RelChaNet: Neural Network Feature Selec TION USING RELATIVE CHANGE SCORES

Anonymous authors

Paper under double-blind review

ABSTRACT

There is an ongoing effort to develop feature selection algorithms to improve interpretability, reduce computational resources, and minimize overfitting in predictive models. Neural networks stand out as architectures on which to build feature selection methods, and recently, neuron pruning and regrowth have emerged from the sparse neural network literature as promising new tools. We introduce RelChaNet, a novel and lightweight supervised feature selection algorithm that uses neuron pruning and regrowth in the input layer of a dense neural network. For neuron pruning, a gradient sum metric measures the relative change induced in a network after a feature enters, while neurons are randomly regrown. We also propose an extension that adapts the size of the input layer at runtime. Extensive experiments on nine different datasets show that our approach generally outperforms the current state-of-the-art methods, and in particular improves the average accuracy by 2% on the MNIST dataset. Our code is available in the supplementary material.

- 1 INTRODUCTION
- 025 026

004

010 011

012

013

014

015

016

017

018

019

021

023

Feature selection is an elemental task in predictive modelling. It can serve to reduce computational 027 resources, improve interpretability by highlighting important features, or improve predictive performance by reducing overfitting (Li et al., 2018). To further these goals has been the driving motivation 029 of large recent efforts to improve existing and develop new feature selection algorithms. Feature selection algorithms can be categorized into embedded, wrapper, and filter approaches. Embedded 031 methods select features during training of a predictive model, such as linear regression (Tibshirani, 032 1996) or neural networks (Lemhadri et al., 2021). Wrapper approaches also work around a specific 033 predictive model, but treat it as a black box with the feature set as a hyperparameter, e.g., via particle 034 swarm optimization (Rostami et al., 2021). Filter approaches select feature sets without being tailored around a predictive model, but using information-theoretic measures. They include, for example, 035 statistical tests of the relationship between the feature and the outcome (Bommert et al., 2020).

Neural networks have a great ability to capture nonlinear relationships and offer many entry points for slightly modifying their architecture or training algorithm to build successful embedded feature selection methods. To decide on the utility of an input neuron, approaches added gates in the input layer (Yamada et al., 2020), added residual connections to the output (Lemhadri et al., 2021), or added gradients with respect to data changes to the loss (Cherepanova et al., 2023).

Feature selection in neural networks translates to aiming for a sparse input layer and is therefore
a special case of sparse neural networks (Hoefler et al., 2021). Recently, it was shown that sparse
neural network training (Mocanu et al., 2018; Evci et al., 2020) can be adapted to achieve a dominant
feature selection performance (Liu et al., 2024; Atashgahi et al., 2024; Sokar et al., 2024). However,
we have identified potential improvements to enhance the network's ability to detect important
features and make it easier for regrown neurons to compete with established neurons during training.

In this paper, we introduce RelChaNet, a novel neural network feature selection algorithm using
 relative change scores. It applies neuron pruning and regrowth in the input layer of a dense neural
 network based on a relative change metric shown in Figure 1. Our main contributions are:

- U
- 052

1. The RelChaNet feature selection algorithm, which has two key hyperparameters that allow it to adapt to the characteristics of the dataset used. It addresses two identified drawbacks by giving candidates multiple mini-batches of time to show their potential relevance in the

Figure 1: Illustration of the relative change score calculation embedded in RelChaNet, Algorithm 1. We consider a neural network with an input layer size equal to the number of features to select, K, plus additional candidate features. Over several mini-batches, determined by the hyperparameter $n_{\rm mb}$, the first layer gradients $\mathbf{G}_k^{(1)}$ are accumulated in a matrix S. Next, these gradient sums are normalized by taking the L^1 norm with respect to each input neuron, followed by z-standardizing the resulting vector to produce a score vector s. The scores of all candidates are then used to update the high scores h. Finally, features among the top K high scores remain in the network, while the other features are randomly redrawn. Before continuing training, the first layer weights of candidate features are reinitialized.

network, and by comparing relevance as determined by the change induced rather than by absolute weights.

- 2. A version of the algorithm that can adapt the input layer size during runtime, making the algorithm less sensitive to one of its hyperparameters.
- 3. An evaluation of the approach on nine diverse datasets, demonstrating that it generally outperforms the current state-of-the-art.

The structure of this paper is as follows: We begin with a review of related work, particularly focusing on neural network-based methods. Next, we present the RelChaNet algorithm and its extension with an adaptive input layer size. We then conduct an extensive experiment to empirically evaluate our approach. Finally, we perform auxiliary analyses to investigate its design parameters and computational efficiency.

087 088 089

094

102 103

065

066

067

068

069

071

072

073

074 075

076

077

079

081

2 BACKGROUND AND RELATED WORK

In this section, we introduce the feature selection problem within the framework of neural networks and review previous solution approaches. Most approaches slightly modify a dense neural network architecture or the loss function. Recently, successful approaches have been taken from the framework of sparse neural networks.

Feature selection in neural networks. We consider the task of selecting a set of K features that are most valuable for making accurate predictions in a supervised learning setting. Specifically for neural networks, we can express this task using L^0 regularization of the first layer network weights. Accordingly, we want to optimize the network under the condition that only K input neurons are active, i.e., have any non-zero adjacent weights. If we consider a neural network with one input neuron for each feature $i \in \{1, ..., N\}, N > K$, we can express the feature selection task as finding a specific set of network weights **W** that fulfills

$$\arg\min_{\mathbf{W}} \left\{ \mathcal{L}(\mathbf{W}) \mid \#\{i \mid ||\mathbf{W}_{i.}^{(1)}||_1 > 0\} = K \right\}$$
(1)

where $\mathcal{L}(\mathbf{W})$ represents evaluating the loss function \mathcal{L} using the data and network weights, and $\mathbf{W}_{i.}^{(1)}$ is the vector of outgoing first layer weights from input neuron *i*. The key challenge in solving this task is to implement an effective L^0 regularization. Exact solutions are computationally prohibitive and become intractable in high-dimensional settings (Yamada et al., 2020). Consequently, the related work discussed below uses various approximations to address this challenge. 108 **Dense neural networks.** There are several methods embedded in dense neural networks for feature 109 selection. A common property is that the number of active neurons is not strictly enforced before 110 model convergence. Instead, selection is gradual, starting with a full input layer of N neurons 111 and reducing active neurons during training. This approach makes it easier to identify complex 112 interactions between features, at the cost of increased computational complexity. Stochastic gates (Yamada et al., 2020) approach the L^0 regularization by adding a gate to each input layer neuron. 113 For each gate, a trainable parameter controls the probability of a feature being active. The LassoNet 114 (Lemhadri et al., 2021) adds a residual connection from each input layer neuron to the network output. 115 The absolute sizes of these N residual weights are added to the loss function and for each feature i116 individually represent a bound on the size of the corresponding first layer weights, $||\mathbf{W}_{i}^{(1)}||_{1}$. A less 117 invasive approach is DeepLasso (Cherepanova et al., 2023), which adds the gradient with respect to 118 changes in the input data to the loss function. This encourages the network not to use some features 119 during training, rendering the corresponding input neuron inactive. 120

121

Sparse neural networks. Sparse neural networks keep a large fraction of the weights throughout 122 the network at 0 to reduce memory requirements or training time (Hoefler et al., 2021). One method 123 to achieve this is structured sparsity, such as neuron pruning, where all of a neuron's outgoing weights 124 are set to 0. Metrics for deciding which neurons to prune include the magnitude of the outgoing 125 weights or the sensitivity of the output to the neuron. Neurons can also be periodically regrown, 126 based on criteria such as the size of gradients or adjacent weights. Molchanov et al. (2019) propose 127 a neuron/filter pruning method that calculates a score across mini-batches, similar to our approach. 128 However, their method is not specific to the input layer, calculates the product of weight and gradient, 129 and does not involve regrowing neurons or reusing a score later in training. GradEnFS (Liu et al., 130 2024) uses sparse neural networks for feature selection. Similar to DeepLasso, it measures the 131 importance of neurons based on how sensitive the loss is to changes in the input neurons. After the model converges, it selects the top K features based on neuron importance. We see this selection 132 procedure as a disadvantage because no specific sets of K features are assessed during training. 133

134 Since pruning the input layer reduces the number of active neurons, as required in Equation 1, methods 135 that do so are promising for feature selection. NeuroFS (Atashgahi et al., 2023) extends adaptive 136 sparse neural network training, which utilizes weight pruning (Mocanu et al., 2018; Evci et al., 2020) 137 , by incorporating input layer neuron pruning. Input neurons are pruned after each epoch based on the magnitude of their outgoing connections, $||\mathbf{W}_{i.}^{(1)}||_1$. To regrow an input neuron, NeuroFS calculates 138 the absolute gradients of all currently pruned first layer weights. Neurons are then regrown based on 139 the largest absolute gradient among their adjacent weights. During training, the number of active 140 neurons in the input layer is continuously reduced. After training, the input neurons with the largest 141 outgoing connections among the remaining active neurons are selected. 142

143 We generally observe two drawbacks in gradient-based regrowing and absolute weight-based pruning 144 for feature selection. Firstly, in the regrowing procedure, features need to signal their importance 145 through high adjacent gradients before the network makes any adjustments for them. However, the network might take longer, e.g., multiple mini-batches, to recognize the importance of a feature, 146 especially if it is involved in complex interactions with other features. Secondly, in later training 147 epochs, the absolute weights of regrown neurons are compared to those of longer established neurons. 148 In consequence, features are compared while being given different times to grow their weights. To 149 mitigate both of these drawbacks, we propose to regrow features randomly and to use a metric of the 150 change a feature induces in the network over the first few mini-batches after it enters the network for 151 pruning. 152

152 153 154

155

3 THE RELCHANET ALGORITHM

We propose the RelChaNet algorithm for supervised feature selection using neural networks.
RelChaNet computes a score for each input neuron by aggregating gradients over mini-batches.
These scores are normalized and used to update a high score vector, which guides feature selection (see Figure 1 for an illustration). This section walks through the pseudocode in Algorithm 1 and explains its rationale. RelChaNet is implemented using PyTorch (Paszke et al., 2019) and is available as a Python package in the supplementary material.

162	Alg	orithm 1 RelChaNet
163	1:	Input. Dataset with N features, number of selected features K, number of first hidden layer
164		neurons n_{bidden} . Hyperparameters: Ratio of candidate features c_{rotio} number of mini-batches n_{mb}
165	2:	Initialize. Number of candidate features $K_c = \text{round}(c_{\text{rotio}}(N-K))$. Network with input
166		layer size $K + K_c$. Randomly choose features to populate the input layer, $I_{input} = I_{cands} =$
167		Rand($\{1, \ldots, N\}, K + K_c$). Score vector $s \in \mathbb{R}^{K+K_c}$, high score vector $h \in \mathbb{R}^N$. First layer
168		gradients $\mathbf{G}^{(1)}$ and gradient sum matrix $\boldsymbol{S}: \mathbf{G}^{(1)}, \boldsymbol{S} \in \mathbb{R}^{(K+K_c) \times n_{\text{hidden}}}$
169	3:	while training not stopped do
170	4:	S = 0
171	5:	for $n_{\rm mb}$ mini-batches do
172	6:	Feed-forward step and backpropagation using a mini-batch of data
173	7:	$oldsymbol{S} = oldsymbol{S} + oldsymbol{G}^{(1)}$
174	8:	end for
175	9:	$oldsymbol{s}_i = \sum_{j=1}^{n_{ ext{hidden}}} oldsymbol{S}_{ij} ext{ for } i \in \{1,\ldots,K+K_c\}$
176	10:	Normalize $s = (s - \text{Mean}(s))/\text{SD}(s)$
177	11:	Update high scores $h_{I_{\text{cands}}} = \max(h_{I_{\text{cands}}}, s_{\text{cands}})$, where cands is the set of input neurons
178		corresponding to I_{cands}
179	12:	Identify top features $I_{top} = \{i \in \{1, \dots, N\} \mid h_i \ge \text{quantile}(h, 1 - K/N)\}$
180	13:	Draw new candidates $I_{\text{cands}} = \text{Rand}(\{1, \dots, N\} \setminus I_{\text{top}}, K_c)$
181	14:	Update features that populate the input layer $I_{input} = I_{top} \cup I_{cands}$
182	15:	Initialize first layer weights $\mathbf{W}_{\text{cands}}^{(1)} = U(-10^{-8}, 10^{-8})$. Initialize the optimizer
183	16:	end while

Architecture and initialization. The algorithm uses a multi-layer perceptron (MLP) with a feedforward architecture and is integrated into the backpropagation training using the Adam optimizer (Goodfellow et al., 2016; Kingma & Ba, 2015). This implies the adoption of the hyperparameters of learning rate, batch size, and number of hidden layers and their sizes. The size of the input layer is based on the desired number of selected features K plus a percentage c_{ratio} of the remaining features, K_c , which will be referred to as candidates.

191

196

Relative change scores. Steps 5-10 calculate the relative change scores s, where gradient sums for each input neuron are aggregated and normalized to reflect their relative contribution across the last $n_{\rm mb}$ mini-batches (see also Figure 1). Instead of gradient sums, one could also use weight changes as a relative change metric in Steps 5-8, which we compare in an ablation study in Section 4.2.

Input layer rotation. Steps 11–15 dynamically update the input layer by selecting a combination of top features and new candidates. The relative change scores computed earlier are used to identify the top K features (Step 12), ensuring they remain in the input layer. Additional candidate features are randomly sampled from the remaining features (Step 13). Together, these form the input layer (Step 14). To avoid symmetry issues during training, the weights of candidate features are reinitialized to small random values (Step 15), following best practices in neural network initialization (Goodfellow et al., 2016). This rotation ensures that feature selection is iteratively refined based on relevance.

204

Key mechanism. Our algorithm approaches the L^0 regularization task laid out in Equation 1 by stabilizing the high score vector h. At the time of each input layer rotation, the network is forced to adhere to the criterion of only K active features, after which it gets to assess additional candidates again for a few mini-batches. The high scores h, since they preserve information over time, allow a comparison of the entry performance of candidates with the entry performance of features that entered epochs ago. Specifically, in later epochs of training, good candidates do not need to surpass the absolute first layer weights of the more established neurons.

212

213 Random Regrowth. Random regrowth offers a key advantage over metric-based methods, such as
 214 gradient-based selection, by giving candidates multiple mini-batches to demonstrate their relevance.
 215 It facilitates the inclusion of features that do not have a straightforward relationship with the output but contribute to complex patterns that only emerge over time. Additionally, by combining random

Alge	orithm 2 RelChaNet flex
1:	Initialize: Loss before the last change of the network size l_{change} , running loss l . Set the input
	layer size change direction to shrink.
2:	if l has not decreased for 10 rotations then
3:	if $l > l_{change}$ then
4:	Change the direction: shrink \leftrightarrow grow
5:	end if
6:	$l_{\rm change} = l$
7:	if direction is shrink then
8:	$c_{\text{ratio}} = \max(\frac{1}{2}c_{\text{ratio}}, \frac{1}{5}\frac{K}{N-K})$
9:	else if direction is grow then
10:	$c_{ m ratio} = \min(2 c_{ m ratio}, 1)$
11:	end if
12:	end if
	Alge 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12:

241

248

249

250

251

253 254

256 257

258

259

260

261 262

263

264

265 266

267 268

231 regrowth with a reduced input layer size, we can decrease computation compared to methods that 232 retain all features in the input layer for regrowth selection. One drawback of random regrowth is that 233 it may take several rotations before all features have the opportunity to enter the input layer at least 234 once or before interacting feature sets are included together in the input layer. Increasing the c_{ratio} 235 hyperparameter can mitigate this issue by enlarging the input layer, allowing more features to be 236 included at a time. However, this approach introduces more noise into the network, as a larger portion of the network is frequently reset to zero, potentially disrupting the learning process of relevant 237 features. Consequently, the choice of c_{ratio} reflects a tradeoff between exploration and exploitation. A 238 potential solution to this challenge is to adapt cratio dynamically during training, which we explore 239 below. 240

242 3.1 Adaptive network sizes

To address sensitivity to the c_{ratio} hyperparameter, we introduce RelChaNet flex, which dynamically adjusts the input layer size during training based on the behavior of the loss function. It extends Algorithm 1 between Steps 12 and 13, i.e., prior to selecting new candidate features, and is detailed in pseudocode in Algorithm 2, RelChaNet flex.

Key mechanism. RelChaNet flex monitors the running loss, l, and compares it with the loss recorded at the time of the last input layer size change, l_{change} . If the loss stagnates (i.e., does not decrease for a fixed number of rotations), the algorithm adjusts the input layer size. Specifically:

- 1. Direction adjustment: If the loss increases compared to l_{change} , the direction of change (shrink or grow) is reversed
- 2. Size adjustment: Depending on the direction, c_{ratio} is halved or doubled, bounded by predefined limits. The upper limit of $c_{\text{ratio}} = 1$ represents using the maximum number of candidates, N K, while the lower limit ensures a minimum input layer size of $\frac{6}{5}K$.

Rationale. A well-balanced input layer size allows the network to explore a sufficient pool of candidate features in the presence of random regrowth. Shrinking the input layer promotes stability, while growing it enables exploration of additional candidates. The dynamic adjustment ensures that the network can escape suboptimal configurations.

Practical considerations. The running loss l as well as the loss at the time of input layer change, l_{change} , can be either a training or validation loss, depending on whether the algorithm is used with a validation set. In our experiments, we use a validation set, which is detailed in Appendix A.2.

4 EXPERIMENTS

In this section, we conduct an empirical evaluation of our proposed algorithms structured into a main experiment and additional analyses. To conserve computational resources, we replicate the

271		Table	e I: Dataset d	aimensions and domain	n
272		Cases	Features	Domain	Reference
273	Long Dotogota				
274	Long Datasets			-	
275	COIL-20	1440	1024	Image	Nene et al. (1996)
276	HAR	10299	561	Smartphone Sensor	Anguita et al. (2013)
270	ISOLET	7797	617	Speech	Fanty & Cole (1990)
277	MNIST	70000	784	Image	Deng (2012)
278	Fashion-MNIST	70000	784	Image	Xiao et al. (2017)
279	USPS	9298	256	Image	Hull (1994)
280					
281	Wide Datasets	200	10000	a .	
282	ARCENE	200	10000	Genomics	Guyon et al. (2004)
000	GLA-BRA-180	180	49151	Genomics	Sun et al. (2006)
283	Prostate-GE	102	5966	Genomics	Nie et al. (2010)
284					

experimental setup of Atashgahi et al. (2023)¹ and compare our results with those of nine state-of-287 the-art baseline methods reported in their work. The compared baseline methods and the RelChaNet 288 implementations are described in Appendix A. Code for replicating the main experiment is available 289 in the supplementary material. 290

The datasets used and their dimensions are shown in Table 1. We categorize datasets as long if 291 they have more cases than features, and vice versa as wide. The datasets all represent classification 292 tasks and span different content domains, including speech processing (ISOLET), image recognition 293 (MNIST), and smartphone sensor data (HAR). They are all freely available. To provide a more comprehensive evaluation, we include an auxiliary experiment on four additional datasets, detailed 295 in Appendix C. These include two additional long datasets (CIFAR-10 and CIFAR-100) to explore 296 performance on complex prediction tasks and two additional wide datasets (BASEHOCK and SMK). 297

To ensure a fair comparison between embedded and filter methods, all experimental conditions 298 include downstream learners. Initially, the data is split into training and test sets. Feature selection is 299 performed using the training data, followed by training a downstream predictive model on the training 300 data using only the selected features. The accuracy of the downstream learner is then evaluated on the 301 test data. The number of selected features, K, varies among 25, 50, 75, and 100^2 . The downstream 302 learners are classifiers based on a Support Vector Machine (SVM, Chang & Lin, 2011), K-Nearest 303 Neighbors (KNN), and ExtraTrees (ET, Geurts et al., 2006). The SVM classifier is used for all values 304 of K, while KNN and ET are only used for K = 50. Each condition is run five times. Experiments 305 are conducted on an NVIDIA GeForce RTX 3060 GPU with 6GB of memory. 306

4.1 RESULTS

309 Figure 2 presents a comparison of the accuracies achieved using our methods ("RCN" and "RCN 310 flex") against the top baseline methods for the SVM downstream learner. The average accuracy by dataset is shown for all methods in Figure 3. Detailed results for each dataset, method, and value of 311 K are provided in Table 2 in Appendix B. 312

313 According to the results, our approaches significantly outperform the baseline methods for most long 314 datasets (first six panels in the plots). In particular, for the MNIST dataset, our flex approach achieves 315 an average accuracy of 96.3%, significantly improving on the best previous result of 94.3%. Our 316 methods demonstrate comparable performance to the baseline methods for the wide datasets (last three panels in the plots), but fall slightly behind for the GLA-BRA-180 dataset. The RCN and RCN 317

318

307

308

270

¹This includes code for data preprocessing, train-test split, and downstream learners, which is available 319 at https://github.com/zahraatashgahi/NeuroFS. The performance of the downstream learners 320 using all features was compared with the reported values to ensure accurate replication of the experiment setup. 321 As detailed in our supplementary material, this was unsuccessful for the BASEHOCK and SMK datasets, which 322 are therefore omitted from the experiment.

²Atashgahi et al. (2023) also used higher values for K which are omitted in this study since there was little 323 variance in the results between the different methods.

Figure 2: Resulting accuracy for the studied methods by dataset and number of selected features K using the SVM downstream learner. Our proposed methods are "RCN" and "RCN flex". For visual clarity, only the baseline method with the highest average accuracy for each dataset is shown. "All Features" is the accuracy using all features in the dataset. Error bars indicate the standard deviation. Results for the baseline methods are reproduced from Atashgahi et al. (2023).

Figure 3: Average accuracy by dataset for the studied methods using the SVM downstream learner. Our proposed methods are "RCN" and "RCN flex". Results for the baseline methods are reproduced from Atashgahi et al. (2023).

367

368

342

343

344

345

346 347

371 372

flex approaches perform similarly in all conditions except for the ARCENE dataset, where the RCN approach performs notably worse than the top baselines.

We also evaluated two additional downstream learners, KNN and ET, under the condition of K = 50selected variables (see Table 3 in Appendix B). The results are very similar to those obtained with the SVM classifier, indicating that the selected feature sets are valuable across multiple downstream learners.

SOLET MNIS' ARCENE Prostate-GE 200 300 250 120 200 150 200 150 80 100 100 100 40 50 RCN RCN flex RCN Net NeuroFS RCN flex uroFS RCN Net NeuroFS RCN Net NeuroFS RĊN RCN fle Method

Figure 4: Wall-clock run time for the studied methods by dataset. All conditions use K = 50 selected features and are repeated five times. The error bars indicate the standard deviation.

4.2 ADDITIONAL ANALYSES

In this section, we highlight some additional aspects to give a more complete picture of RelChaNet. We include a comparison of the computational efficiency with similar methods, an ablation study of the impact of the chosen change metric, and an investigation of the impact and feasible ranges of hyperparameters. 395

Computational efficiency. We examine the comparative computational costs with two other 397 approaches, NeuroFS and LassoNet. Both are well-performing sparse and dense neural network 398 based methods, respectively. One drawback of our approach is that, since candidate features are 399 chosen randomly, it generally requires more training epochs than other approaches to ensure that all 400 features get the chance to enter the network. This motivates comparing the overall runtime of the 401 approaches. 402

We measure the wall-clock time for selecting K = 50 features, using two wide and two long datasets, 403 with settings otherwise as in the main experiment. For NeuroFS, we use the setup from the original 404 publication: a 3-layer sparse MLP with 1000 neurons in each layer, limiting the training epochs to 405 100. For LassoNet, we use the same MLP architecture as for RelChaNet, i.e., one hidden layer with 406 100 neurons. We keep all other settings at the LassoNet package defaults³. Each condition is run five 407 times. 408

The results are shown in Figure 4. The RCN and RCN flex approaches have comparable runtimes, both 409 demonstrating significantly greater efficiency than NeuroFS across the studied datasets. Additionally, 410 RCN is more efficient than LassoNet in three out of four conditions. One explanation for RelChaNet's 411 efficiency is that its higher number of required epochs is offset by a relatively small computational 412 overhead. However, NeuroFS utilizes binary masks to implement sparse networks, and future 413 advancements in hardware optimized for sparse matrix computations could improve its efficiency.

414

431

378

379

380

381

382

384

385 386

387

388 389 390

391

392

393

394

396

415 **Ablation study: Change metrics.** We compare the performance of RelChaNet under different 416 change metrics. Specifically, we evaluate the gradient sums used in RelChaNet against using weight 417 changes or absolute weights. In both cases, the calculation of \boldsymbol{S} is modified immediately before Step 9 of Algorithm 1. For the weight changes, we set $S = W^{(1)} - W^{(1)}_{old}$, where $W^{(1)}_{old}$ are the first layer weights at the time of the last rotation. For the absolute weights, we simply set S equal to the 418 419 420 first layer weights, $S = W^{(1)}$. We use four datasets, two long and two wide, and K = 50 selected 421 features, keeping all other properties the same as in the main experiment. 422

Figure 5 shows the results. For the long datasets (left two panels), the gradient sums and weight 423 changes perform similarly, surpassing the performance of absolute weights. For the wide datasets 424 (right two panels), the gradient sums show superior performance, while the other two approaches 425 exhibit similar effectiveness. In summary, under the studied conditions, gradient sums are the most 426 effective metric for measuring relative change within the RelChaNet algorithm. 427

428 **Impact of hyperparameters.** We investigate the role of the hyperparameters c_{ratio} and n_{mb} . Gen-429 erally, c_{ratio} determines the percentage of features included in the network in addition to the K 430 selected features, while $n_{\rm mb}$ specifies the number of mini-batches after which scores are computed

³The LassoNet package is available at https://github.com/lasso-net/lassonet.

Figure 5: Resulting accuracy for the studied change metrics by RCN method and dataset for K = 50selected features using the SVM downstream learner. The error bars indicate the standard deviation.

Figure 6: Accuracy using RelChaNet feature selection by hyperparameters c_{ratio} and n_{mb} for two datasets and K = 25 selected features. Each point represents the average of three runs.

and features are rotated. We use a long and a wide dataset, HAR and ARCENE, K = 25, and keep all other properties consistent with the main experiment. We let c_{ratio} vary between 0.01 and 1 and $n_{\rm mb}$ between 1 and 150. As studied hyperparameter sets we include the two configurations from our experiment: ($c_{ratio} = 0.2, n_{mb} = 100$) for the long datasets and ($c_{ratio} = 0.5, n_{mb} = 5$) for the wide datasets. Additionally, we include the four corners of the hyperparameter space and draw 40 pseudo-random sets of configurations from a Halton sequence. Each resulting condition is run three times, and the accuracy is averaged.

The results are illustrated in Figure 6. For the long HAR dataset (left panel), the combination of low c_{ratio} and high n_{mb} yields strong results. In contrast, for the ARCENE dataset (right panel), configurations with low $n_{\rm mb}$ generally perform well. A combination of low $c_{\rm ratio}$ and higher $n_{\rm mb}$ may also be effective. This highlights that hyperparameters must be selected differently for different datasets, with a comparatively narrower range working well for wide datasets.

DISCUSSION

In this paper, we introduce a novel feature selection algorithm aimed at enhancing the predictive performance and interpretability of predictive models. Our approach incorporates neuron pruning and regrowth from the sparse neural network literature into a dense neural network framework. RelChaNet uses a relative change metric for pruning, which measures the relative change induced in a network after a feature enters, while neurons are randomly regrown. Extensive experiments demonstrate that our method, along with an extension featuring an adaptive input layer, consistently outperforms state-of-the-art techniques on datasets with more cases than features. For datasets with more features than cases, its performance is comparable to previous approaches. While the adaptive version has theoretical advantages and performs better on one dataset, the base algorithm stands out for its simplicity and competitive performance in most scenarios.

The primary limitation of our approach lies in its theoretical disadvantage in computational efficiency. This is due in part to the reliance on a dense network, which typically has higher computational

training costs than sparse networks with the same number of layers and neurons. Additionally,
 regrowing neurons randomly necessitates either a large input layer or longer training. However, our
 experiment demonstrates that these challenges can be mitigated by employing a small neural network
 architecture without compromising feature selection performance. Furthermore, the efficiency was
 found to be competitive with another dense approach. It is important to note, however, that this may
 not generalize to scenarios beyond those studied.

We see many potential directions for future research. One avenue is to integrate our pruning and regrowth protocol into sparse neural networks. This could be applied to the input layer for feature selection, or extended to other layers for general sparse neural network training. Another direction is to explore the utility of our approach for interpretable machine learning. For instance, the values in the high score vector h could be evaluated as a measure of variable importance.

497 498

499 500

501

502

512

522

526

527

528

529

530

REPRODUCIBILITY STATEMENT

We include the source code of our method in the form of a Python package, as well as code to reproduce the main experiment results, in the supplementary material.

- 503 504 REFERENCES
- D. Anguita, Alessandro Ghio, L. Oneto, Xavier Parra, and Jorge Luis Reyes-Ortiz. A public domain
 dataset for human activity recognition using smartphones. In *The European Symposium on Artificial Neural Networks*, 2013.
- Zahra Atashgahi, Ghada Sokar, Tim Van Der Lee, Elena Mocanu, Decebal Constantin Mocanu, Raymond Veldhuis, and Mykola Pechenizkiy. Quick and robust feature selection: The strength of energy-efficient sparse training for autoencoders. *Machine Learning*, 111(1):377–414, January 2022. ISSN 0885-6125, 1573-0565. doi:10.1007/s10994-021-06063-x.
- Zahra Atashgahi, Xuhao Zhang, Neil Kichler, Shiwei Liu, Lu Yin, Mykola Pechenizkiy, Raymond
 Veldhuis, and Decebal Constantin Mocanu. Supervised feature selection with neuron evolution in
 sparse neural networks. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856.
- Zahra Atashgahi, Tennison Liu, Mykola Pechenizkiy, Raymond Veldhuis, Decebal Constantin
 Mocanu, and Mihaela van der Schaar. Unveiling the Power of Sparse Neural Networks for Feature
 Selection. *arXiv preprint arXiv:2408.04583*, 2024.
- Andrea Bommert, Xudong Sun, Bernd Bischl, Jörg Rahnenführer, and Michel Lang. Benchmark for filter methods for feature selection in high-dimensional classification data. *Computational Statistics & Data Analysis*, 143:106839, March 2020. ISSN 0167-9473. doi:10.1016/j.csda.2019.106839.
- Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
 Transactions on Intelligent Systems and Technology, 2(3):1–27, April 2011. ISSN 2157-6904, 2157-6912. doi:10.1145/1961189.1961199.
 - Valeriia Cherepanova, Roman Levin, Gowthami Somepalli, Jonas Geiping, C. Bayan Bruss, Andrew G Wilson, Tom Goldstein, and Micah Goldblum. A Performance-Driven Benchmark for Feature Selection in Tabular Deep Learning. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 41956– 41979. Curran Associates, Inc., 2023.
- Li Deng. The MNIST database of handwritten digit images for machine learning research [best of the web]. *IEEE Signal Processing Magazine*, 29:141–142, 2012.
- 533
 534
 535
 536
 536
 537
 537
 538
 539
 539
 539
 530
 530
 530
 531
 531
 532
 533
 533
 534
 534
 535
 535
 536
 537
 537
 538
 539
 539
 539
 530
 530
 530
 531
 531
 532
 532
 533
 534
 535
 536
 536
 537
 537
 537
 538
 538
 539
 539
 539
 530
 530
 531
 531
 532
 532
 532
 533
 534
 535
 535
 536
 537
 537
 537
 538
 537
 538
 539
 537
 538
 539
 538
 539
 539
 539
 539
 530
 537
 536
 537
 537
 537
 538
 538
 538
 539
 539
 539
 539
 539
 539
 539
 530
 530
 531
 532
 532
 532
 532
 533
 534
 535
 535
 536
 537
 537
 538
 538
 538
 538
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
 539
- Mark Fanty and Ronald Cole. Spoken letter recognition. In *Proceedings of the 3rd International Conference on Neural Information Processing Systems*, NIPS'90, pp. 220–226, San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc. ISBN 1-55860-184-8.

540	Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. <i>Machine Learning</i> .
541	63(1):3–42. April 2006. ISSN 0885-6125. 1573-0565. doi:10.1007/s10994-006-6226-1.
542	

- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press, Cambridge, 543 Massachusetts, November 2016. ISBN 978-0-262-03561-3. 544
- Quanquan Gu, Zhenhui Li, and Jiawei Han. Generalized Fisher score for feature selection. In 546 Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI'11, 547 pp. 266-273, Arlington, Virginia, USA, 2011. AUAI Press. ISBN 978-0-9749039-7-2. 548
- 549 Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Arcene. UCI Machine Learning Repository, 2004. doi:10.24432/C58P55. 550
- Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep 552 learning: Pruning and growth for efficient inference and training in neural networks. Journal of Machine Learning Research, 22(241):1–124, 2021.
 - J. J. Hull. A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(5):550–554, May 1994. ISSN 0162-8828. doi:10.1109/34.291440.
- Aleks Jakulin. Machine Learning Based on Attribute Interactions. PhD thesis, Univerza v Ljubljani, 558 2005. 559
- Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio 561 and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. 563
 - Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Toronto, ON, Canada, 2009.
 - Ken Lang. Newsweeder: Learning to filter netnews. In Proceedings of the Twelfth International Conference on Machine Learning, pp. 331–339, 1995.
 - Ismael Lemhadri, Feng Ruan, Louis Abraham, and Robert Tibshirani. LassoNet: A neural network with feature sparsity. Journal of Machine Learning Research, 22(127):1–29, 2021.
- Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jiliang Tang, and Huan 572 Liu. Feature Selection: A Data Perspective. ACM Computing Surveys, 50(6):1-45, November 573 2018. ISSN 0360-0300, 1557-7341. doi:10.1145/3136625. 574
- 575 Dahua Lin and Xiaoou Tang. Conditional Infomax Learning: An Integrated Framework for Feature 576 Extraction and Fusion. In Aleš Leonardis, Horst Bischof, and Axel Pinz (eds.), Computer Vision -ECCV 2006, volume 3951, pp. 68-82. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 577 978-3-540-33832-1. doi:10.1007/11744023_6. 578
- 579 Kaiting Liu, Zahra Atashgahi, Ghada Sokar, Mykola Pechenizkiy, and Decebal Constantin Mocanu. 580 Supervised Feature Selection via Ensemble Gradient Information from Sparse Neural Networks. 581 In International Conference on Artificial Intelligence and Statistics, pp. 3952–3960. PMLR, 2024. 582
- 583 Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu, 584 and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature Communications, 9(1):2383, June 2018. ISSN 2041-1723. 585 doi:10.1038/s41467-018-04316-3. 586
- Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance Estimation 588 for Neural Network Pruning. In 2019 IEEE/CVF Conference on Computer Vision and Pattern 589 Recognition (CVPR), pp. 11256–11264, Long Beach, CA, USA, June 2019. IEEE. ISBN 978-1-590 7281-3293-8. doi:10.1109/CVPR.2019.01152.

553

554 555

556

565 566

567

568

569

570 571

Samer A. Nene, Shree K. Nayar, and Hiroshi Murase. Columbia object image library (COIL-20). 592 Technical Report CUCS-005-96, Department of Computer Science, Columbia University, February 1996.

594 595 596 597	Feiping Nie, Heng Huang, Xiao Cai, and Chris Ding. Efficient and robust feature selection via joint 12,1-norms minimization. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (eds.), <i>Advances in Neural Information Processing Systems</i> , volume 23. Curran Associates, Inc., 2010.
598 599 600 601 602 603 604 605	 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett (eds.), <i>Advances in Neural Information Processing Systems</i>, volume 32. Curran Associates, Inc., 2019.
606 607 608	Mehrdad Rostami, Kamal Berahmand, Elahe Nasiri, and Saman Forouzandeh. Review of swarm intelligence-based feature selection methods. <i>Engineering Applications of Artificial Intelligence</i> , 100:104210, April 2021. ISSN 09521976. doi:10.1016/j.engappai.2021.104210.
609 610 611 612	Ghada Sokar, Zahra Atashgahi, Mykola Pechenizkiy, and Decebal Constantin Mocanu. Where to pay attention in sparse training for feature selection? In <i>Proceedings of the 36th International Conference on Neural Information Processing Systems</i> , Nips '22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 978-1-7138-7108-8.
613 614 615 616 617 618	Avrum Spira, Jennifer E Beane, Vishal Shah, Katrina Steiling, Gang Liu, Frank Schembri, Sean Gilman, Yves-Martine Dumas, Paul Calner, Paola Sebastiani, Sriram Sridhar, John Beamis, Carla Lamb, Timothy Anderson, Norman Gerry, Joseph Keane, Marc E Lenburg, and Jerome S Brody. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. <i>Nature Medicine</i> , 13(3):361–366, March 2007. ISSN 1078-8956, 1546-170X. doi:10.1038/nm1556.
619 620 621 622 623	Lixin Sun, Ai-Min Hui, Qin Su, Alexander Vortmeyer, Yuri Kotliarov, Sandra Pastorino, Antonino Passaniti, Jayant Menon, Jennifer Walling, Rolando Bailey, Marc Rosenblum, Tom Mikkelsen, and Howard A. Fine. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. <i>Cancer Cell</i> , 9(4):287–300, April 2006. ISSN 15356108. doi:10.1016/j.ccr.2006.03.003.
624 625	Robert Tibshirani. Regression shrinkage and selection via the lasso. <i>Journal of the Royal Statistical Society. Series B (Methodological)</i> , 58(1):267–288, 1996. ISSN 00359246.
626 627 628	Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A Novel Image Dataset for Bench- marking Machine Learning Algorithms. <i>arXiv preprint arXiv:1708.07747</i> , 2017.
629 630 631 632	Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature selection using stochastic gates. In Hal Daumé III and Aarti Singh (eds.), <i>Proceedings of the 37th International Conference on Machine Learning</i> , volume 119 of <i>Proceedings of Machine Learning Research</i> , pp. 10648–10659. PMLR, 2020.
633 634 635	
636 637	
638 639 640	
641 642 643	
644 645 646	

648 A EXPERIMENTAL SETUP

650 A.1 BASELINES

The methods compared against our approach are as follows. Their specific implementations are detailed in Atashgahi et al. (2023):

- Fisher Score (Gu et al., 2011): A classic filter method that selects feature sets based on their ability to separate data points.
 - CIFE (Conditional Infomax Feature Extraction, Lin & Tang, 2006): A filter method that aims to maximize the class-relevant information of the feature set.
 - ICAP (Interaction Capping Criterion, Jakulin, 2005): A filter method that considers the complementary relationship between features.
 - RFS (Robust Feature Selection, Nie et al., 2010): A method embedded in regression that uses joint L¹ and L² regularization of the weights.
 - QS (Quick Selection, Atashgahi et al., 2022): A method embedded in sparse neural networks that combines denoising autoencoders and the L^1 norm of first layer neuron weights.
 - STG (Stochastic Gates, Yamada et al., 2020): A method embedded in neural networks that controls the input layer neurons using a trainable probabilistic gate.
 - LassoNet (Lemhadri et al., 2021): A method embedded in neural networks that adds a regularized residual connection from the input layer to the output. The residual connection controls the sizes of first layer weights.
- RigL (Evci et al., 2020): A method embedded in sparse neural networks that rotates features by pruning based on parameter weights and regrowing based on gradients. Feature selection can be performed by investigating first layer weights after training (Atashgahi et al., 2023).
 - NeuroFS (Atashgahi et al., 2023): A method embedded in sparse neural networks that extends the ideas used in RigL to input neurons.

A.2 RELCHANET SETUP

The parameters used for RelChaNet in the main experiment are as follows. We employ a single hidden layer neural network with 100 neurons and a ReLU activation function. For training, we use a batch size of 1024 and a learning rate of 0.001 for the Adam optimizer. If there are fewer cases in the dataset, full batches are used instead. The hyperparameters specific to our method are: $c_{\text{ratio}} = 0.2$ and $n_{\rm mb} = 100$ for long datasets, and $c_{\rm ratio} = 0.5$ and $n_{\rm mb} = 5$ for wide datasets. Stopping is based on a combination of validation loss and the identified feature set. For this, the training data is split again into a training and a validation set. Training continues on the training set until the validation loss does not decrease for 100 input layer rotations or the set of K features with the highest values in h remains unchanged for 100 rotations. Afterwards, the training is again performed on the complete training data for the determined number of rotations. For the flex algorithm, during this final training phase, the input layer is scaled from its initial size to the final size using a total of ten size change steps.

В DETAILED RESULTS

Table 2: Resulting accuracy of the studied methods for different numbers of selected features K and datasets using the SVM downstream learner. Our proposed methods are "RCN" and "RCN flex". "All" is the accuracy using all features in the dataset. The best and second-best methods for each combination of K and dataset are marked in bold and underlined, respectively. Entries represent the mean \pm standard deviation of the downstream learner accuracy across five runs. Results for the baseline methods are reproduced from Atashgahi et al. (2023).

711										
712		COIL-20	HAR	ISOLET	MNIST	Fashion-MNIST	USPS	ARCENE	GLA-BRA-180	Prostate-GE
713	All	100.00	95.05	96.03	97.92	88.30	97.58	77.50	72.22	80.95
714	K = 25	05.06 + 1.01	07.46 + 0.70	06.00 + 0.04	03.04 1.33	70.00 - 0.00	02.00 0.07	(2.00 + 4.05	72.00 2.00	00.50 + 0.05
	LassoNet	95.86 ± 1.31 92.72 ± 0.85	87.46 ± 0.79 93.00 ± 0.31	86.22 ± 0.84 76.48 ± 0.39	$8/.86 \pm 1.77$ 86.40 ± 1.26	79.38 ± 0.96 78.68 ± 0.55	93.98 ± 0.87 94.04 ± 0.38	63.00 ± 4.85 69.00 ± 2.55	73.88 ± 3.80 76.12 ± 4.19	88.58 ± 2.35 88.58 ± 2.35
715	STG	97.02 ± 1.41	87.48 ± 0.80	77.16 ± 4.34	85.24 ± 1.89	77.44 ± 0.53	94.04 ± 0.46	69.00 ± 5.15	$\overline{67.22 \pm 4.78}$	85.72 ± 3.00
716	QS	91.00 ± 4.21	87.14 ± 1.74	72.56 ± 6.53	85.25 ± 1.47	71.57 ± 1.97	93.00 ± 0.81	73.75 ± 8.20	69.45 ± 2.75	71.43 ± 12.16
	Fisher	24.70 ± 0.00	77.10 ± 0.00	57.40 ± 0.00	74.40 ± 0.00	53.10 ± 0.00	82.00 ± 0.00	65.00 ± 0.00	58.30 ± 0.00	90.50 ± 0.00
717	ICAP	50.70 ± 0.00 94.40 ± 0.00	80.20 ± 0.00 84.50 ± 0.00	56.00 ± 0.00 67.10 ± 0.00	80.90 ± 0.00 81.60 ± 0.00	63.40 ± 0.00 50.10 ± 0.00	50.20 ± 0.00 89.90 ± 0.00	67.50 ± 0.00 77.50 ± 0.00	61.10 ± 0.00 69.40 ± 0.00	61.90 ± 0.00 47.60 ± 0.00
718	RFS	88.20 ± 0.00	88.90 ± 0.00	76.50 ± 0.00	-	-	94.80 ± 0.00	77.50 ± 0.00	-	90.50 ± 0.00
	RigL	92.38 ± 3.20	86.46 ± 1.47	$\textbf{79.98} \pm \textbf{2.25}$	82.06 ± 0.99	74.12 ± 1.59	93.10 ± 0.62	74.50 ± 4.30	66.10 ± 3.22	$\overline{78.08\pm6.46}$
719	RCN	$\underline{98.75\pm0.31}$	$\underline{92.07 \pm 1.42}$	$\textbf{88.45} \pm \textbf{1.16}$	$\underline{93.04\pm0.41}$	$\textbf{83.05} \pm \textbf{0.40}$	$\textbf{95.82} \pm \textbf{0.49}$	$\underline{78.50 \pm 6.52}$	75.00 ± 2.78	90.48 ± 0.00
720	RCN flex	$\textbf{98.89} \pm \textbf{0.71}$	92.06 ± 0.97	88.28 ± 1.41	93.10 ± 0.25	82.70 ± 0.32	95.68 ± 0.08	80.50 ± 5.12	$\textbf{77.78} \pm \textbf{1.96}$	88.57 ± 2.61
704	K = 50	00.70 + 0.20	01.46 + 0.72	02 (2) 0 10	05.00 + 0.41	02 70 1 0 44	06 70 1 0 17	76 50 1 2 55	00 54 1 406	00 70 1 0 00
721	NeuroFS LossoNot	98.78 ± 0.29 07.16 ± 1.06	91.46 ± 0.72 03.74 ± 0.20	92.62 ± 0.40 84.00 ± 0.22	95.30 ± 0.41	83.78 ± 0.64 82.58 ± 0.10	96.78 ± 0.17	76.50 ± 2.55 71.00 ± 2.00	80.54 ± 4.96 74 46 ± 4.78	90.50 ± 0.00
722	STG	99.32 ± 0.40	$\frac{93.74 \pm 0.39}{91.22 \pm 1.23}$	84.90 ± 0.22 85.82 ± 2.83	93.20 ± 0.62	82.36 ± 0.10 82.36 ± 0.52	96.62 ± 0.13	71.00 ± 2.00 71.00 ± 2.55	$\frac{74.40 \pm 4.78}{70.00 \pm 4.08}$	88.38 ± 2.33 84.78 ± 3.55
	QS	96.52 ± 1.53	91.96 ± 1.04	89.78 ± 1.80	93.62 ± 0.49	80.82 ± 0.51	95.52 ± 0.27	74.38 ± 4.80	72.20 ± 2.80	76.20 ± 7.53
723	Fisher	74.00 ± 0.00	79.80 ± 0.00	67.40 ± 0.00	81.90 ± 0.00	67.80 ± 0.00	91.00 ± 0.00	67.50 ± 0.00	63.90 ± 0.00	$\underline{90.50\pm0.00}$
724	CIFE	59.40 ± 0.00	84.20 ± 0.00	59.80 ± 0.00	89.30 ± 0.00	66.90 ± 0.00	61.30 ± 0.00	52.50 ± 0.00	58.30 ± 0.00	47.60 ± 0.00
	ICAP	99.30 ± 0.00	88.70 ± 0.00 94.00 ± 0.00	75.10 ± 0.00	89.00 ± 0.00	59.50 ± 0.00	95.20 ± 0.00	70.00 ± 0.00 77.50 ± 0.00	72.20 ± 0.00	57.10 ± 0.00
725	RigI	93.80 ± 0.00 97.86 ± 1.32	91.82 ± 0.00	91.50 ± 0.00 89.58 ± 1.24	93.94 ± 0.63	$\frac{-}{81.92 \pm 0.87}$	95.80 ± 0.00 96.04 ± 0.58	77.00 ± 0.00 77.00 ± 3.32	$\frac{-}{7054 + 416}$	79.06 ± 7.11
726	RCN	99.58 ± 0.29	93.74 ± 0.62	93.41 ± 0.25	96.69 ± 0.19	85.95 ± 0.22	96.83 ± 0.17	$\frac{77.00 \pm 5.52}{72.50 \pm 5.59}$	73.33 ± 1.52	90.48 ± 0.00
720	RCN flex	$\underline{99.51\pm0.19}$	93.65 ± 0.36	$\overline{\textbf{93.46}\pm\textbf{0.19}}$	$\overline{\textbf{96.79}\pm\textbf{0.11}}$	$\underline{85.84\pm0.36}$	$\overline{\textbf{97.06}\pm\textbf{0.23}}$	76.00 ± 6.75	74.44 ± 2.32	89.52 ± 2.13
727	K = 75									
728	NeuroFS	99.06 ± 0.12	93.16 ± 0.79	94.04 ± 0.34	96.76 ± 0.22	85.70 ± 0.28	97.06 ± 0.15	$\textbf{82.00} \pm \textbf{4.00}$	$\textbf{82.24} \pm \textbf{3.31}$	89.54 ± 1.92
	LassoNet	99.46 ± 0.35	94.62 ± 0.17	91.00 ± 0.62	96.00 ± 0.09	83.92 ± 0.13	96.36 ± 0.08	70.50 ± 2.45	76.64 ± 5.44	90.50 ± 0.00
729	SIG	99.68 ± 0.22 98.17 ± 1.16	92.42 ± 1.11 93.50 ± 0.77	90.10 ± 2.17 93.04 ± 0.46	95.52 ± 0.22 95.98 ± 0.33	84.14 ± 0.43 83.80 ± 0.53	96.88 ± 0.23 96.85 ± 0.05	75.00 ± 2.74 76.88 ± 2.72	71.08 ± 1.37 73.60 ± 1.40	84.78 ± 3.55 72.62 ± 0.78
730	Fisher	76.00 ± 0.00	81.70 ± 0.00	76.00 ± 0.00	95.98 ± 0.00 87.10 ± 0.00	74.30 ± 0.00	94.40 ± 0.00	70.00 ± 0.00	66.70 ± 0.00	90.50 ± 0.00
	CIFE	63.20 ± 0.00	84.80 ± 0.00	74.30 ± 0.00	92.70 ± 0.00	67.70 ± 0.00	68.00 ± 0.00	72.50 ± 0.00	58.30 ± 0.00	$\frac{1}{47.60 \pm 0.00}$
731	ICAP	99.00 ± 0.00	89.20 ± 0.00	79.70 ± 0.00	92.40 ± 0.00	67.20 ± 0.00	95.30 ± 0.00	72.50 ± 0.00	72.20 ± 0.00	57.10 ± 0.00
732	RFS	99.70 ± 0.00	$\frac{94.90 \pm 0.00}{92.24 \pm 0.47}$	93.90 ± 0.00	-	-	97.20 ± 0.00	80.00 ± 0.00	-	90.50 ± 0.00
	RCN	99.20 ± 0.43 99.93 ± 0.16	95.34 ± 0.47 95.31 + 0.37	92.32 ± 0.30 94.60 ± 0.49	93.98 ± 0.31 97.49 ± 0.13	84.32 ± 0.72 86.75 ± 0.25	90.90 ± 0.24 97.15 ± 0.19	81.30 ± 4.04 71.00 ± 7.42	72.22 ± 4.98 77.78 + 3.40	90.48 ± 0.00
733	RCN flex	99.93 ± 0.16	94.60 ± 0.65	94.88 ± 0.31	$\frac{97.49 \pm 0.13}{97.53 \pm 0.11}$	$\frac{66.75 \pm 0.25}{86.76 \pm 0.14}$	97.19 ± 0.10	82.00 ± 4.81	$\frac{77.76 \pm 3.46}{75.56 \pm 3.04}$	90.48 ± 0.00
734	K = 100									
725	NeuroFS	99.18 ± 0.50	94.18 ± 0.29	95.06 ± 0.31	97.32 ± 0.17	86.64 ± 0.21	97.22 ± 0.12	$\underline{82.00\pm1.87}$	$\textbf{81.12} \pm \textbf{2.05}$	89.54 ± 1.92
155	LassoNet	99.30 ± 0.00	95.14 ± 0.29	93.18 ± 0.22	96.64 ± 0.14	84.98 ± 0.18	97.04 ± 0.12	72.00 ± 4.30	$\frac{79.46 \pm 2.83}{72.20 \pm 2.07}$	90.50 ± 0.00
736	05	99.70 ± 0.12 98.28 + 1.15	92.82 ± 0.74 94.06 ± 0.48	92.04 ± 0.30 94.22 ± 0.28	90.38 ± 0.33 96.85 ± 0.09	85.20 ± 0.38 85.52 ± 0.15	97.08 ± 0.18 97.00 ± 0.14	73.30 ± 3.07 78.12 + 1.08	72.20 ± 3.07 73.60 ± 1.40	83.72 ± 3.00 78 58 + 9 82
707	Fisher	80.20 ± 0.00	83.80 ± 0.00	79.80 ± 0.00	90.70 ± 0.09	79.60 ± 0.00	96.50 ± 0.00	65.00 ± 0.00	66.70 ± 0.00	90.50 ± 0.00
131	CIFE	67.70 ± 0.00	85.30 ± 0.00	81.20 ± 0.00	95.10 ± 0.00	69.20 ± 0.00	78.00 ± 0.00	65.00 ± 0.00	58.30 ± 0.00	71.40 ± 0.00
738	ICAP	$\textbf{100.00} \pm \textbf{0.00}$	92.10 ± 0.00	82.80 ± 0.00	95.00 ± 0.00	77.70 ± 0.00	95.40 ± 0.00	$\textbf{82.50} \pm \textbf{0.00}$	69.40 ± 0.00	52.40 ± 0.00
700	RFS	$\frac{100.00 \pm 0.00}{200.40 \pm 0.42}$	$\frac{95.40 \pm 0.00}{94.00 \pm 0.26}$	94.40 ± 0.00	-	-	97.40 ± 0.00	80.00 ± 0.00	-	90.50 ± 0.00
139	RIGL	99.40 ± 0.43 99.93 ± 0.16	94.08 ± 0.26 95.61 ± 0.25	93.66 ± 0.58 95 73 \pm 0.46	96.88 ± 0.22 97 80 \pm 0.10	85.82 ± 0.23 87.32 ± 0.15	$9/.14 \pm 0.10$ 97.34 ± 0.15	80.00 ± 4.47 74.00 ± 2.85	73.90 ± 3.76 77.22 + 3.62	81.92 ± 8.18 90.48 ± 0.00
740	RCN flex	100.00 ± 0.10	95.19 ± 0.19	95.21 ± 0.40	97.79 ± 0.07	87.21 ± 0.08	97.34 ± 0.13 97.37 ± 0.13	77.50 ± 2.85	77.78 ± 4.39	90.48 ± 0.00 90.48 ± 0.00
		1000 ± 0.00		<u>, , , , , , , , , , , , , , , , , , , </u>	<u>,, ± 0.07</u>	<u>27.21 ± 0.00</u>	<u>,, ± 0.15</u>			

Table 3: Resulting accuracy of the studied methods for different downstream learners and datasets using K = 50 selected features. Our proposed methods are "RCN" and "RCN flex". "All" is the accuracy using all features in the dataset. The best and second-best methods for each combination of learner and dataset are marked in bold and underlined, respectively. Entries represent the mean \pm standard deviation of the downstream learner accuracy across five runs. Results for the baseline methods are reproduced from Atashgahi et al. (2023).

775										
776		COIL-20	HAR	ISOLET	MNIST	Fashion-MNIST	USPS	ARCENE	GLA-BRA-180	Prostate-GE
	Learner: 1	ET								
777	All	100.00 ± 0.00	93.53 ± 0.15	94.05 ± 0.32	97.10 ± 0.05	87.19 ± 0.13	96.29 ± 0.16	79.50 ± 4.85	75.00 ± 4.97	88.57 ± 3.81
770	NeuroFS	99.94 ± 0.12	85.48 ± 1.46	91.46 ± 0.73	93.68 ± 0.43	84.26 ± 0.55	95.44 ± 0.27	75.00 ± 5.24	75.46 ± 6.71	$\textbf{90.50} \pm \textbf{0.00}$
//0	LassoNet	99.76 ± 0.12	$\textbf{91.12} \pm \textbf{0.30}$	84.94 ± 0.62	92.96 ± 0.15	83.68 ± 0.13	94.86 ± 0.22	73.50 ± 4.64	$\textbf{76.12} \pm \textbf{3.80}$	89.54 ± 1.92
779	STG	100.00 ± 0.00	88.68 ± 0.42	88.50 ± 2.15	90.38 ± 0.42	82.05 ± 0.48	94.32 ± 0.21	79.00 ± 3.39	71.08 ± 2.24	83.84 ± 3.80
115	QS	99.25 ± 0.47	87.86 ± 0.72	88.78 ± 1.86	91.95 ± 0.58	81.28 ± 0.54	94.28 ± 0.40	73.75 ± 4.15	75.00 ± 0.00	77.38 ± 5.19
780	Fisher	96.86 ± 0.43	85.50 ± 0.30	81.42 ± 0.59	84.86 ± 0.15	72.06 ± 0.08	90.94 ± 0.24	60.00 ± 1.58	63.90 ± 0.00	90.50 ± 0.00
	CIFE	74.70 ± 0.00	85.30 ± 0.00	55.40 ± 0.00	87.60 ± 0.00	68.40 ± 0.00	82.70 ± 0.00	50.00 ± 0.00	69.40 ± 0.00	52.40 ± 0.00
781	ICAP	99.70 ± 0.00	89.20 ± 0.00	70.60 ± 0.00	87.80 ± 0.00	65.50 ± 0.00	93.50 ± 0.00	80.00 ± 0.00	63.90 ± 0.00	81.00 ± 0.00
700	RFS	98.30 ± 0.00	89.70 ± 0.00	90.40 ± 0.00	-	-	94.70 ± 0.00	75.00 ± 0.00	-	90.50 ± 0.00
102	RCN DCN due	$\frac{100.00 \pm 0.00}{100.00 \pm 0.00}$	90.32 ± 1.20	92.05 ± 0.52	95.30 ± 0.12	85.70 ± 0.22	$\frac{95.76 \pm 0.13}{05.01 \pm 0.18}$	72.50 ± 9.55	$\frac{76.11 \pm 1.52}{75.00 \pm 2.40}$	90.48 ± 0.00
783	RCN nex	100.00 ± 0.00	91.12 ± 1.33	92.19 ± 0.47	95.41 ± 0.21	85.49 ± 0.29	95.91 ± 0.18	/8.00 ± 0./1	75.00 ± 3.40	90.48 ± 0.00
	Learner: l	KNN								
784	All	100.00	87.85	88.14	96.91	84.96	97.37	92.50	69.44	76.19
	NeuroFS	99.80 ± 0.28	84.64 ± 1.77	85.96 ± 1.53	91.64 ± 0.57	80.12 ± 0.87	96.18 ± 0.49	74.00 ± 5.15	64.42 ± 5.38	85.86 ± 4.67
785	LassoNet	98.84 ± 0.20	88.70 ± 0.57	79.22 ± 0.47	91.38 ± 0.36	79.30 ± 0.20	95.70 ± 0.26	67.50 ± 7.75	$\textbf{68.90} \pm \textbf{4.07}$	82.86 ± 3.80
796	STG	99.94 ± 0.12	87.86 ± 0.39	83.16 ± 3.42	87.16 ± 0.64	77.65 ± 0.48	95.14 ± 0.45	75.00 ± 5.24	58.90 ± 7.52	81.00 ± 0.00
100	QS	98.80 ± 0.38	85.88 ± 1.13	82.38 ± 3.12	89.30 ± 0.76	76.65 ± 0.51	95.17 ± 0.45	75.00 ± 3.54	$\frac{66.70 \pm 0.00}{66.90 \pm 0.00}$	65.47 ± 8.37
787	Fisher	95.80 ± 0.00	81.10 ± 0.00	74.10 ± 0.00	80.20 ± 0.00	63.70 ± 0.00	88.80 ± 0.00	70.00 ± 0.00	50.00 ± 0.00	85.70 ± 0.00
101	CIFE	71.20 ± 0.00	71.80 ± 0.00	44.60 ± 0.00	82.90 ± 0.00	61.60 ± 0.00	59.60 ± 0.00	70.00 ± 0.00	44.40 ± 0.00	57.10 ± 0.00
788	ICAP	98.60 ± 0.00	82.70 ± 0.00	59.00 ± 0.00	83.40 ± 0.00	59.30 ± 0.00	94.00 ± 0.00	65.00 ± 0.00	61.10 ± 0.00	66.70 ± 0.00
=00	RFS	97.20 ± 0.00	90.30 ± 0.00	$\frac{87.20 \pm 0.00}{88.21 \pm 0.46}$	-	- -	95.40 ± 0.00	85.00 ± 0.00	50 00 1 4 12	90.50 ± 0.00
789	RCN flaw	$\frac{99.93 \pm 0.10}{00.70 \pm 0.21}$	80.43 ± 0.93	87.12 ± 0.40	94.48 ± 0.20	$\frac{82.01 \pm 0.20}{82.10 \pm 0.56}$	90.05 ± 0.20	75.00 ± 7.37	56.69 ± 4.12	87.02 ± 2.01
700	KCN liex	99.79 ± 0.31	80.40 ± 1.14	87.12 ± 0.09	94.02 ± 0.24	82.10 ± 0.50	90.48 ± 0.39	70.30 ± 2.24	02.22 ± 0.09	89.32 ± 2.15
150	Learner: S	SVM								
791	All	100.00	95.05	96.03	97.92	88.30	97.58	77.50	72.22	80.95
	NeuroFS	98.78 ± 0.29	91.46 ± 0.72	92.62 ± 0.40	95.30 ± 0.41	83.78 ± 0.64	96.78 ± 0.17	76.50 ± 2.55	80.54 ± 4.96	90.50 ± 0.00
792	LassoNet	97.16 ± 1.06	93.74 ± 0.39	84.90 ± 0.22	94.46 ± 0.21	82.58 ± 0.10	95.94 ± 0.15	71.00 ± 2.00	74.46 ± 4.78	88.58 ± 2.35
700	STG	99.32 ± 0.40	91.22 ± 1.23	85.82 ± 2.83	93.20 ± 0.62	82.36 ± 0.52	96.62 ± 0.34	71.00 ± 2.55	70.00 ± 4.08	84.78 ± 3.55
793	QS	96.52 ± 1.53	91.96 ± 1.04	89.78 ± 1.80	93.62 ± 0.49	80.82 ± 0.51	95.52 ± 0.27	74.38 ± 4.80	72.20 ± 2.80	76.20 ± 7.53
70/	Fisher	74.00 ± 0.00	79.80 ± 0.00	$6/.40 \pm 0.00$	81.90 ± 0.00	$6/.80 \pm 0.00$	91.00 ± 0.00	$6/.50 \pm 0.00$	63.90 ± 0.00	$\frac{90.50 \pm 0.00}{47.60 \pm 0.00}$
134	CIFE	59.40 ± 0.00	84.20 ± 0.00	59.80 ± 0.00	89.30 ± 0.00	66.90 ± 0.00	61.30 ± 0.00	52.50 ± 0.00	58.30 ± 0.00	47.60 ± 0.00
795	ICAP	99.30 ± 0.00	88.70 ± 0.00	75.10 ± 0.00	89.00 ± 0.00	59.50 ± 0.00	95.20 ± 0.00	70.00 ± 0.00	72.20 ± 0.00	57.10 ± 0.00
	RF5 Dial	95.80 ± 0.00 07.86 ± 1.22	94.00 ± 0.00 01.82 ± 0.20	91.30 ± 0.00 80.58 ± 1.24	$-$ 02 04 \pm 0.62	$-$ 81.02 \pm 0.87	95.80 ± 0.00 06.04 ± 0.58	77.50 ± 0.00 77.00 ± 2.22	-70.54 ± 4.16	90.30 ± 0.00 70.06 \pm 7.11
796	DCN	97.00 ± 1.32 00 58 \pm 0.20	91.64 ± 0.30 02.74 ± 0.62	07.30 ± 1.24 02.41 \pm 0.25	95.94 ± 0.03	01.92 ± 0.87 85.05 \pm 0.22	90.04 ± 0.38 06.82 ± 0.17	$\frac{77.00 \pm 5.52}{72.50 \pm 5.50}$	70.34 ± 4.10 72.22 ± 1.52	79.00 ± 7.11
707	RCN flox	99.50 ± 0.29 99.51 ± 0.10	93.74 ± 0.02 93.65 ± 0.36	$\frac{93.41 \pm 0.23}{93.46 \pm 0.10}$	$\frac{90.09 \pm 0.19}{96.70 \pm 0.11}$	85.84 ± 0.22	90.05 ± 0.17 97.06 ± 0.23	72.30 ± 3.39 76.00 ± 6.75	73.33 ± 1.32 74.44 ± 2.32	90.40 ± 0.00 80.52 ± 2.13
191	KCIA liex	$\frac{11.51 \pm 0.19}{10.19}$	95.05 ± 0.50	75.40 ± 0.19	70.77 ± 0.11	<u>05.04 ± 0.30</u>	77.00 ± 0.23	70.00 ± 0.75	74.44 ± 2.32	09.52 ± 2.15

810 C AUXILARY EXPERIMENT

To complement the experiments in Section 4, we test the performance of RelChaNet against two baseline methods on four additional datasets. CIFAR-10 and CIFAR-100 are two additional long datasets representing complex prediction tasks, while BASEHOCK and SMK are two additional wide datasets. Their dimensions are shown in Table 4. Each condition was run five times, except for NeuroFS on the CIFAR datasets, where we limited runs to a single iteration to ensure that the runtime remained below 12 hours per condition.

Table 4: Dataset dimensions and domain

	Cases	Features	Domain	Reference
CIFAR-10	60000	3072	Image	Krizhevsky (2009)
CIFAR-100	60000	3072	Image	Krizhevsky (2009)
BASEHOCK	1993	4862	Text	Lang (1995)
SMK	187	19993	Genomics	Spira et al. (2007)

The results in Table 5 show that RCN and RCN flex perform best for the CIFAR-10 dataset, indicating their potential for more complex datasets. However, they are outperformed by NeuroFS for CIFAR-100, potentially due to their much smaller architecture. For the two wide datasets, the results are mixed: RCN and RCN flex outperform the other approaches on SMK but fall behind on BASEHOCK.

Table 5: Resulting accuracy of the studied methods for different numbers of selected features K and datasets using the SVM downstream learner. Our proposed methods are "RCN" and "RCN flex". "All" is the accuracy using all features in the dataset. The best and second-best methods for each combination of K and dataset are marked in bold and underlined, respectively. Entries represent the mean \pm standard deviation of the downstream learner accuracy across five runs, except for the CIFAR datasets and NeuroFS method, which use a single run.

	CIFAR-10	CIFAR-100	BASEHOCK	SMK
All	54.36	26.39	94.24	84.21
Average				
NeuroFS	46.62	20.95	89.00	79.20
LassoNet	28.60	11.45	91.44	78.03
RCN	46.80	19.26	85.87	82.76
RCN flex	47.36	19.77	85.14	82.11
K = 25				
NeuroFS	40.40	17.40	$\underline{85.46 \pm 2.10}$	77.34 ± 5.7
LassoNet	23.30 ± 0.96	9.58 ± 1.05	$\overline{\textbf{89.82}\pm\textbf{1.21}}$	74.74 ± 3.0
RCN	40.71 ± 1.75	15.33 ± 0.84	82.31 ± 1.82	$\textbf{82.63} \pm \textbf{6.0}$
RCN flex	$\overline{\textbf{41.82} \pm \textbf{0.64}}$	$\overline{15.26\pm1.09}$	81.40 ± 0.88	77.89 ± 6.3
K = 50				
NeuroFS	46.30	21.10	$\underline{88.08 \pm 0.70}$	81.56 ± 2.6
LassoNet	28.77 ± 5.00	10.55 ± 0.50	$\textbf{91.98} \pm \textbf{1.16}$	80.53 ± 3.9
RCN	$\underline{46.65\pm0.60}$	18.98 ± 0.90	86.47 ± 1.45	83.68 ± 4.3
RCN flex	$\overline{\textbf{47.23} \pm \textbf{0.87}}$	$\underline{19.13 \pm 1.34}$	84.56 ± 1.67	82.11 ± 3.4
K = 75				
NeuroFS	50.30	22.10	$\underline{90.86 \pm 2.20}$	78.40 ± 3.8
LassoNet	30.22 ± 1.54	12.41 ± 2.15	$\textbf{91.88} \pm \textbf{1.01}$	78.42 ± 7.5
RCN	49.28 ± 0.47	20.40 ± 0.63	87.47 ± 1.59	82.63 ± 2.3
RCN flex	$\underline{49.65\pm0.38}$	$\underline{21.52\pm0.58}$	86.87 ± 1.69	83.16 ± 3.5
K = 100				
NeuroFS	49.50	23.20	$\underline{91.62 \pm 2.08}$	79.48 ± 5.6
LassoNet	32.12 ± 0.56	13.25 ± 2.22	$\overline{\textbf{92.08}\pm\textbf{0.52}}$	78.42 ± 2.2
RCN	$\underline{50.58 \pm 0.40}$	22.34 ± 0.43	87.22 ± 1.42	82.11 ± 2.8
RCN flex	50.73 ± 0.34	23.19 ± 0.18	87.72 ± 2.56	85.26 ± 1.4