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uISEP-Institut Supérieur d’Électronique de Paris, Issy-les-Moulineaux, France
vDepartment of Computer Science, University of Copenhagen, Copenhagen, Denmark

wDepartment of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar,
Technical University of Munich, Germany

xTranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Germany
yDepartment of Quantitative Biomedicine, University of Zurich, Switzerland

zGlaxoSmithKline Research, Stevenage,UK
aaH. Lundbeck A/S, Copenhagen, Denmark

abHospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
acCentro de Investigación Biomédica en Red Bioingenieŕıa, Biomateriales y Nanomedicina, (CIBER-BBN),

Barcelona, Spain

∗Authors contributed equally to this work
1Corresponding author:c.sudre@ucl.ac.uk
2The complete list of collaborators for the ALFA study can be found in acknowledgments

Preprint submitted to Elsevier January 22, 2025



Abstract

Imaging markers of cerebral small vessel disease provide valuable information on brain health,

but their manual assessment is time-consuming and hampered by substantial intra- and interrater

variability. Automated rating may benefit biomedical research, as well as clinical assessment, but

diagnostic reliability of existing algorithms is unknown. Here, we present the results of the VAscular

Lesions DetectiOn and Segmentation (Where is VALDO? ) challenge that was run as a satellite event

at the international conference on Medical Image Computing and Computer Aided Intervention

(MICCAI) 2021. This challenge aimed to promote the development of methods for automated

detection and segmentation of small and sparse imaging markers of cerebral small vessel disease,

namely enlarged perivascular spaces (EPVS) (Task 1), cerebral microbleeds (Task 2) and lacunes

of presumed vascular origin (Task 3) while leveraging weak and noisy labels. Overall, 12 teams

participated in the challenge proposing solutions for one or more tasks (4 for Task 1 - EPVS, 9 for

Task 2 - Microbleeds and 6 for Task 3 - Lacunes). Multi-cohort data was used in both training and

evaluation. Results showed a large variability in performance both across teams and across tasks,

with promising results notably for Task 1 - EPVS and Task 2 - Microbleeds and not practically

useful results yet for Task 3 - Lacunes. It also highlighted the performance inconsistency across

cases that may deter use at an individual level, while still proving useful at a population level.

Keywords: CSVD, brain, MRI, microbleeds, enlarged perivascular spaces, lacunes, automated,

segmentation, detection, challenge

1. Introduction

Cerebral small vessel disease (CSVD), the deterioration of the smallest brain vessels, encom-

passes a large variety of etiologies including arteriolosclerosis (Alistair, 2002) and amyloid pathology

(Kester et al., 2014) and may be further driven by genetic predisposition (Haffner et al., 2016; Giau

et al., 2019). It results in observable damage or changes to the brain. Most commonly observed

MRI markers of CSVD include white matter hyperintensities (WMH), cerebral microbleeds, la-

cunes of presumed vascular origin, and enlarged perivascular spaces (Wardlaw et al., 2013). CSVD

related damage has been associated with an increased risk of stroke and dementia, and with the

acceleration of cognitive decline (Østergaard et al., 2016; Rensma et al., 2018). The presence of
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these markers are also associated to one another (Zhang et al., 2014; Zhu et al., 2010; Yates et al.,

2014).

WMH are the most visible marker of CSVD and have naturally taken the centre stage of clin-

ical research in CSVD. In addition, research on development of WMH segmentation solutions has

been particularly popularized thanks to impactful research showing the clinical importance of lesion

volumetry (Van Straaten et al., 2006). While the automated quantification of white matter hyper-

intensities has been heavily studied for the last decade with very successful solutions (Sudre et al.,

2015; Guerrero et al., 2018; Atlason et al., 2019; De Boer et al., 2009), automated detection and

segmentation of the small, focal markers of CSVD has been investigated less frequently. However,

as the interest of the clinical community in these markers starts to grow, getting to understand

their relevance in clinical research requires them to be adequately detected and quantified. While

these markers are currently typically assessed visually through binary dichotomization (presence

vs absence) (Yates et al., 2014), counts (Adams et al., 2015), or visual scales (Potter, 2011), such

visual assessment is time consuming and subject to large inter- and intra-rater variability (Sudre

et al., 2019). Automated methods are therefore required to make quantification robust and reliable

as well as feasible in the context of large data sets. So far, development of automated methods has

been impeded by the methodological issues related to the very small size of these markers and the

resulting extreme imbalance in the data, as well as the absence of a gold standard for annotation.

Methodological developments towards automated solutions for the quantification of biomarkers

have found a new dynamic thanks to the annotated datasets made available through technical

challenges on segmentation and detection in brain MRI with notably the popular BRATS challenge

(Menze et al., 2014), ISLes (Maier et al., 2017), MRBrainS (Mendrik et al., 2015), the 2017 MICCAI

WMH challenge (Kuijf et al., 2019) or the more recent ADAM challenge (Timmins et al., 2021)

on intracranial aneurysms. Such challenges give insight into state-of-the-art methodology and

remaining technical problems for a specific question.

The VAscular Lesions DetectiOn and Segmentation (Where is VALDO? ) challenge was orga-

nized with the aim of promoting the development of new solutions for the automated detection and

segmentation of these sparse and small structural brain changes (enlarged perivascular spaces (Task

1), cerebral microbleeds (Task 2) and lacunes (Task 3) ) while leveraging weak and noisy labels

from manual annotation or visual assessment. Beyond a simple benchmarking exercise assessing

the state of the solution space, this challenge was further intended to gain insight on the current
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Task 1 - EPVS Task 3 - LacunesTask 2 - Microbleeds

Figure 1: Annotated example of the three type of markers targeted in the challenge

pitfalls and challenges, raise awareness and contribute to the building of a community dedicated to

developing solutions to facilitate quantification of CSVD markers in brain MRI scans. This paper

describes the design, results, and lessons learnt through the challenge according to the reporting

guidelines detailed in (Maier-Hein et al., 2020).

2. Methods

2.1. Mission of the challenge

The Where is VALDO? challenge was organized to assess three tasks, each of them focusing on

one focal marker of CSVD - Task 1 on enlarged perivascular spaces (EPVS), Task 2 on cerebral

microbleeds and Task 3 on Lacunes. Figure 1 illustrates each of these markers as annotated in the

challenge training set.
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Currently, the lack of accurate and reproducible automated methods for all three markers pro-

hibits the identification of clinically relevant characteristics at both individual and population levels.

Therefore, for each of the stated markers both detection and segmentation performance need to be

assessed. Ultimately, the improved quantification of these small focal markers of CSVD may be

used to better understand their relevance and derive biomarkers for diagnosis or prognosis in the

context of healthy ageing and dementia, and as surrogate end points in clinical trials.

In proposing tasks particularly subject to high data imbalance and limited and/or noisy anno-

tations, this challenge further aimed to catalyse methodological research to address these common

issues in the medical image analysis community.

Ultimately, the proposed methods should be applicable to different settings involving ageing

populations such as population cohorts, clinical trials or memory clinics.

The challenge dataset however consisted exclusively of population-based cohorts - two to three

according to the task, with differences in MRI acquisition protocol, image resolution and scanner

characteristics across datasets. No additional information beyond the images was provided. Each

of the datasets was enriched for lesion burden through stratified sampling of the skewed population

distributions.

For each task, a similar approach to assessment was adopted to ensure consistency across tasks

and address both segmentation and detection aspects, although some may currently be considered

more important in one task than another, with different paradigms used in clinical practice. For

instance, the blooming effect observed in the presence of microbleeds is protocol dependent, making

the detection more relevant than the segmentation in that task (Buch et al., 2017).

2.2. Challenge organization

The Where is Valdo? challenge was run as a satellite event at MICCAI 2021 as a collaboration

of University College London and Erasmus MC University Medical Center Rotterdam. Its three-

task design was peer-reviewed prior to acceptance and made public at https://doi.org/10.5281/

zenodo.4600654 Regarding prize eligibility, it was decided that organizers would not participate

and while members of the same institutions as the organizers were allowed to participate in the

challenge, they would not be eligible for prizes. Prizes were given to each winner of individual

tasks and the overall winner across all tasks. Results were publicly presented for all participating

teams. All submitting teams were invited to propose two team members (per task) to participate
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Figure 2: Timeline of the challenge from inception in September 2019

as co-authors in the challenge overview paper. After publication of this overview paper of the

challenge, the submission will reopen to the community for anyone wanting to benchmark their

methods against those previously submitted. Further information is available on the challenge

website https://valdo.grand-challenge.org.

The challenge was organized in 4 phases: 1) a training phase from the moment the annotated

database was made downloadable (February 2021), 2&3) two optional validation steps on 5 new

cases to provide individual (no public leaderboard) feedback on the performance (14th to 21st of

June and 12th to 19th of July) and 4) the final evaluation stage on withheld cases (submission from

26th of July to 5th of August 2021). A grace period extending until the 10th August in case of

technical difficulties was granted to all participants. Participants had to provide a docker container

for their fully automated method (1 for each task) and were allowed to participate in any or all the

tasks. Use of additional training data was allowed under the condition it would be made available at

submission time. The methods did not have to be similar across all tasks. Details of the submission

procedure are listed at https://valdo.grand-challenge.org/Submission/. Participating teams

were also requested to provide a short technical note describing their solutions that have been made

available at https://openreview.net/group?id=MICCAI.org/2021/Challenge/VALDO. Figure 2

presents the timeline of the challenge.

Submitted data were evaluated on the test set at a GPU facility at Erasmus MC. In order to

ensure that the proposed methods were running as expected, each docker was run on one example

of the training set and the result sent back to the participants for checking, allowing for submission

of a new docker if the output was not as expected.

The evaluation code was made available prior to submission at https://github.com/WhereIsValdo/
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valdo-eval-2021. The participating teams were encouraged to make their source code publicly

available and all participants except one team agreed for their docker containers to be made public.

They have been placed on https://hub.docker.com/r/whereisvaldo/challenge2021/tags

The challenge was sponsored by NVIDIA and Icometrix. Test data was available to CHS and

KVW. The contribution of the authors listed in this manuscript can be found in supplementary

material.

2.3. Community survey

To better understand the interest within the community for such initiative, we launched in

January 2021 a survey targeting the community working in the field of automated detection of

CSVD lesions. This survey was sent to a list of researchers having recently published automated

methods for detection or segmentation of one of the three lesion types considered in the Where

is VALDO? challenge, the International Society of Vascular Behavioural and Cognitive Disorders

(VasCog https://www.vas-cog.com), and the Medical Image Understanding and Analysis (MIUA

miua@jiscmail.ac.uk) mailing list, and the survey was shared on social media by the challenge

organizing team. Overall, 36 answers were recorded with 25 individuals indicating to be very likely

or likely to participate. Among the respondents, 39% indicated being already actively working

in the field of CSVD and 30% more general in the neuroimaging field. Microbleed segmentation

appeared as the most popular task in the survey with 15 respondents indicating they were highly

likely to participate in this task against 10 for EPVS and 10 for lacunes. These answers helped

shape the final challenge design, notably standardizing the evaluation of the different tasks and

making the challenge overall more concise.

2.4. Challenge data sets

The challenge data sets (training, validation, and test sets) came from the same cohorts with a

similar ratio between them across tasks. This ratio was also kept in the testing set.

2.4.1. Datasets and image acquisition

Two subsets of population cohorts were used for all three tasks and an additional one was further

available for the microbleed detection/segmentation task, namely the SABRE and Rotterdam Scan

Study (RSS) cohorts and the ALFA study respectively. All cohorts were retrospective studies for

which local ethical approval had already been obtained from the National Research Ethics Service
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Committee, London-Fulham (14/LO/0108) for SABRE, the Population Research Act from the

Ministry of Health for RSS and the Independent Ethics Committee Parc de Salut Mar Barcelona

and registered at Clinicaltrials.gov (NCT01835717) for ALFA. For all datasets, acquisition of the

data was performed by a trained radiographer according to a predefined research protocol. The

training data for the Where is VALDO? challenge was made available under a CC BY NC-SA

license.

SABRE. The Southall and Brent Revisited (SABRE) cohort is a population cohort of individuals

residing in the two named boroughs of west London (UK)(Tillin et al., 2013). This tri-ethnic

cohort was initially recruited in 1988 with the purpose of investigating metabolic and cardiovascular

diseases across ethnicities. For their third clinical visit (2014-2018), life partners were also invited

to take part and study participants underwent a brain MRI session on a Philips 3T scanner. Mean

age in this cohort at time of acquisition was 72 years old ranging from 36 to 92.

RSS. The Rotterdam Scan Study (RSS) (Ikram et al., 2015) is part of the larger Rotterdam Study

(RS) (Ikram et al., 2020), a population-based study that aims to investigate chronic illness in the

elderly. Started in 1995, the Rotterdam Scan Study initially concerned a selection of the RS but

since 2005 brain MRI is part of the core protocol of the study. Individuals aged 45 and over without

dementia are eligible for MRI and are followed up every 3-4 years. Since 2005, scanning has been

performed on a 1.5T GE MRI scanner dedicated to the study.

ALFA. The ALFA (Alzheimer’s and Families) cohort is based on the ALFA registry that gathers

details of relatives (generally offspring) of patients with Alzheimer’s Disease making up for a cohort

naturally enriched for genetic predisposition to AD. As described in the related protocol paper

(Molinuevo et al., 2016), the ALFA cohort is composed of cognitively normal participants aged

45-74. Brain MRI sequences were acquired on a GE Discovery 3T scanner.

Table 1 summarizes the acquisition parameters for the different sequences across the studied

cohorts.

2.4.2. Training, validation and testing data

For Task 1 - EPVS and Task 3 - Lacunes, imaging data consists of T1-weighted, T2-weighted

and FLAIR images, with the latter two modalities rigidly registered to the T1 image using NiftyReg

(Modat et al., 2014). For Task 2 - Microbleeds, imaging data is the combination of T2, T2* and
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Cohort Sequence Type TR TE TI FA Resolution (mm)

SABRE

T1w Inversion

prepared

gradient

echo

6.9 3.1 / / 1.09 x 1.09 x 1.0

T2w 3D sagittal

turbo spin

echo

2500 222 836 8 1.09 x 1.09 x 1.0

FLAIR 4800 125 1650 1.09 x 1.09 x 1.0

T2* Gradient

echo

1288 21 / 18 0.45 x 0.45 x 3.0

RSS

T1w Gradient re-

called echo

13.8 2.8 400 20 0.49 x 0.49 x 0.8

T2w Fast spin

echo

12300 17.3 / / 0.49 x 0.49 x 0.8

FLAIR Fast spin

echo

8000 120 2000 0.49 x 0.49 x 0.8

T2* Gradient re-

called echo

45 31 / 13 0.49 x 0.49 x 0.8

ALFA

T1w 3D 8.0 3.7 450 8 1.0 x 1.0 x 1.0

T2w Fast spin

echo

5000 85 / 110 1.0 x 1.0 x 3.0

T2* Gradient re-

called echo

1300 23 / 15 1.0 x 1.0 x 3.0

Table 1: Acquisition details for the three cohorts. Acronyms FA - Flip angle; TE - echo time(ms); TI - inversion

time(ms); TR - repetition time (ms)
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Task 1 - EPVS Task 2 - Microbleeds Task 3 - Lacunes

Cohort Train Test Train Test Train Test

SABRE 6 10 11 20 6 10

RSS 34 (6/28) 56 34 68 34 56

ALFA / / 27 59 / /

Total 40 66 72 147 40 66

Table 2: Number of cases in train and test set for each task and cohort origin. For RSS Task 1 of training separation

between cases with full annotation and cases with only counts

T1-weighted images in T2* space. Table 2 presents the number of cases used for training and

testing across the different tasks and the different cohorts. For each task, validation consisted of 5

cases from the RSS cohort. There was no overlap between training, test or validation datasets.

The number of cases proposed for training was chosen based on annotation availability and data

policy for making a certain number of cases publicly available. For Task 1 - EPVS and Task 3 -

Lacunes, the SABRE segmentation data was already available for a set of 16 cases with high level of

cerebrovascular damage. In comparison, for the RSS study, for which annotations were more widely

available, data were selected to cover the variability in burden present in the study. They present

close to a uniform distribution in burden thereby limiting data skewness towards cases without

any lesion. In all tasks, annotated cases were distributed across training and testing set to follow

approximately similar burden distribution. A ratio of 6:10 between training and testing data was

chosen across all cohorts and tasks.

2.4.3. Annotation

Across the three cohorts, raters were all trained for their annotation task and had at least 3

years of professional experience in dealing with medical images. The segmentation was performed

for all SABRE and ALFA cases using ITKSnap (Yushkevich et al., 2016). For the RSS cases a

custom MeVisLab (Ritter et al., 2011) application was used. In all cases were two annotations were

available, the average of the two annotations was used as reference.

Task 1 - Enlarged Perivascular Spaces. For Task 1, the annotation strategy differed between the

SABRE and RSS cohort. For identifying EPVS, the STRIVE criteria (Wardlaw et al., 2013) for

EPVS were used in the SABRE cohort, while in the RSS cohort, the UNIVRSE criteria (Adams

10



et al., 2015) were used. These criteria are very similar, except for the fact that the UNIVRSE

criteria only consider EPVS with a diameter between 1 and 3 mm, while the STRIVE criteria do

not have a lower limit and consider any EPVS with a diameter up to 3 mm. In the SABRE cohort,

EPVS over the whole brain image were annotated independently by two raters (CHS and LL) with

a senior radiologist (BGA) confirming the segmentation of CHS. The three modalities were jointly

used for the segmentation that was assessed across the three axes.

For this dataset the annotation was provided in either of two forms: over the full brain or on

only 5 randomly selected slabs of 5mm. A mask was provided per case indicating the slabs that

were annotated.

In the RSS cohort, EPVS were annotated with segmentations in limited axial slices for 6 cases of

the training set and the full test set, while the remaining 28 cases of the training set were annotated

with dots only by a team of trained annotators supervized by KVW, FD and MWV. EPVS were

annotated in four brain regions: the mesencephalon, hippocampus, basal ganglia, and the centrum

semi-ovale. The first two smaller regions were annotated entirely. For the latter two regions, only

one fixed slice was annotated. For the cases with EPVS segmentations, additional slices of the

basal ganglia and of the white matter were annotated, the depth of these axial slices was randomly

chosen per case. A mask indicating which parts of the brain had been annotated was computed

using parcellation outputs for each case.

For the training data made available to participants, the EPVS annotations were either presented

just as counts (computed from the dots), per slice and per region or as segmentations plus counts in

the same areas. The masks indicating the annotated regions and slices per case was also provided.

Figure 3 illustrates the type of annotation masks that were provided to the participants.

Task 2 - Microbleeds. Different raters annotated each of the cohorts but followed very similar

protocols. The BOMBS criteria (Cordonnier et al., 2009) was applied for the SABRE (RR under

the supervision of HRJ) and ALFA cohort (consensus of SI and LL under the supervision of FB) as

described in (Ingala et al., 2020). A team of trained raters under the supervision of MWV applied

the protocol described in (Vernooij et al., 2008) for RSS. Both identification protocols are in line

with the STRIVE guidelines (Wardlaw et al., 2013) that indicate that microbleeds are areas of

signal void of generally 2-5 mm in diameter but can be up to 10 mm.
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SABRE RSS Segmentation RSS Counts

Figure 3: Example of annotation provided for Task 1 - EPVS with left) for SABRE slabs of 5 mm randomly selected

or full segmentation over the image, middle) Segmentation on two slices of CSO, 2 slices of the basal ganglia, the

hippocampi and mesencephalon for 6 RSS cases and right) count of EPVS on 1 slice of CSO, 1 slice of basal ganglia,

hippocampi and mesencephalon for 28 cases of RSS.

Task 3 - Lacunes. Lacunes were identified using the STRIVE criteria (Wardlaw et al., 2013). Cere-

bellar lacunes were excluded because of assumed differences in the underlying pathology in this brain

region(Sigurdsson et al., 2022). Any surrounding gliosis (the hyperintense rim visible on FLAIR

sequences) was not included in the segmentation of the lacune. For the SABRE cohort, lacunes

were identified at the same time as EPVS simply being assigned another label in the segmentation,

with the two raters (CHS, LL) performing the identification and segmentation independently. For

the RSS cohort, lacunes were independently segmented for all cases by two raters, the pair of raters

varying across the cases. In RSS, all cases of training, validation and test set indicated by radio-

logical reads as containing at least one lacune were consistently annotated by one rater (TE) on a

custom MeVisLab(Ritter et al., 2011) application. The second set of annotations was performed

using ITKSnap(Yushkevich et al., 2016). PY annotated all cases of the training set. FW annotated

the validation set as well as half of the test set. The remaining half of the test set was annotated

by IFV.

2.4.4. Sources of annotation errors

In all tasks, possible source of errors in the annotations pertain to multiple distinct sources:

the appropriate identification of a target element either because these elements are very small and

may be easy to miss or because it may be difficult to distinguish them from similarly appearing

structures (mimics); the decision on the boundary of an object, probably notably more complex in
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a coarser resolution plane; the use of the segmentation software (too large brush, not considering all

orientations for consistency or not adequately using the zoom). In the case of EPVS, identification

of ”large enough” marker was also a subjective consideration possibly leading to different detection

levels.

2.4.5. Preprocessing

For all tasks, the preprocessing consisted of a rigid alignment of the images as indicated in

section 2.4.2. A defacing mask derived from the T1-weighted image was applied to all registered

modalities. While such a step would not be required in practice, this step was mandated by the

data sharing policies around public release of the data. The defacing mask was obtained as the

inverse of a dilated version of the brain mask as obtained from HD-BET (Isensee et al., 2019). All

RSS scans were corrected for intensity inhomogeneity with the default parameters of MINC N3

package (Sled et al., 1998).

2.5. Assessment method

All three tasks were evaluated using similar metrics in order to assess both detection and seg-

mentation performance of the proposed solutions. A combination of relative error (F1 score and

Mean Dice score) and absolute error (absolute element difference (AED) and absolute volume dif-

ference (AVD)) metrics was chosen, since they provide complementary information. The F1 score

and the AED on the number of detected lesions were chosen as detection metrics while the Mean

Dice score over the appropriately identified elements and the AVD were the metrics used for the

evaluation of segmentation. Table 3 summarizes the purpose, formula and properties of the metrics

used in the challenge across all tasks and calculated for each case, where c refers to 6-neighborhood

connected components, TP to true positives, FP to False positive, FN to false negatives, Ref to the

reference annotation and Seg to the predicted segmentation.

One essential aspect in the evaluation for the derivation of both F1 and Mean Dice score was

the definition of true positive elements. To determine which of the elements were true positives,

for all three tasks, connected components with a neighbourhood of 6 were established for both

annotation and prediction using a threshold for the probability of 0.5 for the prediction map. Each

annotation element was matched to at most one element from the prediction. For Task 1 - EPVS,

a possible matchable element had to have an Intersection over Union (IoU) of more than 10%.

For Task 2 - Microbleeds and Task 3 - Lacunes, matching was possible when the centre of mass
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Metric Target Formula Range Best

F1 Score Detection 2TPc

2TPc+FPc+FNc
∗ 100 0 - 100 100

AED Detection |#cRef −#cSeg| 0 - inf 0

Mean Dice Segmentation 100
#TPc

∑
t∈TPc

2∗
∑

(Reft∗Segt)∑
Reft+

∑
Segt

0 - 100 100

AVD Segmentation |Ref − Seg| 0 - inf 0

Table 3: Description of detection and segmentation metrics used across all tasks for the evaluation.

of the prediction element was less than 5 mm away from the center of mass of the ground truth

segmentation element. When multiple elements were found to be matchable, the one with best

association value (IoU or centre of mass distance) was attributed to the annotated label. For empty

cases, the relative metrics were inapplicable, so only the absolute error metrics (number of elements

and volume) were computed.

In the event of algorithmic failure for a specific case, worst metric values were attributed. For

bounded metrics (F1 and Mean Dice score) a value of 0 was given. For non-bounded error metrics

(absolute element and absolute volume difference) an error of 100 000 was assigned as worst possible

error.

Detection Error Detection Error True Positive True Positive

RefUnc <= 0.5 RefUnc > 0.5 RefUnc <=0.5 RefUnc > 0.5

PredUnc<= 0.5 FC FC TC FC

PredUnc >0.5 TU TU FU TC

Table 4: Categorization for calculation of uncertainty measures; TU - Truly Uncertain; TC - Truly Certain; FU -

Falsely Uncertain; FC - Falsely Certain

For Task 3 - Lacunes two metrics related to the estimation of uncertainty were further included.

One was designed to tackle detection uncertainty and the other segmentation uncertainty. In terms

of uncertainty validity, elements are considered as either truly certain (TC), truly uncertain (TU),

falsely certain (FC) or falsely uncertain (FU) as per Table 4.

The uncertainty was calculated as (TU + TC)/(TU + TC + FC + FU).

The segmentation uncertainty was only assessed over true positive detected elements, assessing
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probabilistic uncertainty accuracy as

∑
TP

(1−Unc)+
∑

FN+FP
Unc

TP+FN+FP

All metrics were computed per image and the distribution over all cases of the test set was

used for the final ranking. For each task, ranking of the methods was performed following the

method described for the Medical Image Decathlon challenge (Antonelli et al., 2021). Pairwise

comparisons were performed using the Mann-Whitney U-test for the Mean Dice over cases with

F1 > 0 and the Wilcoxon paired test for the other metrics due to their non-normal distribution.

For each method, the number of times it was found significantly better (with a p-value ≤0.05 for

significance) than another was used to rank the given metric. The final rank was obtained as the

average across the ranks (lower being better). The robustness of the ranking was further assessed

using the distribution of Kendall’s tau correlation coefficient between ranking for all cases and the

one obtained for 1000 bootstrap samples as described in (Wiesenfarth et al., 2021).

To identify the best overall team, the ranks were averaged across all common metrics of all tasks

for the teams that provided a solution to all three tasks.

2.6. Additional analyses

Further analyses were performed to inform on the following aspects: 1) clinical performance,

2) performance variability across datasets, 3) regional variability in performance (Task 1 - EPVS),

4) inter rater variability (Task 3 - Lacunes and part of Task 1 - EPVS), and finally ensemble

performance using either all methods (EnsembleAll) or the top 50% (EnsembleTop).

Clinical performance. For each task, the most clinically relevant metric was further defined and

used to compare the different methods. For Task 1 - EPVS, to emphasize the notion of burden of

EPVS, the correlation between predicted and reference volumes across the population of test cases

was used. For Task 2 - Microbleeds and Task 3 - Lacunes where a binary statement of existence or

absence is most clinically relevant, the balanced accuracy over cases considered as a whole-image

classification task was chosen.

Cross-dataset performance. For each task, the performance of each method was additionally com-

puted per dataset and then compared. The ranking was also computed per dataset to examine

specific discrepancies between cohorts.
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Regional performance. To assess whether the performance of the proposed methods differed depend-

ing on the region for Task 1 - EPVS, the evaluation was run for each region (centrum semi-ovale,

basal ganglia, hippocampus and mesencephalon) separately. For each method, pairwise comparison

across regions was performed to assess whether a given method performed better on a given area.

The overall ranking between methods was also computed per region.

Inter-rater variability. For Task 1 - EPVS and Task 3 - Lacunes for which annotations by two

raters were available, the evaluation was run considering alternatively each rater as the reference.

While the overall absolute differences (volume and number of identified components) between the

two raters are independent of the reference chosen (rater 1 or rater 2), changing the reference will

affect F1 score and Mean Dice calculation due to differences in definition of true positives.

Ensemble performance. Two ensemble solutions were created and evaluated. The average of all

solutions (EnsembleAll) and the average of the predictions from the top 50% in overall rank of the

methods (EnsembleTop). EnsembleAll and EnsembleTop were compared to the individual methods

for each task. The number of participating teams being 4 for Task 1 - EPVS, EnsembleTop in this

case consists in the union of two best performing methods.

3. Results

3.1. Challenge submission and participating teams

Over the period of the challenge, the data set has been requested for 353 downloads. Across

the two validation periods, we received requests from 1 team at validation stage 1 and 4 teams at

validation stage 2. The final submission of dockerized solutions and their documented description

to be applied to the test sets was composed of 4 teams for Task 1 - EPVS, 9 teams for Task 2 -

Microbleeds and 6 teams for Task 3 - Lacunes. Only 2 teams participated in all 3 tasks. Table 5

summarizes in which task each team participated.

Table 6 reflects for each task and team the average time needed to evaluate one case, the GPU

memory consumption, the docker details for memory requirements (CPU/GPU) and the methods’

characteristics. The memory details are presented both as requested by the participants based on

their training settings and as measured on a single case allowing for memory flooding. All methods

using Stochastic Gradient Descent (SGD) as optimizer applied Nesterov Momentum with value of
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Team Name
Task 1

EPVS

Task 2

Microbleeds

Task 3

Lacunes

BigrBrain D D D
Dawai D D

EMC N D
MixLacune D

MixMicrobleed D
MixMicrobleedNet D

Neurophet D D
TeamTea D D D

Tfff D
TheGPU D D
ValdoNN D

Zihao D
Table 5: Participation of the teams across the different tasks

0.99. Poly learning rate scheduling is defined as multiplying the learning rate by
(

1− epoch
epochmax

)0.9
.

The following architectures were listed by the participating teams: 2D Unet (Ronneberger et al.,

2015), 3D Unet (Çiçek et al., 2016), nnUnet (Isensee et al., 2021), MaskRCNN He et al. (2017),

Mask-RetinaNet (Farady et al., 2020), ResNet (He et al., 2016). Beyond the well-known Dice

(Milletari et al., 2016) and binary cross-entropy losses, others such as focal loss (Lin et al., 2017)

and blob loss (Kofler et al., 2022) were mentioned. Adam (Kingma and Ba, 2014), SGD (Gardner,

1984) and Ranger21 Wright and Demeure (2021) were the optimizers used.
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Among all the submissions, only one team (TheGPU) proposed an alternative to a deep learning

solution. The majority of the proposed methods were trained as pure segmentation solutions and a

few teams submitted a detection+segmentation solution based on Mask-RCNN (He et al., 2017) or

Mask Retina net (Farady et al., 2020). Across all tasks, when a deep learning solution was proposed,

the UNet architecture was the most common choice. For all three tasks, the time required to process

a case and the GPU memory requirements varied greatly. For Task 2 - Microbleeds for instance

duration ranged from less than 1 minute to 45.8 min and memory consumption of 2.4 to 43 GB

(allowing for memory flooding). In terms of the methodology for uncertainty assessments in Task

3 - Lacunes, the two teams submitting methods to all three tasks did not provide any uncertainty

map. Among the 4 remaining teams, most used directly the probabilistic value of their output as

measure of uncertainty while mixLacune defined an uncertainty zone at the border of their detected

lacunes.

For all teams, key characteristics of the proposed methods are summarized in table 6. Additional

details can be found for each team on the OpenReview repository https://openreview.net/

group?id=MICCAI.org/2021/Challenge/VALDO.

3.2. Metric values

For each task the detection and the segmentation are reported across all teams.

Task 1 - Enlarged Perivascular Spaces (EPVS). The summary statistics for each team and each

metric are reported in Table 7.

Table 7: Metrics results for Task 1 - EPVS presented as Median [1st quartile - 3rd quartile] for all metrics. AED -

Absolute Element Difference; AVD (in mm3) - Absolute Volume Difference. In bold the significantly best performance

across the different teams (excluding the ensemble solutions) and in italic when there is no significant difference

compared to the second best.

Detection Segmentation

F1 AED Mean Dice AVD

Bigrbrain 35.81 [28.14 ; 40.42] 14.50 [6.00 ; 34.50] 61.09 [55.40 ; 66.57] 45.30 [16.12 ; 89.12]

Neurophet 0.00 [0.00 ; 3.34] 29.00 [13.00 ; 47.00] 28.23 [23.27 ; 29.76] 390.15 [250.72 ; 636.58]

TeamTea 17.12 [6.79 ; 25.90] 41.00 [24.25 ; 69.25] 55.07 [46.25 ; 64.23] 106.05 [73.00 ; 175.86]

TheGPU 38.92 [28.87 ; 49.44] 16.00 [9.00 ; 35.75] 72.38 [64.97 ; 77.12] 45.20 [23.79 ; 82.21]

EnsembleAll 38.62 [28.1 ; 44.82] 24.00 [12.00 ; 46.00] 64.33 [59.14 ; 68.40] 96.15 [63.67 ; 151.69]

EnsembleTop 38.86 [31.19 ; 45.13] 29.00 [15.25 ; 50.25] 67.38 [58.24 ; 72.23] 36.10 [20.15 ; 66.33]
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Figure 4 presents the distribution of metrics values for detection (top row) and segmentation

metrics (bottom row) for Task 1 - EPVS.

Detection Segmentation

F1 AED Mean Dice AVD

Bigrbrain 16.67 [0.00 ; 36.10] 9.00 [5.00 ; 16.00] 81.17 [71.86 ; 89.69] 52.47 [15.45 ; 171.98]

Dawai 0.00 [0.00 ; 40.00] 1.00 [1.00 ; 3.00] 68.35 [52.99 ; 77.71] 12.40 [6.29 ; 33.05]

MixMicrobleed 0.00 [0.00 ; 0.00] 1e5 [499.5 ; 1e5] 64.36 [55.79 ; 68.58] 1e5 [4728 ; 1e5]

MixMicrobleedNet 68.42 [36.67 ; 100.00] 1.00 [0.00 ; 1.00] 84.01 [79.48 ; 87.62] 8.77 [2.48 ; 24.30]

TeamTea 66.67 [0.00 ; 100.00] 1.00 [0.00 ; 1.00] 82.57 [74.65 ; 87.50] 11.30 [1.81 ; 25.39]

Tfff 40.00 [18.18 ; 66.67] 3.00 [1.00 ; 6.00] 77.65 [62.43 ; 89.13] 15.27 [4.33 ; 49.33]

TheGPU 0.00 [0.00 ; 0.00] 4.00 [1.00 ; 10.00] 49.46 [36.89 ; 78.14] 602.89 [159 ; 1842.02]

ValdoNN 50.00 [0.00 ; 68.15] 1.00 [1.00 ; 2.00] 80.00 [66.67 ; 87.68] 12.00 [3.14 ; 24.91]

Zihao 66.67 [20.83 ; 100.00] 1.00 [0.00 ; 2.00] 80.00 [73.34 ; 88.04] 9.61 [3.20 ; 21.51]

EnsembleAll 66.67 [0.00 ; 100.00] 1.00 [0.00 ; 1.00] 81.22 [71.35 ; 87.27] 12.87 [4.93 ; 27.26]

EnsembleTop 75.68 [38.18 ; 100.00] 1.00 [0.00 ; 1.00] 77.90 [29.91 ; 87.23] 11.25 [2.81 ; 21.82]

Table 8: Metrics results for Task 2 - Microbleeds presented as Median [1st quartile; 3rd quartile] for each metric.

AED - Absolute Element difference; AVD - Absolute volume difference (in mm3). In bold, the significantly best

performance per metric across teams (excluding the ensemble solutions)
.

Task 2 - Microbleeds. Figure 5 presents the distribution of metrics values for detection (top row)

and segmentation metrics (bottom row) for Task 2 - Microbleeds with Table 8 presenting the metrics

values across all teams.

Task 3 - Lacunes. Table 9 presents the results obtained for Task 3 - Lacunes.

Detection Segmentation

F1 AED Mean Dice AVD

BigrBrain 7.69 [5.06 ; 16.49] 27.50 [20.25 ; 33] 40.84 [27.02 ; 50.27] 123.93 [79.49 ; 182.64]

Dawai 15.38 [0.00 ; 25.00] 6.00 [3.00 ; 10.00] 40.09 [26.20 ; 45.31] 78.93 [26.94 ; 209.24]

EMC N 3.92 [0.00 ; 54.55] 2.00 [1.00 ; 4.75] 20.49 [12.21 ; 34.08] 125.60 [45.08 ; 375.96]

MixLacune 6.25 [0.00 ; 12.00] 22.00 [13.50 ; 26.00] 16.85 [10.31 ; 27.59] 33.95 [16.88 ; 107.69]

Neurophet 4.55 [0.00 ; 10.53] 20.00 [11.50 ; 34.00] 8.82 [3.73 ; 15.33] 471.40 [244.16 ; 891.16]

TeamTea 28.57 [0.00 ; 57.14] 1.00 [0.00 ; 2.00] 45.75 [36.74 ; 56.17] 14.88 [0.00 ; 40.29]

EnsembleAll 28.57 [0.00 ; 60.87] 1.00 [0.00 ; 2.00] 37.98 [22.13 ; 44.55] 13.05 [0.07 ; 61.03]

EnsembleTop 30.77 [0.00 ; 66.67] 1.00 [0.00 ; 2.00] 38.17 [25.48 ; 45.26] 9.68 [1.05 ; 63.28]

Table 9: Metrics results for Task 3 - Lacunes presented as median [1st quartile ; 3rd quartile]. AED - Absolute

Element difference; AVD - Absolute volume difference (mm3). Bold font indicates best performance across the teams

(excluding ensemble solutions) when significantly better than all others. Italic font indicates best performance when

not significantly better than the second ranking

while Table 10 shows the metrics for the uncertainty component of the task excluding BigrBrain

and TeamTea who did not provide an uncertainty map.
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Figure 4: Distribution of metrics values across the different teams for detection metrics (top row) and segmentation

metrics (bottom row) for Task 1 - EPVS
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Figure 5: Distribution of metrics values across the different teams for detection metrics (top row) and segmentation

metrics (bottom row) for Task 2 - Microbleeds; AED - Absolute Element Difference; AVD - Absolute Volume

Difference
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Table 10: Metrics related to uncertainty for Task 3 - Lacunes presented as median [1st quartile - 3rd quartile. AED

- Absolute Element difference; AVD - Absolute volume difference (in mm3).

Detection Unc Segmentation Unc

Dawai 0.00 [0.00 ; 25.00] 63.65 [0.00 ; 87.73]

EMC N 100.00 [86.81 ; 100.00] 0.00 [0.00 ; 67.94]

MixLacune 0.00 [0.00 ; 3.57] 4.76 [0.00 ; 24.39]

Neurophet 0.00 [0.00 ; 6.82] 0.00 [0.00 ; 23.18]

Figure 6 presents the distribution of metrics values for detection (top row) and segmentation

metrics (bottom row) for Task 3 - Lacunes.

Figure 7 shows the distribution of metrics values for the assessment of uncertainty applied for

Task 3 - Lacunes.

3.3. Rankings

Table 11 presents the overall ranking, according to the number of tasks undergone and for each

individual task when relevant.

Table 11: Ranking across all tasks grouped by number of tasks to which each team participated. Across all metrics,

D refers to detection and S to segmentation, R to relative, A to absolute and U to uncertainty. DR refers to F1 score,

DA to Absolute element difference, SR to Mean Dice, SA to absolute volume difference, DU to detection uncertainty

and SU to segmentation uncertainty. Tot is the overall rank for a given task

Task 1 - EPVS Task 2 - Microbleeds Task 3 - Lacunes

Team DR DA SR SA Tot DR DA SR SA Tot DR DA SR SA DU SU Tot

TeamTea 3 3.5 3 2.5 3 1.5 2.5 2.5 3 2 1.5 1 1 1 2

BigrBrain 2 1.5 2 1 2 6 8 3.5 7 6 4 5.5 2.5 4.5 6

Dawai 5 7 7.5 5.5 7 3 3 2.5 3 2 1 1

TheGPU 1 1.5 1 2.5 1 7 8 9 8 8

Neurophet 4 3.5 4 4 4 5.5 5.5 6 6 3 3.5 5

MixMicrobleedNet 1.5 1 1 1 1

Zihao Team 3 2.5 2.5 3 3

ValdoNN 4 4.5 5 3 4

Tfff 6 4.5 5 5.5 5

MixMicrobleed 9 9 7.5 9 9

EMC N 1.5 2 4.5 4.5 1 2 2

MixLacune 5.5 4 4.5 2 4 3.5 4

Table 12 reflects the distribution of Kendall’s Tau coefficient when assessing the robustness of
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Figure 6: Distribution of metric values across the different teams for detection metrics (top row) and segmentation

metrics (bottom row) for Task 3 - Lacunes
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Figure 7: Distribution of metric values across the different teams for the assessment of uncertainty for Task 3 -

Lacunes

the ranking for each metric using 1000 bootstrap samples.

Table 12: Distribution characteristics (mean and standard deviation) Kendall’s Tau correlation coefficient in %

between final ranking and bootstrap samples (1000 samples). Across all metrics, D refers to detection and S to

segmentation, R to relative, A to absolute and U to uncertainty. DR refers to F1 score, DA to Absolute element

difference, SR to Mean Dice, SA to absolute volume difference, DU to detection uncertainty and SU to segmentation

uncertainty.

DR DA SR SA DU SU

Task 1 - EPVS 96.13 (4.33) 93.55 (7.39) 97.87 (4.45) 97.33 (4.02)

Task 2 - Microbleeds 98.11 (1.81) 98.36 (1.70) 98.19 (2.38) 87.08 (6.62)

Task 3 - Lacunes 95.88 (6.57) 97.46 (3.98) 94.68 (3.26) 93.19 (5.02) 99.85 (1.13) 95.82 (8.37)

3.4. Additional analyses

3.4.1. Clinical relevant markers

Task 1 - EPVS. For Task 1, since the burden of PVS is currently clinically considered the most

valuable insight, the Spearman correlation coefficient between predicted and reference burden across

all test cases was calculated for overall volume and element count and is presented in Figure 8 along

with the log-transformed relationship between reference and predicted burden in terms of volume

(top) and count (bottom).
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Figure 8: Association between reference and predicted PVS burden across the participating teams for volume (top

row) and count (bottom row). The Spearman rho (%) is indicated on each plot.

Task 2 - Microbleeds. For cerebral microbleeds, classifying the absence or presence of any mi-

crobleeds was deemed clinically the most relevant assessment. Balanced accuracy over the test

set varied from 29.5% for team Dawai to 87.3% for team MixMicrobleed. Figure 9 presents the

confusion matrices for each of the teams.

Task 3 - Lacunes. Similarly, Figure 10 shows the confusion matrix for correctly identifying cases

that have at least one lacune. For the 6 participating teams, balanced accuracy was close to 0.5

for almost all teams as they predicted the presence of at least one lacune in almost all cases. Only

TeamTea was able to recognize cases without lacunes, with 78.3% balanced accuracy.

3.4.2. Cross-dataset variability

Performance varied greatly across datasets, being systematically overall better on RSS dataset

than others (SABRE or ALFA). For all three tasks, Figure 11 presents the variation of F1 and

Mean Dice score across datasets for all teams and Table 13 presents median and interquartile range

for all tasks across datasets for F1 score and Mean Dice.

Ranking varied also slightly across datasets as indicated in Table 14.
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Figure 9: Confusion matrix regarding the classification of an image as containing at least one microbleed based on

obtained prediction images.

Table 13: F1 score and Mean Dice presented as median [1st quartile; 3rd quartile] across the different datasets for

all three tasks

F1 Score Mean Dice

ALFA RSS SABRE ALFA RSS SABRE

T
a
s
k

1

BigrBrain 35.40 [27.89 ; 40.36] 38.20 [31.19 ; 40.25] 63.56 [58.05 ; 67.29] 43.10 [41.94 ; 46.92]

Neurophet 1.95 [0.00 ; 3.71] 0.00 [0.00 ; 0.00] 28.6 [23.90 ; 30.17] NA

TeamTtea 13.50 [6.02 ; 21.76] 34.80 [25.10 ; 40.93] 59.66 [50.08 ; 65.55] 45.05 [42.88 ; 46.91]

TheGPU 43.71 [34.55 ; 51.67] 24.32 [2.61 ; 28.42] 73.41 [69.68 ; 78.6] 34.96 [7.16 ; 39.25]

T
a
s
k

2

BigrBrain 11.11 [0.00 ; 16.67] 30.77 [13.81 ; 51.47] 36.36 [21.81 ; 58.24] 82.21 [73.3 ; 93.32] 75.07 [69.41 ; 81.84] 90.13 [84.63 ; 92.19]

Dawai 0.00 [0.00 ; 0.00] 41.43 [25.00 ; 66.67] 0.00 [0.00 ; 0.00] 57.20 [43.49 ; 70.91] 69.47 [53.16 ; 77.82] 63.33 [56.31 ; 69.23]

Mixmicrobleed 0.00 [0.00 ; 0.00] 0.00 [0.00 ; 0.75] 0.00 [0.00 ; 0.42] 0.00 [0.00 ; 0.00] 58.90 [54.56 ; 67.04] 68.62 [66.67 ; 79.41]

MixmicrobleedNet 66.67 [0.00 ; 100] 77.81 [66.67 ; 100.00] 51.67 [50.00 ; 69.23] 87.18 [74.71 ; 96.67] 82.79 [79.82 ; 85.20] 84.21 [79.35 ; 87.39]

TeamTea 50.00 [0.00 ; 100.00] 80.00 [66.67 ; 100.00] 50.00 [30.22 ; 68.75] 85.16 [65.38 ; 100.00] 82.08 [77.83 ; 85.24] 84.62 [74.65 ; 87.66]

Tfff 20.00 [7.68 ; 40.00] 65.15 [47.50 ; 76.41] 40.00 [33.33 ; 55.91] 80.00 [63.19 ; 99.46] 68.58 [57.64 ; 80.72] 86.19 [79.14 ; 89.46]

TheGPU 0.00 [0.00 ; 0.00] 0.00 [0.00 ; 9.95] 0.00 [0.00 ; 10.01] 79.43 [56.53 ; 83.76] 40.00 [32.63 ; 48.54] 66.67 [53.28 ; 79.70]

ValdoNN 0.00 [0.00 ; 66.67] 66.67 [38.82 ; 80.00] 50.00 [32.14 ; 51.56] 86.06 [70.24 ; 100.00] 70.91 [62.08 ; 81.48] 87.00 [81.51 ; 89.58]

Zihao 50.00 [0.00 ; 100.00] 74.81 [66.67 ; 94.23] 45.00 [22.92 ; 63.54] 87.71 [80.00 ; 100.00] 76.98 [71.69 ; 80.46] 85.42 [74.53 ; 88.85]

T
a
s
k

3

BigrBrain 7.41 [5.48 ; 14.91] 8.39 [3.80 ; 17.75] 42.81 [27.39 ; 51.80] 30.17 [22.30 ; 37.37]

Dawai 20.00 [0.00 ; 33.33] 0.00 [0.00 ; 0.00] 39.88 [25.38 ; 44.82] 57.14 [57.14 ; 57.14]

EMC N 44.44 [0.00 ; 66.67] 0.00 [0.00 ; 0.00] 21.42 [13.09 ; 34.24] 2.20 [2.20 ; 2.20]

MixLacune 6.25 [0.00 ; 10.81] 9.09 [0.00 ; 16.16] 16.85 [10.31 ; 28.04] 15.45 [12.51 ; 19.3]

Neurophet 6.25 [0.00 ; 14.29] 0.00 [0.00 ; 0.46] 8.82 [4.98 ; 14.65] 11.37 [6.86 ; 15.88]

TeamTea 40.00 [0.00 ; 66.67] 0.00 [0.00 ; 1.61] 45.75 [34.58 ; 55.75] 64.66 [54.40 ; 74.92]
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Figure 10: Confusion matrix regarding the classification of an image as containing at least one lacune based on

obtained prediction images.
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Figure 11: Distribution of results for F1 (left column) and Mean Dice (right column) across different datasets for the

three tasks (each row represents one task).
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Table 14: Ranking calculated for each dataset separately

ALFA RSS SABRE

T
a
sk

1
-

E
P

V
S

BigrBrain 2 1

Neurophet 4 4

TeamTea 3 2

TheGPU 1 3

T
a
sk

2
-

M
ic

ro
b

le
e
d

s

BigrBrain 7 7 6

Dawai 6 6 7

MixMicrobleed 9 9 9

MixMicrobleedNet 2 1 2

TeamTea 3 2 1

Tfff 5 5 5

TheGPU 8 8 8

ValdoNN 4 4 3

Zihao 1 3 4

T
a
sk

3
-

L
a
c
u

n
e
s BigrBrain 5 5

Dawai 2.5 1

EMC N 1 3

Mixlacune 4 2

Neurophet 6 6

TeamTea 2.5 4
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Figure 12: F1 and Mean Dice distribution across the different brain regions for Task 1 - EPVS

3.4.3. Regional variability

Metrics variability for Task 1 - EPVS across different brain regions is illustrated for F1 and

Mean Dice in Figure 12.

3.4.4. Inter-rater variability

Inter-rater variability was investigated for tasks and datasets for which two raters provided

annotation for the same case (Task 1 - EPVS SABRE dataset, Task 3 - Lacunes all datasets) and

results are presented in Table 15.

For Task 1 - EPVS, intra-rater detection was slightly lower than the best method but the inter-

rater segmentation performance appeared to be better by quite a strong margin reaching 59.49% in

comparison to the best method at 45.5%. The detection performance was notably higher for Task

3 - Lacunes with segmentation performance on par with the best performing method.
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Table 15: Metrics values (median [1st quartile - 3rd quartile] presented for the cases where a double rating was

available in the test set.

Detection Segmentation

F1 score R1 F1 score R2 AED Mean Dice R1 Mean Dice R2 AVD

Task 1 - EPVS
19.57 19.86 135.00 52.63 54.07 651.00

[13.48 ; 23.81] [13.58 ; 23.81] [96.25 ; 316.50] [52.07 ; 54.51] [51.43 ; 55.05] [371.75 ; 2819.75]

Task 3 - Lacunes
48.45 55.84 0.50 59.03 59.49 21.51

[39.01 ; 61.88] [0.00 ; 86.36] [0.00 ; 1.00] [43.72 ; 64.47] [44.95 ; 65.88] [0.00 ; 43.63]

3.4.5. Ensembles

For the creation of EnsembleTop, Task 1 - EPVS used predictions from team TheGPU and

BigrBrain, Task 2 - Microbleeds used predictions from MixMicrobleedNet, TeamTea, Zihao, and

ValdoNN, while for Task 3 - Lacunes, predictions from Dawai, TeamTea and EMC N were used.

Table 16 presents the values of the metrics and the corresponding ranking obtained for each type

of ensemble (EnsembleAll, the average of all solutions, and EnsembleTop, the average of the top

50%) across the three tasks. When considering the clinical metrics, performance was higher for

both ensemble solutions in Task 1 - EPVS reaching a correlation coefficient of 70.0% and 74.8% for

EnsembleAll and EnsembleTop respectively for the count and 69.5 and 80.0% for the volume. For

Task 2 - Microbleeds, balanced accuracy was of 77.0% for EnsembleAll and 79.6% for EnsembleTop

ranking fourth and third compared to all the teams. Finally, for Task 3 - Lacunes, balanced

accuracy reached 75.0% for EnsembleAll, down to 65.3$ for EnsembleTop slightly lower than the

78.0% obtained by TeamTea.

Table 16: Metrics value presented as median [IQR] for the 4 common metrics across the different ensemble types for

the three tasks along with associated ranking

F1 AD Mean Dice AVD

Task 1 - EPVS

EnsembleAll
38.62 [28.10 ; 44.82] 24.00 [12.00 ; 46.00] 64.33 [59.14 ; 68.40] 96.15 [63.67 ; 151.69]

3.5 3.5 4 2

EnsembleTop
38.86 [31.19 ; 45.13] 29.00 [15.25 ; 50.25] 67.38 [58.24 ; 72.23] 36.10 [20.15 ; 66.33]

1.5 3.5 2 2

Task 2 - Microbleeds

EnsembleAll
66.67 [0.00 ; 100.00] 1.00 [0.00 ; 1.00] 81.22 [71.35 ; 87.27] 12.87 [4.93 ; 27.26]

4 3 6.5 7

EnsembleTop
75.68 [38.18 ; 100] 1.00 [0.00 ; 1.00] 77.90 [29.91 ; 87.23] 11.25 [2.81 ; 21.82]

1 1 3 3

Task 3 - Lacunes

EnsembleAll
28.57 [0.00 ; 60.87] 1.00 [0.00 ; 2.00] 37.98 [22.13 ; 44.55] 13.05 [0.07 ; 61.03]

2.5 2 3.5 2

EnsembleTop
30.77 [0.00 ; 66.67] 1.00 [0.00 ; 2.00] 38.17 [25.48 ; 45.26] 9.68 [1.05 ; 63.28]

2.5 2 3.5 2
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4. Discussion

This manuscript reports the design and outcome of the ”Where is VALDO?” challenge that

took place as a satellite event of MICCAI 2021. Detection and segmentation of three types of

markers of cerebral small vessel disease were evaluated as three distinct tasks namely enlarged

perivascular spaces (Task 1), cerebral microbleeds (Task 2) and lacunes (Task 3). Among the 12

distinct participating teams, 9 teams provided a solution for Task 2 and 2 teams competed across

all three tasks.

Although the challenge was designed to address both detection and segmentation aspects, most

of the proposed solutions were designed with a segmentation purpose only - the detection perfor-

mance considered as a by-product of the prediction. This choice may have been influenced partially

by the guidelines to provide only the probabilistic segmentation map that was then post-processed

to identify the individual connected components instead of requesting instance segmentation and

predicted detections as outputs. However, this strategy appeared to generally work well with seg-

mentation performance being on par with detection performance across all three tasks. Interestingly,

there was no strong relationship between memory, time expenditure and overall performance with

some of the most greedy methods having lower performance than some of the most cost-effective

solutions.

Across all tasks, one team proposed a solution not relying on deep-learning and their strategy

had the best performance for Task 1 - EPVS possibly because of the fact that EPVS may be

relatively easy to characterise in terms of signal and shape signature. However, none of the proposed

methods for Task 1 - EPVS made use of the weak annotation data (count on slices). Also, while

some methods only used annotated slices, performance may have been lowered by the absence of use

of the masks when only specific parts of a given axial slice were annotated (RSS Data). Most deep

learning solutions described using a UNet style architecture at one point of their pipeline either as

main network for one-stage methods or for the segmentation component for multi-stage solutions.

Interestingly, despite four teams describing the use of the nnUNet (Isensee et al., 2021) architecture

for Task 2 - Microbleeds, performance varied greatly across these teams with rank 1, 2, 5 and 7

out of 9. This could potentially be explained by the choice of input data, the dimensionality, or

the framework chosen. In the context of microbleeds, using 3D information may be particularly

relevant to avoid mimics. This observation highlights the importance of all these steps in the design

of a relevant solution, the use of the whole extent of the training data being a key component of the
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winner’s method. Such consideration is particularly relevant when dealing with a modest number

of training examples. When considering choices of augmentation, those involving local changes to

input images and/or reference annotation (interpolation, intensity changes, spatial deformation)

may cause inconsistencies in the case of very small objects of interest.

In terms of dataset origins, performance was generally higher for the dataset with the highest

resolution which was also for Task 2 - Microbleeds and Task 3 - Lacunes the dataset with the highest

number of training cases. This is naturally expected as a direct impact on resolution on evaluation

metrics and as an overfitting related property.

The amount of training data (in terms of examples of lesions) appeared also to be relevant when

comparing the performance of the methods of Task 1 across the different regions of interest, the

regions with the most EPVS (centrum semi-ovale and basal ganglia) being the ones with the highest

performance across all methods. This may not only be due to the sheer amount of training data

in the remaining regions (hippocampus and mesencephalon) but also to the characteristics of the

imaging sequences in these regions and the likelihood for mimics (cysts) and higher variability in

presentation. Knowledge of the differences in performance across regions is particularly interesting

clinically when associations with risk factors and or clinical function have been made specifically

in specific anatomical regions in relation to Alzheimer’s Disease (Jiménez-Balado et al., 2018)

and Parkinson’s disease (Duker and Espay, 2007). For Task 1 - EPVS, even for the best teams,

the performance presented a large variability which would make their adoption in clinical practice

difficult. The overall good correlation between expected and predicted burden may however already

be enough to make these tools valuable when investigating associations at population level. For

Task 2 - Microbleeds, it appeared that, when correctly detected, the segmentation of lesions was

very good. However, even in the best of teams there were issues at the detection level with both

cases missed and cases wrongly considered as containing at least one microbleed. The best teams

indicated very few lesions which would be relatively practical to visually inspect and reject if

necessary. It is here the absence of a systematic bias towards overcall or undercall could make it

difficult to integrate in clinical pipelines. For Task 3 - Lacunes, performance appeared quite poor

on both detection and segmentation metrics, with a general large overcall of lacunes and when

detecting them correctly a lower segmentation performance than for Task 2 - Microbleeds. Such

performance would require too much time for editing and checking to be adopted in both clinical

practice and research studies.
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When comparing the performance across all three tasks, it appeared that the performance was

higher on tasks for which the variability in element appearance was lower (EPVS with linear shapes

and microbleeds with spherical shapes compared to lacunes with more heterogeneous shapes). The

metrics investigated as closest to the current clinical measures of interest were generally in agreement

with the overall ranking of the challenge but showed stark differences in terms of clinical viability of

the proposed solutions. While for Task 1 - EPVS and Task 2 - Microbleeds the proposed solutions

achieved reasonable performance in terms of ”clinical” metric, only one team performed reasonably

well for Task 3 - Lacunes, with all other solutions systematically finding many lacunes even when

there were none. This may be due to the large variability in appearance (i.e. shape, location,

intensity signature) as well as the lower number of examples of this type of lesions when compared

to those of Task 1 - EPVS and Task 2 - Microbleeds. With all solutions generally producing many

false positives, the time required to go through each case and reject many wrongly detected lesion

candidates would be prohibitive for clinical adoption. One must however keep in mind that none

of these solutions were optimized for this metric and may have performed differently otherwise. In

this case the addition of auxiliary tasks in the learning framework to abide to a priori knowledge

of burden distribution or to directly optimize such metrics may have interesting results.

In a field where adequate research biomarkers have yet to be properly defined and proven to be

reliable (Smith et al., 2019), these observations regarding clinical metrics may lead to define different

tasks and solutions for the targeted markers according to their purpose: clinical practice or research.

While location, individual volume and shape information may become of interest in the research

context as potential new biomarkers, thereby highlighting segmentation as an interesting end-goal,

these characteristics may not be yet relevant in the clinical context. In clinical practice, one could

imagine a two-stage pipeline with 1) whole-image level classification favouring sensitivity for the

flagging of scans where an assessment is required for the presence or absence of a specific marker

2) Specification of lesion location (if needed) for the scans that have been flagged as containing a

marker. This second step may be particularly relevant when supporting diagnosis (e.g., distinction

between amyloid angiopathy and hypertensive pathology according to microbleed location) or to

the explanation of the clinical presentation (e.g., lacune on crucial white matter tract).

A key aspect, not measured here, is the ability of the proposed methods to be used in clinical

settings with scans likely to be of lower resolution and to have more artefacts as well as present

simultaneously other markers of pathology (e.g stroke, tumours). With the continuous progress in
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acquisition protocols and the democratization of scanning abilities, research-grade scanning proto-

cols such as those used in this challenge may become available routinely, thereby limiting issues of

protocol related generalizability. However, cohort-related bias may be more difficult to overcome.

In fact, in the challenge, data came only from population cohorts and did not include patients

with dementia as would be frequent in memory clinics. While efforts were made to provide train-

ing examples from the whole spectrum of lesion burden, specific pathological presentations may

be missing and the generalizability of the proposed solutions would need to be assessed in these

contexts.

Conclusion. In this challenge assessing the current segmentation and detection performance of three

markers of cerebral small vessel disease, namely EPVS, Microbleeds and Lacunes, methods targeting

directly the segmentation were often quite successful in detecting these small structures. Number

of elements on which to train the solutions was strongly predictive of performance, both across

tasks and regionally. Manually engineered features became in the case of EPVS relevant enough

to compete with deep-learning based strategies. Strikingly, all the presented methods proposed a

training based on dense labelling, discarding the weak labelling available for Task 1 - EPVS. While

for Task 1 - EPVS and Task 2 - Microbleeds some demonstrated they could potentially be used

for population-based research, the large variability in performance across cases may require lengthy

visual censoring if they were to be used for individual cases. In this context, it could be relevant

to further include the evaluation of performance variability in the assessed tasks. In addition,

systematic assessment of prediction confidence (as proposed with the uncertainty metrics of Task

3 - Lacunes) would be of interest for the design of practical implementation.
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