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ABSTRACT

Due to rare occurrence of anomalous events, anomaly detection is often seen as
one-class classification (OCC) problem. In this setting, an autoencoder (AE) is
typically trained to reconstruct using only normal data in order to learn normalcy
representations. It is expected that, at test time, the AE can well reconstruct nor-
mal data while poorly reconstructing anomalous data. However, anomalous data
is often well reconstructed as well. This phenomenon can be attributed to the fact
that when training AE with only normal data, the boundary between normal and
abnormal data is unknown, consequently resulting in a boundary that includes the
abnormal data as well. To alleviate this problem, we utilize pseudo anomalies to
limit the reconstruction capability of an AE. Without imposing strong inductive
bias, pseudo anomalies are generated by adding noise to the normal data. More-
over, to improve the quality of pseudo anomalies, we propose a learning mech-
anism to generate noise by exploiting the aforementioned weakness of AE, i.e.,
reconstructing anomalies too well. Evaluations on Ped2, Avenue, ShanghaiTech,
and CIFAR-10 datasets demonstrate the effectiveness of our approach in improv-
ing the discriminative capability of AEs for anomaly detection.

1 INTRODUCTION

Anomaly detection is one of the important components in automatic surveillance systems. Recently,
it has attracted significant attention from various researchers (Liu et al., 2018a; Lee et al., 2019;
Ionescu et al., 2019a; Zaheer et al., 2020a; Gong et al., 2019; Park et al., 2020; Astrid et al., 2021a;
Sultani et al., 2018; Pourreza et al., 2021; Georgescu et al., 2021; Ji et al., 2020). By definition,
anomalous events are rare and can be cumbersome to collect. Therefore, anomaly detection is com-
monly approached as one-class classification (OCC) problem in which only normal data is utilized
to train a model.

Typically, an autoencoder (AE) model is utilized to tackle the OCC problem (Hasan et al., 2016;
Zhao et al., 2017; Luo et al., 2017b;a; Gong et al., 2019; Park et al., 2020; Astrid et al., 2021a;b).
By learning to reconstruct the normal training data, an AE encodes normalcy representations in its
latent space. At test time, the model is expected to well reconstruct the normal data while poorly
reconstructing the anomalies. However, as observed by Munawar et al. (2017); Gong et al. (2019);
Zaheer et al. (2020a); Astrid et al. (2021a;b), AEs can oftentimes reconstruct anomalous data as well
which result in a reduced capability of discrimination between normal and anomalous data.

To limit the anomalous data reconstruction capability of AEs, Gong et al. (2019); Park et al. (2020)
utilize memory-based networks to memorize normal definitions in the latent space. This way, an
AE is forced to reconstruct the input by using only the latent codes obtained from the learned mem-
ory. These approaches are generally successful in limiting the reconstructions of anomalous data.
However, depending on the limited size of the memory, the normal data reconstructions can also
be severely limited (see Fig. 6 of (Gong et al., 2019)). Therefore, it may still be difficult for such
memory-augmented models to discriminate the reconstructions between normal and abnormal data.

In order for an AE to learn more suitable reconstruction boundary, recently, Astrid et al. (2021a;b)
proposed the utilization of pseudo anomalies to assist the training of an AE. Pseudo anomalies are
fake anomalies generated from normal data in the training set to simulate anomalous data. The AE
is then trained using both normal and pseudo anomalous data. In the case of normal data, the model
is trained similarly to the conventional AE, i.e., minimizing reconstruction loss. On the other hand,
in the case of pseudo anomalous data, the AE is trained to not reconstruct the input, for example,
by minimizing the reconstruction loss with respect to the corresponding normal data used in gener-
ating a pseudo anomaly (Astrid et al., 2021a). Although these methods outperform memory-based
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Figure 1: Comparison of pseudo anomaly generation using (a) skipping frames (Astrid et al.,
2021a;b), (b) patching (Astrid et al., 2021a), and (c) our method. Our method is learnable and does
not impose any strong inductive bias.

networks, one drawback of these approaches is that the pseudo anomalies are synthesized based
on pre-defined assumptions, such as the speed of anomalous movements (Astrid et al., 2021a;b)
(Fig. 1(a)) or anomalous objects (Astrid et al., 2021a) (Fig. 1(b)), which limits their applicability.
To avoid such assumptions, we propose to construct pseudo anomalies by adding noise ∆X to the
normal data (Fig. 1(c)). Moreover, we take our pseudo anomaly generation up a notch by simultane-
ously training an additional network that learns to generate this noise. This way, the reconstruction
boundary of the AE can be improved significantly resulting in a more discriminative model.

Forcing strong inductive bias (Astrid et al., 2021a;b) to enhance learning performance is a matter
of segregation among the machine learning researchers with the key argument being that having
domain specific knowledge limits the idea of artificial general intelligence (Voss, 2007) and au-
tonomous anomaly detection is certainly not an exception. Undoubtedly, inductive bias can be
useful for highly specific practical anomaly detection solutions. However, this kind of methods are
sensitive to the cases in which the assumptions does not apply. Meanwhile, at test time, there is
no guarantee that all anomalies will conform to the assumptions. For example, in the case of fast
movement as an assumption for anomalous behavior (Astrid et al., 2021a;b), the model can miss the
detection of an anomalous object moving slowly. However, in certain scenarios, driving too slow
may also be dangerous (Horberry et al., 2004). Moreover, a model trained in such a way may also
demonstrate difficulty in detecting anomalous object with normal movement, such as an unusual
object brought by a person walking normally. Using some other inductive bias, e.g., appearance
of anomalous objects (Astrid et al., 2021a), is also susceptible to mis-detections of normal objects
moving abnormally. Therefore, in this work, we avoid the usage of strong inductive bias in order to
build a more generic method.

In summary, the contributions of our work are as follows: 1) Our work is one of the first few to
explore the possibility of generating pseudo anomalies for an improved training of reconstruction
models. 2) We bring the well-known weakness of AE, i.e., reconstructing anomalies too well, to our
advantage by enabling our configuration to learn to generate pseudo anomalies that can hinder the
successful reconstruction of anomalies. 3) Our noise-based pseudo anomaly generation assists the
training without any strong inductive bias. 4) We extensively evaluate and compare our method to
existing SOTA methods on highly complex video and image datasets: Ped2 (Li et al., 2013), Avenue
(Lu et al., 2013), ShanghaiTech (Luo et al., 2017b), and CIFAR-10 (Krizhevsky et al., 2009).

2 RELATED WORKS

Limiting Reconstruction of AE. A common way to tackle the one-class classification (OCC)
problem is by utilizing an AE to reconstruct the input (Hasan et al., 2016; Zhao et al., 2017; Luo
et al., 2017b;a; Gong et al., 2019; Park et al., 2020; Astrid et al., 2021a;b). The training is carried
out using only normal data with an expectation that the AE is unable to reconstruct anomalous data
during test time. However, in practice, AEs can reconstruct anomalous data as well (Gong et al.,
2019; Astrid et al., 2021a;b; Zaheer et al., 2020a). To alleviate the problem, Gong et al. (2019);
Park et al. (2020) apply memory mechanisms to the latent space in order to limit the reconstruction
capability of an AE. However, depending on the memory size, this may also limit the normal data
reconstructions. Therefore, Astrid et al. (2021a;b) propose to utilize data-heuristic pseudo anoma-
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lies. To limit the reconstruction capability of the AE, the pseudo anomalies are input during training.
Astrid et al. (2021b) then maximizes the reconstruction loss with respect to the pseudo anomaly in-
put, whereas Astrid et al. (2021a) minimizes the reconstruction loss with respect to the normal data
used to generate pseudo anomalies. In essence, our training configuration is similar to Astrid et al.
(2021a) as we also minimize the reconstruction loss with respect to the normal data. However, we
do not explicitly impose any inductive bias to generate pseudo anomalies, extending the model’s
anomaly detection capability to any type of possible anomalies.

Pseudo Anomalies. Several previous works take advantage of inductive bias to generate pseudo
anomalies, e.g., skipping frames by assuming speed as anomalies (Astrid et al., 2021a;b) or patching
by assuming the existance of anomalous objects (Astrid et al., 2021a). Our work, on the other hand,
does not make any assumption by using noise-based pseudo anomalies. Moreover, we propose a
method that learns to generate pseudo anomalies by adapting to the reconstruction boundary of an
AE. Other works, OGNet (Zaheer et al., 2020a; 2022b) and G2D (Pourreza et al., 2021), train a
binary classifier utilizing pseudo anomalies produced by an undertrained model. We discuss these
methods in more details next in the adversarial training section.

Adversarial Training. In an architectural point-of-view, our method of learning to generate noise
for constructing pseudo anomalies may also be seen as related to adversarial training (Goodfellow
et al., 2014). However, compared to a typical adversarial architecture in which a binary classifier is
used as discriminator, we utilize the AE itself as the ‘discriminator’. Moreover, instead of aiming
to generate real-looking data, our method attempts to generate data that is highly noisy but at the
same time not impossible for the AE to reconstruct. OGNet (Zaheer et al., 2020a; 2022b) and G2D
(Pourreza et al., 2021) train an AE as generator and a binary classifier as discriminator. And then, at
the second phase of training, pseudo anomalies are used, which are obtained from an undertrained
generator from the first phase of the training. However, such methods do not explicitly learn to
generate pseudo anomalies. This potentially leaves the room for optimization. On the other hand,
our method explicitly learns to generate pseudo anomalies by exploiting AE’s weakness of well-
reconstructing anomalies. Further discussions on the comparisons of our method with adversarial
training are provided in Section 4.3.

Non-Reconstruction Methods. Different from our method, non-reconstruction methods do not
utilize reconstruction as the training objective and/or as the sole decision factor of the anomaly
score. There are several different approaches in this category, such as predicting future frames (Liu
et al., 2018a; Park et al., 2020), utilizing object detection under the assumption that anomalous
events are always related to objects (Ionescu et al., 2019a; Georgescu et al., 2021), adding optical
flow components (Ji et al., 2020; Lee et al., 2019), and using a binary classifier to predict anomaly
scores (Zaheer et al., 2020a; Pourreza et al., 2021).

Non-OCC Methods. To increase the discrimination capability of an AE, several researchers use
real anomalies during training (Munawar et al., 2017; Yamanaka et al., 2019). Recently, video-level
weakly supervised (Sultani et al., 2018; Zaheer et al., 2020b; 2022c) or fully unsupervised (Zaheer
et al., 2022a) training configurations have also been introduced. Our method, on the other hand,
utilizes only normal training data for training, hence not directly comparable.

With vs. Without Inductive Bias. In existing literature, several anomaly detection approaches
impose inductive bias while the others do not. Object-centric based methods (Ionescu et al., 2019b;
Georgescu et al., 2021) assume that every anomalous events are related to objects. However, such
methods may have difficulty in detecting anomalous events not related to objects, such as unat-
tended fires or blasts. As previously mentioned, several other pseudo anomaly based methods may
require strong assumptions, such as fast movements as anomalies (Astrid et al., 2021a;b) or out-of-
distribution objects as anomalies (Astrid et al., 2021a). However, such methods may fail when the
anomalies do not satisfy the assumptions. We analyze such cases further in Section 4. Anomaly
detection methods that do not impose inductive bias, for example, memory-based networks (Gong
et al., 2019; Park et al., 2020). However, the downside is that without inductive bias, the results
are below several state-of-the-art methods. To this end, in this work, with an aim to improve the
performance of generic anomaly detection, we propose pseudo anomaly based method to detect
anomalous events without using any inductive bias.
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Denoising AE. Our work is also related to denoising AE (Salehi et al., 2021; Jewell et al., 2022;
Vincent et al., 2008). However, the usage/purpose of the noise is where we are different. In a typical
denoising AE, training with random noisy input is carried out to create more robust features and limit
the network from duplicating the input at the output. In contrast, our noisy inputs are specifically
created as pseudo anomalies. This way, the idea provides flexibility in training anomaly detection
models by several ways, such as using min-max loss (Astrid et al., 2021b) or binary classifier (Zaheer
et al., 2020a). That being said, noise from the previous adversarial denoising AE methods (Salehi
et al., 2021; Jewell et al., 2022) can also be seen as pseudo anomalies. Since the previous works
(Salehi et al., 2021; Jewell et al., 2022; Vincent et al., 2008) did not formulate the noise as pseudo
anomalies, their generated noisy inputs are limited to only training denoising AE. However, with
our new perspective of the noisy input as pseudo anomalies, these works can also be extended like
ours, which can facilitate future research in the community.

Data Augmentation. Creating pseudo anomalies can be seen as a type of data augmentation as
we add more data to the training set. However, instead of adding data of the same classes as in the
typical data augmentation techniques (Bengio et al., 2011; Krizhevsky et al., 2012), creating pseudo
anomalies produces new class in the training set, i.e., anomaly class. Several data augmentation
techniques also utilize adversarial training to generate augmented examples that are adversarial for
the model (Zhang et al., 2020; Tang et al., 2020b). Our method also utilizes adversarial training to
generate pseudo anomalies. However, the definition of adversary is different. In the existing data
augmentation approaches, adversary usually means the model is trained to be wrong in predicting
the output or the training loss becoming higher. In our case, adversary means that the AE can
well-reconstruct the generated pseudo anomalies.

Generation of Out-of-Distribution Data. Our method of generating pseudo anomalies is also re-
lated to generation of out-of-distribution data, such as Bad GAN (Dai et al., 2017), Fence GAN (Ngo
et al., 2019), Margin GAN (Dong & Lin, 2019), VOS (Du et al., 2022), and BDSG (Dionelis et al.,
2020). The generated out-of-distribution data is used to improve models in various applications,
such as semi supervised learning (Dai et al., 2017; Dong & Lin, 2019), anomaly detection (Ngo
et al., 2019), and out-of-distribution detection (Dionelis et al., 2020; Du et al., 2022). However,
these methods generate low dimensional data, such as low resolution images, features, and synthetic
data. Our method works on high dimensional data, i.e., sequences of higher resolution frames.

3 METHODOLOGY

In this section, our proposed approach of learning to generate pseudo anomalies is discussed. The
overall configuration can be seen in Fig. 2, which mainly consists of alternate training of autoen-
coder F (Section 3.1, Fig. 2(b)) and noise generator G (Section 3.2, Fig. 2(a)). Details of the method
are discussed next.

3.1 LEARNING NOT TO RECONSTRUCT ANOMALIES

In order to train discriminative anomaly detector model in OCC setting, in addition to the available
normal training data, Astrid et al. (2021a;b) also utilize pseudo anomalies to assist the training of
an autoencoder (AE). With a probability 1 − p, the AE F takes a normal input XN while taking a
pseudo anomalous input XP with a probability p:

X̂N = F(XN ); X̂P = F(XP ), (1)

where X̂N and X̂P are the reconstruction outputs of the corresponding inputs.

F is then trained to well-reconstruct normal data and poorly-reconstruct pseudo anomalous data. In
the case of normal data, similar to typical reconstruction-based models (Hasan et al., 2016; Zhao
et al., 2017; Luo et al., 2017b;a; Gong et al., 2019; Park et al., 2020; Astrid et al., 2021a;b), F is
trained to minimize the reconstruction loss:

min
F

1

T × C ×H ×W

∥∥∥X̂N −XN
∥∥∥2
F

, (2)

where ∥.∥F means Frobenius norm.
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Figure 2: Our method consists of a main autoencoder F and a noise generator G that are trained
alternately: (a) A pseudo anomaly instance is constructed by adding noise to the normal data, where
the noise is generated by G. G learns to generate the noise by exploiting the weakness of F , i.e.,
reconstructing anomalies too well. Therefore, G is trained to generate anomalies (maximizing noise)
that are within the reconstruction boundary of F (minimizing reconstruction loss). (b) F is trained to
not reconstruct anomalies by using the generated pseudo anomalies with a probability p and normal
data with a probability 1− p. During test time, only F is used.

Meanwhile in the case of pseudo anomalous data, we follow the setup in Astrid et al. (2021a).
F is trained to reconstruct normal data regardless of the input, i.e., normal or pseudo anomalous.
Therefore, even when the input is a pseudo anomaly, the reconstruction loss is calculated using XN

as the target:

min
F

1

T × C ×H ×W

∥∥∥X̂P −XN
∥∥∥2
F

. (3)

The overall training mechanism can be seen in Fig. 2(b).

3.2 LEARNING TO GENERATE PSEUDO ANOMALIES

A pseudo anomaly is supposedly anomalous data generated from the normal training data. It is
considered anomalous as it is not a part of the normalcy defined in the training data. Moreover, it
is pseudo as it is not a real anomaly. In this work, we propose augmenting noise ∆X to the normal
input as pseudo anomaly:

XP = XN +∆X . (4)
Furthermore, we propose to train an additional AE model that learns to generate the optimal noise
for a superior performance. It is pertinent to note that learning to add noise for creating pseudo
anomalies does not impose any inductive bias. In order to evaluate the effectiveness of such learning
approach, we also conduct experiments using a simple non-learnable Gaussian noise augmentation
to generate pseudo anomalies.

3.2.1 NON-LEARNABLE NOISE.

Adding noise without any learning component can be performed by simply adding random Gaussian
noise to the normal data XN . For this purpose, the noise ∆X is defined as:

∆X = N (0, σ), (5)
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Figure 3: Visualizations of (a) pseudo anomalies constructed from a normal frame by adding Gaus-
sian noise with various σ values, where the random noise amplitude is affected by σ; and (b) noise
generated by G and the respective pseudo anomalies generated using our proposed learning to gen-
erate pseudo anomalies mechanism across different training iterations. Compared to the random
noise in (a), the noise generated in our propose mechanism changes with training iterations as G
adapts to the reconstruction boundary of F .

where N (0, σ) is Gaussian noise with mean 0 and standard deviation σ. Several pseudo anomaly
examples generated with different σ values can be seen in Fig. 3(a). F trained using Gaussian noise
based pseudo anomalies is referred to as Gaussian noise model hereafter.

3.2.2 LEARNABLE NOISE.

In our approach, we propose to train an additional autoencoder G that learns to generate ∆X for
creating pseudo anomalies as:

∆X = G(XN ). (6)
G is then trained by exploiting what we may term as the weakness of F in anomaly detection, i.e.,
reconstructing too well on anomalous data. Therefore, we propose a loss consisting of two parts,
including reconstruction and noise amplitude:

min
G

1

T × C ×H ×W

(∥∥∥X̂P −XP
∥∥∥2
F
− λ ∥∆X∥2F

)
, (7)

where λ is a balancing hyperparameter. The first part of the training objective is to reduce the
reconstruction loss of F for the pseudo anomalous input. Notice that, different from Equation 3, the
target for the reconstruction loss in Equation 7 is XP . In this way, G attempts to create noise in such
a way that the resultant pseudo anomaly is within the reconstruction boundary of F . The second
part of the loss encourages the norm of the noise ∆X to be high which encourages G to produce
high noise values. Summarily, the overall loss encourages G to find highly noisy pseudo anomalies
that can be reconstructed by F . Additionally, it may be noted that as G affects both XP and ∆X ,
the backpropagation can pass through G. The training of G is illustrated in Fig. 2(a).

As seen in Fig. 2, G is alternately trained with F . Therefore, as the training progresses, G adapts to
the reconstruction boundary of F . An intuitive illustration of the overall proposed training process is
visualized in Fig. 4. Moreover, Fig. 3(b) shows the evolution of noise and pseudo anomaly examples
taken from Ped2 dataset across different training iterations. Interestingly, as the training proceeds,
G learns to cover the objects of interest (i.e., pedestrians) with noise, achieving our desired target of
finding noisy pseudo anomalies that can be reconstructed by F .

4 EXPERIMENTS

4.1 DATASETS

We evaluate our method on several highly complex datasets including three surveillance video
datasets (i.e., Ped2 (Li et al., 2013), Avenue (Lu et al., 2013), and ShanghaiTech (Luo et al., 2017b))
as well as an image dataset CIFAR-10 (Krizhevsky et al., 2009). For video datasets, the training data
consists of only normal videos while every test videos contains one or more anomalous portions. For
image dataset, we follow setup from Abati et al. (2019), where we set one class as normal while the
others as anomaly. Since there are 10 classes, the setup is repeated for each category as normal, then
the results are averaged. More details on each dataset is provided in Appendix.
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Figure 4: Illustration on how our method limits the reconstruction capability of F across training
iterations: (a) F can reconstruct normal data as well as anomalous data, (b) G generates noise to
produce pseudo anomalies within the reconstruction boundary of F (Equation 7, Fig. 2(a)), (c) F
learns not to reconstruct pseudo anomalies (Equation 4, Fig. 2(b)), (d) G generates pseudo anomalies
by adapting to the new reconstruction boundary (Equation 7, Fig. 2(a)), and (e) F learns not to
reconstruct the new pseudo anomalies (Equation 4, Fig. 2(b)).

Methods P A ST Methods P A ST
AE-Conv2D (Hasan et al., 2016) 90.0% 70.2% 60.85% LNTRA-Patch (Astrid et al., 2021a) 94.77% 84.91% 72.46%
AE-Conv3D (Zhao et al., 2017) 91.2% 71.1% - LNTRA-Skip frame (Astrid et al., 2021a) 96.50% 84.67% 75.97%
AE-ConvLSTM (Luo et al., 2017a) 88.10% 77.00% - Baseline 92.49% 81.47% 71.28%
TSC (Luo et al., 2017b) 91.03% 80.56% 67.94% Ours-Gaussian Noise (σ = 0.1) 93.32% 81.56% 71.24%
StackRNN (Luo et al., 2017b) 92.21% 81.71% 68.00% Ours-Gaussian Noise (σ = 0.5) 93.12% 82.10% 71.73%
MemAE (Gong et al., 2019) 94.1% 83.3% 71.2% Ours-Gaussian Noise (σ = 1) 93.03% 82.09% 71.92%
MNAD-Reconstruction (Park et al., 2020) 90.2% 82.8% 69.8% Ours-Learnable Noise 94.57% 83.23% 73.23%
STEAL Net (Astrid et al., 2021b) 98.4% 87.1% 73.7%

Table 1: Frame-level AUC comparisons of our approach and the existing state-of-the-art
reconstruction-based methods on Ped2 (P) (Li et al., 2013), Avenue (A) (Lu et al., 2013), and Shang-
haiTech (ST) (Luo et al., 2017b) datasets. Best and second best are marked as bold and underlined.
Our method achieves an overall better performances compared to other generic methods, such as
memory-based networks (Gong et al., 2019; Park et al., 2020). Compared to pseudo anomaly based
methods that based on strong assumptions (Astrid et al., 2021a;b), our more generic method achieves
a comparable performance. Comparisons with more methods are provided in Appendix.

4.2 EXPERIMENTAL SETUP

Evaluation Criteria and Architectures. To evaluate our approach, we follow the widely popular
frame-level area under the ROC curve (AUC) metric (Zaheer et al., 2020a), in which a higher AUC
value represents a better performance. For F architecture in video and image dataset, we follow the
AE in Astrid et al. (2021a) and Gong et al. (2019), respectively. We use shallower architecture for
G by removing one layer each in encoder and decoder. More details are provided in Appendix.

Hyperparameters and Implementation Details. By default, for all of the experiments using
noise-based pseudo anomalies, we set pseudo anomaly probability p = 0.5. Moreover, the bal-
ancing parameter λ in Equation 7 is set to 0.1 for video datasets and 5 for image dataset. In order to
keep XP consistent with the input value range of F , i.e., [−1, 1] for video datasets and [0, 1] for im-
age dataset, we clip XP (Equation 4) into the same range. In order to incorporate the clipped values
into the noise amplitude in Equation 7, ∆X is recalculated as XP −XN . The baseline hereafter in
the experiments refers to F trained without using any pseudo anomaly, i.e., p = 0. See Appendix
for more details.

4.3 RESULTS ON VIDEO DATA

4.3.1 ABLATION STUDIES

In this section, we discuss the importance of the two novel components introduced in this work:
adding noise to construct pseudo anomalies and the learning mechanism to generate pseudo anoma-
lies. As seen in the last five rows of Table 1 (Reconstruction), using three benchmark datasets,
we compare the baseline, our Gaussian noise model, and our learned noise model (i.e., a model
trained using pseudo anomalies with the learnable noise). Compared to the baseline that does not
use any pseudo anomaly for training, our Gaussian noise models trained using various values of
σ generally achieve better performances. These results demonstrate the importance of noise-based
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Figure 5: Reconstruction error heatmap comparisons with the other pseudo anomaly based methods
(STEAL Net (Astrid et al., 2021b) and LNTRA (Astrid et al., 2021a)), which use strong inductive
bias to construct pseudo anomalies, in (a) anomalous object with normal speed and (b) normal
object with anomalous speed. As our method is not bounded by any inductive bias, it successfully
highlights anomalous regions in the two cases where the assumptions do not hold.
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Figure 6: Hyperparameter analysis on Ped2: (a) pseudo anomaly probability p, given λ = 0.1; (b)
loss weighting λ, given p = 0.5. Our approach is robust to a wide range of varying hyperparameters.
(c) Moreover, corresponding to λ values in (b), we also provide visualizations of the generated
pseudo anomalies using each λ. A sufficiently wide range of λ does not affect the performance
significantly. However, too high values can lead to the generation of pseudo anomalies that are far
from the normal data distribution which may not be as effective in limiting the reconstruction of AE
and consequently degrade the performance.

pseudo anomalies in improving the discrimination capability of AEs for anomaly detection. More-
over, we also find that the learned noise model achieves a superior performance compared to the
non-learnable Gaussian noise models. This demonstrates that the pseudo anomalies generated using
the learnable noise generator help significantly in improving the anomaly detection performance.
Qualitative results comparing the baseline and our model are provided in Appendix.

4.3.2 COMPARISONS WITH SOTA

In Table 1, we show the AUC comparisons of our models with the existing state-of-the-art (SOTA)
approaches on Ped2 (Li et al., 2013), Avenue (Lu et al., 2013), and ShanghaiTech (Luo et al.,
2017b) datasets. Due to space limitations, we present comparisons only with reconstruction-
based approaches that use reconstruction of the input to detect anomalies. Comparisons with non-
reconstruction methods are provided in Appendix.

Compared to the memory-based networks, overall, our learned noise model successfully outper-
forms MemAE (Gong et al., 2019) and MNAD-Reconstruction (Park et al., 2020). On the average
taken over the individual performances of the three datasets, our model achieves 83.31% AUC,
whereas MemAE and MNAD-Reconstruction reach 82.87% and 80.93% AUC, respectively. Quali-
tative comparisons with MemAE are provided in Appendix.

Note that, although some other approaches, such as STEAL Net (Astrid et al., 2021b) and LNTRA
(Astrid et al., 2021a), achieve better performances compared to our method, they require strong
inductive bias which may cause them to fail in the specific cases that deviate from the pre-defined
assumptions. Comparisons of a few such possible cases are visualized in Fig. 5. Assuming abnormal
speed is related to anomalous behaviors, models trained using skip frame based pseudo anomalies
(Astrid et al., 2021b;a) tend to have problems in anomalies like stroller in Fig. 5(a), which is normal
in its movement (i.e., normal pedestrian speed) but abnormal in its appearance (i.e., not a human).
Whereas, by assuming the existence of abnormal objects, models trained using patch based pseudo
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Figure 7: Results on CIFAR-10: (a) samples of
normal and its corresponding pseudo anomalous
data for each category; (b) AUC comparisons on
different weighting factor λ values.

Method AUC
DSEBM (Zhai et al., 2016) 57.25%
VAE (Kingma & Welling, 2013) 57.25%
MemAE (Gong et al., 2019) 60.89%
Baseline 60.10%
Ours-Gaussian Noise (σ = 0.1) 60.65%
Ours-Gaussian Noise (σ = 0.5) 60.55%
Ours-Gaussian Noise (σ = 1) 60.65%
Ours-Learnable Noise 62.47%

Table 2: Comparisons of our approach and
other reconstruction-based SOTA methods
on CIFAR-10.

anomalies (Astrid et al., 2021a) are more prone to anomalies like riding skateboard in Fig. 5(b),
which is normal in its appearance (i.e., human without any noticeable abnormal object) but abnormal
in its movement (i.e., faster than the normal pedestrians). In contrast, our model highlights the
anomalies in both cases significantly better than the other two methods.

4.3.3 HYPERPARAMETER EVALUATIONS

To investigate the sensitivity of the hyperparameters in our approach, we evaluate our models on a
wide range of hyperparameters. There are two hyperparameters affecting the models trained with
generated noise: pseudo anomaly probability p and loss weighting parameter λ. To limit the span
of experiments, we evaluate using Ped2 only. We report the average and maximum AUC out of five
repeated experiments. Fig. 6(a) shows the results on different values of probability p, given a fixed
λ = 0.1. The baseline is equivalent to p = 0. Fig. 6(b) shows the results on a wide range of λ,
given p = 0.5. Typically, the models trained using these diverse hyperparameter values outperform
the baseline which shows the robustness of our approach. However, if the noise is too high, e.g.,
λ ≥ 0.3, the performance degrades as the pseudo anomalous data distribution may drift too far away
from the normal data, hence it is not as effective in limiting the reconstruction capability of the AE.
As seen in Fig. 6(c), pseudo anomalies generated using λ ≥ 0.3 are very distorted from the original
frame.

4.4 RESULTS ON IMAGE DATA

Quantitative results of CIFAR-10 experiments can be seen in Table 2. As seen, our learnable noise
model achieves better performance compared to our baseline and Gaussian noise models. We also
compare with one of the popular and well-studied SOTA method, MemAE (Gong et al., 2019). As
it is a highly popular SOTA method, outperforming it places our approach as robust and effective.
It may also be noted that the methods with strong assumption of anomalous behaviors in videos,
such as skipping frame (Astrid et al., 2021a;b), prediction (Liu et al., 2018a; Park et al., 2020),
and object-centric (Ionescu et al., 2019a; Georgescu et al., 2021), are impossible to be trained on
CIFAR-10, while our approach can. This also highlights the generic applicability and superiority of
our approach.

To provide with more insights, generated pseudo anomalies of CIFAR-10 are visualized in Fig. 7(a).
Interestingly, unlike video datasets, strong noise works better in CIFAR-10 dataset. This may be
caused by the characteristics of the anomalies, i.e., very different to the normal as they are different
image categories. However, as seen in 7(b), using smaller noise also works comparably well, which
shows the robustness of our method in limiting the reconstruction capability of AE also for images.

5 CONCLUSION

In this work, we proposed a technique to generate pseudo anomalies without imposing inductive bias
by adding noise to the input. Moreover, to improve it further, we proposed to utilize an additional
autoencoder that learns to generate this noise. We provided ablation studies and evaluations using
Ped2, Avenue, ShanghaiTech, and CIFAR-10 datasets to demonstrate the importance of the noise
addition and the training mechanism to generate noise. Even without inductive bias, our approach
demonstrated superiority by achieving comparable performance to the existing state-of-the-art meth-
ods.
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A APPENDIX

We provide additional experimental details and analysis in this appendix. The appendix is organized
as follows:

• Datasets (A.1)
• Experimental Setup (A.2)
• Hyperparameters and Implementation Details (A.4)

– Training Hyperparameters (A.4.1)
– Test Time of Video Data (A.4.2)
– Architectures (A.4.3)

• More Results on Video Data (A.5)
– Comparisons with Non-Reconstruction Based Methods (A.5.1)
– Training Progression (Comparisons with Adversarial Denoising AE) (A.5.2)
– Qualitative Results on Video Data Experiments (A.5.3)

A.1 DATASETS

Details of each dataset used in our experiments are as follows:

Ped2. This dataset contains 16 training and 12 test videos. The normal scenes consist of pedestri-
ans only, whereas anomalous scenes include bikes, carts, or skateboards along with pedestrians.

Avenue. This dataset consists of 16 training and 21 test videos. Examples of anomalies are ab-
normal objects, such as bikes, and abnormal actions of humans, such as unusual walking directions,
running, or throwing stuff.

ShanghaiTech. This is by far the largest one-class anomaly detection dataset consisting of 330
training and 107 test videos. The dataset is recorded at 13 different locations having complex lighting
conditions and camera angles. In total, the test videos contain 130 anomalous events including
running, riding bicycle, and fighting.

CIFAR-10. It is originally a 10 classes image classification dataset. For anomaly detection exper-
iments, we follow setup from Abati et al. (2019), where we set one class as normal while the others
as anomaly. The setup is repeated for each category as normal, then the results are averaged. We
use the original split of training and test set of CIFAR-10 to train and test our model, except that we
exclude the anomaly classes during training. Similar to Abati et al. (2019), we also separate 10%
of the original training split for validation. The highest validated model across training epoch is
evaluated.
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A.2 EXPERIMENTAL SETUP

In this section, we specify experimental setup details that have not been mentioned in the main
manuscript.

A.3 EVALUATION CRITERIA.

The ROC curve used to evaluate our method is obtained by varying the anomaly score thresholds
across the whole test set, i.e., one ROC curve for a dataset.

A.4 HYPERPARAMETERS AND IMPLEMENTATION DETAILS.

A.4.1 TRAINING HYPERPARAMETERS

For video dataset, we train our model using mini batch size of 4, Adam optimizer (Kingma &
Ba, 2014), and learning rate of 10−4 for both F and G. For image dataset, we set the batch size,
optimizer, and learning rate to 256, Adam, and 10−3, respectively.

A.4.2 TEST TIME OF VIDEO DATA

During inference, we discard G and use only F for testing. Concurrent to Park et al. (2020); Liu
et al. (2018a); Astrid et al. (2021a;b), we compute frame-level anomaly scores at test time utilizing
PSNR value Pt between an input frame and the reconstruction:

Pt = 10 log10
M2

Ît

1
R

∥∥∥Ît − It

∥∥∥2
F

, (8)

where t is the frame index, It is the t-th frame input, Ît is the reconstruction of It, R is the total
number of pixels in Ît, and MÎt

is the maximum possible pixel value of Ît, i.e., MÎt
= 1.

Then, following Park et al. (2020); Liu et al. (2018a); Astrid et al. (2021a;b), min-max normalization
is applied on the PSNR value to obtain the normalcy score Qt of range [0, 1]. Finally, we calculate
the anomaly score At as:

At = 1−Qt. (9)

Following Astrid et al. (2021a); Gong et al. (2019), we calculate the anomaly score using only the
9th frame of the sequence.

A.4.3 ARCHITECTURES

Video Dataset For F , we use the same AE architecture used in Astrid et al. (2021a) with input and
output values of range [−1.0, 1.0]. The size of each sequence is 16× 1× 256× 256. The complete
architecture of the AE can be seen in Table 3.

For G, we use a shallower autoencoder consisting of three layers of Conv3D for the encoder and three
layers of ConvTranspose3D as the decoder. Each of the layers, except the last ConvTranspose3D
layer, is followed by a batch normalization layer and a LeakyReLU activation. The final layer of the
decoder is a Tanh layer multiplied by two to generate noise of range [−2.0, 2.0]. The architecture
can be seen in Table 4.

Image Dataset For F , we use similar AE architecture used in Gong et al. (2019) without memory
module. We add an Sigmoid layer in the end to limit the range of output to [0, 1]. The AE takes
input of size 1×3×32×32. The time dimension 1 is omitted in practice. The complete architecture
of the AE can be seen in Table 5.

For G, we use shallower architecture compared to F , as seen in Table 6. The final output is a Tanh
layer to generate noise of range [−1, 1].
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Layer Output Channels Filter Size Stride Padding Negative Slope
E

nc
od

er
Conv3D 96 (3, 3, 3) (1, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
Conv3D 128 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
Conv3D 256 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
Conv3D 256 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2

D
ec

od
er

ConvTranspose3D 256 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
ConvTranspose3D 128 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
ConvTranspose3D 96 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
ConvTranspose3D 1 (3, 3, 3) (1, 2, 2) (1, 1, 1) -
Tanh - - - - -

Table 3: Architecture of F used in our video dataset experiments. Each number in the tuple repre-
sents time, height, and width dimensions, respectively.

Layer Output Channels Filter Size Stride Padding Negative Slope

E
nc

od
er

Conv3D 96 (3, 3, 3) (1, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
Conv3D 128 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
Conv3D 256 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2

D
ec

od
er

ConvTranspose3D 128 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
ConvTranspose3D 96 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
ConvTranspose3D 1 (3, 3, 3) (1, 2, 2) (1, 1, 1) -
Tanh * 2 - - - - -

Table 4: Architecture of G used in our video dataset experiments. Each number in the tuple repre-
sents time, height, and width dimensions, respectively.
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Layer Output Channels Filter Size Stride Padding

E
nc

od
er

Conv2D 64 3 2 0
BatchNorm2D - - - -
ReLU - - - -
Conv2D 128 3 2 0
BatchNorm2D - - - -
ReLU - - - -
Conv2D 128 3 2 0
BatchNorm2D - - - -
ReLU - - - -
Conv2D 256 3 2 0
BatchNorm2D - - - -
ReLU - - - -

D
ec

od
er

ConvTranspose2D 256 3 2 0
BatchNorm2D - - - -
ReLU - - - -
ConvTranspose2D 128 3 2 0
BatchNorm2D - - - -
ReLU - - - -
ConvTranspose2D 128 3 2 0
BatchNorm2D - - - -
ReLU - - - -
ConvTranspose2D 3 4 2 0
Sigmoid - - - -

Table 5: Architecture of F used in our image dataset experiments.

Layer Output Channels Filter Size Stride Padding

E
nc

od
er

Conv2D 64 3 2 0
BatchNorm2D - - - -
ReLU - - - -
Conv2D 128 3 2 0
BatchNorm2D - - - -
ReLU - - - -
Conv2D 128 3 2 0
BatchNorm2D - - - -
ReLU - - - -

D
ec

od
er

ConvTranspose2D 128 3 2 0
BatchNorm2D - - - -
ReLU - - - -
ConvTranspose2D 128 3 2 0
BatchNorm2D - - - -
ReLU - - - -
ConvTranspose2D 3 4 2 0
Tanh - - - -

Table 6: Architecture of G used in our image dataset experiments.
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Methods P A ST

M
is

ce
lla

ne
ou

s

OLED (Jewell et al., 2022) 99.02% - -
STAN (Lee et al., 2018) 96.5% 87.2% -
MC2ST (Liu et al., 2018b) 87.5% 84.4% -
BMAN (Lee et al., 2019) 96.6% 90.0% 76.2%
AMC (Nguyen & Meunier, 2019) 96.2% 86.9% -
Vu et al. (2019) 99.21% 71.54% -
DeepOC (Wu et al., 2019) - 86.6% -
TAM-Net (Ji et al., 2020) 98.1% 78.3% -
LSA (Abati et al., 2019) 95.4% - 72.5%
Ramachandra et al. (2020) 94.0% 87.2% -
Tang et al. (2020a) 96.3% 85.1% 73.0%
Wang et al. (2020) - 87.0% 79.3%
OGNet (Zaheer et al., 2020a) 98.1% - -
Conv-VRNN (Lu et al., 2019) 96.06% 85.78% -
Chang et al. (2020) 96.5% 86.0% 73.3%

O
bj

ec
t-

ce
nt

ri
c MT-FRCN (Hinami et al., 2017) 92.2% - -

Ionescu et al. (2019a) 94.3% 87.4% 78.7%
Doshi & Yilmaz (2020a;b) 97.8% 86.4% 71.62%
Sun et al. (2020) - 89.6% 74.7%
VEC (Yu et al., 2020) 97.3% 89.6% 74.8%
Georgescu et al. (2021) 98.7% 92.3% 82.7%

Pr
ed

ic
tio

n Frame-Pred (Liu et al., 2018a) 95.4% 85.1% 72.8%
Dong et al. (2020) 95.6% 84.9% 73.7%
Lu et al. (2020) 96.2% 85.8% 77.9%
MNAD-Prediction (Park et al., 2020) 97.0% 88.5% 70.5%

Methods P A ST

N
on

de
ep

le
ar

ni
ng

MPPCA (Kim & Grauman, 2009) 69.3% - -
MPPC+SFA (Kim & Grauman, 2009) 61.3% - -
Mehran et al. (2009) 55.6% - -
MDT (Mahadevan et al., 2010) 82.9% - -
Lu et al. (2013) - 80.9% -
AMDN (Xu et al., 2017) 90.8% - -
Del Giorno et al. (2016) - 78.3% -
LSHF (Zhang et al., 2016) 91.0% - -
Xu et al. (2014) 88.2% - -
Ramachandra & Jones (2020) 88.3% 72.0% -

R
ec

on
st

ru
ct

io
n

AE-Conv2D (Hasan et al., 2016) 90.0% 70.2% 60.85%
AE-Conv3D (Zhao et al., 2017) 91.2% 71.1% -
AE-ConvLSTM (Luo et al., 2017a) 88.10% 77.00% -
TSC (Luo et al., 2017b) 91.03% 80.56% 67.94%
StackRNN (Luo et al., 2017b) 92.21% 81.71% 68.00%
MemAE (Gong et al., 2019) 94.1% 83.3% 71.2%
MNAD-Reconstruction (Park et al., 2020) 90.2% 82.8% 69.8%
STEAL Net (Astrid et al., 2021b) 98.4% 87.1% 73.7%
LNTRA-Patch (Astrid et al., 2021a) 94.77% 84.91% 72.46%
LNTRA-Skip frame (Astrid et al., 2021a) 96.50% 84.67% 75.97%
Baseline 92.49% 81.47% 71.28%
Ours-Gaussian Noise (σ = 0.1) 93.32% 81.56% 71.24%
Ours-Gaussian Noise (σ = 0.5) 93.12% 82.10% 71.73%
Ours-Gaussian Noise (σ = 1) 93.03% 82.09% 71.92%
Ours-Learnable Noise 94.57% 83.23% 73.23%

Table 7: Frame-level AUC comparisons of our approach and the existing state-of-the-art methods on
Ped2 (P) (Li et al., 2013), Avenue (A) (Lu et al., 2013), and ShanghaiTech (ST) (Luo et al., 2017b)
datasets. Best and second best in each category and dataset are marked as bold and underlined.

A.5 MORE RESULTS ON VIDEO DATA

A.5.1 COMPARISONS WITH NON-RECONSTRUCTION BASED METHODS

Table 7 shows the comparisons with state-of-the-art approaches in anomaly detection, including
the non-reconstruction based methods. Following (Astrid et al., 2021a), we categorize the methods
into five categories. Our method belongs to reconstruction-based methods which use reconstruction
quality to measure anomaly score. Compared to non-reconstruction based methods, our method
achieves a comparable performance even though we do not use assume the type of pseudo anomalies.
On the other hand, the top-performers; object-centric methods require an assumption that anomalous
events are always related to objects. Moreover, prediction based method predicts the future frames
based on few past frames which makes the presence of anomalous movements as an assumption.

A.5.2 TRAINING PROGRESSION (COMPARISONS WITH ADVERSARIAL DENOISING AE)

Despite the architectural similarity to adversarial denoising autoencoder approaches (Salehi et al.,
2021; Jewell et al., 2022), our method is rather a cooperative learning between the generator G and
F (‘discriminator’), which can be supported by the mutual loss decrease and convergence (Fig. 8
(a)). The convergence can also be seen in the AUC trend over the training epoch in Fig. 8(c). As our
method can converge in a cooperative way, it is evidently more stable compared to the adversarial
training methods (Salehi et al., 2021; Jewell et al., 2022) which inevitably fluctuate in the loss and
therefore difficult to converge. We may also peek into the instability of Jewell et al. (2022) from
its delicate selection of L1/L2 loss and hyperparameters while not providing any hyperparameter
sensitivity evaluation. Moreover, both these methods only report the results on simple datasets and
their performance on highly complex datasets such as ShanghaiTech is unknown.

The way G cooperates with F across the training can also be observed in Fig. 3(b). At the beginning,
G randomly puts the noise. As F starts to learn to reconstruct normal, G then starts to generate noises
around moving objects, where there are many movements so that F cannot easily remove the noise.
But once F finally succeeds to remove this abnormal noises (could be regarded as abnormal patterns
or behaviors), G has no other way but to reduce the generated noise, and this is the point where F and
G agree to converge (Fig. 8(a&b)). This way, G helps F to remove abnormal patterns by presenting
diverse (i.e., from high to low as seen in Fig. 8(b)) noises to F and F finally learns to reconstruct
normal regardless of all these kinds of variations given from G.
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Figure 8: Training progression seen in (a) F and G loss, (b) generated noise norm, and (c) AUC,
which show the stability of our approach.
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Figure 9: Input frames, reconstructions, and reconstruction error heatmaps of the baseline and our
model on (a) Ped2, (b) Avenue, and (c) ShanghaiTech. Visualizations of MemAE (Gong et al., 2019)
are provided only on Ped2 as the authors only made the trained model available for this dataset. As
seen, our method can successfully highlight the anomalous parts (red boxes) while not producing
high reconstruction errors over normal portions.

A.5.3 QUALITATIVE RESULTS ON VIDEO DATA EXPERIMENTS

To deeply understand the effects of our proposed pseudo anomalies, we qualitatively compare the
baseline and our learned noise model in Fig. 9. Fig. 9 shows the input frames, reconstructions, and
reconstruction heatmaps on the three benchmark datasets. The heatmaps are generated by computing
the reconstruction errors followed by min-max normalization of the error values in a frame. Our
method highlights the anomalous parts noticeably better than the baseline, which leads to a better
discriminative capability of the model.

We also provide qualitative results comparison of our method with MemAE on Ped2 in Fig. 9(a).
Although MemAE successfully distorts the anomalous regions, we can observe that it also distorts
the normal regions which reduces its capability to discriminate between normal and abnormal. Our
method, on the other hand, retains the reconstruction quality of the normal regions while distort-
ing the anomalous regions. This leads to the superior performance of our model compared to the
memory-based networks.
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