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ABSTRACT

Learning real-world robotic manipulation is challenging, particularly when lim-
ited demonstrations are available. Existing methods for few-shot manipulation
often rely on simulation-augmented data or pre-built modules like grasping and
pose estimation, which struggle with sim-to-real gaps and lack versatility. While
large-scale imitation pre-training shows promise, adapting these general-purpose
policies to specific tasks in data-scarce settings remains unexplored. To achieve
this, we propose ControlManip, a novel framework that bridges pre-trained ma-
nipulation policies with object-centric representations via a ControlNet-style ar-
chitecture for efficient fine-tuning. Specifically, to introduce object-centric con-
ditions without overwriting prior knowledge, ControlManip zero-initializes a set
of projection layers, allowing them to gradually adapt the pre-trained manipula-
tion policies. In real-world experiments across 6 diverse tasks, including pouring
cubes and folding clothes, our method achieves a 73.3% success rate while re-
quiring only 10-20 demonstrations — a significant improvement over traditional
approaches that require more than 100 demonstrations to achieve comparable suc-
cess. Comprehensive studies show that ControlManip improves the few-shot fine-
tuning success rate by 252% over baselines and demonstrates robustness to object
and background changes. By lowering the barriers to task development, Control-
Manip accelerates real-world robot adoption and lays the groundwork for unifying
large-scale policy pre-training with object-centric representations.

1 INTRODUCTION

Robotic manipulation in the real world remains a fundamental challenge, particularly when learning
novel skills from limited demonstrations. While recent advances in robotic manipulation (Fu et al.,
2024; Li et al., 2024b; Liu et al., 2024; Zhu et al., 2023b; Chen et al., 2024; Wang et al., 2024b; Hsu
et al., 2024; Chi et al., 2024; Ma et al., 2023; Jiang et al., 2024; Brohan et al., 2023; Yang et al.,
2024; Li et al., 2025; Huang et al., 2024; Li et al., 2023; 2024c) have shown promise, current methods
still demand extensive training data and struggle to efficiently adapt to new tasks and environments
with few demonstrations. This limitation significantly hinders the deployment of robots in diverse
real-world scenarios, where large amounts of task-specific training data are often impractical or
prohibitively expensive.

To tackle this, previous works (Torne et al., 2024; Mandlekar et al., 2023; Jiang et al., 2024; Mu et al.,
2024) have focused on augmenting expert demonstrations in simulation to enhance policy learning.
However, these approaches typically assume a priori knowledge of object and environment CAD
models, as well as precise 3D pose estimations — requirements often impractical in real-world
scenarios. An alternative line of research (Ma et al., 2023; Li et al., 2024b; Hsu et al., 2024; Zhu
et al., 2024) explores learning manipulation directly from visual demonstrations. Some methods
leverage human-centric video datasets to learn generalizable representations and generate rewards
to learn novel skills (Ma et al., 2023; Li et al., 2024b). Nevertheless, these methods still struggle
to learn complex skills, such as deformable and fluid-like manipulations, due to their reliance on
physical simulators and the resulting significant sim-to-real gaps. Others acquire manipulation skills
from limited human demonstration videos (Hsu et al., 2024; Zhu et al., 2024), yet often rely on off-
the-shelf grasping modules and robust pose estimations, limiting scalability in the real world.
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Figure 1: ControlManip bridges pre-trained manipulation policies with object-centric repre-
sentations via ControlNet-style efficient fine-tuning. ControlManip requires only 10–20 demon-
strations to achieve 73.3% task success rate, significantly surpassing baseline’s 20.8% success rate.

Currently, imitation learning has achieved impressive success in manipulation (Brohan et al., 2023;
Fu et al., 2024; Chi et al., 2024; 2023; Liu et al., 2024; Nair et al., 2023; Team et al., 2024; Kim et al.,
2024), primarily due to its scalability and capability to acquire skills across a wide range of scenar-
ios without relying on external a priori knowledge. In particular, pre-training general-purpose
visuomotor policies (Brohan et al., 2022; 2023; Kim et al., 2024; Team et al., 2024; Liu et al.,
2024; O’Neill et al., 2023) has emerged as a promising approach for enabling generalizable robot
behaviors across various tasks and environments. However, fine-tuning these pre-trained policies for
downstream tasks remains data-intensive, as substantial amounts of task- and environment-specific
data are still required to adapt to the visual and action domains of the target task (Kim et al., 2024;
Team et al., 2024; Liu et al., 2024). On a separate front, object-centric representations has shown
potential in improving data efficiency for learning expert policies (Zhu et al., 2023b;a; Hsu et al.,
2024). By focusing on relevant object properties (e.g., shape, size and position), object-centric rep-
resentations reduce the complexity of the input observation space. This approach enhances policy
robustness to changes in object pose and instance, while also making the policies less susceptible to
real-world noise compared to pixel-level features. Despite this, existing methods still requires hun-
dreds of demonstrations to learn a task (Zhu et al., 2023b;a). This limitation is largely attributed to
the lack of a visuomotor action prior, which is critical for guiding the learning process in data-scarce
scenarios.

We introduce ControlManip, a novel learning framework that synergistically combines pre-trained
visuomotor policies with object-centric representations to enable efficient few-shot learning. By in-
tegrating object-centric representations into pre-trained visuomotor policies (Diffusion Transformer
in our implementation), our approach leverages both the rich prior knowledge from large-scale pre-
training and the data efficiency of object-centric learning. Inspired by Zhang et al. (Zhang et al.,
2023), ControlManip introduces additional cross-attention layers with zero-initialized key-value
(KV) projection weights, allowing expert policies to acquire task-specific skills while progres-
sively integrating object-centric representations. This design ensures that the policy focuses on
task-relevant concepts without compromising the generalization or action quality of the pre-trained
model. The zero-initialization of additional KV projections stabilizes fine-tuning by mitigating in-
troduction of harmful noise, thereby enabling a seamless integration of task-specific object-centric
representations with general-purpose visuomotor pre-training. Owing to these advantages, Con-
trolManip significantly reduces data requirements for adapting task-specific policies, enhancing the
efficiency of robotic manipulation deployment in the real world.

We demonstrate the efficacy and efficiency of ControlManip across 6 diverse real-world tasks,
achieving robust performance with only 10-20 demonstrations per task. The evaluation tasks span
diverse manipulation challenges: pick-and-place tasks with rigid, soft, and precision-critical objects,
as well as complex manipulations including articulated object operation, fluid-like object pouring,
and deformable cloth folding. Empirically, ControlManip attains an impressive 73.3% success rate
across all tasks with very limited demonstrations, significantly surpassing baseline methods that
achieve a mere 20.8% success rate. Additionally, we also demonstrate the robustness of ControlMa-
nip when deployed to unseen objects and backgrounds. Ablation studies confirm the necessity of
three key components: (1) visuomotor policy pre-training for skill priors, (2) object-centric repre-
sentation fusion for task grounding, and (3) ControlNet-style conditioning for stable fine-tuning.

2



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Our primary contribution bridges the gap between large-scale policy pre-training and efficient
object-centric adaptation, enabling robots to acquire complex skills from minimal demonstrations.
Beyond advancing few-shot manipulation, ControlManip establishes a blueprint for unifying foun-
dational Vision-Language-Action model (VLA) with structured visual representations — a critical
step toward scalable real-world robot learning.

2 RELATED WORKS

2.1 FEW-SHOT LEARNING FOR MANIPULATION

Reducing dependence on costly demonstration data while maintaining task performance remains a
cornerstone challenge in robotic manipulation. Early approaches focused on automated data aug-
mentation (Torne et al., 2024; Mandlekar et al., 2023) by synthesizing large-scale training trajecto-
ries in simulation. Complementary work integrates reinforcement learning with imitation learning
to improve robustness (Mu et al., 2024). However, these methods demand precise object pose priors
and CAD models, hindering deployment in real-world settings where such information is unavail-
able. Further, reliance on simulated physics engines often creates insurmountable sim-to-real gaps,
particularly for deformable objects or contact-rich tasks.

To bypass simulated data, recent efforts leverage human video priors to guide robotic policies. Rep-
resentations distilled from egocentric datasets (e.g., R3M (Nair et al., 2023), VIP (Ma et al., 2023))
encode task-agnostic visual features, enabling skill transfer to robots (Li et al., 2024b). While effec-
tive for rigid object manipulation, these methods struggle with precise and dynamic interactions due
to their reliance on 2D visual correspondences rather than actionable 3D spatial reasoning.

The frontier of few-shot learning targets direct adaptation from minimal human demonstrations.
DenseMatcher (Zhu et al., 2024) localizes 3D semantic correspondences to generalize skills across
object instances, while SPOT (Hsu et al., 2024) decouples task planning (via SE(3) object trajecto-
ries) from robot actuation. Despite progress, most methods still depend on (1) handcrafted grasping
subroutines and (2) accurate pose estimation pipelines, limiting flexibility in unstructured environ-
ments. Critically, few explore integration with pre-trained visuomotor policies for leveraging large-
scale robotic datasets as priors. Our work bridges this gap through ControlNet-style conditioning,
enabling efficient few-shot adaptation of general-purpose policies via object-centric representations.

2.2 OBJECT-CENTRIC REPRESENTATION LEARNING

Object-centric representation learning has attracted significant attention in both robotics and com-
puter vision. By decomposing complex scenes into manipulable objects, these approaches facilitate
more efficient reasoning for tasks such as grasping and object manipulation. Traditional methods
often represent objects by pose (Tremblay et al., 2018; Tyree et al., 2022; Migimatsu & Bohg, 2020)
or bounding boxes (Wang et al., 2019; Devin et al., 2018), which explicitly encode spatial posi-
tioning and extent. Although these approaches have proven successful in controlled settings, they
frequently rely on prior knowledge of object categories or instance labels, limiting their adaptability
to unseen objects and dynamic environments.

To address these issues, unsupervised object discovery methods (Locatello et al., 2020; Burgess
et al., 2019) aim to learn representations by autonomously segmenting visual input into meaning-
ful object-like components. However, these methods often encounter challenges in highly cluttered
or partially occluded scenes, where objects can overlap significantly, causing poor segmentation or
inconsistent object identities (Wang et al., 2021; Heravi et al., 2023). Consequently, their applicabil-
ity to real-world manipulation, which involves unpredictable object shapes and positions, remains
limited.

Much of the prior literature on object-centric representation learning has also struggled to exploit
large-scale pre-trained models effectively (Didolkar et al., 2024; Yoon et al., 2023). For example,
existing methods (Gao et al., 2023; Yi et al., 2022) typically align representations with category-
specific features or pose estimations, creating a mismatch with generic large-scale models trained on
extensive, heterogeneous datasets. This incompatibility can necessitate cumbersome, task-specific
tuning that undermines the promised benefits of transfer learning, such as faster convergence and
deeper semantic understanding.
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Despite these limitations, object-centric representation learning holds considerable potential if it can
be integrated with large-scale, data-driven representation algorithms. In the subsequent sections, we
detail our approach to bridging the gap between object-centric representations and large-scale model
pre-training, aiming to overcome these longstanding challenges.

2.3 CONTROLNET-STYLE FINE-TUNING

ControlNet (Zhang et al., 2023) enhances large-scale pre-trained Stable Diffusion (Stability, 2022)
by efficiently incorporating additional conditional inputs, such as sketch, normal map, depth map or
human pose, through zero-initialized convolution layers. These layers start with zero weights and
bias, ensuring no initial impact on outputs while progressively learning to integrate new conditions.
This methodology has been extensively applied in various domains, such as controllable image
generation (Zhang et al., 2023; Li et al., 2024a; Zavadski et al., 2023), video generation (Guo et al.,
2024; Wang et al., 2024a; Bar-Tal et al., 2024), and human motion generation (Dai et al., 2024; Xie
et al., 2024). Despite its widespread adoption in these areas, the application of ControlNet in the
context of robotic manipulation has not yet been investigated. Our study represents the first effort
to adapt ControlNet-style fine-tuning to this field, unifying large-scale visuomotor pre-training with
fine-tuning of object-centric representations to enable few-shot robotic manipulation learning.

3 PRELIMINARY

We formulate robot manipulation as a implicit discrete-time Markov Decision Process (MDP) M =
(S,A,T ,R, γ), where S represents the state space, A the action space, T the stochastic transition
probability, R the binary reward function with r ∈ {0, 1}, and γ ∈ [0, 1) the discount factor. In our
context, S denotes the set of all possible configurations of the robot and its environment, while A
denotes the space of the robot’s motor commands at each discrete time t. Our objective is to learn
a closed-loop visuomotor policy π : O → A , where O is the observation space consisting of the
robot proprioception, RGB images and language instruction, which serves as a partial projection of
the state space S derived from the real-world sensors.

Diffusion policy (Chi et al., 2023) formulates the visuomotor policy π as the Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2020), which can model complex multimodal action dis-
tributions and facilitate a stable training behavior. DDPM performs K iterations of a denoising
process, starting from a Gaussian noise xK ∼ N (0, I) and evolving toward the desired output
x0 ∼ qθ

(
x0

)
. The denoising process is described by the following equation:

xk−1 = α
(
xk − βϵθ

(
xk, k

))
+ σN (0, I) , (1)

where α, β, and σ are functions of the timestep k, collectively known as the noise schedule, and the
ϵθ is the distribution shift prediction network with the trainable parameter θ.

The training objective is to minimize the variational lower bound of KL-divergence between the
given data distribution p

(
x0

)
and the θ-parameterized distribution qθ

(
x0

)
. As shown in (Ho et al.,

2020), the loss function can be simplified as:

L = Et∼[1,K],x0,ϵk
[
∥ϵk − ϵθ

(
x0 + ϵk, k

)
∥2
]
. (2)

Diffusion policy represents the robot actions at:t+Ta as the model output x and conditions the
denoising process on the robot observations ot:t−To , where at ∈ A , ot ∈ O , Ta and To denote
the horizon lengths of the action and observation sequences. For convenience, we use At and
Ot to represent the action and observation sequences in the following discussion. The DDPM is
naturally extended to approximate the conditional distribution p (At | Ot) for planning. To capture
the conditional actions distribution, the denoising process is modified from Eq. (1):

Ak−1
t = α

(
Ak

t − βϵθ
(
Ak

t , k
))

+ σN (0, I) . (3)

The training loss is modified from Eq. (2):

L = Et∼[1,K],A0
t ,ϵ

k

[
∥ϵk − ϵθ

(
A0

t + ϵk,Ot, k
)
∥2
]
. (4)

In practice, we exclude observation features from the denoising process for better accommodates
real-time robot control, while the formulation remains the same.
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Figure 2: Overview of ControlManip. ControlManip leverages a ControlNet-style fine-tuning
strategy to integrate object-centric representations with the pre-trained visuomotor policy. The zero-
initialized weights and biases preserve the rich prior knowledge of the pre-trained policy while
progressively grounding it in structured object properties.

4 METHOD

Given a pre-trained general-purpose policy πg : O → A , our goal is to efficiently learn a task-
specific expert policy πe using a limited set of expert demonstrations. To achieve this, we introduce
ControlManip, which leverages a ControlNet-style fine-tuning strategy to integrate object-centric
representations with the capabilities of the pre-trained visuomotor policy (see Fig. 2). We first pre-
train a language-conditioned visuomotor diffusion transformer policy on a large-scale manipulation
dataset across diverse tasks (Sec. 4.1). Next, we design an object-centric representation to identify
the key concepts for the specific task, thereby focusing the learning process on task-relevant ob-
jects (Sec. 4.2). We then explain how ControlNet-style object-centric finetuning allows the policy
to acquire task-specific skills efficiently by gradually incorporating object-centric features into the
already trained model (Sec. 4.3). Finally, we present crucial implementation details to facilitate
reproducibility of our results (Sec. 4.4).

4.1 VISUOMOTOR POLICY PRE-TRAINING

We begin by pre-training a general-purpose policy πg , using the public large-scale manipulation

datasets Dg =
{
(ot,at)

Ti

t=1

}Ng

i=1
across a diverse range of tasks and scenes, where Ng represents

the total number of episodes. Formally, we use πg : O → A to model the conditional action
distribution p (At | Ot), where At represents the future action sequence and Ot denotes the history
of the observations. The observation at time t consists of a single-view RGB image It, a language
instruction ℓt, and the robot’s proprioceptive state qt, such that ot = [It, ℓt, qt]. The image It and
language instruction ℓt are tokenized via pre-trained encoders and projected into a shared embedding
space through a linear projection layer, while the proprioceptive state qt is similarly embedded using
Multi-layer Perceptrons (MLPs).

The πg model adopts a diffusion policy architecture (Chi et al., 2023) to capture the multimodal
conditional action distribution. During training, the action sequence is supervised using a condi-
tional denoising loss Eq. (2). At inference, actions are sampled by iteratively denoising started from
a pure Gaussian noise AK

t ∼ N (0, I) into the desired action A0
t ∼ qθ

(
A0

t | Ot

)
via Eq. (3), with

the process accelerated using Denoising Diffusion Implicit Model (DDIM) (Song et al., 2021) for
real-time control.

To effectively integrate the multimodal heterogeneous observations Ot, we choose the Trans-
former (Vaswani, 2017) as the backbone of the action denoising network ϵθ. The Transformer
backbone, with its cross-attention mechanism, enables the policy to efficiently model the complex
relations between heterogeneous conditions and outputs, such as visual inputs, language instruc-
tions, proprioceptions, and the resulting actions.
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4.2 OBJECT-CENTRIC REPRESENTATIONS

This section outlines the process of building object-centric representations Z ∈ Z as additional
action conditions, which enables task-specific expert policy πe to explicitly identify the key concepts
of the task and efficiently learn from few-shot demonstrations. The process involves two key steps:
(i) subscribing and tracking task-relevant objects, and (ii) extracting object-centric representations.

Subscribe and track task-relevant objects. To build object representations that consistently attend
to task-relevant objects, it is essential to inform the model about their locations and local geometry
in the RGB image observation I . Our goal is to automatically access fine-grained instance masks{
M i

}Nobj

i=1
corresponding to task-relevant objects

{
obji

}Nobj

i=1
, where Nobj denotes the number of

objects. Prior works on unsupervised object discovery require extensive training data while being
limited to simplified toy domains (Locatello et al., 2020), and rely heavily on third-person viewpoint
observation (Zhu et al., 2023b). Inspired by Zhu et al. (Zhu et al., 2023a), we adopt a few-shot
semi-supervised approach to access task-relevant object instance masks with minimal human expert
demonstration. To achieve this, we employ SAM2 (Ravi et al., 2024), a powerful video instance
segmentation that processes simple prompts. This allows a demonstrator to subscribe objects prompt
in 1 − 2 images with just a few mouse clicks by marking keypoints. Notably, a single subscription
of objects prompt supports both offline video segmentation on training data, and real-time object
tracking during inference.

Learn to extract object-centric representations. We aim to learn a fφ to extract the object-centric
representations zi from i−th object mask M i as additional conditions for the expert policy πe. To
encode where and what relevant objects are, we design positional feature and geometrical feature
for each object. For positional feature zi

pos, we encode the mean coordinates of the object mask
on images using sinusoidal positional encoding (Vaswani, 2017). For geometrical feature zi

geo,
we obtain a spatial feature map with a Convolutional Neural Network (CNN) (Krizhevsky et al.,
2012) that runs on the mask of each task-relevant object. Similar to the approach of Zhu et al. (Zhu
et al., 2023b), we train the spatial network from scratch rather than using a pre-trained model, as
we require actionable visual features that are specifically informative for continuous control tasks.
Finally, we concatenate the positional and geometry feature to form the object-centric representation
zi =

[
zi
pos, z

i
geo

]
and Z =

{
zi
}Nobj

i=1
∈ Z

4.3 CONTROLNET-STYLE FINE-TUNING

Given a small set of task-specific dataset De =
{
(ot, zt,at)

Ti

t=1

}Ne

i=1
, where Ne represents the

number of demonstrations, we aim to efficiently fine-tune an expert policy πe : O ×Z → A from
πg : O → A with the object-centric representations.

In our context, the pre-trained policy is a transformer-based architecture that utilizes cross-attention
blocks to model actions conditioned on observations. Specifically, the cross-attention mechanism
computes the relationship between actions A and observations O as:

softmax

(
QKT

√
d

)
V , (5)

where Q = WaA + Ba represents the query projection, and K,V = WoO + Bo represent the
key and value projections, respectively. To incorporate the object-centric representation Z ∈ Z , we
extend the cross-attention mechanism by introducing a dual-attention structure. Instead of directly
appending Z as additional tokens to K and V , we compute a separate attention branch for the
object-centric conditions:

softmax

(
QKT

√
d

)
V + softmax

(
QKT

z√
d

)
Vz, (6)

where Kz,Vz = WzZ +Bz are the key and value projections for the object-centric observations
Z.

Inspired by Zhang et al. (Zhang et al., 2023), we zero-initialize the additional KV-projection layers
to ensure the expert policy πe model behaves similarly to the pre-trained general-purpose policy πg
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during the early stage of fine-tuning, preserving the model’s prior knowledge. Since the weight Wz

and bias Bz are initialized to 0, the key and value projections for Z are zero:
Kz = WzZ +Bz = 0, Vz = 0. (7)

Thus, the dual-attention output in Eq. (6) reduces to the original cross-attention in Eq. (5), preserving
the pre-trained policy’s behavior at the first fine-tuning step.

A common misunderstanding with zero-initialized weights and biases is that they produce zero
gradients and are, therefore, untrainable. We demonstrate that the additional KV-projection layers
(Wz,Bz) and the object-centric representations Z can be optimized despite their zero initialization,
which is similar to the case in ControlNet (Zhang et al., 2023).

Let ∂L
∂Vz

denote the upstream gradient from the loss L. The gradients for Wz and Bz are:
∂L
∂Wz

=
∑
p,i

∂L
∂Vzp,i

·Zp,i

∂L
∂Bz

=
∑
p,i

∂L
∂Vzp,i

· 1
(8)

Since Z is non-zero, ∂L
∂Wz

̸= 0 if ∂L
∂Vz

̸= 0. Similarly, ∂L
∂Bz

accumulates non-zero gradients. After
one gradient step: 

Wz
∗ = Wz − βl ·

∂L
∂Wz

̸= 0

Bz
∗ = Bz − βl ·

∂L
∂Bz

̸= 0

(9)

This ensures K∗
z and V ∗

z become non-zero, allowing the dual-attention to incorporate Z.

Considering Z is learnable, its gradient is:
∂L
∂Z

= Wz
T · ∂L

∂Vz
. (10)

Since Wz
∗ ̸= 0, Z receives non-zero gradients and is updated accordingly. This aligns with the

zero-convolution principle, where gradients persist despite zero-initialized parameters. We fine-tune
the expert policy using the conditional denoising loss as defined in Eq. (4).

With the ControlNet-style fine-tuning, we efficiently integrate additional object-centric conditions
into the pre-trained visuomotor policy. This approach ensures that when the KV-projection lay-
ers are zero-initialized in the dual cross-attention module, the deep neural features remain unaf-
fected prior to any optimization. The capabilities, functionality, and output action quality of the
pre-trained visuomotor modules are perfectly preserved, while further optimization becomes as effi-
cient as standard fine-tuning. This allows ControlManip to simultaneously leverage the advantages
of large-scale pre-training and object-centric representations, accelerating real-world robot adoption
by significantly reducing the data requirements for task deployment.

4.4 IMPLEMENTATION DETAILS

In Sec. 4.1, we pre-train the policy πg on the full DROID dataset (Khazatsky et al., 2024), using the
wrist camera image It, end-effector poses and gripper widths qt, and episode language descriptions
ℓt. The observation and action horizons are set to To = 2 and Ta = 16. The pre-trained policy,
implemented as a Diffusion Transformer (Chi et al., 2023) with 29M parameters, uses a CLIP (Rad-
ford et al., 2021) ViT-B/16 vision encoder and a Transformer text encoder. We pre-train πg with
AdamW (learning rates: 1×10−4 for denoising model, 3×10−5 for vision; text encoder frozen) on
4 NVIDIA A800 GPUs for 3 days. In Sec. 4.2, we extract object-centric representations from raw
images. In Sec. 4.3, we fine-tune πe on evaluation tasks, adding ∼5M parameters. Fine-tuning uses
the same settings as pre-training and runs on a single NVIDIA A800 GPU for 12 hours.

5 EXPERIMENTS

To evaluate the efficiency of our proposed method, we conduct 6 various real-world tasks, utilizing
only 10-20 demonstrations. Empirically, our findings indicate that our method consistently and
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Table 1: Illustrations of Evaluation Tasks. We develop a suite of 6 real-world tasks for evaluation,
including pick-and-place various types of object (e.g., rigid, soft, and precise), as well as articulated,
deformable and fluid-like manipulations.

TASK NAME TASK TYPE #DEMOS LANGUAGE DESCRIPTION
RearrangeCup Rigid Pick&Place 14 Rearrange the cup and set it on the light plate.
OrganizeToy Soft Pick&Place 20 Pick up the green toy and place it in the blue bowl.

OrganizeScissors Precise Pick&Place 15 Pick up the scissors from the pen holder into the blue basket.
OpenCabinet Articulated Manipulation 11 Open the cabinet with the black handle.
FoldClothes Deformable Manipulation 16 Fold up the sleeves of the pink clothing on the table.
PourCubes Pouring Behavior 19 Pour the blocks from the green cup into the blue box.

Figure 3: Task Visualization. We show the evaluation setup for the six evaluation tasks. The initial
and target states are shown as transparent and solid layers, respectively. The yellow arrow highlights
the desired transition.

significantly improves success rates across all tasks, achieving an overall success rate of 73.3%,
which markedly surpasses the baseline of 20.8%. We further evaluate the policies performance on
data scaling. Our results show that our method rapidly converges to a high success rate with as few
as 20 demonstrations, while baselines require more than 100 demonstrations to achieve comparable
performance. Additionally, we also demonstrate the robustness and generalization of our method
over unseen objects and backgrounds.

5.1 EXPERIMENTAL SETUP

Tasks. We develop a suite of 6 various real-world tasks to evaluate the efficacy of our proposed
method. These tasks are designed to cover a wide range of manipulation challenges, including
pick-and-place various types of objects like rigid RearrangeCup, soft OrganizeToy, and pre-
cise OrganizeScissors, as well as articulated OpenCabinet, deformable FoldClothes,
and fluid-like PourCubes manipulations. A detailed illustration of the dimensions and definitions
of each task is given in Tab. 1 while visualization is provided in Fig. 3.

Data Collection. We collect a small set of demonstrations for each evaluation task with UMI (Chi
et al., 2024), an arm-agnostic data collection system equipped with a hand-held gripper to efficiently
gather demonstrations. UMI is equipped with a wrist-mounted GoPro camera, which provides ac-
cess to the RGB image and relative end-effector 6D pose trajectory through visual SLAM. The
number of demonstrations for each evaluation task is detailed in Tab. 1. In each demonstration, the
positions of the objects and the hand-held UMI device are randomly initialized.

Baselines and Ablations. We compare our method against Octo (Team et al., 2024), VIOLA (Zhu
et al., 2023b), ACT (Zhao et al., 2023), and Diffusion Policy (Chi et al., 2023). Octo is a pre-trained
foundation VLA on the large-scale RT-X dataset (O’Neill et al., 2023), employing a diffusion-based
model to decode the action tokens. VIOLA is a widely recognized 2D object-centric transformer-
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Figure 4: Initial state distribution of policy evaluation. We show the initial objects and robot
states distribution for policy evaluation on OpenCabinet, OrganizeToy, RearrangeCup
and FoldClothes. The initial states follow the same distribution as the training episodes.

based policy learning framework that utilizes Region Proposal Network (RPN) (Zhou et al., 2022)
to extract object-centric representations. ACT and Diffusion Policy are among the most exten-
sively studied and widely applied imitation visuomotor policies. ACT models the actions using a
Variational Autoencoder (VAE), while Diffusion Policy leverages DDPM to capture more multi-
modal action distributions. For a fair comparison, we implement Diffusion Policy using the same
architecture as our base model, excluding the object-centric modules.

In our ablation study, we systematically remove individual components from our method to investi-
gate their independent contributions. We ablate the pre-training phase by training an object-centric
Diffusion Policy from scratch, denoted as “w/o pre-train”. We eliminate the object-centric represen-
tations by directly fine-tuning the pre-trained model, denoted as “w/o object-centric”. To assess the
significance of ControlNet-style fine-tuning in integrating object-centric representations into pre-
trained policies, we omit the zero-initialization of the projection layers for additional object-centric
conditions, denoted as “w/o zero-init”.

Evaluation Setup and Protocol. We deploy a Franka Emika FR3 robotic arm and a Panda gripper,
equipped with the same GoPro camera used for data collection, for inference of all policies. Task
success rate is used as the main evaluation metric, and each trial is terminated if the policy shows no
trend of success, the robot enters a potentially unsafe interaction state with the environment, or the
task is completed. In the main experiments, all tasks are evaluated in the same environment as data
collection but with randomized initial states for both the robot and objects, as shown in Fig. 4.

5.2 COMPARATIVE AND ABLATION RESULTS

For comparison and ablation studies, we evaluate each model over 20 trials per task. As illustrated
in Fig. 5, the task success rates are presented within and across all evaluation tasks, providing a
comprehensive overview of our findings.

Our method, ControlManip, achieves an impressive overall task success rate of 73.3%, signifi-
cantly outperforming the baselines. The strongest baseline, Diffusion Policy, attains only a 20.8%
success rate and struggles to precisely manipulate target objects or learn complex behaviors such
as pouring. Octo and ACT only achieve 2/20 and 6/20 success on the OpenCabinet task, with
no successes in other tasks, resulting in the overall success rate of just 1.6% and 5.0%. Despite
Octo’s advantage from large-scale pre-training, its regression-based backbone fails to model action
distributions with multiple distinct modes. While ACT leverages a VAE to represent action diver-
sity, it is hindered by posterior collapse, especially in the low-data regime. VIOLA, reliant on static
workspace cameras for object-centric representations (unavailable in our setup), shows no success-
ful cases. Its object proposal mechanism degrades severely with wrist-camera inputs, highlighting
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Figure 5: Main Comparison and Ablation Study. All policies are trained or fine-tuned from a
shared, limited demonstration dataset for each task. *Octo, ACT, and VIOLA are omitted due to
very low success rates, with overall success rates of 1.6%, 5.0%, and 0.0%, respectively.

Figure 6: Jitter Problem Visualization. End-
effector trajectories of our method vs. “w/o
pre-train” on RearrangeCup. The ablation
shows significant jitter across all action dimen-
sions compared to our full model.

Figure 7: Performance on Data Scaling. In the
OrganizeToy task, ControlManip achieves a
high success rate of 80% with 20 demonstra-
tions, while the best baseline requires 100 to
reach a comparable performance.

sensitivity to viewpoint. In contrast, ControlManip demonstrates robust and efficient learning across
various real-world tasks even when only limited demonstrations are available.

Ablation studies reveal the critical role of key components of ControlManip. Removing the pre-
training phase and directly incorporating object-centric representations (“w/o pre-train”) results in
severe jitter problems when policies deploy to a real robot, as shown in Fig. 6. This instability
persists across the RearrangeCup, OrganizeToy, OpenCabinet, and PourCubes tasks,
significantly reducing success rates — even falling below the Diffusion Policy baseline that relies
solely on raw image observations. We hypothesize that the object-centric features may provide de-
ceptive low-loss pathways during the early training stage, incentivizing the policy to bypass learning
from the more stable visual features. Eliminating object-centric representations during fine-tuning
(“w/o object-centric”) provides only a marginal 5.0% improvement over training Diffusion Policy
from scratch, highlighting the importance of structured representations. Finally, removing zero-
initialization for additional object-centric conditions (“w/o zero-init”) causes a drastic 50% drop in
success rate, emphasizing the role of proper initialization in stabilizing training and improving task
performance. Notably, our complete methodology degenerates to the Diffusion Policy baseline when
stripping all three components (pre-training, object-centric representations, and zero-initialization).

5.3 PERFORMANCE ON DATA SCALING

We evaluate ControlManip’s data efficiency through controlled scaling experiments on the
OrganizeToy task, benchmarking against established baseline methods. Each approach is tested
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across demonstration set sizes of 10, 20, 50, and 100 episodes with 25 trials per condition, with
results shown in Fig. 7. While all methods improve as the amount of training data increases, Con-
trolManip achieves a high success rate of 80% with only 20 demonstrations — a level unattained
by baselines even at 100 demonstrations. This highlights the efficiency of ControlManip in learning
from limited data.

5.4 GENERALIZATION ON OBJECT AND BACKGROUND

Figure 8: Generalization over object and
background appearance changes.

To evaluate generalization and robustness, we tested
ControlManip on the RearrangeCup task across
different objects and backgrounds. After training
with 14 demonstrations on a single cup and back-
ground, ControlManip achieved a 46.7% success
rate (14/30 trials) on three unseen cups and a novel
background, requiring only a cup prompt for object
mask extraction. While this performance is lower
than the 75% in-domain success rate, it demonstrates
the potential of ControlManip to adapt to dynamic
and diverse environments, highlighting its capability
to generalize beyond the training domain.

6 LIMITATIONS AND FUTURE WORKS

While ControlManip demonstrates its efficacy and efficiency across a wide range of manipulation
tasks, a few limitations remain, presenting opportunities for future improvements. First, generating
object prompts still requires expert human knowledge, as users must manually specify prompts for
segmentation. Although this process can be completed with a few simple mouse clicks, it introduces
human bias and limits scalability. A promising direction for future work is automating this process
through foundational Vision-Language Models (VLMs), allowing segmentation models like SAM2
to generate reasonable object prompts autonomously.

Second, our evaluation tasks are currently constrained to single-arm, short-horizon scenarios, with
experiments conducted primarily in controlled laboratory environments. While these settings pro-
vide a reliable testbed, they do not fully capture the challenges of real-world deployment. Address-
ing bi-manual, long-horizon, and in-the-wild manipulation tasks is crucial for improving the gen-
eralization of ControlManip. Nevertheless, ControlManip is a general framework, and future work
could explore larger pre-trained bi-manual foundation policies and more diverse, efficient object-
centric representations to tackle these challenges.

7 CONCLUSION

This work introduces ControlManip, a framework that bridges large-scale visuomotor policy pre-
training with object-centric representations to enable efficient few-shot adaptation for robotic manip-
ulation. By integrating a ControlNet-style architecture, ControlManip injects task-specific object-
centric conditions into a pre-trained Diffusion Transformer policy through zero-initialized key-value
projection layers. This design preserves the rich prior knowledge of the base policy while pro-
gressively grounding it in structured object properties, achieving stable fine-tuning with minimal
demonstrations. Across six diverse real-world tasks—ranging from rigid object pick-and-place to
deformable cloth folding and fluid-like pouring—ControlManip achieves a 73.3% success rate with
only 10–20 demonstrations, outperforming the 20.8% baseline by approximately 252%.

By reducing demonstration requirements to practical levels, ControlManip lowers barriers to deploy-
ing robots in diverse scenarios. Overall, our results establish a promising direction for combining
large-scale visuomotor priors with structured inputs, setting the stage for scalable few-shot learning
and accelerating real-world robot adoption.
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