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Abstract

Discriminative classifiers have become a foundational tool in deep learning for medical
imaging, excelling at learning separable features of complex data distributions. However,
these models often need careful design, augmentation, and training techniques to ensure
safe and reliable deployment. Recently, diffusion models have become synonymous with
generative modeling in 2D. These models showcase robustness across a range of tasks
including natural image classification, where classification is performed by comparing re-
construction errors across images generated for each possible conditioning input. This
work presents the first exploration of the potential of class conditional diffusion models
for 2D medical image classification. First, we develop a novel majority voting scheme
shown to improve the performance of medical diffusion classifiers. Next, extensive experi-
ments on the CheXpert and ISIC Melanoma skin cancer datasets demonstrate that foun-
dation and trained-from-scratch diffusion models achieve competitive performance against
SOTA discriminative classifiers without the need for explicit supervision. In addition,
we show that diffusion classifiers are intrinsically explainable, and can be used to quan-
tify the uncertainty of their predictions, increasing their trustworthiness and reliability
in safety-critical, clinical contexts. Further information is available on our project page:
https://faverogian.github.io/med-diffusion-classifier.github.io/.
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1. Introduction

Deep learning applications in medicine have received significant attention in recent years
due to their potential to revolutionize healthcare outcomes. For instance, the ability to
accurately classify disease pathology from medical images using discriminative classifiers
(e.g., ResNet (He et al., 2015), ViT (Dosovitskiy et al., 2020)) is central to advancing
early diagnosis, personalized treatment, and overall patient care. In the ideal scenario, dis-
criminative classifiers are robust and generalizable; however, state-of-the-art performance
often relies heavily on data augmentation and hyperparameter tuning, which can be time-
and computation-expensive, and may still be prone to overfitting and/or learning short-
cuts (Geirhos et al., 2020). Even with strong classification performance, models must be
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explainable and provide uncertainty estimates to ensure reliable and trustworthy predic-
tions for safe clinical deployment. Current explainability and uncertainty methods depend
largely on post-hoc analysis or model modifications. For example, explainability often relies
on gradient-based analysis after training (Selvaraju et al., 2020) or counterfactual gener-
ation with a separate model (Sun et al., 2023), whereas uncertainty methods range from
simple model modifications, like Monte Carlo (MC) dropout, to expensive ensembling meth-
ods. Thus, there remains limitations to the safe use of discriminative classifiers in medical
imaging, particularly due to the lack of built-in explainability and uncertainty analysis.

Diffusion models (Ho et al., 2020) make up one class of generative models that has
shown remarkable flexibility and robustness across various deep learning tasks, achieving
state-of-the-art performance in image (Dhariwal and Nichol, 2021), video (Ho et al., 2022),
and audio (Kong et al., 2020) generation tasks. Recently, generative models have been used
directly for image classification (Li et al., 2023; Clark and Jaini, 2023; Krojer et al., 2023;
Chen et al., 2024) in natural imaging, showing that large pre-trained models like Stable
Diffusion (Rombach et al., 2022) can be used as classifiers that are competitive with state-
of-the-art supervised discriminative classifiers (He et al., 2015; Dosovitskiy et al., 2020).
Diffusion models are increasingly being used in the medical domain for data augmenta-
tion (Guo et al., 2024), segmentation (Wu et al., 2023a,b; Amit et al., 2023), anomaly
detection (Wolleb et al., 2022), counterfactual explanation (Sanchez et al., 2022; Bedel and
Çukur, 2023; Weng et al., 2024; Pegios et al., 2024), and probabilistic classification (Shen
et al., 2024). However, despite many conditional diffusion models developed for medical
image analysis, they have yet to be explored as classifiers that can provide explainability
and uncertainty-estimation for free.

In this work, we present a comprehensive evaluation of how conditional diffusion models
can be re-purposed and leveraged for image classification, explainability, and uncertainty
estimation in the medical domain. First, we propose a novel majority voting-based method
that improves the performance of diffusion classifiers in medical imaging. We then demon-
strate that classifiers derived from foundation and trained-from-scratch diffusion models
perform competitively with state-of-the-art medical image discriminative classifiers through
extensive experiments on the publicly available CheXpert (Irvin et al., 2019) and ISIC
Melanoma skin cancer (Rotemberg et al., 2020) datasets, despite not being trained for clas-
sification. Next, we show that diffusion classifiers offer explainability (via counterfactual
generation) and uncertainty quantification (via entropy) out-of-the-box. We validate the
uncertainty by showing that when the model is confident, it is correct, and vice versa. This
is shown as model accuracy drastically improves as its uncertainty threshold increases. For
example, Stable Diffusion reaches classification accuracies of 100% and 95% on ISIC and
CheXpert, respectively, with only 45% of its most uncertain samples filtered out.

2. Methodology

In this work, we present diffusion classifiers for medical imaging classification tasks. We
first present an overview of diffusion models in Section 2.1. Next, in Section 2.2, we define
conditional diffusion models and demonstrate how they can perform classification. Section
2.3 introduces all extensions to the diffusion classifier, including: our novel algorithm for im-
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proving classification performance through majority voting, as well as the ability to perform
counterfactual explainability and uncertainty quantification without any modifications.

2.1. Diffusion Models

Diffusion models (DM) are likelihood-based models that learn to approximate a data dis-
tribution through a process of iterative noising and denoising involving two key phases: a
fixed forward process and a learned backward process. In the forward process, Gaussian
noise ϵ ∼ N (0, I) is gradually added to data in a controlled manner, destroying its structure
until it is pure Gaussian noise.

This process, which is done on a sample over time, can be expressed by its marginal for
all t on a continuous interval, [0, 1]:

q(zt|x) = αλx+ σλϵ where ϵ ∼ N (0, I). (1)

Following the variational diffusion model formulation (Kingma et al., 2023), the forward
process is defined to be variance-preserving, imposing the constraint α2

λ = sigmoid(λ), σ2
λ =

sigmoid(−λ), where λ is the log-SNR given by λ = fλ(t) and fλ(t) is the noise schedule (see
Appendix A.1). The noise schedule is a monotonically decreasing and invertible function
that connects the time variable, t, with the log-SNR, λ. During training, t is sampled from
a continuous, uniform distribution, U(0, 1), which is then used to compute λ. The resulting
distribution over noise levels can be defined as p(λ) = −1/f ′

λ(t) (Kingma and Gao, 2023).

In the backward process, a neural network attempts to learn how to remove the added
noise and recover an approximate sample from the original data distribution. Kingma et
al. show that the variational lower bound objective (VLB) function for training diffusion
models can be derived in continuous time with respect to its log-SNR, λ, noise sampling
distribution, p(λ) and weighting function, w(λ) (Kingma et al., 2023). This VLB is:

log p(x) = Lx + LT − Eϵ∼N (0,I),λ∼p(λ)

[
w(λ)

p(λ)
||x− x̂θ(zλ;λ)||22

]
. (2)

Where Lx = − log p(x|z0) ≈ 0 for discrete x and LT = DKL(q(zT |x)||p(zT )) ≈ 0 for a
well-defined forward process. We use a min-SNR weighting function (Hang et al., 2024), a
shifted-cosine noise schedule (Hoogeboom et al., 2023), and v-prediction parameterization
for greater stability during training and sampling (Salimans and Ho, 2022).

2.2. Conditional Diffusion Models as Classifiers

Conditional diffusion models incorporate text or categorical inputs, such that the prediction
becomes x̂θ(zλ, c) where c is a conditioning embedding. In this paper, we implement con-
ditioning through cross-attention in a UNet-based diffusion model (Rombach et al., 2022),
and adaptive layer normalization in DiTs (Peebles and Xie, 2023).

Recent works (Li et al., 2023; Clark and Jaini, 2023; Krojer et al., 2023; Chen et al., 2024)
have explored using conditional diffusion models as discriminative classifiers. As shown
in Figure 1, classification is performed by comparing reconstruction errors across images
generated for each possible conditioning input. Specifically, using the labels, C = {ci}, and
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Bayes’ theorem on model predictions, p(x|ci), we can derive p(ci|x):

p(ci|x) ≈
exp{Eϵ∼N (0,I),λ∼p(λ)

[
||x− x̂θ(zλ, ci)||22

]
}

exp{
∑

j Eϵ∼N (0,I),λ∼p(λ)

[
||x− x̂θ(zλ, cj)||22

]
}
. (3)

A more complete derivation is found in Appendix A.2. A Monte Carlo estimation of the
expectation for an arbitrary class, cj , can be computed by sampling N noise level pairs,
(ϵ, λ) and averaging the reconstruction error:

1

N

N∑
k=1

[
||x− x̂θ(αλk

x+ σλk
ϵk, cj)||22

]
. (4)

For each (ϵ, λ) pair, ϵ is sampled from an isotropic Gaussian distribution and λ is sampled
from p(λ) (practically speaking, t ∼ U(0, 1), then λ = fλ(t)). Eq. (4) shows that classifying
one sample requires N many steps per condition, where the Monte Carlo estimate becomes
more accurate as the number of steps increases. To reduce the variance of prediction for
a given image, x, an identical set of (ϵk, λk) ∈ S{(ϵk, λk)}Nk=1 is used for every condition,
which increases the accuracy of the prediction p(C|x). In practice, Eq. (3) is equivalent to
choosing the class with the minimum average reconstruction error.

Sick, 𝑐𝑗 = 1

Conditional Diffusion 
Model, ෝ𝒙𝜃(𝒛𝜆, 𝑐𝑗)

Sick | Healthy

Healthy, 𝑐𝑗 = 0

𝜖 ∼ 𝑁(0, I)

𝜆 ∼ 𝑝 𝜆

Sample data, 𝒙

𝒛𝜆 = 𝛼𝜆𝒙 + 𝜎𝜆𝜖

Reconstruction Error

Class Condition, 𝒄

argmin
𝑗

𝒙 − ෝ𝒙𝜽 𝒛𝜆, 𝑐𝑗 2

2

Repeat 𝑁 times

𝑐 = Sick

Figure 1: Diffusion classifiers are conditional diffusion models repurposed as classifiers.
First, a sample, x, is noised at a randomly chosen noise level, (ϵk, λk). The noised
sample is then denoised by the diffusion network with each possible conditioning
input, cj . The conditioning variable, cj , that results in the denoised output,
x̂θ(zλ, cj), with the smallest reconstruction error over many noise levels is selected
as the class. This process is repeated for a set of N noise levels (ϵ, λ) with
the reconstruction errors aggregated (e.g., average/majority voting) for a more
accurate prediction.
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2.3. Extensions on Diffusion Classifiers

Majority Voting: In this work, we introduce a novel majority-vote-based algorithm for
determining the predicted class. Here, we tally votes across all (ϵ, λ) pairs by identifying
the class with the lowest error as the prediction for that pairing, and take the final predicted
class as the one with the majority of individual votes (see Appendix A.3 for the algorithm’s
pseudocode). We posit that averaging reconstruction error over all noise levels inherently
weights higher values of λ more, which is not always beneficial (i.e., reconstructions at
higher values of λ are naturally much harder and thus have greater error, introducing more
noise into the average reconstruction error).

Intrinsic Explainability: Diffusion classifiers use Classifier-Free Guidance (CFG) (Ho
and Salimans, 2022) to understand which features are most influential in generating certain
classes. CFG is a common approach in which a conditional diffusion model is simultaneously
trained for an unconditional task by randomly dropping out c (∼10% of the time). In doing
so, sampling can be guided towards an intended class with a guidance-scale, w:

x̃θ(zλ, c) = (1 + w)x̂θ(zλ, c)− wx̂θ(zλ,∅). (5)

At inference, the model permits explainability for free, through the conditional generation
of the factual and counterfactual images of the input image. First, noise is added to obscure
the input images, while preserving enough image structure to make reconstruction possible.
Then, by varying the condition at inference, the model can shift its generation process to
any possible conditional class. These generated images represent the reconstruction of the
image provided by the true class, and any counterfactual image(s), where difference maps
can be created to highlight class-specific regions modified by the network.

Uncertainty Quantification: Diffusion classifiers are also able to produce uncertainty
estimates without any additional modifications to the model. The set of N (ϵ, λ) pairs
required for accurate classification results (Eq. (4)) results in numerous predictions gener-
ated for each sample and thus inherently resembles the uncertainty estimation strategy via
MC dropout or ensemble methods. As explained in Section 2.2, to achieve accurate clas-
sification, a single sample requires N steps (repeated per condition) where reconstruction
errors for that sample are calculated at different (ϵ, λ) noise levels (Eq. (4)). To quantify
the uncertainty of the overall predicted class, we construct a Bernoulli distribution from
each of the N predictions. This creates a probability density from which uncertainty can
be computed.

3. Experiments

We first evaluate the performance of the average reconstruction error objective (Section 2.2)
against a majority voting alternative, demonstrating that the latter yields superior results in
our tasks. We then compare the classification performance of diffusion classifiers with state-
of-the-art discriminative baselines, and furthermore, show that conditional diffusion models
are interpretable out-of-the-box, and capable of producing uncertainty quantifications.
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Method CheXpert ISIC

Majority Average Majority Average

DiT-B/4 86.8 ± 0.38 85.3 ± 0.40 90.5 ± 0.08 90.4 ± 0.29

UNet 84.6 ± 0.21 83.4 ± 0.14 91.2 ± 0.08 84.3 ± 0.75

Stable Diffusion 84.7 ± 0.34 79.9 ± 0.29 94.7 ± 0.14 94.5 ± 0.33

Table 1: Majority voting outperforms averaging in achieving highest classification
accuracy on the CheXpert and ISIC Melanoma test sets (using 501 steps). Model
variance is calculated at inference based on five random seeds.

3.1. Datasets

ISIC Melanoma: A publicly available dataset (Rotemberg et al., 2020) containing over
35,000 images of skin lesions and corresponding labels for the presence of melanoma. We
balance the dataset by class for our experiments, resulting in 10,212 total images. The data
are randomly split into an 80/10/10 train/validation/test set.

CheXpert: A publicly available dataset (Irvin et al., 2019) containing over 200,000 chest
X-ray images with binary labels for 14 diseases and the presence of support devices. For
our experiments, we use “Pleural Effusion” and “No Findings” as mutually exclusive labels
and filter for frontal views of the chest, resulting in a balanced dataset of 20,404 samples.
The data are randomly split into an 80/10/10 train/validation/test set.

3.2. Model Architectures

Baselines: To establish a comparative baseline, we evaluate the performance of both
convolutional and transformer-based architectures. We use torchvision implementations
of ResNet-18 and ResNet-50 (He et al., 2015), and timm implementations of ViT-S/16 and
ViT-B/16 (Dosovitskiy et al., 2020), EfficientNet-B0 and EfficientNet-B4 (Tan and Le,
2019), and Swin-B Transformer (Liu et al., 2021).

Conditional Diffusion Models: We implement a UNet backbone based on the ADM
architecture (Dhariwal and Nichol, 2021) at 2562 resolution, incorporating improvements
from simple diffusion (Hoogeboom et al., 2023), such as scaling the number of ResBlocks
at lower resolutions to save memory at higher resolutions. For transformer-based diffusion
models, we include the DiT-B/4 variant from (Peebles and Xie, 2023). Unless otherwise
noted, all images are compressed with a single-stage discrete wavelet transform (DWT)
using a Haar wavelet to improve computational efficiency.

Foundation Models: Ideally, foundation models like Stable Diffusion can be repurposed
as zero-shot classifiers. However, we find that such models are not trained on enough med-
ical data to perform adequately by default. Thus, to ensure a fair comparison, we fine-tune
Stable Diffusion v2-base (Rombach et al., 2022) on an amalgamation of our CheXpert and
ISIC Melanoma training splits. Given that the model is designed for text-to-image genera-
tion, we replace labels in the datasets with text prompts, e.g., “a benign skin lesion”, or, “a
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frontal chest xray of a sick patient with pleural effusion”. More details on all architectures
can be found in Appendices B and C.

4. Results

4.1. Ablating on the Classification Algorithm

We propose a simple but effective majority voting scheme that, instead of accumulating
errors at each timestep, tallies the amount of times a reconstruction error was smaller for
each test condition and then chooses the class with the most votes. Table 1 shows that the
highest classification accuracy is consistently achieved with majority voting. This result is
intuitive: at greater values of N there are more reconstructions attempted from high noise
disturbance which can introduce large sources of variance in the average error. Figure 2(a)
shows an ablation study of accuracy against classification steps on the CheXpert and ISIC
validation sets when a majority vote algorithm is used. In general, more classification steps
lead to better performance, though with diminishing returns. Thus, we use majority voting
with 501 steps for all diffusion-based classification results in this paper.

Method CheXpert ISIC

Accuracy F1 Accuracy F1

C
N
N

ResNet-18 90.9 0.910 94.4 0.943

ResNet-50 91.6 0.914 93.6 0.935

EfficientNet-B0 90.5 0.907 93.1 0.930

EfficientNet-B4 90.4 0.904 93.2 0.930

T
F

ViT-S/16 86.9 0.869 95.0 0.949

ViT-B/16 85.1 0.857 94.8 0.948

Swin-B 86.1 0.863 95.9 0.958

D
M

DiT-B/4 86.1 0.860 90.4 0.901

UNet 84.5 0.854 91.8 0.919

Stable Diffusion∗ 85.0 0.839 94.8 0.946

Stable Diffusion† 48.8 0.656 39.7 0.521

Table 2: Diffusion classifiers are competitive with discriminative baselines. ∗ and †

denote fine-tuned and zero-shot versions, respectively. Results are reported on the
CheXpert and ISIC Melanoma test sets, with 501 classification steps and majority
voting being used for the diffusion classifiers (DM).

4.2. Classification Performance on Benchmark Datasets

Table 2 shows the classification accuracy and F1-score of each model on the CheXpert and
ISIC Melanoma test sets. Note that the models are grouped by architecture: convolution-
based (CNN), transformer-based (TF), and diffusion-based (DM). These results demon-
strate that the diffusion classifier achieves competitive performance with discriminative

7



Favero Saremi Kaczmarek Nichyporuk Arbel

baselines. However, unlike other classifiers, the diffusion classifier requires minimal hyper-
parameter tuning, no data augmentations, and only a simple and stable MSE loss function
during training. A comparison of optimization settings is found in Appendix B.
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Figure 2: (a) Ablation on corresponding validation sets demonstrates that higher perfor-
mance comes with more classification steps. (b) Diffusion classifiers inherently
produce uncertainty estimates. Filtering uncertain predictions improves perfor-
mance on the remaining data.

4.3. Intrinsic Explainability

A key advantage of diffusion classifiers lies in their intrinsic interpretability, which positions
diffusion classifiers as not only effective but also transparent. Importantly, diffusion classi-
fiers are able to produce counterfactual explanations, as opposed to other interpretability
methods that simply highlight regions of interest. This can be seen in Figure 3: On the
left example (skin lesion), the counterfactual of a malignant lesion (melanoma) has changed
colour and intensity to become healthy. In the right example (chest X-ray), the counter-
factual image of a sick patient (pleural effusion) shows decreased disease pathology in the
left and right lungs. The natural interpretability of diffusion classifiers provides both trans-
parency on how the model is learning (thus allowing the identification of shortcut learning),
and specific class information which improves understanding of the disease. In addition to
providing disease explainability, the difference maps also reveal how the model makes its
decision: the condition with the least reconstruction error is selected as the predicted class.

4.4. Uncertainty Quantification

The uncertainty quantification of diffusion classifiers is demonstrated in Figure 2(b). In
addition to competitive classification performance and intrinsic explainability, uncertainty
quantifications can be estimated without any model modifications. In medical imaging,
uncertainty measures are validated by confirming that when the model is confident, the
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ෝ𝒙𝜃(𝒛𝜆, 𝒄 = Sick)

ෝ𝒙𝜃(𝒛𝜆, 𝒄 = Healthy)

ෝ𝒙𝜃(𝒛𝜆, 𝒄 = Sick)

ෝ𝒙𝜃(𝒛𝜆, 𝒄 = Healthy)

𝒄 = Sick𝒄 = Sick

Figure 3: Diffusion classifiers are naturally explainable and highlight why they make
classification decisions using classifier-free guided sampling. Difference maps show
conditional areas of interest (pathology added/removed) during reconstruction.

prediction is correct, and when it is incorrect, it is uncertain (Nair et al., 2020). In terms of
clinical decision making, quantifying this behaviour supports the idea that high-confidence
predictions from the model are more trustworthy, while uncertain cases can be flagged for
further testing or expert review. We therefore validate the diffusion model’s uncertainty
quantification by filtering out the most uncertain predictions and examining the change in
performance on the remaining samples. The models show that accuracy increases when the
most uncertain predictions are filtered out for CheXpert (- -) and ISIC (-). This confirms the
effectiveness of their uncertainty measure and potential value across medical applications.
We show that this same phenomenon holds with the trained DiT and pre-trained Stable
Diffusion classifiers in Appendix D.

5. Conclusion

In this paper, we provide a comprehensive examination of the benefits of diffusion classifiers
in medical imaging. First, we introduce a novel majority voting method to improve the
overall performance of diffusion classifiers. We next demonstrate that diffusion classifiers
are able to achieve comparable performance to state-of-the-art discriminative classifiers, in
addition to providing intrinsic counterfactual explainability and uncertainty quantification.

Future work can extend our study to assess the robustness of diffusion classifiers in med-
ical imaging, particularly under domain shifts or variations in image acquisition protocols.
In addition, diffusion classifiers should be evaluated on more complex medical image classi-
fication scenarios, including 3D image classification and multi-class classification. Further,
given that we present a novel uncertainty estimation, an in-depth analysis against other
uncertainty methods using common metrics (i.e., reliability plots, failure analysis) should
be performed.

Due to the nature of classifying images by accumulating a series of predictions, condi-
tional diffusion models are limited by inference speed and computational requirements. To
provide a reference, classifying a single batch of 128 images (2562) takes 3:48 minutes with
the UNet diffusion classifier on an A100 GPU. We provide a more thorough breakdown of
computational requirements in Appendix F.
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Appendix A. Additional Background on Diffusion Classifiers

A.1. Variational Diffusion Model Formulation

In the variational diffusion model formulation (Kingma et al., 2023), a noised image, zt, can
be generated from an uncorrupted image, x, at any point in a forward process marked by
a continuous valued noise level, t ∼ [0, 1]:

zt = αλx+ σλϵ where ϵ ∼ N (0, 1)

When noise is added to x, we are effectively decreasing its signal-to-noise ratio (and log-SNR,
λ). There is a mapping that exists between the noise level, t, and the log-SNR, λ, called
the noise schedule, fλ(t). For example, with a shifted-cosine noise schedule, this mapping
is λ = fλ(t) = −2 log tan(πt/2) + 2 log( 64

256). Therefore, when diffusing an image, we first
sample t ∼ U(0, 1) and then use this value and the noise schedule to calculate λ. There are
many different noise schedules that differ in the way they modulate the log-SNR at various
values along the range [0, 1], though they must be strictly monotonically decreasing.

To corrupt the image, we ultimately need the values of αλ and σλ, which we can derive
with two additional pieces of information. First, we set the log-SNR as λ = logα2

λ/σ
2
λ.

Additionally, we assume that the forward process itself is variance preserving, which implies
α2
λ + σ2

λ = 1. Armed with these two relations, we can derive α2
λ as:

λ = logα2
λ/σ

2
λ

eλ = α2
λ/(1− α2

λ)

α2
λ = eλ − eλα2

λ

α2
λ(1 + eλ) = eλ

α2
λ = sigmoid(λ)

And similarly, we can derive σ2
λ = sigmoid(−λ).

A.2. Derivation of Diffusion Classifier from Bayes’ Rule

We provide a derivation of the diffusion classifier objective.

pθ(ci|x) =
pθ(x, ci)∑
cj
pθ(x, cj)

=
pθ(x|ci)pθ(ci)∑
cj
pθ(x|cj)pθ(cj)

.

We assume the case in which we have no prior information about the relative frequencies
of different classes and make the simplifying assumption that all classes are equally likely.
Assuming a uniform prior over the labels, i.e., pθ(ci) = pθ(cj) for all i, j, the prior cancels
out in the fraction:

pθ(ci|x) =
pθ(x|ci)∑
cj
pθ(x|cj)

=
elog pθ(x|ci)∑
cj
elog pθ(x|cj)

.
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Using the variational diffusion model formulation, we approximate the likelihood as:

log pθ(x|ci) ≈ Eϵ∼N (0,I),λ∼p(λ)[∥x− x̂θ(zλ, ci)∥22].

Thus, the posterior probability simplifies to:

pθ(ci|x) =
exp{Eϵ∼N (0,I),λ∼p(λ)[∥x− x̂θ(zλ, ci)∥22]}∑
cj
exp{Eϵ∼N (0,I),λ∼p(λ)[∥x− x̂θ(zλ, cj)∥22]}

.

A.3. Majority Voting Algorithm

We provide the pseudocode for the diffusion classification algorithm used in the experiments.
We opt for a majority voting scheme as opposed to the average reconstruction error approach
outlined by (Li et al., 2023).

1 def classify(x, num_classes , classification_steps):

2 errors = fill((x.shape [0], num_classes , classification_steps), float(’

inf’))

3 for step in classification_steps:

4 t = rand(0, 1)

5 z_t , eps_t = diffuse(x, t) # add noise to image at t

6 # Get the errors for each class

7 for c in range(num_classes):

8 pred = model(z_t , t, c) # get noise prediction for given class

9 error = mse(pred , eps_t)

10 errors[:, c, step] = error # store the error

11

12 # Find the class with the lowest error for each step

13 end_of_stage_votes = errors[:, :, :classification_steps ]. argmin(dim=1)

14

15 # Count the votes for each class across all steps

16 votes = zeros(x.shape[0], num_classes)

17 for b in range(x.shape [0]):

18 for step in range(classification_steps):

19 class_with_lowest_error = end_of_stage_votes[b, step]

20 votes[b, class_with_lowest_error] += 1

21

22 final_classes = votes.argmax(dim=1)

23

24 return final_classes

Appendix B. Experimental Details

B.1. Diffusion Classifier Optimization Settings

We hold our optimization settings constant across all diffusion models trained for our ex-
periments. A detailed summary is found in Table 3.
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Setting Diffusion Model (3×256×256)

Batch Size 128
Optimizer Adam
Learning Rate 1× 10−4

Learning Rate Warmup Steps 250
Gradient Clipping 1.0
EMA Beta 0.999
EMA Warmup Steps 50
EMA Update Frequency 5

Table 3: Optimization settings for our conditional diffusion models

B.2. Discriminative Baseline Optimization Settings

We use official implementations of ResNet-based (torchvision), EfficientNet- and ViT-
based (timm) classifiers in our experiments. A detailed summary of optimization settings
for our discriminative baselines is found in Table 4.

Setting RN/EN (ISIC) RN/EN (CheXpert) ViT/Swin

Batch Size 64 64 64
Optimizer AdamW AdamW Adam
Learning Rate 1× 10−4 1× 10−4 1× 10−5

Weight Decay 1× 10−5 1× 10−3 —

Data Augmentation Notes
Random Rotation Degree range: (-30, 30)
Random Horizontal Flip Probability: 0.5
Random Vertical Flip Probability: 0.5
Random Gaussian Blur Kernel size: 5, Sigma range: (0.1, 2)

Table 4: Optimization settings for discriminative baselines.

B.3. UNet Settings

The ADM architecture (Dhariwal and Nichol, 2021) is used as a starting point, with mi-
nor alterations based on capacity requirements of each experiment. Class conditions are
integrated into the model using cross-attention with a trainable module nn.encoder. A
detailed summary is found in Table 5.

B.4. DiT Settings

The DiT-B/4 architecture is followed as presented in (Peebles and Xie, 2023). A detailed
summary is found in Table 6.
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Setting UNet Model (3×256×256)

Prediction Parameterization velocity
Noise Schedule Shifted Cosine, Base-64
Wavelet Transform Single-stage Haar Wavelet
Sample Size 128
Channels 12
ResNet Layers per Block 2
Base Channels 128
Channel Multiplier (1, 1, 2, 4, 8)
Cross Attention Resolution 16
Encoder Type nn
Cross Attention Dimension 512

Table 5: Settings for UNet model.

Setting DiT Model (3×256×256)

Prediction Parameterization velocity
Noise Schedule Shifted Cosine, Base-64
Wavelet Transform Single-stage Haar Wavelet
Sample Size 128
Channels 12
Number of Attention Heads 12
Attention Head Dimension 64
Number of Layers 12
Patch Size 4

Table 6: Settings for DiT model.
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Appendix C. Stable Diffusion v2 Fine-Tuning

We fine-tune Stable Diffusion v2-base (Rombach et al., 2022) using the Hugging Face

training pipeline for a total of 15k iterations. We construct the fine-tuning dataset by
amalgamating our CheXpert and ISIC Melanoma training splits. Given that the model is
designed for text-to-image generation, we replace labels in the datasets with text prompts,
ie. “a benign skin lesion”, or, “a frontal chest xray of a sick patient with pleural effusion”.
Fine-tuning dramatically increased Stable Diffusion’s domain knowledge and subsequent
classification performance on our benchmark datasets.

(a) No fine-tuning (b) After fine-tuning for 15k steps

Figure 4: Task-related generation from the Stable Diffusion v2-base model before (left) and
after (right) fine-tuning. Training for only a few thousand iterations dramatically
increased in-distribution inference and classification performance.

Appendix D. Uncertainty Quantification

We validate our model uncertainty through measuring performance as uncertain predic-
tions are filtered out. For both the pre-trained Stable Diffusion classifier and our diffusion
classifiers trained from scratch, accuracy increases for both datasets as the most uncertain
predictions are filtered out. This indicates that the model is most uncertain about its in-
correct predictions, which is highly valuable across medical applications. See Figure 5 for a
breakdown of this quantification in boxplot form.

Appendix E. More Explainability Results

More explainability results can be found in Figure 6, and Figure 7. Input sick images have
been altered to healthy class by adding noise to the input image and denoising with the
healthy class. For CheXpert t=0.5 and for ISIC t=0.3 are used. CFG scale is 7.5.
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(a) Uncertainty estimates, CheXpert
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(b) Uncertainty estimates, ISIC

Figure 5: We find that all of our diffusion classifier models are more confident about their
correct predictions (TP, TN) than their incorrect predictions (FP, FN).
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Original Sick Input Altered Image With Healthy Class Difference

(a)

Original Sick Input Altered Image With Healthy Class Difference

(b)

Original Sick Input Altered Image With Healthy Class Difference

(c)

Figure 6: More explainability results for CheXpert by converting input sick images to
healthy images. t=0.5 and CFG=7.5 are used for generating these images.
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Original Sick Input Altered Image With Healthy Class Difference

(a)

Original Sick Input Altered Image With Healthy Class Difference

(b)

Original Sick Input Altered Image With Healthy Class Difference

(c)

Figure 7: More explainability results for ISIC by converting input sick images to healthy
images. t=0.3 and CFG=7.5 are used for generating these images.
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Appendix F. Computational Resources

All models were trained or fine-tuned a compute cluster of 80 GB A100 GPUs for all
experiments in this paper. For inference, a single 80 GB A100 GPU is used. We provide a
full breakdown of parameter count and time to classify a batch of 128 images in Table 7.

Model Parameters Time per Batch (s)

UNet 276M 228

DiT-B/4 148M 195

SD v2-base 866M 269

ResNet-18 12M 0.011

ResNet-50 26M 0.031

EfficientNet-B0 5M 0.020

EfficientNet-B4 19M 0.050

ViT-B/16 87M 0.036

ViT-S/16 22M 0.016

Swin-B 88M 0.090

Table 7: Comparison of computational cost and inference speed across different models in
our experiments. Parameter count is provided in millions (M) and inference time
is provided in seconds (s) for a single batch of size 128 images.
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