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Abstract

Imaging markers of cerebral small vessel disease provide valuable information on brain health,
but their manual assessment is time-consuming and hampered by substantial intra- and interrater
variability. Automated rating may benefit biomedical research, as well as clinical assessment, but
diagnostic reliability of existing algorithms is unknown. Here, we present the results of the VAscular
Lesions DetectiOn and Segmentation (Where is VALDO?) challenge that was run as a satellite event
at the international conference on Medical Image Computing and Computer Aided Intervention
(MICCAI) 2021. This challenge aimed to promote the development of methods for automated
detection and segmentation of small and sparse imaging markers of cerebral small vessel disease,
namely enlarged perivascular spaces (EPVS) (Task 1), cerebral microbleeds (Task 2) and lacunes
of presumed vascular origin (Task 3) while leveraging weak and noisy labels. Overall, 12 teams
participated in the challenge proposing solutions for one or more tasks (4 for Task 1 - EPVS, 9 for
Task 2 - Microbleeds and 6 for Task 3 - Lacunes). Multi-cohort data was used in both training and
evaluation. Results showed a large variability in performance both across teams and across tasks,
with promising results notably for Task 1 - EPVS and Task 2 - Microbleeds and not practically
useful results yet for Task 3 - Lacunes. It also highlighted the performance inconsistency across
cases that may deter use at an individual level, while still proving useful at a population level.

Keywords: CSVD, brain, MRI, microbleeds, enlarged perivascular spaces, lacunes, automated,

segmentation, detection, challenge

1. Introduction

Cerebral small vessel disease (CSVD), the deterioration of the smallest brain vessels, encom-
passes a large variety of etiologies including arteriolosclerosis (Alistair, |2002) and amyloid pathology
(Kester et al.l[2014) and may be further driven by genetic predisposition (Haffner et al., 2016} |Giau
et al.l |2019). It results in observable damage or changes to the brain. Most commonly observed
MRI markers of CSVD include white matter hyperintensities (WMH), cerebral microbleeds, la-
cunes of presumed vascular origin, and enlarged perivascular spaces (Wardlaw et al., [2013). CSVD
related damage has been associated with an increased risk of stroke and dementia, and with the

acceleration of cognitive decline (Ostergaard et al., 2016} [Rensma et al., 2018)). The presence of



these markers are also associated to one another (Zhang et all |2014} |Zhu et al, 2010} [Yates et al.|

pOTa).

WMH are the most visible marker of CSVD and have naturally taken the centre stage of clin-

ical research in CSVD. In addition, research on development of WMH segmentation solutions has

been particularly popularized thanks to impactful research showing the clinical importance of lesion

volumetry (Van Straaten et all [2006). While the automated quantification of white matter hyper-
intensities has been heavily studied for the last decade with very successful solutions (Sudre et al.|
2015; Guerrero et all 2018; |Atlason et al., [2019; De Boer et all 2009), automated detection and

segmentation of the small, focal markers of CSVD has been investigated less frequently. However,
as the interest of the clinical community in these markers starts to grow, getting to understand
their relevance in clinical research requires them to be adequately detected and quantified. While
these markers are currently typically assessed visually through binary dichotomization (presence
vs absence) (Yates et all [2014), counts (Adams et all, [2015)), or visual scales 2011)), such
visual assessment is time consuming and subject to large inter- and intra-rater variability

2019). Automated methods are therefore required to make quantification robust and reliable

as well as feasible in the context of large data sets. So far, development of automated methods has
been impeded by the methodological issues related to the very small size of these markers and the
resulting extreme imbalance in the data, as well as the absence of a gold standard for annotation.

Methodological developments towards automated solutions for the quantification of biomarkers
have found a new dynamic thanks to the annotated datasets made available through technical
challenges on segmentation and detection in brain MRI with notably the popular BRATS challenge
(Menze et al.,2014), ISLes (Maier et al.,[2017), MRBrainS (Mendrik et al.,2015), the 2017 MICCAI
WMH challenge (Kuijf et al., [2019)) or the more recent ADAM challenge (Timmins et al., 2021))

on intracranial aneurysms. Such challenges give insight into state-of-the-art methodology and
remaining technical problems for a specific question.

The VAscular Lesions DetectiOn and Segmentation (Where is VALDO?) challenge was orga-
nized with the aim of promoting the development of new solutions for the automated detection and
segmentation of these sparse and small structural brain changes (enlarged perivascular spaces (Task
1), cerebral microbleeds (Task 2) and lacunes (Task 3) ) while leveraging weak and noisy labels
from manual annotation or visual assessment. Beyond a simple benchmarking exercise assessing

the state of the solution space, this challenge was further intended to gain insight on the current



Task 2 - Microbleeds

Figure 1: Annotated example of the three type of markers targeted in the challenge

pitfalls and challenges, raise awareness and contribute to the building of a community dedicated to
developing solutions to facilitate quantification of CSVD markers in brain MRI scans. This paper
describes the design, results, and lessons learnt through the challenge according to the reporting

guidelines detailed in (Maier-Hein et al [2020)).

2. Methods

2.1. Mission of the challenge

The Where is VALDO? challenge was organized to assess three tasks, each of them focusing on
one focal marker of CSVD - Task 1 on enlarged perivascular spaces (EPVS), Task 2 on cerebral
microbleeds and Task 3 on Lacunes. Figure [I]illustrates each of these markers as annotated in the

challenge training set.



Currently, the lack of accurate and reproducible automated methods for all three markers pro-
hibits the identification of clinically relevant characteristics at both individual and population levels.
Therefore, for each of the stated markers both detection and segmentation performance need to be
assessed. Ultimately, the improved quantification of these small focal markers of CSVD may be
used to better understand their relevance and derive biomarkers for diagnosis or prognosis in the
context of healthy ageing and dementia, and as surrogate end points in clinical trials.

In proposing tasks particularly subject to high data imbalance and limited and/or noisy anno-
tations, this challenge further aimed to catalyse methodological research to address these common
issues in the medical image analysis community.

Ultimately, the proposed methods should be applicable to different settings involving ageing
populations such as population cohorts, clinical trials or memory clinics.

The challenge dataset however consisted exclusively of population-based cohorts - two to three
according to the task, with differences in MRI acquisition protocol, image resolution and scanner
characteristics across datasets. No additional information beyond the images was provided. Each
of the datasets was enriched for lesion burden through stratified sampling of the skewed population
distributions.

For each task, a similar approach to assessment was adopted to ensure consistency across tasks
and address both segmentation and detection aspects, although some may currently be considered
more important in one task than another, with different paradigms used in clinical practice. For
instance, the blooming effect observed in the presence of microbleeds is protocol dependent, making

the detection more relevant than the segmentation in that task (Buch et al., [2017).

2.2. Challenge organization

The Where is Valdo? challenge was run as a satellite event at MICCAI 2021 as a collaboration
of University College London and Erasmus MC University Medical Center Rotterdam. Its three-
task design was peer-reviewed prior to acceptance and made public at https://doi.org/10.5281/
zenodo .4600654 Regarding prize eligibility, it was decided that organizers would not participate
and while members of the same institutions as the organizers were allowed to participate in the
challenge, they would not be eligible for prizes. Prizes were given to each winner of individual
tasks and the overall winner across all tasks. Results were publicly presented for all participating

teams. All submitting teams were invited to propose two team members (per task) to participate
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Figure 2: Timeline of the challenge from inception in September 2019

as co-authors in the challenge overview paper. After publication of this overview paper of the
challenge, the submission will reopen to the community for anyone wanting to benchmark their
methods against those previously submitted. Further information is available on the challenge
website https://valdo.grand-challenge.org,

The challenge was organized in 4 phases: 1) a training phase from the moment the annotated
database was made downloadable (February 2021), 2&3) two optional validation steps on 5 new
cases to provide individual (no public leaderboard) feedback on the performance (14" to 215t of
June and 12*® to 19" of July) and 4) the final evaluation stage on withheld cases (submission from
26" of July to 5" of August 2021). A grace period extending until the 10" August in case of
technical difficulties was granted to all participants. Participants had to provide a docker container
for their fully automated method (1 for each task) and were allowed to participate in any or all the
tasks. Use of additional training data was allowed under the condition it would be made available at
submission time. The methods did not have to be similar across all tasks. Details of the submission
procedure are listed at https://valdo.grand-challenge.org/Submission/. Participating teams
were also requested to provide a short technical note describing their solutions that have been made
available at https://openreview.net/group?id=MICCAI.org/2021/Challenge/VALDO. Figure 2]
presents the timeline of the challenge.

Submitted data were evaluated on the test set at a GPU facility at Erasmus MC. In order to
ensure that the proposed methods were running as expected, each docker was run on one example
of the training set and the result sent back to the participants for checking, allowing for submission
of a new docker if the output was not as expected.

The evaluation code was made available prior to submission at https://github.com/WhereIsValdo/
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valdo-eval-2021. The participating teams were encouraged to make their source code publicly
available and all participants except one team agreed for their docker containers to be made public.
They have been placed on https://hub.docker.com/r/whereisvaldo/challenge2021/tags
The challenge was sponsored by NVIDIA and Icometrix. Test data was available to CHS and
KVW. The contribution of the authors listed in this manuscript can be found in supplementary

material.

2.8. Community survey

To better understand the interest within the community for such initiative, we launched in
January 2021 a survey targeting the community working in the field of automated detection of
CSVD lesions. This survey was sent to a list of researchers having recently published automated
methods for detection or segmentation of one of the three lesion types considered in the Where
is VALDO? challenge, the International Society of Vascular Behavioural and Cognitive Disorders
(VasCog https://www.vas-cog.com), and the Medical Image Understanding and Analysis (MIUA
miuva@jiscmail.ac.uk) mailing list, and the survey was shared on social media by the challenge
organizing team. Overall, 36 answers were recorded with 25 individuals indicating to be very likely
or likely to participate. Among the respondents, 39% indicated being already actively working
in the field of CSVD and 30% more general in the neuroimaging field. Microbleed segmentation
appeared as the most popular task in the survey with 15 respondents indicating they were highly
likely to participate in this task against 10 for EPVS and 10 for lacunes. These answers helped
shape the final challenge design, notably standardizing the evaluation of the different tasks and

making the challenge overall more concise.

2.4. Challenge data sets

The challenge data sets (training, validation, and test sets) came from the same cohorts with a

similar ratio between them across tasks. This ratio was also kept in the testing set.

2.4.1. Datasets and image acquisition

Two subsets of population cohorts were used for all three tasks and an additional one was further
available for the microbleed detection/segmentation task, namely the SABRE and Rotterdam Scan
Study (RSS) cohorts and the ALFA study respectively. All cohorts were retrospective studies for

which local ethical approval had already been obtained from the National Research Ethics Service
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Committee, London-Fulham (14/L.0/0108) for SABRE, the Population Research Act from the
Ministry of Health for RSS and the Independent Ethics Committee Parc de Salut Mar Barcelona
and registered at Clinicaltrials.gov (NCT01835717) for ALFA. For all datasets, acquisition of the
data was performed by a trained radiographer according to a predefined research protocol. The
training data for the Where is VALDO? challenge was made available under a CC BY NC-SA

license.

SABRE. The Southall and Brent Revisited (SABRE) cohort is a population cohort of individuals
residing in the two named boroughs of west London (UK)(Tillin et al. 2013). This tri-ethnic
cohort was initially recruited in 1988 with the purpose of investigating metabolic and cardiovascular
diseases across ethnicities. For their third clinical visit (2014-2018), life partners were also invited
to take part and study participants underwent a brain MRI session on a Philips 3T scanner. Mean

age in this cohort at time of acquisition was 72 years old ranging from 36 to 92.

RSS. The Rotterdam Scan Study (RSS) (Ikram et al., 2015) is part of the larger Rotterdam Study
(RS) (Ikram et al., [2020), a population-based study that aims to investigate chronic illness in the
elderly. Started in 1995, the Rotterdam Scan Study initially concerned a selection of the RS but
since 2005 brain MRI is part of the core protocol of the study. Individuals aged 45 and over without
dementia are eligible for MRI and are followed up every 3-4 years. Since 2005, scanning has been

performed on a 1.5T GE MRI scanner dedicated to the study.

ALFA. The ALFA (Alzheimer’s and Families) cohort is based on the ALFA registry that gathers
details of relatives (generally offspring) of patients with Alzheimer’s Disease making up for a cohort
naturally enriched for genetic predisposition to AD. As described in the related protocol paper
(Molinuevo et al., [2016), the ALFA cohort is composed of cognitively normal participants aged
45-74. Brain MRI sequences were acquired on a GE Discovery 3T scanner.

Table [I] summarizes the acquisition parameters for the different sequences across the studied

cohorts.

2.4.2. Training, validation and testing data

For Task 1 - EPVS and Task 3 - Lacunes, imaging data consists of T1-weighted, T2-weighted
and FLAIR images, with the latter two modalities rigidly registered to the T1 image using NiftyReg
(Modat et all |2014)). For Task 2 - Microbleeds, imaging data is the combination of T2, T2* and



Cohort  Sequence Type TR TE TI FA Resolution (mm)
Tlw Inversion 6.9 3.1 / /  1.09x1.09x 1.0
SABRE prepared
gradient
echo
T2w 3D sagittal 2500 222 836 8 1.09x1.09x 1.0
turbo  spin
echo
FLAIR 4800 125 1650 1.09 x 1.09 x 1.0
T2* Gradient 1288 21 / 18  0.45x 0.45 x 3.0
echo
Tlw Gradient re-  13.8 2.8 400 20 0.49x0.49x0.8
RSS called echo
T2w Fast spin 12300 17.3 / / 0.49x 0.49x 0.8
echo
FLAIR  Fast spin 8000 120 2000 0.49 x 0.49 x 0.8
echo
T2%* Gradient re- 45 31 / 13 049x049x0.8
called echo
Tlw 3D 8.0 3.7 450 8 1.0x1.0x 1.0
ALFA T2w Fast spin 5000 85 / 110 1.0x1.0x 3.0
echo
T2* Gradient re- 1300 23 / 15 1.0x1.0x 3.0

Table 1: Acquisition details for the three cohorts. Acronyms FA - Flip angle; TE - echo time(ms); TI - inversion

called echo

time(ms); TR - repetition time (ms)



Task 1 - EPVS | Task 2 - Microbleeds | Task 3 - Lacunes
Cohort Train Test | Train Test Train Test
SABRE 6 10 11 20 6 10
RSS 34 (6/28) | 56 34 68 34 56
ALFA / / 27 59 / /
Total 40 66 72 147 40 66

Table 2: Number of cases in train and test set for each task and cohort origin. For RSS Task 1 of training separation

between cases with full annotation and cases with only counts

T1-weighted images in T2* space. Table [2] presents the number of cases used for training and
testing across the different tasks and the different cohorts. For each task, validation consisted of 5
cases from the RSS cohort. There was no overlap between training, test or validation datasets.
The number of cases proposed for training was chosen based on annotation availability and data
policy for making a certain number of cases publicly available. For Task 1 - EPVS and Task 3 -
Lacunes, the SABRE segmentation data was already available for a set of 16 cases with high level of
cerebrovascular damage. In comparison, for the RSS study, for which annotations were more widely
available, data were selected to cover the variability in burden present in the study. They present
close to a uniform distribution in burden thereby limiting data skewness towards cases without
any lesion. In all tasks, annotated cases were distributed across training and testing set to follow
approximately similar burden distribution. A ratio of 6:10 between training and testing data was

chosen across all cohorts and tasks.

2.4.8. Annotation

Across the three cohorts, raters were all trained for their annotation task and had at least 3
years of professional experience in dealing with medical images. The segmentation was performed
for all SABRE and ALFA cases using ITKSnap (Yushkevich et all) [2016). For the RSS cases a
custom MeVisLab (Ritter et al. [2011) application was used. In all cases were two annotations were

available, the average of the two annotations was used as reference.

Task 1 - Enlarged Perivascular Spaces. For Task 1, the annotation strategy differed between the
SABRE and RSS cohort. For identifying EPVS, the STRIVE criteria (Wardlaw et al., 2013)) for
EPVS were used in the SABRE cohort, while in the RSS cohort, the UNIVRSE criteria (Adams

10



et al.l |2015)) were used. These criteria are very similar, except for the fact that the UNIVRSE
criteria only consider EPVS with a diameter between 1 and 3 mm, while the STRIVE criteria do
not have a lower limit and consider any EPVS with a diameter up to 3 mm. In the SABRE cohort,
EPVS over the whole brain image were annotated independently by two raters (CHS and LL) with
a senior radiologist (BGA) confirming the segmentation of CHS. The three modalities were jointly
used for the segmentation that was assessed across the three axes.

For this dataset the annotation was provided in either of two forms: over the full brain or on
only 5 randomly selected slabs of 5mm. A mask was provided per case indicating the slabs that
were annotated.

In the RSS cohort, EPVS were annotated with segmentations in limited axial slices for 6 cases of
the training set and the full test set, while the remaining 28 cases of the training set were annotated
with dots only by a team of trained annotators supervized by KVW, FD and MWV. EPVS were
annotated in four brain regions: the mesencephalon, hippocampus, basal ganglia, and the centrum
semi-ovale. The first two smaller regions were annotated entirely. For the latter two regions, only
one fixed slice was annotated. For the cases with EPVS segmentations, additional slices of the
basal ganglia and of the white matter were annotated, the depth of these axial slices was randomly
chosen per case. A mask indicating which parts of the brain had been annotated was computed
using parcellation outputs for each case.

For the training data made available to participants, the EPVS annotations were either presented
just as counts (computed from the dots), per slice and per region or as segmentations plus counts in
the same areas. The masks indicating the annotated regions and slices per case was also provided.

Figure [3] illustrates the type of annotation masks that were provided to the participants.

Task 2 - Microbleeds. Different raters annotated each of the cohorts but followed very similar
protocols. The BOMBS criteria (Cordonnier et al |2009) was applied for the SABRE (RR under
the supervision of HRJ) and ALFA cohort (consensus of SI and LL under the supervision of FB) as
described in (Ingala et al.,|2020)). A team of trained raters under the supervision of MWV applied
the protocol described in (Vernooij et al., 2008|) for RSS. Both identification protocols are in line
with the STRIVE guidelines (Wardlaw et al., |2013) that indicate that microbleeds are areas of

signal void of generally 2-5 mm in diameter but can be up to 10 mm.

11



RSS Segmentation RSS Counts

Figure 3: Example of annotation provided for Task 1 - EPVS with left) for SABRE slabs of 5 mm randomly selected
or full segmentation over the image, middle) Segmentation on two slices of CSO, 2 slices of the basal ganglia, the
hippocampi and mesencephalon for 6 RSS cases and right) count of EPVS on 1 slice of CSO, 1 slice of basal ganglia,

hippocampi and mesencephalon for 28 cases of RSS.

Task 3 - Lacunes. Lacunes were identified using the STRIVE criteria (Wardlaw et al., [2013]). Cere-

bellar lacunes were excluded because of assumed differences in the underlying pathology in this brain

region(Sigurdsson et al., [2022). Any surrounding gliosis (the hyperintense rim visible on FLAIR

sequences) was not included in the segmentation of the lacune. For the SABRE cohort, lacunes
were identified at the same time as EPVS simply being assigned another label in the segmentation,
with the two raters (CHS, LL) performing the identification and segmentation independently. For
the RSS cohort, lacunes were independently segmented for all cases by two raters, the pair of raters
varying across the cases. In RSS, all cases of training, validation and test set indicated by radio-

logical reads as containing at least one lacune were consistently annotated by one rater (TE) on a

custom MeVisLab(Ritter et al., |2011)) application. The second set of annotations was performed

using ITKSnap(Yushkevich et al.| 2016). PY annotated all cases of the training set. FW annotated

the validation set as well as half of the test set. The remaining half of the test set was annotated

by IFV.

2.4.4. Sources of annotation errors

In all tasks, possible source of errors in the annotations pertain to multiple distinct sources:
the appropriate identification of a target element either because these elements are very small and
may be easy to miss or because it may be difficult to distinguish them from similarly appearing

structures (mimics); the decision on the boundary of an object, probably notably more complex in

12



a coarser resolution plane; the use of the segmentation software (too large brush, not considering all
orientations for consistency or not adequately using the zoom). In the case of EPVS, identification
of ”large enough” marker was also a subjective consideration possibly leading to different detection

levels.

2.4.5. Preprocessing

For all tasks, the preprocessing consisted of a rigid alignment of the images as indicated in
section 2.4.2. A defacing mask derived from the T1-weighted image was applied to all registered
modalities. While such a step would not be required in practice, this step was mandated by the
data sharing policies around public release of the data. The defacing mask was obtained as the
inverse of a dilated version of the brain mask as obtained from HD-BET (Isensee et al.| [2019). All
RSS scans were corrected for intensity inhomogeneity with the default parameters of MINC N3

package (Sled et al.l |1998|).

2.5. Assessment method

All three tasks were evaluated using similar metrics in order to assess both detection and seg-
mentation performance of the proposed solutions. A combination of relative error (F1 score and
Mean Dice score) and absolute error (absolute element difference (AED) and absolute volume dif-
ference (AVD)) metrics was chosen, since they provide complementary information. The F1 score
and the AED on the number of detected lesions were chosen as detection metrics while the Mean
Dice score over the appropriately identified elements and the AVD were the metrics used for the
evaluation of segmentation. Table [3|summarizes the purpose, formula and properties of the metrics
used in the challenge across all tasks and calculated for each case, where . refers to 6-neighborhood
connected components, TP to true positives, FP to False positive, FN to false negatives, Ref to the
reference annotation and Seg to the predicted segmentation.

One essential aspect in the evaluation for the derivation of both F1 and Mean Dice score was
the definition of true positive elements. To determine which of the elements were true positives,
for all three tasks, connected components with a neighbourhood of 6 were established for both
annotation and prediction using a threshold for the probability of 0.5 for the prediction map. Each
annotation element was matched to at most one element from the prediction. For Task 1 - EPVS,
a possible matchable element had to have an Intersection over Union (IoU) of more than 10%.

For Task 2 - Microbleeds and Task 3 - Lacunes, matching was possible when the centre of mass

13



Metric Target Formula Range Best

F1 Score Detection % * 100 0-100 100
AED Detection |#.Ref — #.Seg] 0 - inf 0
. . 2%y (RefixSegs)
Mean Dice | Segmentation % > ierp. % 0-100 100
AVD Segmentation |Ref — Seg| 0 - inf 0

Table 3: Description of detection and segmentation metrics used across all tasks for the evaluation.

of the prediction element was less than 5 mm away from the center of mass of the ground truth
segmentation element. When multiple elements were found to be matchable, the one with best
association value (IoU or centre of mass distance) was attributed to the annotated label. For empty
cases, the relative metrics were inapplicable, so only the absolute error metrics (number of elements
and volume) were computed.

In the event of algorithmic failure for a specific case, worst metric values were attributed. For
bounded metrics (F1 and Mean Dice score) a value of 0 was given. For non-bounded error metrics

(absolute element and absolute volume difference) an error of 100 000 was assigned as worst possible

error.
‘ Detection Error ‘ Detection Error ‘ True Positive True Positive
RefUnc <= 0.5 RefUnc > 0.5 RefUnc <=0.5 | RefUnc > 0.5
PredUnc<= 0.5 FC FC TC FC
PredUnc >0.5 TU TU FU TC

Table 4: Categorization for calculation of uncertainty measures; TU - Truly Uncertain; TC - Truly Certain; FU -

Falsely Uncertain; FC - Falsely Certain

For Task 3 - Lacunes two metrics related to the estimation of uncertainty were further included.
One was designed to tackle detection uncertainty and the other segmentation uncertainty. In terms
of uncertainty validity, elements are considered as either truly certain (TC), truly uncertain (TU),
falsely certain (FC) or falsely uncertain (FU) as per Table

The uncertainty was calculated as (TU +TC)/(TU +TC 4+ FC + FU).

The segmentation uncertainty was only assessed over true positive detected elements, assessing

14



ZTP(l_UnC)+ZFN+FP Une
TP+FN+FP

probabilistic uncertainty accuracy as

All metrics were computed per image and the distribution over all cases of the test set was
used for the final ranking. For each task, ranking of the methods was performed following the
method described for the Medical Image Decathlon challenge (Antonelli et al., 2021)). Pairwise
comparisons were performed using the Mann-Whitney U-test for the Mean Dice over cases with
F1 > 0 and the Wilcoxon paired test for the other metrics due to their non-normal distribution.
For each method, the number of times it was found significantly better (with a p-value <0.05 for
significance) than another was used to rank the given metric. The final rank was obtained as the
average across the ranks (lower being better). The robustness of the ranking was further assessed
using the distribution of Kendall’s tau correlation coefficient between ranking for all cases and the
one obtained for 1000 bootstrap samples as described in (Wiesenfarth et al., [2021)).

To identify the best overall team, the ranks were averaged across all common metrics of all tasks

for the teams that provided a solution to all three tasks.

2.6. Additional analyses

Further analyses were performed to inform on the following aspects: 1) clinical performance,
2) performance variability across datasets, 3) regional variability in performance (Task 1 - EPVS),
4) inter rater variability (Task 3 - Lacunes and part of Task 1 - EPVS), and finally ensemble
performance using either all methods (EnsembleAll) or the top 50% (EnsembleTop).

Clinical performance. For each task, the most clinically relevant metric was further defined and
used to compare the different methods. For Task 1 - EPVS, to emphasize the notion of burden of
EPVS, the correlation between predicted and reference volumes across the population of test cases
was used. For Task 2 - Microbleeds and Task 3 - Lacunes where a binary statement of existence or
absence is most clinically relevant, the balanced accuracy over cases considered as a whole-image

classification task was chosen.

Cross-dataset performance. For each task, the performance of each method was additionally com-
puted per dataset and then compared. The ranking was also computed per dataset to examine

specific discrepancies between cohorts.
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Regional performance. To assess whether the performance of the proposed methods differed depend-
ing on the region for Task 1 - EPVS, the evaluation was run for each region (centrum semi-ovale,
basal ganglia, hippocampus and mesencephalon) separately. For each method, pairwise comparison
across regions was performed to assess whether a given method performed better on a given area.

The overall ranking between methods was also computed per region.

Inter-rater variability. For Task 1 - EPVS and Task 3 - Lacunes for which annotations by two
raters were available, the evaluation was run considering alternatively each rater as the reference.
While the overall absolute differences (volume and number of identified components) between the
two raters are independent of the reference chosen (rater 1 or rater 2), changing the reference will

affect F1 score and Mean Dice calculation due to differences in definition of true positives.

Ensemble performance. Two ensemble solutions were created and evaluated. The average of all
solutions (EnsembleAll) and the average of the predictions from the top 50% in overall rank of the
methods (EnsembleTop). EnsembleAll and EnsembleTop were compared to the individual methods
for each task. The number of participating teams being 4 for Task 1 - EPVS, EnsembleTop in this

case consists in the union of two best performing methods.

3. Results

3.1. Challenge submission and participating teams

Over the period of the challenge, the data set has been requested for 353 downloads. Across
the two validation periods, we received requests from 1 team at validation stage 1 and 4 teams at
validation stage 2. The final submission of dockerized solutions and their documented description
to be applied to the test sets was composed of 4 teams for Task 1 - EPVS, 9 teams for Task 2 -
Microbleeds and 6 teams for Task 3 - Lacunes. Only 2 teams participated in all 3 tasks. Table
summarizes in which task each team participated.

Table [6] reflects for each task and team the average time needed to evaluate one case, the GPU
memory consumption, the docker details for memory requirements (CPU/GPU) and the methods’
characteristics. The memory details are presented both as requested by the participants based on
their training settings and as measured on a single case allowing for memory flooding. All methods

using Stochastic Gradient Descent (SGD) as optimizer applied Nesterov Momentum with value of
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Team Name Task 1 Task 2 Task 3
EPVS | Microbleeds | Lacunes
BigrBrain v v v
Dawai v v
EMC.N v
MixLacune v
MixMicrobleed v
MixMicrobleedNet v
Neurophet v v
TeamTea v v v
THf v
TheGPU v v
ValdoNN v
Zihao v

Table 5: Participation of the teams across the different tasks

epoch 09
epochmaq :

0.99. Poly learning rate scheduling is defined as multiplying the learning rate by (1 -

The following architectures were listed by the participating teams: 2D Unet (Ronneberger et al.|
2015), 3D Unet (Cigek et al.l [2016)), nnUnet (Isensee et all 2021)), Mask RCNN (2017),
Mask-RetinaNet (Farady et al) [2020]), ResNet (He et al) [2016). Beyond the well-known Dice

(Milletari et al., [2016]) and binary cross-entropy losses, others such as focal loss (Lin et al., |2017)
and blob loss (Kofler et al., 2022) were mentioned. Adam (Kingma and Bal 2014), SGD (Gardner;

1984)) and Ranger21 |Wright and Demeure| (2021)) were the optimizers used.
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Among all the submissions, only one team (TheGPU) proposed an alternative to a deep learning
solution. The majority of the proposed methods were trained as pure segmentation solutions and a
few teams submitted a detection+segmentation solution based on Mask-RCNN (He et al., 2017) or
Mask Retina net (Farady et al.,|2020). Across all tasks, when a deep learning solution was proposed,
the UNet architecture was the most common choice. For all three tasks, the time required to process
a case and the GPU memory requirements varied greatly. For Task 2 - Microbleeds for instance
duration ranged from less than 1 minute to 45.8 min and memory consumption of 2.4 to 43 GB
(allowing for memory flooding). In terms of the methodology for uncertainty assessments in Task
3 - Lacunes, the two teams submitting methods to all three tasks did not provide any uncertainty
map. Among the 4 remaining teams, most used directly the probabilistic value of their output as
measure of uncertainty while mixLacune defined an uncertainty zone at the border of their detected
lacunes.

For all teams, key characteristics of the proposed methods are summarized in table[f] Additional
details can be found for each team on the OpenReview repository https://openreview.net/

group?id=MICCAI.org/2021/Challenge/VALDO.

3.2. Metric values

For each task the detection and the segmentation are reported across all teams.

Task 1 - Enlarged Perivascular Spaces (EPVS). The summary statistics for each team and each

metric are reported in Table [7]

Table 7: Metrics results for Task 1 - EPVS presented as Median [1st quartile - 3rd quartile] for all metrics. AED -
Absolute Element Difference; AVD (in mm3) - Absolute Volume Difference. In bold the significantly best performance
across the different teams (excluding the ensemble solutions) and in italic when there is no significant difference

compared to the second best.

Detection Segmentation
F1 AED Mean Dice AVD

Bigrbrain 35.81 [28.14 ; 40.42] 14.50 [6.00 ; 34.50] 61.09 [55.40 ; 66.57] 45.30 [16.12 ; 89.12]
Neurophet 0.00 [0.00 ; 3.34] 29.00 [13.00 ; 47.00] 28.23 [23.27 ; 29.76] 390.15 [250.72 ; 636.58]
TeamTea 17.12 [6.79 ; 25.90] 41.00 [24.25 ; 69.25] 55.07 [46.25 ; 64.23] 106.05 [73.00 ; 175.86]
TheGPU 38.92 [28.87 ; 49.44] 16.00 [9.00 ; 35.75] 72.38 [64.97 ; 77.12] 45.20 [23.79 ; 82.21]
EnsembleAll 38.62 [28.1 ; 44.82] 24.00 [12.00 ; 46.00] 64.33 [59.14 ; 68.40] 96.15 [63.67 ; 151.69]
EnsembleTop 38.86 [31.19 ; 45.13] 29.00 [15.25 ; 50.25] 67.38 [58.24 ; 72.23] 36.10 [20.15 ; 66.33]
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Figure [4| presents the distribution of metrics values for detection (top row) and segmentation

metrics (bottom row) for Task 1 - EPVS.

Detection Segmentation
F1 AED Mean Dice AVD

Bigrbrain 16.67 [0.00 ; 36.10] 9.00 [5.00 ; 16.00] 81.17 [71.86 ; 89.69] 52.47 [15.45 ; 171.98]
Dawai 0.00 [0.00 ; 40.00] 1.00 [1.00 ; 3.00] 68.35 [52.99 ; 77.71] 12.40 [6.29 ; 33.05]
MixMicrobleed 0.00 [0.00 ; 0.00] 1e5 [499.5 ; 1e5] 64.36 [55.79 ; 68.58] le5 [4728 ; 1e5]
MixMicrobleedNet 68.42 [36.67 ; 100.00] 1.00 [0.00 ; 1.00] 84.01 [79.48 ; 87.62] 8.77 [2.48 ; 24.30]
TeamTea 66.67 [0.00 ; 100.00] 1.00 [0.00 ; 1.00] 82.57 [74.65 ; 87.50] 11.30 [1.81 ; 25.39]
TEFf 40.00 [18.18 ; 66.67] 3.00 [1.00 ; 6.00] 77.65 [62.43 ; 89.13] 15.27 [4.33 ; 49.33]
TheGPU 0.00 [0.00 ; 0.00] 4.00 [1.00 ; 10.00] 49.46 [36.89 ; 78.14] 602.89 [159 ; 1842.02]
ValdoNN 50.00 [0.00 ; 68.15] 1.00 [1.00 ; 2.00] 80.00 [66.67 ; 87.68] 12.00 [3.14 ; 24.91]
Zihao 66.67 [20.83 ; 100.00] 1.00 [0.00 ; 2.00] 80.00 [73.34 ; 88.04] 9.61 [3.20 ; 21.51]
EnsembleAll 66.67 [0.00 ; 100.00] 1.00 [0.00 ; 1.00] 81.22 [71.35 ; 87.27] 12.87 [4.93 ; 27.26]
EnsembleTop 75.68 [38.18 ; 100.00] 1.00 [0.00 ; 1.00] 77.90 [29.91 ; 87.23] 11.25 [2.81 ; 21.82]

Table 8: Metrics results for Task 2 - Microbleeds presented as Median [1st quartile; 3rd quartile] for each metric.
AED - Absolute Element difference; AVD - Absolute volume difference (in mm3). In bold, the significantly best

performance per metric across teams (excluding the ensemble solutions)

Task 2 - Microbleeds. Figure 5| presents the distribution of metrics values for detection (top row)
and segmentation metrics (bottom row) for Task 2 - Microbleeds with Tablepresenting the metrics

values across all teams.

Task 3 - Lacunes. Table [J] presents the results obtained for Task 3 - Lacunes.

MixLacune

Detection Segmentation
F1 AED Mean Dice AVD
BigrBrain 7.69 [5.06 ; 16.49] 27.50 [20.25 ; 33] 40.84 [27.02 ; 50.27] 123.93 [79.49 ; 182.64]
Dawai 15.38 [0.00 ; 25.00] 6.00 [3.00 ; 10.00] 40.09 [26.20 ; 45.31] 78.93 [26.94 ; 209.24]
EMC_N 3.92 [0.00 ; 54.55] 2.00 [1.00 ; 4.75] 20.49 [12.21 ; 34.08] 125.60 [45.08 ; 375.96]
]

6.25 [0.00 ; 12.00]

22.00 [13.50 ; 26.00]

16.85 [10.31 ; 27.59

33.95 [16.88 ; 107.69]

Neurophet 4.55 [0.00 ; 10.53] 20.00 [11.50 ; 34.00] 8.82 [3.73 ; 15.33] 471.40 [244.16 ; 891.16]
TeamTea 28.57 [0.00 ; 57.14] 1.00 [0.00 ; 2.00] 45.75 [36.74 ; 56.17] 14.88 [0.00 ; 40.29]
EnsembleAll 28.57 [0.00 ; 60.87] 1.00 [0.00 ; 2.00] 37.98 [22.13 ; 44.55] 13.05 [0.07 ; 61.03]
EnsembleTop  30.77 [0.00 ; 66.67] 1.00 [0.00 ; 2.00] 38.17 [25.48 ; 45.26] 9.68 [1.05 ; 63.28]

Table 9: Metrics results for Task 3 - Lacunes presented as median [lst quartile ; 3rd quartile]. AED - Absolute
Element difference; AVD - Absolute volume difference (mm3). Bold font indicates best performance across the teams
(excluding ensemble solutions) when significantly better than all others. Italic font indicates best performance when

not significantly better than the second ranking

while Table [10[shows the metrics for the uncertainty component of the task excluding BigrBrain

and TeamTea who did not provide an uncertainty map.
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Figure 4: Distribution of metrics values across the different teams for detection metrics (top row) and segmentation

metrics (bottom row) for Task 1 - EPVS
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Table 10: Metrics related to uncertainty for Task 3 - Lacunes presented as median [1st quartile - 3rd quartile. AED
- Absolute Element difference; AVD - Absolute volume difference (in mma3).

Detection Unc Segmentation Unc
Dawai 0.00 [0.00 ; 25.00] 63.65 [0.00 ; 87.73]
EMC_N 100.00 [86.81 ; 100.00]  0.00 [0.00 ; 67.94]
MixLacune 0.00 [0.00 ; 3.57] 4.76 [0.00 ; 24.39]
Neurophet 0.00 [0.00 ; 6.82] 0.00 [0.00 ; 23.18]

Figure |§| presents the distribution of metrics values for detection (top row) and segmentation
metrics (bottom row) for Task 3 - Lacunes.
Figure [7] shows the distribution of metrics values for the assessment of uncertainty applied for

Task 3 - Lacunes.

3.3. Rankings

Table [T1] presents the overall ranking, according to the number of tasks undergone and for each

individual task when relevant.

Table 11: Ranking across all tasks grouped by number of tasks to which each team participated. Across all metrics,
D refers to detection and S to segmentation, R to relative, A to absolute and U to uncertainty. DR refers to F1 score,
DA to Absolute element difference, SR to Mean Dice, SA to absolute volume difference, DU to detection uncertainty

and SU to segmentation uncertainty. Tot is the overall rank for a given task

Task 1 - EPVS ‘ Task 2 - Microbleeds ‘ Task 3 - Lacunes

Team DR DA SR SA Tot | DR DA SR SA Tot| DR DA SR SA DU SU Tot
TeamTea 3 3.5 3 2.5 3 1.5 2.5 2.5 3 2 1.5 1 1 1 2
BigrBrain 2 1.5 2 1 2 6 8 3.5 7 6 4 55 2.5 4.5 6
Dawai 5 7 7.5 5.5 7 3 3 2.5 3 2 1 1
TheGPU 1 1.5 1 2.5 1 7 8 9 8 8

Neurophet 4 3.5 4 4 4 5.5 5.5 6 6 3 3.5 5
MixMicrobleedNet 1.5 1 1 1 1

Zihao Team 3 2.5 2.5 3 3

ValdoNN 4 4.5 5 3 4

TEff 6 4.5 5 5.5 5

MixMicrobleed 9 9 7.5 9 9

EMC_N 1.5 2 4.5 4.5 1 2 2
MixLacune 5.5 4 4.5 2 4 3.5 4

Table [[2] reflects the distribution of Kendall’s Tau coefficient when assessing the robustness of
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Figure 6: Distribution of metric values across the different teams for detection metrics (top row) and segmentation

metrics (bottom row) for Task 3 - Lacunes
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Figure 7: Distribution of metric values across the different teams for the assessment of uncertainty for Task 3 -

Lacunes

the ranking for each metric using 1000 bootstrap samples.

Table 12: Distribution characteristics (mean and standard deviation) Kendall’s Tau correlation coefficient in %
between final ranking and bootstrap samples (1000 samples). Across all metrics, D refers to detection and S to
segmentation, R to relative, A to absolute and U to uncertainty. DR refers to F1 score, DA to Absolute element
difference, SR to Mean Dice, SA to absolute volume difference, DU to detection uncertainty and SU to segmentation

uncertainty.

DR DA SR SA DU suU
Task 1 - EPVS 96.13 (4.33)  93.55 (7.39) 97.87 (4.45)  97.33 (4.02)
Task 2 - Microbleeds  98.11 (1.81)  98.36 (1.70) 98.19 (2.38) 87.08 (6.62)

Task 3 - Lacunes 95.88 (6.57)  97.46 (3.98)  94.68 (3.26)  93.19 (5.02)  99.85 (1.13)  95.82 (8.37)

8.4. Additional analyses

8.4.1. Clinical relevant markers

Task 1 - EPVS. For Task 1, since the burden of PVS is currently clinically considered the most
valuable insight, the Spearman correlation coefficient between predicted and reference burden across
all test cases was calculated for overall volume and element count and is presented in Figure [§|along
with the log-transformed relationship between reference and predicted burden in terms of volume

(top) and count (bottom).
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Figure 8: Association between reference and predicted PVS burden across the participating teams for volume (top

Task 2 - Microbleeds. For cerebral microbleeds, classifying the absence or presence of any mi-
crobleeds was deemed clinically the most relevant assessment. Balanced accuracy over the test

set varied from 29.5% for team Dawai to 87.3% for team MixMicrobleed. Figure [9] presents the

Task 3 - Lacunes. Similarly, Figure [I0] shows the confusion matrix for correctly identifying cases

8.4.2. Cross-dataset variability

TeamTea was able to recognize cases without lacunes, with 78.3% balanced accuracy.

that have at least one lacune. For the 6 participating teams, balanced accuracy was close to 0.5

for almost all teams as they predicted the presence of at least one lacune in almost all cases. Only

Performance varied greatly across datasets, being systematically overall better on RSS dataset

for all tasks across datasets for F1 score and Mean Dice.

Ranking varied also slightly across datasets as indicated in Table
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than others (SABRE or ALFA). For all three tasks, Figure presents the variation of F1 and

Mean Dice score across datasets for all teams and Table [I3] presents median and interquartile range
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Figure 9: Confusion matrix regarding the classification of an image as containing at least one microbleed based on

obtained prediction images.

Table 13: F1 score and Mean Dice presented as median [lst quartile; 3rd quartile] across the different datasets for

all three tasks

F1 Score Mean Dice
ALFA RSS SABRE ALFA RSS SABRE
BigrBrain 35.40 [27.89 ; 40.36] 38.20 [31.19 ; 40.25] 63.56 [58.05 ; 67.29] 43.10 [41.94 ; 46.92]
: Neurophet 1.95 [0.00 ; 3.71] 0.00 [0.00 ; 0.00] 28.6 [23.90 ; 30.17] NA

Hi TeamTtea 13.50 [6.02 ; 21.76]  34.80 [25.10 ; 40.93] 59.66 [50.08 ; 65.55] 45.05 [42.88 ; 46.91]
F TheGPU 43.71 [34.55 ; 51.67] 24.32 [2.61 ; 28.42] 73.41 [69.68 ; 78.6] 34.96 [7.16 ; 39.25]
BigrBrain 11.11 [0.00 ; 16.67] 30.77 [13.81 ; 51.47] 36.36 [21.81 ; 58.24] 82.21 [73.3 ; 93.32] 75.07 [69.41 ; 81.84] 90.13 [84.63 ; 92.19]
Dawai 0.00 [0.00 ; 0.00] 41.43 [25.00 ; 66.67] 0.00 [0.00 ; 0.00] 57.20 [43.49 ; 70.91] | 69.47 [53.16 ; 77.82] 63.33 [56.31 ; 69.23]
Mixmicrobleed 0.00 [0.00 ; 0.00] 0.00 [0.00 ; 0.75] 0.00 [0.00 ; 0.42] 0.00 [0.00 ; 0.00] 58.90 [54.56 ; 67.04] 68.62 [66.67 ; 79.41]
& MixmicrobleedNet 66.67 [0.00 ; 100] 77.81 [66.67 ; 100.00] 51.67 [50.00 ; 69.23] 87.18 [74.71 ; 96.67] | 82.79 [79.82 ; 85.20] 84.21 [79.35 ; 87.39]
* TeamTea 50.00 [0.00 ; 100.00] 80.00 [66.67 ; 100.00] 50.00 [30.22 ; 68.75] 85.16 [65.38 ; 100.00] | 82.08 [77.83 ; 85.24] 84.62 [74.65 ; 87.66]
ﬂ TEff 20.00 [7.68 ; 40.00] 65.15 [47.50 ; 76.41] 40.00 [33.33 ; 55.91] 80.00 [63.19 ; 99.46] | 68.58 [57.64 ; 80.72] 86.19 [79.14 ; 89.46]
TheGPU 0.00 [0.00 ; 0.00] 0.00 [0.00 ; 9.95] 0.00 [0.00 ; 10.01] 79.43 [56.53 ; 83.76] | 40.00 [32.63 ; 48.54] 66.67 [53.28 ; 79.70]
ValdoNN 0.00 [0.00 ; 66.67]  66.67 [38.82 ; 80.00] 50.00 [32.14 ; 51.56] 86.06 [70.24 ; 100.00] | 70.91 [62.08 ; 81.48] 87.00 [81.51 ; 89.58]
Zihao 50.00 [0.00 ; 100.00] 74.81 [66.67 ; 94.23] 45.00 [22.92 ; 63.54] 87.71 [80.00 ; 100.00] | 76.98 [71.69 ; 80.46] 85.42 [74.53 ; 88.85]
BigrBrain 7.41 [5.48 ; 14.91] 8.39 [3.80 ; 17.75] 42.81 [27.39 ; 51.80] 30.17 [22.30 ; 37.37]
Dawai 20.00 [0.00 ; 33.33] 0.00 [0.00 ; 0.00] 39.88 [25.38 ; 44.82] 57.14 [57.14 ; 57.14]

: EMC.N 44.44 [0.00 ; 66.67] 0.00 [0.00 ; 0.00] 21.42 [13.09 ; 34.24] 2.20 [2.20 ; 2.20]
3 MixLacune 6.25 [0.00 ; 10.81] 9.09 [0.00 ; 16.16] 16.85 [10.31 ; 28.04] 15.45 [12.51 ; 19.3]
B Neurophet 6.25 [0.00 ; 14.29] 0.00 [0.00 ; 0.46] 8.82 [4.98 ; 14.65]  11.37 [6.86 ; 15.88]
TeamTea 40.00 [0.00 ; 66.67] 0.00 [0.00 ; 1.61] 45.75 [34.58 ; 55.75] 64.66 [54.40 ; 74.92]
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Figure 10: Confusion matrix regarding the classification of an image as containing at least one lacune based on

obtained prediction images.
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Figure 11: Distribution of results for F1 (left column) and Mean Dice (right column) across different datasets for the

three tasks (each row represents one task).



Table 14: Ranking calculated for each dataset separately
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Task 1 performance across brain regions
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Figure 12: F1 and Mean Dice distribution across the different brain regions for Task 1 - EPVS

3.4.3. Regional variability

Metrics variability for Task 1 - EPVS across different brain regions is illustrated for F1 and
Mean Dice in Figure

83.4.4. Inter-rater variability

Inter-rater variability was investigated for tasks and datasets for which two raters provided
annotation for the same case (Task 1 - EPVS SABRE dataset, Task 3 - Lacunes all datasets) and
results are presented in Table

For Task 1 - EPVS, intra-rater detection was slightly lower than the best method but the inter-
rater segmentation performance appeared to be better by quite a strong margin reaching 59.49% in
comparison to the best method at 45.5%. The detection performance was notably higher for Task

3 - Lacunes with segmentation performance on par with the best performing method.
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Table 15: Metrics values (median [1st quartile - 3rd quartile] presented for the cases where a double rating was

available in the test set.

Detection Segmentation
F1 score R1 F1 score R2 AED Mean Dice R1  Mean Dice R2 AVD
19.57 19.86 135.00 52.63 54.07 651.00
Task 1 - EPVS [13.48 ; 23.81] [13.58 ; 23.81]  [96.25 ; 316.50] [52.07 ; 54.51] [51.43 ; 55.05] [371.75 ; 2819.75]
48.45 55.84 0.50 59.03 59.49 21.51
Task 3 - Lacunes [39.01 ; 61.88] [0.00 ; 86.36] [0.00 ; 1.00] [43.72 ; 64.47) [44.95 ; 65.88] [0.00 ; 43.63]

3.4.5. Ensembles

For the creation of EnsembleTop, Task 1 - EPVS used predictions from team TheGPU and
BigrBrain, Task 2 - Microbleeds used predictions from MixMicrobleedNet, TeamTea, Zihao, and
ValdoNN, while for Task 3 - Lacunes, predictions from Dawai, TeamTea and EMC_N were used.
Table |16 presents the values of the metrics and the corresponding ranking obtained for each type
of ensemble (EnsembleAll, the average of all solutions, and EnsembleTop, the average of the top
50%) across the three tasks. When considering the clinical metrics, performance was higher for
both ensemble solutions in Task 1 - EPVS reaching a correlation coefficient of 70.0% and 74.8% for
EnsembleAll and EnsembleTop respectively for the count and 69.5 and 80.0% for the volume. For
Task 2 - Microbleeds, balanced accuracy was of 77.0% for EnsembleAll and 79.6% for EnsembleTop
ranking fourth and third compared to all the teams. Finally, for Task 3 - Lacunes, balanced

accuracy reached 75.0% for EnsembleAll, down to 65.3$% for EnsembleTop slightly lower than the
78.0% obtained by TeamTea.

Table 16: Metrics value presented as median [IQR] for the 4 common metrics across the different ensemble types for

the three tasks along with associated ranking

F1 AD Mean Dice AVD
38.62 [28.10 ; 44.82]  24.00 [12.00 ; 46.00]  64.33 [59.14 ; 68.40]  96.15 [63.67 ; 151.69]
EnsembleAll 3.5 3.5 4 2
Task 1 - EPVS 38.86 [31.10 ; 45.13]  20.00 [15.25 ; 50.25]  67.38 [58.24 ; 72.23]  36.10 [20.15 ; 66.33]
EnsembleTop
15 3.5 2 2
66.67 [0.00 ; 100.00] 1.00 [0.00 ; 1.00] 81.22 [71.35 ; 87.27] 12.87 [4.93 ; 27.26]
EnsembleAll
4 3 6.5 7
Task 2 - Microbleeds
75.68 [38.18 ; 100] 1.00 [0.00 ; 1.00] 77.90 [20.91 ; 87.23] 11.25 [2.81 ; 21.82]
EnsembleTop
1 1 3 3
28.57 [0.00 ; 60.87] 1.00 [0.00 ; 2.00] 37.98 [22.13 ; 44.55] 13.05 [0.07 ; 61.03]
EnsembleAll
2.5 2 3.5 2
Task 3 - Lacunes .
30.77 [0.00 ; 66.67] 1.00 [0.00 ; 2.00] 38.17 [25.48 ; 45.26] 9.68 [1.05 ; 63.28]
EnsembleTop s ) a5 )
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4. Discussion

This manuscript reports the design and outcome of the ”Where is VALDO?” challenge that
took place as a satellite event of MICCAI 2021. Detection and segmentation of three types of
markers of cerebral small vessel disease were evaluated as three distinct tasks namely enlarged
perivascular spaces (Task 1), cerebral microbleeds (Task 2) and lacunes (Task 3). Among the 12
distinct participating teams, 9 teams provided a solution for Task 2 and 2 teams competed across
all three tasks.

Although the challenge was designed to address both detection and segmentation aspects, most
of the proposed solutions were designed with a segmentation purpose only - the detection perfor-
mance considered as a by-product of the prediction. This choice may have been influenced partially
by the guidelines to provide only the probabilistic segmentation map that was then post-processed
to identify the individual connected components instead of requesting instance segmentation and
predicted detections as outputs. However, this strategy appeared to generally work well with seg-
mentation performance being on par with detection performance across all three tasks. Interestingly,
there was no strong relationship between memory, time expenditure and overall performance with
some of the most greedy methods having lower performance than some of the most cost-effective
solutions.

Across all tasks, one team proposed a solution not relying on deep-learning and their strategy
had the best performance for Task 1 - EPVS possibly because of the fact that EPVS may be
relatively easy to characterise in terms of signal and shape signature. However, none of the proposed
methods for Task 1 - EPVS made use of the weak annotation data (count on slices). Also, while
some methods only used annotated slices, performance may have been lowered by the absence of use
of the masks when only specific parts of a given axial slice were annotated (RSS Data). Most deep
learning solutions described using a UNet style architecture at one point of their pipeline either as
main network for one-stage methods or for the segmentation component for multi-stage solutions.
Interestingly, despite four teams describing the use of the nnUNet (Isensee et al., [2021)) architecture
for Task 2 - Microbleeds, performance varied greatly across these teams with rank 1, 2, 5 and 7
out of 9. This could potentially be explained by the choice of input data, the dimensionality, or
the framework chosen. In the context of microbleeds, using 3D information may be particularly
relevant to avoid mimics. This observation highlights the importance of all these steps in the design

of a relevant solution, the use of the whole extent of the training data being a key component of the
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winner’s method. Such consideration is particularly relevant when dealing with a modest number
of training examples. When considering choices of augmentation, those involving local changes to
input images and/or reference annotation (interpolation, intensity changes, spatial deformation)
may cause inconsistencies in the case of very small objects of interest.

In terms of dataset origins, performance was generally higher for the dataset with the highest
resolution which was also for Task 2 - Microbleeds and Task 3 - Lacunes the dataset with the highest
number of training cases. This is naturally expected as a direct impact on resolution on evaluation
metrics and as an overfitting related property.

The amount of training data (in terms of examples of lesions) appeared also to be relevant when
comparing the performance of the methods of Task 1 across the different regions of interest, the
regions with the most EPVS (centrum semi-ovale and basal ganglia) being the ones with the highest
performance across all methods. This may not only be due to the sheer amount of training data
in the remaining regions (hippocampus and mesencephalon) but also to the characteristics of the
imaging sequences in these regions and the likelihood for mimics (cysts) and higher variability in
presentation. Knowledge of the differences in performance across regions is particularly interesting
clinically when associations with risk factors and or clinical function have been made specifically
in specific anatomical regions in relation to Alzheimer’s Disease (Jiménez-Balado et al.l [2018)
and Parkinson’s disease (Duker and Espay), |2007)). For Task 1 - EPVS, even for the best teams,
the performance presented a large variability which would make their adoption in clinical practice
difficult. The overall good correlation between expected and predicted burden may however already
be enough to make these tools valuable when investigating associations at population level. For
Task 2 - Microbleeds, it appeared that, when correctly detected, the segmentation of lesions was
very good. However, even in the best of teams there were issues at the detection level with both
cases missed and cases wrongly considered as containing at least one microbleed. The best teams
indicated very few lesions which would be relatively practical to visually inspect and reject if
necessary. It is here the absence of a systematic bias towards overcall or undercall could make it
difficult to integrate in clinical pipelines. For Task 3 - Lacunes, performance appeared quite poor
on both detection and segmentation metrics, with a general large overcall of lacunes and when
detecting them correctly a lower segmentation performance than for Task 2 - Microbleeds. Such
performance would require too much time for editing and checking to be adopted in both clinical

practice and research studies.
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When comparing the performance across all three tasks, it appeared that the performance was
higher on tasks for which the variability in element appearance was lower (EPVS with linear shapes
and microbleeds with spherical shapes compared to lacunes with more heterogeneous shapes). The
metrics investigated as closest to the current clinical measures of interest were generally in agreement
with the overall ranking of the challenge but showed stark differences in terms of clinical viability of
the proposed solutions. While for Task 1 - EPVS and Task 2 - Microbleeds the proposed solutions
achieved reasonable performance in terms of ”clinical” metric, only one team performed reasonably
well for Task 3 - Lacunes, with all other solutions systematically finding many lacunes even when
there were none. This may be due to the large variability in appearance (i.e. shape, location,
intensity signature) as well as the lower number of examples of this type of lesions when compared
to those of Task 1 - EPVS and Task 2 - Microbleeds. With all solutions generally producing many
false positives, the time required to go through each case and reject many wrongly detected lesion
candidates would be prohibitive for clinical adoption. One must however keep in mind that none
of these solutions were optimized for this metric and may have performed differently otherwise. In
this case the addition of auxiliary tasks in the learning framework to abide to a priori knowledge
of burden distribution or to directly optimize such metrics may have interesting results.

In a field where adequate research biomarkers have yet to be properly defined and proven to be
reliable (Smith et al.,|2019)), these observations regarding clinical metrics may lead to define different
tasks and solutions for the targeted markers according to their purpose: clinical practice or research.
While location, individual volume and shape information may become of interest in the research
context as potential new biomarkers, thereby highlighting segmentation as an interesting end-goal,
these characteristics may not be yet relevant in the clinical context. In clinical practice, one could
imagine a two-stage pipeline with 1) whole-image level classification favouring sensitivity for the
flagging of scans where an assessment is required for the presence or absence of a specific marker
2) Specification of lesion location (if needed) for the scans that have been flagged as containing a
marker. This second step may be particularly relevant when supporting diagnosis (e.g., distinction
between amyloid angiopathy and hypertensive pathology according to microbleed location) or to
the explanation of the clinical presentation (e.g., lacune on crucial white matter tract).

A key aspect, not measured here, is the ability of the proposed methods to be used in clinical
settings with scans likely to be of lower resolution and to have more artefacts as well as present

simultaneously other markers of pathology (e.g stroke, tumours). With the continuous progress in
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acquisition protocols and the democratization of scanning abilities, research-grade scanning proto-
cols such as those used in this challenge may become available routinely, thereby limiting issues of
protocol related generalizability. However, cohort-related bias may be more difficult to overcome.
In fact, in the challenge, data came only from population cohorts and did not include patients
with dementia as would be frequent in memory clinics. While efforts were made to provide train-
ing examples from the whole spectrum of lesion burden, specific pathological presentations may
be missing and the generalizability of the proposed solutions would need to be assessed in these

contexts.

Conclusion. In this challenge assessing the current segmentation and detection performance of three
markers of cerebral small vessel disease, namely EPVS, Microbleeds and Lacunes, methods targeting
directly the segmentation were often quite successful in detecting these small structures. Number
of elements on which to train the solutions was strongly predictive of performance, both across
tasks and regionally. Manually engineered features became in the case of EPVS relevant enough
to compete with deep-learning based strategies. Strikingly, all the presented methods proposed a
training based on dense labelling, discarding the weak labelling available for Task 1 - EPVS. While
for Task 1 - EPVS and Task 2 - Microbleeds some demonstrated they could potentially be used
for population-based research, the large variability in performance across cases may require lengthy
visual censoring if they were to be used for individual cases. In this context, it could be relevant
to further include the evaluation of performance variability in the assessed tasks. In addition,
systematic assessment of prediction confidence (as proposed with the uncertainty metrics of Task

3 - Lacunes) would be of interest for the design of practical implementation.
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