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ABSTRACT

There is an ongoing effort to develop feature selection algorithms to improve inter-
pretability, reduce computational resources, and minimize overfitting in predictive
models. Neural networks stand out as architectures on which to build feature selec-
tion methods, and recently, neuron pruning and regrowth have emerged from the
sparse neural network literature as promising new tools. We introduce RelChaNet,
a novel and lightweight supervised feature selection algorithm that uses neuron
pruning and regrowth in the input layer of a dense neural network. For neuron
pruning, a gradient sum metric measures the relative change induced in a network
after a feature enters, while neurons are randomly regrown. We also propose an
extension that adapts the size of the input layer at runtime. Extensive experiments
on nine different datasets show that our approach generally outperforms the current
state-of-the-art methods, and in particular improves the average accuracy by 2% on
the MNIST dataset. Our code is available in the supplementary material.

1 INTRODUCTION

Feature selection is an elemental task in predictive modelling. It can serve to reduce computational
resources, improve interpretability by highlighting important features, or improve predictive perfor-
mance by reducing overfitting (Li et al., 2018). To further these goals has been the driving motivation
of large recent efforts to improve existing and develop new feature selection algorithms. Feature
selection algorithms can be categorized into embedded, wrapper, and filter approaches. Embedded
methods select features during training of a predictive model, such as linear regression (Tibshirani,
1996) or neural networks (Lemhadri et al., 2021). Wrapper approaches also work around a specific
predictive model, but treat it as a black box with the feature set as a hyperparameter, e.g., via particle
swarm optimization (Rostami et al., 2021). Filter approaches select feature sets without being tailored
around a predictive model, but using information-theoretic measures. They include, for example,
statistical tests of the relationship between the feature and the outcome (Bommert et al., 2020).

Neural networks have a great ability to capture nonlinear relationships and offer many entry points
for slightly modifying their architecture or training algorithm to build successful embedded feature
selection methods. To decide on the utility of an input neuron, approaches added gates in the input
layer (Yamada et al., 2020), added residual connections to the output (Lemhadri et al., 2021), or
added gradients with respect to data changes to the loss (Cherepanova et al., 2023).

Feature selection in neural networks translates to aiming for a sparse input layer and is therefore
a special case of sparse neural networks (Hoefler et al., 2021). Recently, it was shown that sparse
neural network training (Mocanu et al., 2018; Evci et al., 2020) can be adapted to achieve a dominant
feature selection performance (Liu et al., 2024; Atashgahi et al., 2024; Sokar et al., 2024). However,
we have identified potential improvements to enhance the network’s ability to detect important
features and make it easier for regrown neurons to compete with established neurons during training.

In this paper, we introduce RelChaNet, a novel neural network feature selection algorithm using
relative change scores. It applies neuron pruning and regrowth in the input layer of a dense neural
network based on a relative change metric shown in Figure 1. Our main contributions are:

1. The RelChaNet feature selection algorithm, which has two key hyperparameters that allow
it to adapt to the characteristics of the dataset used. It addresses two identified drawbacks
by giving candidates multiple mini-batches of time to show their potential relevance in the
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Figure 1: Illustration of the relative change score calculation embedded in RelChaNet, Algorithm
1. We consider a neural network with an input layer size equal to the number of features to select,
K, plus additional candidate features. Over several mini-batches, determined by the hyperparameter
nmb, the first layer gradients G(1)

k are accumulated in a matrix S. Next, these gradient sums are
normalized by taking the L1 norm with respect to each input neuron, followed by z-standardizing
the resulting vector to produce a score vector s. The scores of all candidates are then used to update
the high scores h. Finally, features among the top K high scores remain in the network, while the
other features are randomly redrawn. Before continuing training, the first layer weights of candidate
features are reinitialized.

network, and by comparing relevance as determined by the change induced rather than by
absolute weights.

2. A version of the algorithm that can adapt the input layer size during runtime, making the
algorithm less sensitive to one of its hyperparameters.

3. An evaluation of the approach on nine diverse datasets, demonstrating that it generally
outperforms the current state-of-the-art.

The structure of this paper is as follows: We begin with a review of related work, particularly
focusing on neural network-based methods. Next, we present the RelChaNet algorithm and its
extension with an adaptive input layer size. We then conduct an extensive experiment to empirically
evaluate our approach. Finally, we perform auxiliary analyses to investigate its design parameters
and computational efficiency.

2 BACKGROUND AND RELATED WORK

In this section, we introduce the feature selection problem within the framework of neural networks
and review previous solution approaches. Most approaches slightly modify a dense neural network
architecture or the loss function. Recently, successful approaches have been taken from the framework
of sparse neural networks.

Feature selection in neural networks. We consider the task of selecting a set of K features that
are most valuable for making accurate predictions in a supervised learning setting. Specifically for
neural networks, we can express this task using L0 regularization of the first layer network weights.
Accordingly, we want to optimize the network under the condition that only K input neurons are
active, i.e., have any non-zero adjacent weights. If we consider a neural network with one input
neuron for each feature i ∈ {1, . . . , N}, N > K, we can express the feature selection task as finding
a specific set of network weights W that fulfills

argmin
W

{
L(W) | #{i | ||W(1)

i. ||1 > 0} = K
}

(1)

where L(W) represents evaluating the loss function L using the data and network weights, and W(1)
i.

is the vector of outgoing first layer weights from input neuron i. The key challenge in solving this
task is to implement an effective L0 regularization. Exact solutions are computationally prohibitive
and become intractable in high-dimensional settings (Yamada et al., 2020). Consequently, the related
work discussed below uses various approximations to address this challenge.
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Dense neural networks. There are several methods embedded in dense neural networks for feature
selection. A common property is that the number of active neurons is not strictly enforced before
model convergence. Instead, selection is gradual, starting with a full input layer of N neurons
and reducing active neurons during training. This approach makes it easier to identify complex
interactions between features, at the cost of increased computational complexity. Stochastic gates
(Yamada et al., 2020) approach the L0 regularization by adding a gate to each input layer neuron.
For each gate, a trainable parameter controls the probability of a feature being active. The LassoNet
(Lemhadri et al., 2021) adds a residual connection from each input layer neuron to the network output.
The absolute sizes of these N residual weights are added to the loss function and for each feature i

individually represent a bound on the size of the corresponding first layer weights, ||W(1)
i. ||1. A less

invasive approach is DeepLasso (Cherepanova et al., 2023), which adds the gradient with respect to
changes in the input data to the loss function. This encourages the network not to use some features
during training, rendering the corresponding input neuron inactive.

Sparse neural networks. Sparse neural networks keep a large fraction of the weights throughout
the network at 0 to reduce memory requirements or training time (Hoefler et al., 2021). One method
to achieve this is structured sparsity, such as neuron pruning, where all of a neuron’s outgoing weights
are set to 0. Metrics for deciding which neurons to prune include the magnitude of the outgoing
weights or the sensitivity of the output to the neuron. Neurons can also be periodically regrown,
based on criteria such as the size of gradients or adjacent weights. Molchanov et al. (2019) propose
a neuron/filter pruning method that calculates a score across mini-batches, similar to our approach.
However, their method is not specific to the input layer, calculates the product of weight and gradient,
and does not involve regrowing neurons or reusing a score later in training. GradEnFS (Liu et al.,
2024) uses sparse neural networks for feature selection. Similar to DeepLasso, it measures the
importance of neurons based on how sensitive the loss is to changes in the input neurons. After the
model converges, it selects the top K features based on neuron importance. We see this selection
procedure as a disadvantage because no specific sets of K features are assessed during training.

Since pruning the input layer reduces the number of active neurons, as required in Equation 1, methods
that do so are promising for feature selection. NeuroFS (Atashgahi et al., 2023) extends adaptive
sparse neural network training, which utilizes weight pruning (Mocanu et al., 2018; Evci et al., 2020)
, by incorporating input layer neuron pruning. Input neurons are pruned after each epoch based on the
magnitude of their outgoing connections, ||W(1)

i. ||1. To regrow an input neuron, NeuroFS calculates
the absolute gradients of all currently pruned first layer weights. Neurons are then regrown based on
the largest absolute gradient among their adjacent weights. During training, the number of active
neurons in the input layer is continuously reduced. After training, the input neurons with the largest
outgoing connections among the remaining active neurons are selected.

We generally observe two drawbacks in gradient-based regrowing and absolute weight-based pruning
for feature selection. Firstly, in the regrowing procedure, features need to signal their importance
through high adjacent gradients before the network makes any adjustments for them. However, the
network might take longer, e.g., multiple mini-batches, to recognize the importance of a feature,
especially if it is involved in complex interactions with other features. Secondly, in later training
epochs, the absolute weights of regrown neurons are compared to those of longer established neurons.
In consequence, features are compared while being given different times to grow their weights. To
mitigate both of these drawbacks, we propose to regrow features randomly and to use a metric of the
change a feature induces in the network over the first few mini-batches after it enters the network for
pruning.

3 THE RELCHANET ALGORITHM

We propose the RelChaNet algorithm for supervised feature selection using neural networks.
RelChaNet computes a score for each input neuron by aggregating gradients over mini-batches.
These scores are normalized and used to update a high score vector, which guides feature selection
(see Figure 1 for an illustration). This section walks through the pseudocode in Algorithm 1 and
explains its rationale. RelChaNet is implemented using PyTorch (Paszke et al., 2019) and is available
as a Python package in the supplementary material.
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Algorithm 1 RelChaNet
1: Input. Dataset with N features, number of selected features K, number of first hidden layer

neurons nhidden. Hyperparameters: Ratio of candidate features cratio, number of mini-batches nmb
2: Initialize. Number of candidate features Kc = round(cratio(N − K)). Network with input

layer size K + Kc. Randomly choose features to populate the input layer, Iinput = Icands =
Rand({1, . . . , N},K +Kc). Score vector s ∈ RK+Kc , high score vector h ∈ RN . First layer
gradients G(1) and gradient sum matrix S: G(1),S ∈ R(K+Kc)×nhidden

3: while training not stopped do
4: S = 0
5: for nmb mini-batches do
6: Feed-forward step and backpropagation using a mini-batch of data
7: S = S + G(1)

8: end for
9: si =

∑nhidden
j=1 |Sij | for i ∈ {1, . . . ,K +Kc}

10: Normalize s = (s− Mean(s))/SD(s)
11: Update high scores hIcands = max(hIcands , scands), where cands is the set of input neurons

corresponding to Icands
12: Identify top features Itop = {i ∈ {1, . . . , N} | hi ≥ quantile(h, 1−K/N)}
13: Draw new candidates Icands = Rand({1, . . . , N} \ Itop,Kc)
14: Update features that populate the input layer Iinput = Itop ∪ Icands

15: Initialize first layer weights W(1)
cands. = U(−10−8, 10−8). Initialize the optimizer

16: end while

Architecture and initialization. The algorithm uses a multi-layer perceptron (MLP) with a feed-
forward architecture and is integrated into the backpropagation training using the Adam optimizer
(Goodfellow et al., 2016; Kingma & Ba, 2015). This implies the adoption of the hyperparameters of
learning rate, batch size, and number of hidden layers and their sizes. The size of the input layer is
based on the desired number of selected features K plus a percentage cratio of the remaining features,
Kc, which will be referred to as candidates.

Relative change scores. Steps 5-10 calculate the relative change scores s, where gradient sums for
each input neuron are aggregated and normalized to reflect their relative contribution across the last
nmb mini-batches (see also Figure 1). Instead of gradient sums, one could also use weight changes as
a relative change metric in Steps 5-8, which we compare in an ablation study in Section 4.2.

Input layer rotation. Steps 11–15 dynamically update the input layer by selecting a combination
of top features and new candidates. The relative change scores computed earlier are used to identify
the top K features (Step 12), ensuring they remain in the input layer. Additional candidate features
are randomly sampled from the remaining features (Step 13). Together, these form the input
layer (Step 14). To avoid symmetry issues during training, the weights of candidate features are
reinitialized to small random values (Step 15), following best practices in neural network initialization
(Goodfellow et al., 2016). This rotation ensures that feature selection is iteratively refined based on
relevance.

Key mechanism. Our algorithm approaches the L0 regularization task laid out in Equation 1 by
stabilizing the high score vector h. At the time of each input layer rotation, the network is forced to
adhere to the criterion of only K active features, after which it gets to assess additional candidates
again for a few mini-batches. The high scores h, since they preserve information over time, allow
a comparison of the entry performance of candidates with the entry performance of features that
entered epochs ago. Specifically, in later epochs of training, good candidates do not need to surpass
the absolute first layer weights of the more established neurons.

Random Regrowth. Random regrowth offers a key advantage over metric-based methods, such as
gradient-based selection, by giving candidates multiple mini-batches to demonstrate their relevance.
It facilitates the inclusion of features that do not have a straightforward relationship with the output
but contribute to complex patterns that only emerge over time. Additionally, by combining random
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Algorithm 2 RelChaNet flex
1: Initialize: Loss before the last change of the network size lchange, running loss l. Set the input

layer size change direction to shrink.
2: if l has not decreased for 10 rotations then
3: if l > lchange then
4: Change the direction: shrink ↔ grow
5: end if
6: lchange = l
7: if direction is shrink then
8: cratio = max( 12cratio,

1
5

K
N−K )

9: else if direction is grow then
10: cratio = min(2 cratio, 1)
11: end if
12: end if

regrowth with a reduced input layer size, we can decrease computation compared to methods that
retain all features in the input layer for regrowth selection. One drawback of random regrowth is that
it may take several rotations before all features have the opportunity to enter the input layer at least
once or before interacting feature sets are included together in the input layer. Increasing the cratio
hyperparameter can mitigate this issue by enlarging the input layer, allowing more features to be
included at a time. However, this approach introduces more noise into the network, as a larger portion
of the network is frequently reset to zero, potentially disrupting the learning process of relevant
features. Consequently, the choice of cratio reflects a tradeoff between exploration and exploitation. A
potential solution to this challenge is to adapt cratio dynamically during training, which we explore
below.

3.1 ADAPTIVE NETWORK SIZES

To address sensitivity to the cratio hyperparameter, we introduce RelChaNet flex, which dynamically
adjusts the input layer size during training based on the behavior of the loss function. It extends
Algorithm 1 between Steps 12 and 13, i.e., prior to selecting new candidate features, and is detailed
in pseudocode in Algorithm 2, RelChaNet flex.

Key mechanism. RelChaNet flex monitors the running loss, l, and compares it with the loss
recorded at the time of the last input layer size change, lchange. If the loss stagnates (i.e., does not
decrease for a fixed number of rotations), the algorithm adjusts the input layer size. Specifically:

1. Direction adjustment: If the loss increases compared to lchange, the direction of change
(shrink or grow) is reversed

2. Size adjustment: Depending on the direction, cratio is halved or doubled, bounded by
predefined limits. The upper limit of cratio = 1 represents using the maximum number of
candidates, N −K, while the lower limit ensures a minimum input layer size of 6

5K.

Rationale. A well-balanced input layer size allows the network to explore a sufficient pool of
candidate features in the presence of random regrowth. Shrinking the input layer promotes stability,
while growing it enables exploration of additional candidates. The dynamic adjustment ensures that
the network can escape suboptimal configurations.

Practical considerations. The running loss l as well as the loss at the time of input layer change,
lchange, can be either a training or validation loss, depending on whether the algorithm is used with a
validation set. In our experiments, we use a validation set, which is detailed in Appendix A.2.

4 EXPERIMENTS

In this section, we conduct an empirical evaluation of our proposed algorithms structured into a
main experiment and additional analyses. To conserve computational resources, we replicate the

5
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Table 1: Dataset dimensions and domain

Cases Features Domain Reference
Long Datasets

COIL-20 1440 1024 Image Nene et al. (1996)
HAR 10299 561 Smartphone Sensor Anguita et al. (2013)

ISOLET 7797 617 Speech Fanty & Cole (1990)
MNIST 70000 784 Image Deng (2012)

Fashion-MNIST 70000 784 Image Xiao et al. (2017)
USPS 9298 256 Image Hull (1994)

Wide Datasets
ARCENE 200 10000 Genomics Guyon et al. (2004)

GLA-BRA-180 180 49151 Genomics Sun et al. (2006)
Prostate-GE 102 5966 Genomics Nie et al. (2010)

experimental setup of Atashgahi et al. (2023)1 and compare our results with those of nine state-of-
the-art baseline methods reported in their work. The compared baseline methods and the RelChaNet
implementations are described in Appendix A. Code for replicating the main experiment is available
in the supplementary material.

The datasets used and their dimensions are shown in Table 1. We categorize datasets as long if
they have more cases than features, and vice versa as wide. The datasets all represent classification
tasks and span different content domains, including speech processing (ISOLET), image recognition
(MNIST), and smartphone sensor data (HAR). They are all freely available. To provide a more
comprehensive evaluation, we include an auxiliary experiment on four additional datasets, detailed
in Appendix C. These include two additional long datasets (CIFAR-10 and CIFAR-100) to explore
performance on complex prediction tasks and two additional wide datasets (BASEHOCK and SMK).

To ensure a fair comparison between embedded and filter methods, all experimental conditions
include downstream learners. Initially, the data is split into training and test sets. Feature selection is
performed using the training data, followed by training a downstream predictive model on the training
data using only the selected features. The accuracy of the downstream learner is then evaluated on the
test data. The number of selected features, K, varies among 25, 50, 75, and 1002. The downstream
learners are classifiers based on a Support Vector Machine (SVM, Chang & Lin, 2011), K-Nearest
Neighbors (KNN), and ExtraTrees (ET, Geurts et al., 2006). The SVM classifier is used for all values
of K, while KNN and ET are only used for K = 50. Each condition is run five times. Experiments
are conducted on an NVIDIA GeForce RTX 3060 GPU with 6GB of memory.

4.1 RESULTS

Figure 2 presents a comparison of the accuracies achieved using our methods ("RCN" and "RCN
flex") against the top baseline methods for the SVM downstream learner. The average accuracy by
dataset is shown for all methods in Figure 3. Detailed results for each dataset, method, and value of
K are provided in Table 2 in Appendix B.

According to the results, our approaches significantly outperform the baseline methods for most long
datasets (first six panels in the plots). In particular, for the MNIST dataset, our flex approach achieves
an average accuracy of 96.3%, significantly improving on the best previous result of 94.3%. Our
methods demonstrate comparable performance to the baseline methods for the wide datasets (last
three panels in the plots), but fall slightly behind for the GLA-BRA-180 dataset. The RCN and RCN

1This includes code for data preprocessing, train-test split, and downstream learners, which is available
at https://github.com/zahraatashgahi/NeuroFS. The performance of the downstream learners
using all features was compared with the reported values to ensure accurate replication of the experiment setup.
As detailed in our supplementary material, this was unsuccessful for the BASEHOCK and SMK datasets, which
are therefore omitted from the experiment.

2Atashgahi et al. (2023) also used higher values for K which are omitted in this study since there was little
variance in the results between the different methods.
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Figure 2: Resulting accuracy for the studied methods by dataset and number of selected features K
using the SVM downstream learner. Our proposed methods are "RCN" and "RCN flex". For visual
clarity, only the baseline method with the highest average accuracy for each dataset is shown. "All
Features" is the accuracy using all features in the dataset. Error bars indicate the standard deviation.
Results for the baseline methods are reproduced from Atashgahi et al. (2023).
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Figure 3: Average accuracy by dataset for the studied methods using the SVM downstream learner.
Our proposed methods are "RCN" and "RCN flex". Results for the baseline methods are reproduced
from Atashgahi et al. (2023).

flex approaches perform similarly in all conditions except for the ARCENE dataset, where the RCN
approach performs notably worse than the top baselines.

We also evaluated two additional downstream learners, KNN and ET, under the condition of K = 50
selected variables (see Table 3 in Appendix B). The results are very similar to those obtained with
the SVM classifier, indicating that the selected feature sets are valuable across multiple downstream
learners.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Wall-clock run time for the studied methods by dataset. All conditions use K = 50 selected
features and are repeated five times. The error bars indicate the standard deviation.

4.2 ADDITIONAL ANALYSES

In this section, we highlight some additional aspects to give a more complete picture of RelChaNet.
We include a comparison of the computational efficiency with similar methods, an ablation study of
the impact of the chosen change metric, and an investigation of the impact and feasible ranges of
hyperparameters.

Computational efficiency. We examine the comparative computational costs with two other
approaches, NeuroFS and LassoNet. Both are well-performing sparse and dense neural network
based methods, respectively. One drawback of our approach is that, since candidate features are
chosen randomly, it generally requires more training epochs than other approaches to ensure that all
features get the chance to enter the network. This motivates comparing the overall runtime of the
approaches.

We measure the wall-clock time for selecting K = 50 features, using two wide and two long datasets,
with settings otherwise as in the main experiment. For NeuroFS, we use the setup from the original
publication: a 3-layer sparse MLP with 1000 neurons in each layer, limiting the training epochs to
100. For LassoNet, we use the same MLP architecture as for RelChaNet, i.e., one hidden layer with
100 neurons. We keep all other settings at the LassoNet package defaults3. Each condition is run five
times.

The results are shown in Figure 4. The RCN and RCN flex approaches have comparable runtimes, both
demonstrating significantly greater efficiency than NeuroFS across the studied datasets. Additionally,
RCN is more efficient than LassoNet in three out of four conditions. One explanation for RelChaNet’s
efficiency is that its higher number of required epochs is offset by a relatively small computational
overhead. However, NeuroFS utilizes binary masks to implement sparse networks, and future
advancements in hardware optimized for sparse matrix computations could improve its efficiency.

Ablation study: Change metrics. We compare the performance of RelChaNet under different
change metrics. Specifically, we evaluate the gradient sums used in RelChaNet against using weight
changes or absolute weights. In both cases, the calculation of S is modified immediately before
Step 9 of Algorithm 1. For the weight changes, we set S = W(1) − W(1)

old , where W(1)
old are the first

layer weights at the time of the last rotation. For the absolute weights, we simply set S equal to the
first layer weights, S = W(1). We use four datasets, two long and two wide, and K = 50 selected
features, keeping all other properties the same as in the main experiment.

Figure 5 shows the results. For the long datasets (left two panels), the gradient sums and weight
changes perform similarly, surpassing the performance of absolute weights. For the wide datasets
(right two panels), the gradient sums show superior performance, while the other two approaches
exhibit similar effectiveness. In summary, under the studied conditions, gradient sums are the most
effective metric for measuring relative change within the RelChaNet algorithm.

Impact of hyperparameters. We investigate the role of the hyperparameters cratio and nmb. Gen-
erally, cratio determines the percentage of features included in the network in addition to the K
selected features, while nmb specifies the number of mini-batches after which scores are computed

3The LassoNet package is available at https://github.com/lasso-net/lassonet.
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Figure 5: Resulting accuracy for the studied change metrics by RCN method and dataset for K = 50
selected features using the SVM downstream learner. The error bars indicate the standard deviation.
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Figure 6: Accuracy using RelChaNet feature selection by hyperparameters cratio and nmb for two
datasets and K = 25 selected features. Each point represents the average of three runs.

and features are rotated. We use a long and a wide dataset, HAR and ARCENE, K = 25, and
keep all other properties consistent with the main experiment. We let cratio vary between 0.01 and
1 and nmb between 1 and 150. As studied hyperparameter sets we include the two configurations
from our experiment: (cratio = 0.2, nmb = 100) for the long datasets and (cratio = 0.5, nmb = 5) for the
wide datasets. Additionally, we include the four corners of the hyperparameter space and draw 40
pseudo-random sets of configurations from a Halton sequence. Each resulting condition is run three
times, and the accuracy is averaged.

The results are illustrated in Figure 6. For the long HAR dataset (left panel), the combination of
low cratio and high nmb yields strong results. In contrast, for the ARCENE dataset (right panel),
configurations with low nmb generally perform well. A combination of low cratio and higher nmb
may also be effective. This highlights that hyperparameters must be selected differently for different
datasets, with a comparatively narrower range working well for wide datasets.

5 DISCUSSION

In this paper, we introduce a novel feature selection algorithm aimed at enhancing the predictive
performance and interpretability of predictive models. Our approach incorporates neuron pruning
and regrowth from the sparse neural network literature into a dense neural network framework.
RelChaNet uses a relative change metric for pruning, which measures the relative change induced
in a network after a feature enters, while neurons are randomly regrown. Extensive experiments
demonstrate that our method, along with an extension featuring an adaptive input layer, consistently
outperforms state-of-the-art techniques on datasets with more cases than features. For datasets with
more features than cases, its performance is comparable to previous approaches. While the adaptive
version has theoretical advantages and performs better on one dataset, the base algorithm stands out
for its simplicity and competitive performance in most scenarios.

The primary limitation of our approach lies in its theoretical disadvantage in computational efficiency.
This is due in part to the reliance on a dense network, which typically has higher computational

9
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training costs than sparse networks with the same number of layers and neurons. Additionally,
regrowing neurons randomly necessitates either a large input layer or longer training. However, our
experiment demonstrates that these challenges can be mitigated by employing a small neural network
architecture without compromising feature selection performance. Furthermore, the efficiency was
found to be competitive with another dense approach. It is important to note, however, that this may
not generalize to scenarios beyond those studied.

We see many potential directions for future research. One avenue is to integrate our pruning and
regrowth protocol into sparse neural networks. This could be applied to the input layer for feature
selection, or extended to other layers for general sparse neural network training. Another direction is
to explore the utility of our approach for interpretable machine learning. For instance, the values in
the high score vector h could be evaluated as a measure of variable importance.

REPRODUCIBILITY STATEMENT

We include the source code of our method in the form of a Python package, as well as code to
reproduce the main experiment results, in the supplementary material.
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A EXPERIMENTAL SETUP

A.1 BASELINES

The methods compared against our approach are as follows. Their specific implementations are
detailed in Atashgahi et al. (2023):

• Fisher Score (Gu et al., 2011): A classic filter method that selects feature sets based on their
ability to separate data points.

• CIFE (Conditional Infomax Feature Extraction, Lin & Tang, 2006): A filter method that
aims to maximize the class-relevant information of the feature set.

• ICAP (Interaction Capping Criterion, Jakulin, 2005): A filter method that considers the
complementary relationship between features.

• RFS (Robust Feature Selection, Nie et al., 2010): A method embedded in regression that
uses joint L1 and L2 regularization of the weights.

• QS (Quick Selection, Atashgahi et al., 2022): A method embedded in sparse neural networks
that combines denoising autoencoders and the L1 norm of first layer neuron weights.

• STG (Stochastic Gates, Yamada et al., 2020): A method embedded in neural networks that
controls the input layer neurons using a trainable probabilistic gate.

• LassoNet (Lemhadri et al., 2021): A method embedded in neural networks that adds a
regularized residual connection from the input layer to the output. The residual connection
controls the sizes of first layer weights.

• RigL (Evci et al., 2020): A method embedded in sparse neural networks that rotates features
by pruning based on parameter weights and regrowing based on gradients. Feature selection
can be performed by investigating first layer weights after training (Atashgahi et al., 2023).

• NeuroFS (Atashgahi et al., 2023): A method embedded in sparse neural networks that
extends the ideas used in RigL to input neurons.

A.2 RELCHANET SETUP

The parameters used for RelChaNet in the main experiment are as follows. We employ a single
hidden layer neural network with 100 neurons and a ReLU activation function. For training, we use a
batch size of 1024 and a learning rate of 0.001 for the Adam optimizer. If there are fewer cases in the
dataset, full batches are used instead. The hyperparameters specific to our method are: cratio = 0.2
and nmb = 100 for long datasets, and cratio = 0.5 and nmb = 5 for wide datasets. Stopping is based
on a combination of validation loss and the identified feature set. For this, the training data is split
again into a training and a validation set. Training continues on the training set until the validation
loss does not decrease for 100 input layer rotations or the set of K features with the highest values in
h remains unchanged for 100 rotations. Afterwards, the training is again performed on the complete
training data for the determined number of rotations. For the flex algorithm, during this final training
phase, the input layer is scaled from its initial size to the final size using a total of ten size change
steps.
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B DETAILED RESULTS

Table 2: Resulting accuracy of the studied methods for different numbers of selected features K and
datasets using the SVM downstream learner. Our proposed methods are "RCN" and "RCN flex".
"All" is the accuracy using all features in the dataset. The best and second-best methods for each
combination of K and dataset are marked in bold and underlined, respectively. Entries represent
the mean ± standard deviation of the downstream learner accuracy across five runs. Results for the
baseline methods are reproduced from Atashgahi et al. (2023).

COIL-20 HAR ISOLET MNIST Fashion-MNIST USPS ARCENE GLA-BRA-180 Prostate-GE

All 100.00 95.05 96.03 97.92 88.30 97.58 77.50 72.22 80.95

K = 25
NeuroFS 95.86 ± 1.31 87.46 ± 0.79 86.22 ± 0.84 87.86 ± 1.77 79.38 ± 0.96 93.98 ± 0.87 63.00 ± 4.85 73.88 ± 3.80 88.58 ± 2.35
LassoNet 92.72 ± 0.85 93.00 ± 0.31 76.48 ± 0.39 86.40 ± 1.26 78.68 ± 0.55 94.04 ± 0.38 69.00 ± 2.55 76.12 ± 4.19 88.58 ± 2.35
STG 97.02 ± 1.41 87.48 ± 0.80 77.16 ± 4.34 85.24 ± 1.89 77.44 ± 0.53 94.04 ± 0.46 69.00 ± 5.15 67.22 ± 4.78 85.72 ± 3.00
QS 91.00 ± 4.21 87.14 ± 1.74 72.56 ± 6.53 85.25 ± 1.47 71.57 ± 1.97 93.00 ± 0.81 73.75 ± 8.20 69.45 ± 2.75 71.43 ± 12.16
Fisher 24.70 ± 0.00 77.10 ± 0.00 57.40 ± 0.00 74.40 ± 0.00 53.10 ± 0.00 82.00 ± 0.00 65.00 ± 0.00 58.30 ± 0.00 90.50 ± 0.00
CIFE 50.70 ± 0.00 80.20 ± 0.00 56.00 ± 0.00 80.90 ± 0.00 63.40 ± 0.00 50.20 ± 0.00 67.50 ± 0.00 61.10 ± 0.00 61.90 ± 0.00
ICAP 94.40 ± 0.00 84.50 ± 0.00 67.10 ± 0.00 81.60 ± 0.00 50.10 ± 0.00 89.90 ± 0.00 77.50 ± 0.00 69.40 ± 0.00 47.60 ± 0.00
RFS 88.20 ± 0.00 88.90 ± 0.00 76.50 ± 0.00 - - 94.80 ± 0.00 77.50 ± 0.00 - 90.50 ± 0.00
RigL 92.38 ± 3.20 86.46 ± 1.47 79.98 ± 2.25 82.06 ± 0.99 74.12 ± 1.59 93.10 ± 0.62 74.50 ± 4.30 66.10 ± 3.22 78.08 ± 6.46
RCN 98.75 ± 0.31 92.07 ± 1.42 88.45 ± 1.16 93.04 ± 0.41 83.05 ± 0.40 95.82 ± 0.49 78.50 ± 6.52 75.00 ± 2.78 90.48 ± 0.00
RCN flex 98.89 ± 0.71 92.06 ± 0.97 88.28 ± 1.41 93.10 ± 0.25 82.70 ± 0.32 95.68 ± 0.08 80.50 ± 5.12 77.78 ± 1.96 88.57 ± 2.61

K = 50
NeuroFS 98.78 ± 0.29 91.46 ± 0.72 92.62 ± 0.40 95.30 ± 0.41 83.78 ± 0.64 96.78 ± 0.17 76.50 ± 2.55 80.54 ± 4.96 90.50 ± 0.00
LassoNet 97.16 ± 1.06 93.74 ± 0.39 84.90 ± 0.22 94.46 ± 0.21 82.58 ± 0.10 95.94 ± 0.15 71.00 ± 2.00 74.46 ± 4.78 88.58 ± 2.35
STG 99.32 ± 0.40 91.22 ± 1.23 85.82 ± 2.83 93.20 ± 0.62 82.36 ± 0.52 96.62 ± 0.34 71.00 ± 2.55 70.00 ± 4.08 84.78 ± 3.55
QS 96.52 ± 1.53 91.96 ± 1.04 89.78 ± 1.80 93.62 ± 0.49 80.82 ± 0.51 95.52 ± 0.27 74.38 ± 4.80 72.20 ± 2.80 76.20 ± 7.53
Fisher 74.00 ± 0.00 79.80 ± 0.00 67.40 ± 0.00 81.90 ± 0.00 67.80 ± 0.00 91.00 ± 0.00 67.50 ± 0.00 63.90 ± 0.00 90.50 ± 0.00
CIFE 59.40 ± 0.00 84.20 ± 0.00 59.80 ± 0.00 89.30 ± 0.00 66.90 ± 0.00 61.30 ± 0.00 52.50 ± 0.00 58.30 ± 0.00 47.60 ± 0.00
ICAP 99.30 ± 0.00 88.70 ± 0.00 75.10 ± 0.00 89.00 ± 0.00 59.50 ± 0.00 95.20 ± 0.00 70.00 ± 0.00 72.20 ± 0.00 57.10 ± 0.00
RFS 95.80 ± 0.00 94.00 ± 0.00 91.50 ± 0.00 - - 95.80 ± 0.00 77.50 ± 0.00 - 90.50 ± 0.00
RigL 97.86 ± 1.32 91.82 ± 0.30 89.58 ± 1.24 93.94 ± 0.63 81.92 ± 0.87 96.04 ± 0.58 77.00 ± 3.32 70.54 ± 4.16 79.06 ± 7.11
RCN 99.58 ± 0.29 93.74 ± 0.62 93.41 ± 0.25 96.69 ± 0.19 85.95 ± 0.22 96.83 ± 0.17 72.50 ± 5.59 73.33 ± 1.52 90.48 ± 0.00
RCN flex 99.51 ± 0.19 93.65 ± 0.36 93.46 ± 0.19 96.79 ± 0.11 85.84 ± 0.36 97.06 ± 0.23 76.00 ± 6.75 74.44 ± 2.32 89.52 ± 2.13

K = 75
NeuroFS 99.06 ± 0.12 93.16 ± 0.79 94.04 ± 0.34 96.76 ± 0.22 85.70 ± 0.28 97.06 ± 0.15 82.00 ± 4.00 82.24 ± 3.31 89.54 ± 1.92
LassoNet 99.46 ± 0.35 94.62 ± 0.17 91.00 ± 0.62 96.00 ± 0.09 83.92 ± 0.13 96.36 ± 0.08 70.50 ± 2.45 76.64 ± 5.44 90.50 ± 0.00
STG 99.68 ± 0.22 92.42 ± 1.11 90.10 ± 2.17 95.52 ± 0.22 84.14 ± 0.43 96.88 ± 0.23 75.00 ± 2.74 71.08 ± 1.37 84.78 ± 3.55
QS 98.17 ± 1.16 93.50 ± 0.77 93.04 ± 0.46 95.98 ± 0.33 83.80 ± 0.53 96.85 ± 0.05 76.88 ± 2.72 73.60 ± 1.40 72.62 ± 9.78
Fisher 76.00 ± 0.00 81.70 ± 0.00 76.00 ± 0.00 87.10 ± 0.00 74.30 ± 0.00 94.40 ± 0.00 70.00 ± 0.00 66.70 ± 0.00 90.50 ± 0.00
CIFE 63.20 ± 0.00 84.80 ± 0.00 74.30 ± 0.00 92.70 ± 0.00 67.70 ± 0.00 68.00 ± 0.00 72.50 ± 0.00 58.30 ± 0.00 47.60 ± 0.00
ICAP 99.00 ± 0.00 89.20 ± 0.00 79.70 ± 0.00 92.40 ± 0.00 67.20 ± 0.00 95.30 ± 0.00 72.50 ± 0.00 72.20 ± 0.00 57.10 ± 0.00
RFS 99.70 ± 0.00 94.90 ± 0.00 93.90 ± 0.00 - - 97.20 ± 0.00 80.00 ± 0.00 - 90.50 ± 0.00
RigL 99.20 ± 0.43 93.34 ± 0.47 92.32 ± 0.56 95.98 ± 0.51 84.52 ± 0.72 96.90 ± 0.24 81.50 ± 4.64 72.22 ± 4.98 79.06 ± 8.83
RCN 99.93 ± 0.16 95.31 ± 0.37 94.60 ± 0.49 97.49 ± 0.13 86.75 ± 0.25 97.15 ± 0.19 71.00 ± 7.42 77.78 ± 3.40 90.48 ± 0.00
RCN flex 99.93 ± 0.16 94.60 ± 0.65 94.88 ± 0.31 97.53 ± 0.11 86.76 ± 0.14 97.19 ± 0.10 82.00 ± 4.81 75.56 ± 3.04 90.48 ± 0.00

K = 100
NeuroFS 99.18 ± 0.50 94.18 ± 0.29 95.06 ± 0.31 97.32 ± 0.17 86.64 ± 0.21 97.22 ± 0.12 82.00 ± 1.87 81.12 ± 2.05 89.54 ± 1.92
LassoNet 99.30 ± 0.00 95.14 ± 0.29 93.18 ± 0.22 96.64 ± 0.14 84.98 ± 0.18 97.04 ± 0.12 72.00 ± 4.30 79.46 ± 2.83 90.50 ± 0.00
STG 99.76 ± 0.12 92.82 ± 0.74 92.64 ± 0.56 96.38 ± 0.35 85.20 ± 0.58 97.08 ± 0.18 75.50 ± 3.67 72.20 ± 3.07 85.72 ± 3.00
QS 98.28 ± 1.15 94.06 ± 0.48 94.22 ± 0.28 96.85 ± 0.09 85.52 ± 0.15 97.00 ± 0.14 78.12 ± 1.08 73.60 ± 1.40 78.58 ± 9.82
Fisher 80.20 ± 0.00 83.80 ± 0.00 79.80 ± 0.00 90.70 ± 0.00 79.60 ± 0.00 96.50 ± 0.00 65.00 ± 0.00 66.70 ± 0.00 90.50 ± 0.00
CIFE 67.70 ± 0.00 85.30 ± 0.00 81.20 ± 0.00 95.10 ± 0.00 69.20 ± 0.00 78.00 ± 0.00 65.00 ± 0.00 58.30 ± 0.00 71.40 ± 0.00
ICAP 100.00 ± 0.00 92.10 ± 0.00 82.80 ± 0.00 95.00 ± 0.00 77.70 ± 0.00 95.40 ± 0.00 82.50 ± 0.00 69.40 ± 0.00 52.40 ± 0.00
RFS 100.00 ± 0.00 95.40 ± 0.00 94.40 ± 0.00 - - 97.40 ± 0.00 80.00 ± 0.00 - 90.50 ± 0.00
RigL 99.40 ± 0.43 94.08 ± 0.26 93.66 ± 0.58 96.88 ± 0.22 85.82 ± 0.23 97.14 ± 0.10 80.00 ± 4.47 73.90 ± 3.76 81.92 ± 8.18
RCN 99.93 ± 0.16 95.61 ± 0.25 95.73 ± 0.46 97.80 ± 0.10 87.32 ± 0.15 97.34 ± 0.15 74.00 ± 2.85 77.22 ± 3.62 90.48 ± 0.00
RCN flex 100.00 ± 0.00 95.19 ± 0.19 95.21 ± 0.23 97.79 ± 0.07 87.21 ± 0.08 97.37 ± 0.13 77.50 ± 3.06 77.78 ± 4.39 90.48 ± 0.00
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Table 3: Resulting accuracy of the studied methods for different downstream learners and datasets
using K = 50 selected features. Our proposed methods are "RCN" and "RCN flex". "All" is the
accuracy using all features in the dataset. The best and second-best methods for each combination
of learner and dataset are marked in bold and underlined, respectively. Entries represent the mean
± standard deviation of the downstream learner accuracy across five runs. Results for the baseline
methods are reproduced from Atashgahi et al. (2023).

COIL-20 HAR ISOLET MNIST Fashion-MNIST USPS ARCENE GLA-BRA-180 Prostate-GE

Learner: ET
All 100.00 ± 0.00 93.53 ± 0.15 94.05 ± 0.32 97.10 ± 0.05 87.19 ± 0.13 96.29 ± 0.16 79.50 ± 4.85 75.00 ± 4.97 88.57 ± 3.81
NeuroFS 99.94 ± 0.12 85.48 ± 1.46 91.46 ± 0.73 93.68 ± 0.43 84.26 ± 0.55 95.44 ± 0.27 75.00 ± 5.24 75.46 ± 6.71 90.50 ± 0.00
LassoNet 99.76 ± 0.12 91.12 ± 0.30 84.94 ± 0.62 92.96 ± 0.15 83.68 ± 0.13 94.86 ± 0.22 73.50 ± 4.64 76.12 ± 3.80 89.54 ± 1.92
STG 100.00 ± 0.00 88.68 ± 0.42 88.50 ± 2.15 90.38 ± 0.42 82.05 ± 0.48 94.32 ± 0.21 79.00 ± 3.39 71.08 ± 2.24 83.84 ± 3.80
QS 99.25 ± 0.47 87.86 ± 0.72 88.78 ± 1.86 91.95 ± 0.58 81.28 ± 0.54 94.28 ± 0.40 73.75 ± 4.15 75.00 ± 0.00 77.38 ± 5.19
Fisher 96.86 ± 0.43 85.50 ± 0.30 81.42 ± 0.59 84.86 ± 0.15 72.06 ± 0.08 90.94 ± 0.24 60.00 ± 1.58 63.90 ± 0.00 90.50 ± 0.00
CIFE 74.70 ± 0.00 85.30 ± 0.00 55.40 ± 0.00 87.60 ± 0.00 68.40 ± 0.00 82.70 ± 0.00 50.00 ± 0.00 69.40 ± 0.00 52.40 ± 0.00
ICAP 99.70 ± 0.00 89.20 ± 0.00 70.60 ± 0.00 87.80 ± 0.00 65.50 ± 0.00 93.50 ± 0.00 80.00 ± 0.00 63.90 ± 0.00 81.00 ± 0.00
RFS 98.30 ± 0.00 89.70 ± 0.00 90.40 ± 0.00 - - 94.70 ± 0.00 75.00 ± 0.00 - 90.50 ± 0.00
RCN 100.00 ± 0.00 90.32 ± 1.26 92.65 ± 0.52 95.30 ± 0.12 85.70 ± 0.22 95.76 ± 0.13 72.50 ± 9.35 76.11 ± 1.52 90.48 ± 0.00
RCN flex 100.00 ± 0.00 91.12 ± 1.33 92.19 ± 0.47 95.41 ± 0.21 85.49 ± 0.29 95.91 ± 0.18 78.00 ± 6.71 75.00 ± 3.40 90.48 ± 0.00

Learner: KNN
All 100.00 87.85 88.14 96.91 84.96 97.37 92.50 69.44 76.19
NeuroFS 99.80 ± 0.28 84.64 ± 1.77 85.96 ± 1.53 91.64 ± 0.57 80.12 ± 0.87 96.18 ± 0.49 74.00 ± 5.15 64.42 ± 5.38 85.86 ± 4.67
LassoNet 98.84 ± 0.20 88.70 ± 0.57 79.22 ± 0.47 91.38 ± 0.36 79.30 ± 0.20 95.70 ± 0.26 67.50 ± 7.75 68.90 ± 4.07 82.86 ± 3.80
STG 99.94 ± 0.12 87.86 ± 0.39 83.16 ± 3.42 87.16 ± 0.64 77.65 ± 0.48 95.14 ± 0.45 75.00 ± 5.24 58.90 ± 7.52 81.00 ± 0.00
QS 98.80 ± 0.38 85.88 ± 1.13 82.38 ± 3.12 89.30 ± 0.76 76.65 ± 0.51 95.17 ± 0.45 75.00 ± 3.54 66.70 ± 0.00 65.47 ± 8.37
Fisher 95.80 ± 0.00 81.10 ± 0.00 74.10 ± 0.00 80.20 ± 0.00 63.70 ± 0.00 88.80 ± 0.00 70.00 ± 0.00 50.00 ± 0.00 85.70 ± 0.00
CIFE 71.20 ± 0.00 71.80 ± 0.00 44.60 ± 0.00 82.90 ± 0.00 61.60 ± 0.00 59.60 ± 0.00 70.00 ± 0.00 44.40 ± 0.00 57.10 ± 0.00
ICAP 98.60 ± 0.00 82.70 ± 0.00 59.00 ± 0.00 83.40 ± 0.00 59.30 ± 0.00 94.00 ± 0.00 65.00 ± 0.00 61.10 ± 0.00 66.70 ± 0.00
RFS 97.20 ± 0.00 90.30 ± 0.00 87.20 ± 0.00 - - 95.40 ± 0.00 85.00 ± 0.00 - 90.50 ± 0.00
RCN 99.93 ± 0.16 86.43 ± 0.93 88.21 ± 0.46 94.48 ± 0.20 82.01 ± 0.20 96.65 ± 0.20 73.00 ± 7.37 58.89 ± 4.12 87.62 ± 2.61
RCN flex 99.79 ± 0.31 86.40 ± 1.14 87.12 ± 0.69 94.62 ± 0.24 82.10 ± 0.56 96.48 ± 0.39 76.50 ± 2.24 62.22 ± 6.09 89.52 ± 2.13

Learner: SVM
All 100.00 95.05 96.03 97.92 88.30 97.58 77.50 72.22 80.95
NeuroFS 98.78 ± 0.29 91.46 ± 0.72 92.62 ± 0.40 95.30 ± 0.41 83.78 ± 0.64 96.78 ± 0.17 76.50 ± 2.55 80.54 ± 4.96 90.50 ± 0.00
LassoNet 97.16 ± 1.06 93.74 ± 0.39 84.90 ± 0.22 94.46 ± 0.21 82.58 ± 0.10 95.94 ± 0.15 71.00 ± 2.00 74.46 ± 4.78 88.58 ± 2.35
STG 99.32 ± 0.40 91.22 ± 1.23 85.82 ± 2.83 93.20 ± 0.62 82.36 ± 0.52 96.62 ± 0.34 71.00 ± 2.55 70.00 ± 4.08 84.78 ± 3.55
QS 96.52 ± 1.53 91.96 ± 1.04 89.78 ± 1.80 93.62 ± 0.49 80.82 ± 0.51 95.52 ± 0.27 74.38 ± 4.80 72.20 ± 2.80 76.20 ± 7.53
Fisher 74.00 ± 0.00 79.80 ± 0.00 67.40 ± 0.00 81.90 ± 0.00 67.80 ± 0.00 91.00 ± 0.00 67.50 ± 0.00 63.90 ± 0.00 90.50 ± 0.00
CIFE 59.40 ± 0.00 84.20 ± 0.00 59.80 ± 0.00 89.30 ± 0.00 66.90 ± 0.00 61.30 ± 0.00 52.50 ± 0.00 58.30 ± 0.00 47.60 ± 0.00
ICAP 99.30 ± 0.00 88.70 ± 0.00 75.10 ± 0.00 89.00 ± 0.00 59.50 ± 0.00 95.20 ± 0.00 70.00 ± 0.00 72.20 ± 0.00 57.10 ± 0.00
RFS 95.80 ± 0.00 94.00 ± 0.00 91.50 ± 0.00 - - 95.80 ± 0.00 77.50 ± 0.00 - 90.50 ± 0.00
RigL 97.86 ± 1.32 91.82 ± 0.30 89.58 ± 1.24 93.94 ± 0.63 81.92 ± 0.87 96.04 ± 0.58 77.00 ± 3.32 70.54 ± 4.16 79.06 ± 7.11
RCN 99.58 ± 0.29 93.74 ± 0.62 93.41 ± 0.25 96.69 ± 0.19 85.95 ± 0.22 96.83 ± 0.17 72.50 ± 5.59 73.33 ± 1.52 90.48 ± 0.00
RCN flex 99.51 ± 0.19 93.65 ± 0.36 93.46 ± 0.19 96.79 ± 0.11 85.84 ± 0.36 97.06 ± 0.23 76.00 ± 6.75 74.44 ± 2.32 89.52 ± 2.13
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C AUXILARY EXPERIMENT

To complement the experiments in Section 4, we test the performance of RelChaNet against two
baseline methods on four additional datasets. CIFAR-10 and CIFAR-100 are two additional long
datasets representing complex prediction tasks, while BASEHOCK and SMK are two additional
wide datasets. Their dimensions are shown in Table 4. Each condition was run five times, except
for NeuroFS on the CIFAR datasets, where we limited runs to a single iteration to ensure that the
runtime remained below 12 hours per condition.

Table 4: Dataset dimensions and domain

Cases Features Domain Reference
CIFAR-10 60000 3072 Image Krizhevsky (2009)

CIFAR-100 60000 3072 Image Krizhevsky (2009)
BASEHOCK 1993 4862 Text Lang (1995)

SMK 187 19993 Genomics Spira et al. (2007)

The results in Table 5 show that RCN and RCN flex perform best for the CIFAR-10 dataset, indicating
their potential for more complex datasets. However, they are outperformed by NeuroFS for CIFAR-
100, potentially due to their much smaller architecture. For the two wide datasets, the results are
mixed: RCN and RCN flex outperform the other approaches on SMK but fall behind on BASEHOCK.

Table 5: Resulting accuracy of the studied methods for different numbers of selected features K and
datasets using the SVM downstream learner. Our proposed methods are "RCN" and "RCN flex".
"All" is the accuracy using all features in the dataset. The best and second-best methods for each
combination of K and dataset are marked in bold and underlined, respectively. Entries represent
the mean ± standard deviation of the downstream learner accuracy across five runs, except for the
CIFAR datasets and NeuroFS method, which use a single run.

CIFAR-10 CIFAR-100 BASEHOCK SMK

All 54.36 26.39 94.24 84.21

Average
NeuroFS 46.62 20.95 89.00 79.20
LassoNet 28.60 11.45 91.44 78.03
RCN 46.80 19.26 85.87 82.76
RCN flex 47.36 19.77 85.14 82.11

K = 25
NeuroFS 40.40 17.40 85.46 ± 2.10 77.34 ± 5.76
LassoNet 23.30 ± 0.96 9.58 ± 1.05 89.82 ± 1.21 74.74 ± 3.00
RCN 40.71 ± 1.75 15.33 ± 0.84 82.31 ± 1.82 82.63 ± 6.06
RCN flex 41.82 ± 0.64 15.26 ± 1.09 81.40 ± 0.88 77.89 ± 6.34

K = 50
NeuroFS 46.30 21.10 88.08 ± 0.70 81.56 ± 2.65
LassoNet 28.77 ± 5.00 10.55 ± 0.50 91.98 ± 1.16 80.53 ± 3.99
RCN 46.65 ± 0.60 18.98 ± 0.90 86.47 ± 1.45 83.68 ± 4.32
RCN flex 47.23 ± 0.87 19.13 ± 1.34 84.56 ± 1.67 82.11 ± 3.43

K = 75
NeuroFS 50.30 22.10 90.86 ± 2.20 78.40 ± 3.89
LassoNet 30.22 ± 1.54 12.41 ± 2.15 91.88 ± 1.01 78.42 ± 7.54
RCN 49.28 ± 0.47 20.40 ± 0.63 87.47 ± 1.59 82.63 ± 2.35
RCN flex 49.65 ± 0.38 21.52 ± 0.58 86.87 ± 1.69 83.16 ± 3.53
K = 100
NeuroFS 49.50 23.20 91.62 ± 2.08 79.48 ± 5.69
LassoNet 32.12 ± 0.56 13.25 ± 2.22 92.08 ± 0.52 78.42 ± 2.20
RCN 50.58 ± 0.40 22.34 ± 0.43 87.22 ± 1.42 82.11 ± 2.88
RCN flex 50.73 ± 0.34 23.19 ± 0.18 87.72 ± 2.56 85.26 ± 1.44

16


	Introduction
	Background and related work
	The RelChaNet algorithm
	Adaptive network sizes

	Experiments
	Results
	Additional analyses

	Discussion
	Experimental setup
	Baselines
	RelChaNet setup

	Detailed results
	Auxilary experiment

