and Move commands for shape offsetting. Figure 1 portrays180

an example program. Unlike the compositional nature of CSG2D, TinySVG is hierarchical: sub-181

expressions can be combined into compound objects for high-level manipulation. We also create,182

Rainbow, a simplified version of TinySVG without Move commands for ablation studies due to its183

reduced computational demands.184

We implemented these languages using the Lark [19] and Iceberg [16] Python libraries, with our185

tree-diffusion implementation designed to be generic and adaptable to any context-free grammar and186

observation model.187

4.2 Baselines188

We use two prior works, Ellis et al. [11] and CSGNet [28] as baseline methods.189

CSGNet Sharma et al. [28] employed a convolutional and recurrent neural network to generate190

program statements from an input image. For a fair comparison, we re-implemented CSGNet using the191

same vision-language transformer architecture as our method, representing the modern autoregressive192

approach to code generation. We use rejection sampling, repeatedly generating programs until a193

match is found.194

6

0 1000 2000 3000 4000 5000

Number of Nodes Expanded

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
ra

ct
io

n
of

P
ro

b
le

m
s

S
ol

ve
d

Performance on the CSG2D Environment

0 1000 2000 3000 4000 5000

Number of Nodes Expanded

0.00

0.05

0.10

0.15

0.20

F
ra

ct
io

n
of

P
ro

b
le

m
s

S
ol

ve
d

Performance on the TinySVG Environment

Tree Diffusion Search (Ours) Tree Diffusion Rollouts (Ours) REPL Flow CSGNet

Figure 4: Performance of our approach in comparison to baseline methods in CSG2D and TinySVG
languages. We give the methods n = 256 images from the test set and measure the number of nodes
expanded to find a solution. The auto-regressive baseline was queried with rejection sampling. Our
policy outperforms previous methods, and our policy combined with search helps boost performance
further. Error bars show standard deviation across 5 random seeds.

REPL Flow Ellis et al. [11] proposed a method to build programs one primitive at a time until195

all primitives have been placed. They also give a policy network access to a REPL, i.e., the ability196

to execute code and see outputs. Notably, this current image is rendered from the current partial197

program. As such, we require a custom partial compiler. This is straightforward for CSG2D since198

it is a compositional language. We simply render the shapes placed so far. For TinySVG, it is not199

immediately obvious how this partial compiler should be written. This is because the rendering200

happens bottom-up. Primitives get arranged, and those arrangements get arranged again (see Figure 1).201

Therefore, we only use this baseline method with CSG2D. Due to its similarities with Generative Flow202

Networks [3], we refer to our modified method as “REPL Flow”.203

Test tasks For TinySVG we used a held-out test set of randomly generated expressions and their204

images. For the CSG2D task, we noticed that all methods were at ceiling performance on an in-205

distribution held-out test set. In Ellis et al. [11], the authors created a harder test set with more objects.206

However, simply adding more objects in an environment like CSG2D resulted in simpler final scenes,207

since sampling a large object that subtracts a large part of the scene becomes more likely. Instead, to208

generate a hard test set, we filtered for images at the 95th percentile or more on incompressibility209

with the LZ4 [7, 37] compression algorithm.210

Evaluation In CSG2D, we accepted a predicted program as matching the specification if it achieved211

an intersection-over-union (IoU) of 0.99 or more. In TinySVG, we accepted an image if 99% of the212

pixels were within 0.005 ≈ 1
256 .213

All methods were trained with supervised learning and were not fine-tuned with reinforcement214

learning. All methods used the grammar-based constrained decoding method described in Section 3.4,215

which ensured syntactically correct outputs. While testing, we measured performance based on the216

number of compilations needed for a method to complete the task.217

Figure 4 shows the performance of our method compared to the baseline methods. In both the CSG2D218

and TinySVG environments, our tree diffusion policy rollouts significantly outperform the policies of219

previous methods. Our policy combined with beam search further improves performance, solving220

problems with fewer calls to the renderer than all other methods. Figure 6 shows successful qualitative221

examples of our system alongside outputs of baseline methods. We note that our system can fix222

smaller issues that other methods miss. Figure 7 shows some examples of recovered programs from223

sketches in the CSG2D-Sketch language, showing how the observation model does not necessarily224

need to be a deterministic rendering; it can also consist of stochastic hand-drawn images.225

7

0 20 40 60 80 100

Number of Nodes Expanded

0.0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n
of

P
ro

b
le

m
s

S
ol

ve
d

Ablations on Tree Diffusion

Control

No Reverse Path

No Noising

No Current Image

(a)

0 20 40 60 80 100

Number of Nodes Expanded

0.0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n
of

P
ro

b
le

m
s

S
ol

ve
d

Effects of Expression Initialization

ρ = 0.2

ρ = 0.5

ρ = 0.0

ρ = 0.8

ρ = 1.0

(b)

Figure 5: Effects of changing several design decisions of our system. We train smaller models
on the Rainbow environment. We give the model n = 256 test problems to solve. In (a), for No
Reverse Path, we train the model without computing an explicit reverse path, only using the last
step of the noising process as targets. For No Current Image, we train a model that does not get to
see the compiled output image of the program it is editing. For No Noising, instead of using our
noising process, we generate two random expressions and use the path between them as targets. In
(b) we examine the effect of training mixture between forward diffusion (ρ = 0.0) and pure random
initialization (ρ = 1.0) further. Error bars show standard deviation across 5 random seeds.

4.3 Ablations226

To understand the impact of our design decisions, we performed ablation studies on the simplified227

Rainbow environment using a smaller transformer model.228

First, we examined the effect of removing the current image (no REPL) from the policy network’s229

input. As shown in Figure 5(a), this drastically hindered performance, confirming the importance of a230

REPL-like interface observed by Ellis et al. [11].231

Next, we investigated the necessity of our reverse mutation path algorithm. While training on the232

last mutation step alone provides a valid path, it introduces noise by potentially targeting suboptimal233

intermediate states. Figure 5(a) demonstrates that utilizing the reverse mutation path significantly234

improves performance, particularly in finding solutions with fewer steps. However, both methods235

eventually reach similar performance levels, suggesting that a noisy path, while less efficient, can236

still lead to a solution.237

Finally, we explored whether the incremental noise process is crucial, given our tree edit path238

algorithm. Couldn’t we directly sample two random expressions, calculate the path, and train the239

network to imitate it? We varied the training data composition between pure forward diffusion240

(ρ = 0.0) and pure random initialization (ρ = 1.0) as shown in Figure 5(b). We found that a small241

proportion (ρ = 0.2) of pure random initializations combined with forward diffusion yielded the242

best results. This suggests that forward diffusion provides a richer training distribution around target243

points, while random initialization teaches the model to navigate the program space more broadly.244

The emphasis on fine-grained edits from forward diffusion proves beneficial for achieving exact pixel245

matches in our evaluations.246

5 Conclusion247

In this work, we proposed a neural diffusion model that operates on syntax trees for program synthesis.248

We implemented our approach for inverse graphics tasks, where our task is to find programs that249

would render a given image. Unlike previous work, our model can construct programs, view their250

output, and in turn edit these programs, allowing it to fix its mistakes in a feedback loop. We251

quantitatively showed how our approach outperforms our baselines at these inverse graphics tasks.252

We further studied the effects of key design decisions via ablation experiments.253

8

Figure 6: Qualitative examples of our method and baselines on two inverse graphics languages,
CSG2D (top two rows) and TinySVG (bottom two rows). The leftmost column shows the ground-truth
rendered programs from our test set. The next columns show rendered programs from various
methods. Our methods are able to finely adjust and match the ground-truth programs more closely.

Figure 7: Examples of programs recovered for input sketches in the CSG2D-Sketch language. The
input sketches are from our observation model that simulates hand-drawn sketches (top-row). The
output programs rendered (bottom row) are able to match the input sketches by adding and subtracting
basic shapes. Video results for these sketches can be found at https://td-anon.github.io/.

Limitations There are several significant limitations to this work. First, we operate on expressions254

with no variable binding, loops, strings, continuous parameters, etc. While we think our approach255

can be extended to support these, it needs more work and careful design. Current large-language256

models can write complicated programs in many domains, while we focus on a very narrow task.257

Additionally, the task of inverse graphics might just be particularly suited for inverse graphics where258

small mutations make informative changes in the image output.259

Future Work In the future, we hope to be able to leverage large-scale internet data on programs to260

train our system, making small mutations to their syntax tree and learning to invert them. We would261

also like to study this approach in domains other than inverse graphics. Additionally, we would like262

to extend this approach to work with both the discrete syntax structure and continuous floating-point263

constants.264

Impact Given the narrow scope of the implementation, we don’t think there is a direct societal265

impact, other than to inform future research direction in machine-assisted programming. We hope266

future directions of this work, specifically in inverse graphics, help artists, engineering CAD modelers,267

and programmers with a tool to convert ideas to precise programs for downstream use quickly.268

9

https://td-anon.github.io/

References269

[1] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin270

Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban271

Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh,272

Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang,273

Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch, Matthias Reso, Mark274

Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan Wang, Xiaodong Wang,275

William Wen, Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng276

Wu, and Soumith Chintala. PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode277

Transformation and Graph Compilation. In 29th ACM International Conference on Architectural Support278

for Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi:279

10.1145/3620665.3640366. URL https://pytorch.org/assets/pytorch2-2.pdf.280

[2] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. Deepcoder:281

Learning to write programs. arXiv preprint arXiv:1611.01989, 2016.282

[3] Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio. Gflownet283

foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.284

[4] Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale image285

recognition without normalization. In International Conference on Machine Learning, pages 1059–1071.286

PMLR, 2021.287

[5] Edwin Catmull and Raphael Rom. A class of local interpolating splines. In Computer aided geometric288

design, pages 317–326. Elsevier, 1974.289

[6] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray. Codit: Code editing with290

tree-based neural models. IEEE Transactions on Software Engineering, 48(4):1385–1399, 2020.291

[7] Yann Collet et al. Lz4: Extremely fast compression algorithm. code. google. com, 2013.292

[8] Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock: Diffusion293

steps, twists, and turns for molecular docking. arXiv preprint arXiv:2210.01776, 2022.294

[9] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman Mohamed, and Pushmeet295

Kohli. RobustFill: Neural program learning under noisy I/O. In Proceedings of the 34th International296

Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages297

990–998. PMLR, 06–11 Aug 2017.298

[10] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer graphics299

programs from hand-drawn images. Advances in neural information processing systems, 31, 2018.300

[11] Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama. Write,301

execute, assess: Program synthesis with a repl. Advances in Neural Information Processing Systems, 32,302

2019.303

[12] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc304

Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Bootstrapping inductive program305

synthesis with wake-sleep library learning. In Proceedings of the 42nd acm sigplan international conference306

on programming language design and implementation, pages 835–850, 2021.307

[13] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. Grammar-based whitebox fuzzing. In Proceedings308

of the 29th ACM SIGPLAN conference on programming language design and implementation, pages309

206–215, 2008.310

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural311

information processing systems, 33:6840–6851, 2020.312

[15] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion for313

molecule generation in 3d. In International conference on machine learning, pages 8867–8887. PMLR,314

2022.315

[16] IceBerg Contributors. IceBerg – Compositional Graphics Diagramming, July 2023. URL https:316

//github.com/revalo/iceberg.317

[17] Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey Svy-318

atkovskiy. Inferfix: End-to-end program repair with llms. In Proceedings of the 31st ACM Joint European319

Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages320

1646–1656, 2023.321

10

https://pytorch.org/assets/pytorch2-2.pdf
https://github.com/revalo/iceberg
https://github.com/revalo/iceberg
https://github.com/revalo/iceberg

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint322

arXiv:1412.6980, 2014.323

[19] Lark Contributors. Lark - a parsing toolkit for Python, August 2014. URL https://github.com/324

lark-parser/lark.325

[20] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating the326

ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2023.327

[21] Sean Luke. Two fast tree-creation algorithms for genetic programming. IEEE Transactions on Evolutionary328

Computation, 4(3):274–283, 2000.329

[22] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya330

Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with text-guided331

diffusion models. arXiv preprint arXiv:2112.10741, 2021.332

[23] Emilio Parisotto, Abdel rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet333

Kohli. Neuro-symbolic program synthesis, 2016.334

[24] Mateusz Pawlik and Nikolaus Augsten. Efficient computation of the tree edit distance. ACM Transactions335

on Database Systems (TODS), 40(1):1–40, 2015.336

[25] Mateusz Pawlik and Nikolaus Augsten. Tree edit distance: Robust and memory-efficient. Information337

Systems, 56:157–173, 2016.338

[26] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language339

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.340

[27] Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom Blundell, Pietro341

Lió, Carla Gomes, Max Welling, et al. Structure-based drug design with equivariant diffusion models.342

arXiv preprint arXiv:2210.13695, 2022.343

[28] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. Csgnet: Neural344

shape parser for constructive solid geometry. In Proceedings of the IEEE Conference on Computer Vision345

and Pattern Recognition, pages 5515–5523, 2018.346

[29] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,347

Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement learning348

algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.349

[30] Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, and Gust Verbruggen. Codefu-350

sion: A pre-trained diffusion model for code generation, 2023.351

[31] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben352

Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint353

arXiv:2011.13456, 2020.354

[32] Prashast Srivastava and Mathias Payer. Gramatron: Effective grammar-aware fuzzing. In Proceedings of355

the 30th acm sigsoft international symposium on software testing and analysis, pages 244–256, 2021.356

[33] Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill. Multimodal357

few-shot learning with frozen language models. Advances in Neural Information Processing Systems, 34:358

200–212, 2021.359

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz360

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,361

30, 2017.362

[35] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.363

Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734, 2022.364

[36] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion: Grammar-aware greybox fuzzing. In 2019365

IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages 724–735. IEEE, 2019.366

[37] Terry A. Welch. A technique for high-performance data compression. Computer, 17(06):8–19, 1984.367

[38] Ross Wightman. Pytorch image models. https://github.com/rwightman/pytorch-image-models,368

2019.369

11

https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
https://github.com/rwightman/pytorch-image-models

[39] Jo Wood, Petra Isenberg, Tobias Isenberg, Jason Dykes, Nadia Boukhelifa, and Aidan Slingsby. Sketchy370

rendering for information visualization. IEEE transactions on visualization and computer graphics, 18371

(12):2749–2758, 2012.372

[40] David Xing Wu, Chulhee Yun, and Suvrit Sra. On the training instability of shuffling sgd with batch373

normalization. In International Conference on Machine Learning, pages 37787–37845. PMLR, 2023.374

[41] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian Holler. Efficient grammar375

fuzzing. In The Fuzzing Book. CISPA Helmholtz Center for Information Security, 2023. URL https:376

//www.fuzzingbook.org/html/GrammarFuzzer.html. Retrieved 2023-11-11 18:18:06+01:00.377

[42] Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. Coditt5: Pretraining378

for source code and natural language editing. In Proceedings of the 37th IEEE/ACM International379

Conference on Automated Software Engineering, pages 1–12, 2022.380

Appendix381

A Mutation Algorithm382

Figure 8: An example expression from CSG2D represented as a tree to help illustrate the mutation
algorithm. The green nodes are candidate nodes with primitives count σ(z) ≤ 2. Our mutation
algorithm only mutates these nodes.

Here we provide additional details on how we sample small mutations for tree diffusion. We will first383

repeat the algorithm mentioned in Section 3 in more detail.384

Our goal is to take some syntax tree and apply a small random mutation. The only type of mutation385

we consider is a replacement mutation. We first collect a set of candidate nodes that we are allowed386

to replace. If we select a node too high up in the tree, we end up replacing a very large part of the tree.387

To make sure we only change a small part of the tree we only select nodes with ≤ σsmall primitives.388

In Figure 8, if we set σsmall = 2, we get all the green nodes. We sample a node, m, uniformly from389

this green set. We know the production rule for m from the CFG. For instance, if we selected node390

15, the only replacements allowed are + or −. If we selected node 46, we can only replace it with391

an angle. If we selected node 11, we can replace it with any subexpression. When we sample a392

replacement, we ensure that the replacement is ≤ σsmall, and that it is different than m. Here we show393

4 random mutation steps on a small expression,394

(+ (+ (+ (Circle A D 4) (Quad F E 4 6 K)) (Quad 3 E C 2 M)) (Circle C 2 1))395

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ --> (Circle 0 8 A)396

(+ (+ (Circle 0 8 A) (Quad 3 E C 2 M)) (Circle C 2 1))397

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ --> (Quad 1 0 A 3 H)398

(+ (Quad 1 0 A 3 H) (Circle C 2 1))399

^ --> 4400

(+ (Quad 1 0 A 3 H) (Circle 4 2 1))401

^ --> 8402

(+ (Quad 1 0 A 3 H) (Circle 8 2 1))403

12

https://www.fuzzingbook.org/html/GrammarFuzzer.html
https://www.fuzzingbook.org/html/GrammarFuzzer.html
https://www.fuzzingbook.org/html/GrammarFuzzer.html

(a) (b)

Figure 9: Examples of images drawn with the (a) CSG2D and (b) TinySVG languages.

During our experiments we realized that this style of random mutations biases expression to get404

longer on average, since there are many more leaves than parents of leaves. This made the network405

better at going from very long expressions to target expressions, but not very good at editing shorter406

expressions into longer ones. This also made our model’s context window run out frequently when407

expressions got too long. To make the mutation length effects more uniform, we add a slight408

modification to the algorithm mentioned above and in Section 3.409

For each of the candidate nodes, we find the set of production rules for the candidates. We then select410

a random production rule, r, and then select a node from the candidates with the production rule r, as411

follows,412

C = {n ∈ SyntaxTree(z) | σ(n) ≤ σsmall}
R = {ProductionRule(n) | n ∈ C}
r ∼ Uniform[R]

M = {n ∈ C | ProductionRule(n) = r}
m ∼ Uniform[M]

For CSG2D, this approach empirically biased our method to make expressions shorter 30.8%, equal413

49.2%, and longer 20.0% of the times (n = 10, 000).414

B Context-Free Grammars415

Here we provide the exact context-free grammars of the languages used in this work.416

B.1 CSG2D417

s: binop | circle | quad418

binop: (op s s)419

op: + | -420

421

number: [0 to 15]422

angle: [0 to 315]423

424

// (Circle radius x y)425

circle: (Circle r=number x=number y=number)426

427

// (Quad x y w h angle)428

// quad: (Quad x=number y=number429

13

Figure 10: Examples of the same scene being called multiple times by our sketch observation model.

w=number h=number430

theta=angle)431

B.2 TinySVG432

s: arrange | rect | ellipse | move433

direction: v | h434

color: red | green | blue | yellow | purple | orange | black | white | none435

number: [0 - 9]436

sign: + | -437

438

rect: (Rectangle w=number h=number fill=color stroke=color border=number)439

440

ellipse: (Ellipse w=number h=number fill=color stroke=color border=number)441

442

// Arrange direction left right gap443

arrange: (Arrange direction s s gap=number)444

445

move: (Move s dx=sign number dy=sign number)446

C Sketch Simulation447

As mentioned in the main text, we implement the CSG2D-Sketch environment, which is the same as448

CSG2D with a hand-drawn sketch observation model. We do this to primarily show how this sort of a449

generative model can possibly be applied to a real-world task, and that observations do not need to450

be deterministic. Our sketch algorithm can be found in our codebase, and is based off the approach451

described in Wood et al. [39].452

Our compiler uses Iceberg [16] and Google’s 2D Skia library to perform boolean operations on453

primitive paths. The resulting path consists of line and cubic bézier commands. We post-process454

these commands to generate sketches. For each command, we first add Gaussian noise to all points455

stated in those commands. For each line, we randomly pick a point near the 50% and 75% of the456

line, add Gaussian noise, and fit a Catmull-Rom spline [5]. For all curves, we sample random points457

at uniform intervals and fit Catmull-Rom splines. We have a special condition for circles, where458

we ensure that the start and end points are randomized to create the effect of the pen lifting off.459

Additionally we randomize the stroke thickness.460

Figure 10 shows the same program rendered multiple times using our randomized sketch simulator.461

14

(a) (b)

Figure 11: Examples of thresholding scene images using the LZ4 compression algorithm. The left
represents our test set, the right represents our training distribution.

D Complexity Filtering462

As mentioned in Section 4, while testing our method alongside baseline methods, we reached ceiling463

performance for all our methods. Ellis et al. [11] got around this by creating a “hard” test case by464

sampling more objects. For us, when we increased the number of objects to increase complexity, we465

saw that it increased the probability that a large object would be sampled and subtract from the whole466

scene, resulting in simpler scenes. This is shown by Figure 11(b), which is our training distribution.467

Even though we sample a large number of objects, the scenes don’t look visually interesting. When468

we studied the implementation details of Ellis et al. [11], we noticed that during random generation469

of expressions, they ensured that each shape did not change more that 60% or less than 10% of the470

pixels in the scene. Instead of modifying our tree sampling method, we instead chose to rejection471

sample based on the compressibility of the final rendered image.472

E Tree Path Algorithm473

Algorithm 1 shows the high-level pseudocode for how we find the first step of mutations to transform474

tree A into tree B. We linearly walk down both trees until we find a node that is different. If the475

target node is small, i.e., its σ(z) ≤ σsmall, then we can simply mutate the source to the target. If476

the target node is larger, we sample a random small expression with the correct production rule, and477

compute the path from this small expression to the target. This gives us the first step to convert the478

source node to the target node. Repeatedly using Algorithm 1 gives us the full path to convert one479

expression to another. We note that this path is not necessarily the optimal path, but a valid path that480

is less noisy than the path we would get by simply chasing the last random mutation.481

Figure 12 conceptually shows why computing this tree path might be necessary. The circle represents482

the space of programs. Consider a starting program z0. Each of the black arrows represents a random483

mutation that kicks the program to a slightly different program, so z0 → z1, then z2 → z3 If we484

provide the neural network the supervised target to go from z5 to z4, we are teaching the network to485

take an inefficient path to z0. The green path is the direct path from z5 → z0.486

F Implementation Details487

We implement our architecture in PyTorch [1]. For our image encoder we use the NF-ResNet26 [4]488

implementation from the open-sourced library by Wightman [38]. Images are of size 128× 128× 1489

for CSG2D and 128× 128× 3 for TinySVG. We pass the current and target images as a stack of image490

planes into the image encoder. Additionally, we provide the absolute difference between current and491

target image as additional planes.492

15

Algorithm 1 TreeDiff: Find the first set of mutations to turn one tree to another.

Require: treeA: source tree, treeB: target tree, max_primitives: maximum primitives
Ensure: List of mutations to transform treeA into treeB

1: if NodeEq(treeA, treeB) then
2: mutations← []
3: for each (childA, childB) in zip(treeA.children, treeB.children) do
4: mutations← mutations + TreeDiff(childA, childB, max_primitives)
5: end for
6: return mutations
7: else
8: if treeA.primitive_count ≤ max_primitives and treeB.primitive_count ≤

max_primitives then
9: return [Mutation(treeA.start_pos, treeA.end_pos, treeB.expression)]

10: else
11: new_expression ← GenerateNewExpression(treeA.production_rule,

max_primitives)
12: tightening_diffs← TreeDiff(new_expression, treeB, max_primitives)
13: new_expression← ApplyAllMutations(new_expression, tightening_diffs)
14: return [Mutation(treeA.start_pos, treeA.end_pos, new_expression)]
15: end if
16: end if

Figure 12: A conceptual illustration of why we need tree path-finding. The red path represents the
naive target for the neural network. The green path represents the path-finding algorithm’s target.

16

Our decoder-only transformer [34, 26] uses 8 layers, 16 heads, with an embedding size of 256.493

We use batch size 32 and optimize with Adam [18] with a learning rate of 3 × 10−4. The image494

embeddings are of the same size as the transformer embeddings. We use 4 prefix tokens for the image495

embeddings. We used a maximum context size of 512 tokens. For both environments, we sampled496

expressions with at most 8 primitives. Our method and all baseline methods used this architecture.497

We did not do any hyperparameter sweeps or tuning.498

For the autoregressive (CSGNet) baseline, we trained the model to output ground-truth programs499

from target images, and provided a blank current image. For tree diffusion methods, we initialized500

the search and rollouts using the output of the autoregressive model, which counted as a single node501

expansion. For our re-implementation of Ellis et al. [11], we flattened the CSG2D tree into shapes502

being added from left to right. We then randomly sampled a position in this shape array, compiled the503

output up until the sampled position, and trained the model to output the next shape using constrained504

grammar decoding.505

This is a departure from the pointer network architecture in their work. We think that the lack of prior506

shaping, departure from a graphics specific pointer network, and not using reinforcement learning507

to fine-tune leads to a performance difference between their results and our re-implementation. We508

note that our method does not require any of these additional features, and thus the comparison is509

fairer. For tree diffusion search, we used a beam size of 64, with a maximum node expansion budget510

of 5000 nodes.511

17

NeurIPS Paper Checklist512

1. Claims513

Question: Do the main claims made in the abstract and introduction accurately reflect the514

paper’s contributions and scope?515

Answer: [Yes]516

Justification: Figure 4 directly shows the performance of our method over baselines. Further,517

we discuss the narrow scope that we tested our more general approach in Section 5.518

Guidelines:519

• The answer NA means that the abstract and introduction do not include the claims520

made in the paper.521

• The abstract and/or introduction should clearly state the claims made, including the522

contributions made in the paper and important assumptions and limitations. A No or523

NA answer to this question will not be perceived well by the reviewers.524

• The claims made should match theoretical and experimental results, and reflect how525

much the results can be expected to generalize to other settings.526

• It is fine to include aspirational goals as motivation as long as it is clear that these goals527

are not attained by the paper.528

2. Limitations529

Question: Does the paper discuss the limitations of the work performed by the authors?530

Answer: [Yes]531

Justification: Limitations and scope are discussed in Section 5.532

Guidelines:533

• The answer NA means that the paper has no limitation while the answer No means that534

the paper has limitations, but those are not discussed in the paper.535

• The authors are encouraged to create a separate "Limitations" section in their paper.536

• The paper should point out any strong assumptions and how robust the results are to537

violations of these assumptions (e.g., independence assumptions, noiseless settings,538

model well-specification, asymptotic approximations only holding locally). The authors539

should reflect on how these assumptions might be violated in practice and what the540

implications would be.541

• The authors should reflect on the scope of the claims made, e.g., if the approach was542

only tested on a few datasets or with a few runs. In general, empirical results often543

depend on implicit assumptions, which should be articulated.544

• The authors should reflect on the factors that influence the performance of the approach.545

For example, a facial recognition algorithm may perform poorly when image resolution546

is low or images are taken in low lighting. Or a speech-to-text system might not be547

used reliably to provide closed captions for online lectures because it fails to handle548

technical jargon.549

• The authors should discuss the computational efficiency of the proposed algorithms550

and how they scale with dataset size.551

• If applicable, the authors should discuss possible limitations of their approach to552

address problems of privacy and fairness.553

• While the authors might fear that complete honesty about limitations might be used by554

reviewers as grounds for rejection, a worse outcome might be that reviewers discover555

limitations that aren’t acknowledged in the paper. The authors should use their best556

judgment and recognize that individual actions in favor of transparency play an impor-557

tant role in developing norms that preserve the integrity of the community. Reviewers558

will be specifically instructed to not penalize honesty concerning limitations.559

3. Theory Assumptions and Proofs560

Question: For each theoretical result, does the paper provide the full set of assumptions and561

a complete (and correct) proof?562

Answer: [NA]563

18

Justification: There are no theoretical results in this work.564

Guidelines:565

• The answer NA means that the paper does not include theoretical results.566

• All the theorems, formulas, and proofs in the paper should be numbered and cross-567

referenced.568

• All assumptions should be clearly stated or referenced in the statement of any theorems.569

• The proofs can either appear in the main paper or the supplemental material, but if570

they appear in the supplemental material, the authors are encouraged to provide a short571

proof sketch to provide intuition.572

• Inversely, any informal proof provided in the core of the paper should be complemented573

by formal proofs provided in appendix or supplemental material.574

• Theorems and Lemmas that the proof relies upon should be properly referenced.575

4. Experimental Result Reproducibility576

Question: Does the paper fully disclose all the information needed to reproduce the main ex-577

perimental results of the paper to the extent that it affects the main claims and/or conclusions578

of the paper (regardless of whether the code and data are provided or not)?579

Answer: [Yes]580

Justification: In addition to submitting a clean implementation of our work alongside model581

weights, our paper has enough details to reproduce the results. All code and weights will582

also be release publicly.583

Guidelines:584

• The answer NA means that the paper does not include experiments.585

• If the paper includes experiments, a No answer to this question will not be perceived586

well by the reviewers: Making the paper reproducible is important, regardless of587

whether the code and data are provided or not.588

• If the contribution is a dataset and/or model, the authors should describe the steps taken589

to make their results reproducible or verifiable.590

• Depending on the contribution, reproducibility can be accomplished in various ways.591

For example, if the contribution is a novel architecture, describing the architecture fully592

might suffice, or if the contribution is a specific model and empirical evaluation, it may593

be necessary to either make it possible for others to replicate the model with the same594

dataset, or provide access to the model. In general. releasing code and data is often595

one good way to accomplish this, but reproducibility can also be provided via detailed596

instructions for how to replicate the results, access to a hosted model (e.g., in the case597

of a large language model), releasing of a model checkpoint, or other means that are598

appropriate to the research performed.599

• While NeurIPS does not require releasing code, the conference does require all submis-600

sions to provide some reasonable avenue for reproducibility, which may depend on the601

nature of the contribution. For example602

(a) If the contribution is primarily a new algorithm, the paper should make it clear how603

to reproduce that algorithm.604

(b) If the contribution is primarily a new model architecture, the paper should describe605

the architecture clearly and fully.606

(c) If the contribution is a new model (e.g., a large language model), then there should607

either be a way to access this model for reproducing the results or a way to reproduce608

the model (e.g., with an open-source dataset or instructions for how to construct609

the dataset).610

(d) We recognize that reproducibility may be tricky in some cases, in which case611

authors are welcome to describe the particular way they provide for reproducibility.612

In the case of closed-source models, it may be that access to the model is limited in613

some way (e.g., to registered users), but it should be possible for other researchers614

to have some path to reproducing or verifying the results.615

5. Open access to data and code616

19

Question: Does the paper provide open access to the data and code, with sufficient instruc-617

tions to faithfully reproduce the main experimental results, as described in supplemental618

material?619

Answer: [Yes]620

Justification: At the time of submission we provide anonymous code and weights for our621

method and our baselines. We will also open source all code and weights.622

Guidelines:623

• The answer NA means that paper does not include experiments requiring code.624

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/625

public/guides/CodeSubmissionPolicy) for more details.626

• While we encourage the release of code and data, we understand that this might not be627

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not628

including code, unless this is central to the contribution (e.g., for a new open-source629

benchmark).630

• The instructions should contain the exact command and environment needed to run to631

reproduce the results. See the NeurIPS code and data submission guidelines (https:632

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.633

• The authors should provide instructions on data access and preparation, including how634

to access the raw data, preprocessed data, intermediate data, and generated data, etc.635

• The authors should provide scripts to reproduce all experimental results for the new636

proposed method and baselines. If only a subset of experiments are reproducible, they637

should state which ones are omitted from the script and why.638

• At submission time, to preserve anonymity, the authors should release anonymized639

versions (if applicable).640

• Providing as much information as possible in supplemental material (appended to the641

paper) is recommended, but including URLs to data and code is permitted.642

6. Experimental Setting/Details643

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-644

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the645

results?646

Answer: [Yes]647

Justification: Main text has most of the high-level ideas. Specific values and implementation648

details are in Appendix F. We also release code with our work.649

Guidelines:650

• The answer NA means that the paper does not include experiments.651

• The experimental setting should be presented in the core of the paper to a level of detail652

that is necessary to appreciate the results and make sense of them.653

• The full details can be provided either with the code, in appendix, or as supplemental654

material.655

7. Experiment Statistical Significance656

Question: Does the paper report error bars suitably and correctly defined or other appropriate657

information about the statistical significance of the experiments?658

Answer: [Yes]659

Justification: All quantitative experimental figures have error bars computed by running660

the experiment multiple times with different random seeds and computing the standard661

deviation of the results.662

Guidelines:663

• The answer NA means that the paper does not include experiments.664

• The authors should answer "Yes" if the results are accompanied by error bars, confi-665

dence intervals, or statistical significance tests, at least for the experiments that support666

the main claims of the paper.667

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for668

example, train/test split, initialization, random drawing of some parameter, or overall669

run with given experimental conditions).670

• The method for calculating the error bars should be explained (closed form formula,671

call to a library function, bootstrap, etc.)672

• The assumptions made should be given (e.g., Normally distributed errors).673

• It should be clear whether the error bar is the standard deviation or the standard error674

of the mean.675

• It is OK to report 1-sigma error bars, but one should state it. The authors should676

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis677

of Normality of errors is not verified.678

• For asymmetric distributions, the authors should be careful not to show in tables or679

figures symmetric error bars that would yield results that are out of range (e.g. negative680

error rates).681

• If error bars are reported in tables or plots, The authors should explain in the text how682

they were calculated and reference the corresponding figures or tables in the text.683

8. Experiments Compute Resources684

Question: For each experiment, does the paper provide sufficient information on the com-685

puter resources (type of compute workers, memory, time of execution) needed to reproduce686

the experiments?687

Answer: [Yes]688

Justification: Section 3.4 mentions these details.689

Guidelines:690

• The answer NA means that the paper does not include experiments.691

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,692

or cloud provider, including relevant memory and storage.693

• The paper should provide the amount of compute required for each of the individual694

experimental runs as well as estimate the total compute.695

• The paper should disclose whether the full research project required more compute696

than the experiments reported in the paper (e.g., preliminary or failed experiments that697

didn’t make it into the paper).698

9. Code Of Ethics699

Question: Does the research conducted in the paper conform, in every respect, with the700

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?701

Answer: [Yes]702

Justification: No human subjects or external datasets were used. Additionally, we don’t703

think the scope of the work can cause any direct harm.704

Guidelines:705

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.706

• If the authors answer No, they should explain the special circumstances that require a707

deviation from the Code of Ethics.708

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-709

eration due to laws or regulations in their jurisdiction).710

10. Broader Impacts711

Question: Does the paper discuss both potential positive societal impacts and negative712

societal impacts of the work performed?713

Answer: [Yes]714

Justification: Section 5 discusses potential impacts.715

Guidelines:716

• The answer NA means that there is no societal impact of the work performed.717

21

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal718

impact or why the paper does not address societal impact.719

• Examples of negative societal impacts include potential malicious or unintended uses720

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations721

(e.g., deployment of technologies that could make decisions that unfairly impact specific722

groups), privacy considerations, and security considerations.723

• The conference expects that many papers will be foundational research and not tied724

to particular applications, let alone deployments. However, if there is a direct path to725

any negative applications, the authors should point it out. For example, it is legitimate726

to point out that an improvement in the quality of generative models could be used to727

generate deepfakes for disinformation. On the other hand, it is not needed to point out728

that a generic algorithm for optimizing neural networks could enable people to train729

models that generate Deepfakes faster.730

• The authors should consider possible harms that could arise when the technology is731

being used as intended and functioning correctly, harms that could arise when the732

technology is being used as intended but gives incorrect results, and harms following733

from (intentional or unintentional) misuse of the technology.734

• If there are negative societal impacts, the authors could also discuss possible mitigation735

strategies (e.g., gated release of models, providing defenses in addition to attacks,736

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from737

feedback over time, improving the efficiency and accessibility of ML).738

11. Safeguards739

Question: Does the paper describe safeguards that have been put in place for responsible740

release of data or models that have a high risk for misuse (e.g., pretrained language models,741

image generators, or scraped datasets)?742

Answer: [NA]743

Justification: We don’t think our work is high-risk for misuse.744

Guidelines:745

• The answer NA means that the paper poses no such risks.746

• Released models that have a high risk for misuse or dual-use should be released with747

necessary safeguards to allow for controlled use of the model, for example by requiring748

that users adhere to usage guidelines or restrictions to access the model or implementing749

safety filters.750

• Datasets that have been scraped from the Internet could pose safety risks. The authors751

should describe how they avoided releasing unsafe images.752

• We recognize that providing effective safeguards is challenging, and many papers do753

not require this, but we encourage authors to take this into account and make a best754

faith effort.755

12. Licenses for existing assets756

Question: Are the creators or original owners of assets (e.g., code, data, models), used in757

the paper, properly credited and are the license and terms of use explicitly mentioned and758

properly respected?759

Answer: [Yes]760

Justification: There are no datasets curated or external assets used. We cite all open-source761

Python libraries used, alongside their URLs.762

Guidelines:763

• The answer NA means that the paper does not use existing assets.764

• The authors should cite the original paper that produced the code package or dataset.765

• The authors should state which version of the asset is used and, if possible, include a766

URL.767

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.768

• For scraped data from a particular source (e.g., website), the copyright and terms of769

service of that source should be provided.770

22

• If assets are released, the license, copyright information, and terms of use in the771

package should be provided. For popular datasets, paperswithcode.com/datasets772

has curated licenses for some datasets. Their licensing guide can help determine the773

license of a dataset.774

• For existing datasets that are re-packaged, both the original license and the license of775

the derived asset (if it has changed) should be provided.776

• If this information is not available online, the authors are encouraged to reach out to777

the asset’s creators.778

13. New Assets779

Question: Are new assets introduced in the paper well documented and is the documentation780

provided alongside the assets?781

Answer: [Yes]782

Justification: We provide a well-documented README.md file for the code and model weights783

released.784

Guidelines:785

• The answer NA means that the paper does not release new assets.786

• Researchers should communicate the details of the dataset/code/model as part of their787

submissions via structured templates. This includes details about training, license,788

limitations, etc.789

• The paper should discuss whether and how consent was obtained from people whose790

asset is used.791

• At submission time, remember to anonymize your assets (if applicable). You can either792

create an anonymized URL or include an anonymized zip file.793

14. Crowdsourcing and Research with Human Subjects794

Question: For crowdsourcing experiments and research with human subjects, does the paper795

include the full text of instructions given to participants and screenshots, if applicable, as796

well as details about compensation (if any)?797

Answer: [NA]798

Justification: There were no human subjects used.799

Guidelines:800

• The answer NA means that the paper does not involve crowdsourcing nor research with801

human subjects.802

• Including this information in the supplemental material is fine, but if the main contribu-803

tion of the paper involves human subjects, then as much detail as possible should be804

included in the main paper.805

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,806

or other labor should be paid at least the minimum wage in the country of the data807

collector.808

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human809

Subjects810

Question: Does the paper describe potential risks incurred by study participants, whether811

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)812

approvals (or an equivalent approval/review based on the requirements of your country or813

institution) were obtained?814

Answer: [NA]815

Justification: There were no human subjects used.816

Guidelines:817

• The answer NA means that the paper does not involve crowdsourcing nor research with818

human subjects.819

• Depending on the country in which research is conducted, IRB approval (or equivalent)820

may be required for any human subjects research. If you obtained IRB approval, you821

should clearly state this in the paper.822

23

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions823

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the824

guidelines for their institution.825

• For initial submissions, do not include any information that would break anonymity (if826

applicable), such as the institution conducting the review.827

24

	Introduction
	Background & Related Work
	Method
	Sampling Small Mutations
	Policy
	Forward Process
	Reverse Mutation Paths

	Value Network & Search
	Architecture

	Experiments
	Environments
	Baselines
	Ablations

	Conclusion
	Mutation Algorithm
	Context-Free Grammars
	CSG2D
	TinySVG

	Sketch Simulation
	Complexity Filtering
	Tree Path Algorithm
	Implementation Details

