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Abstract
Can we identify the weights of a neural network
by probing its input-output mapping? At first
glance, this problem seems to have many
solutions because of permutation, overparam-
eterisation and activation function symmetries.
Yet, we show that the incoming weight vector of
each neuron is identifiable up to sign or scaling,
depending on the activation function. Our novel
method ‘Expand-and-Cluster’ can identify layer
sizes and weights of a target network for all
commonly used activation functions. Expand-
and-Cluster consists of two phases: (i) to relax
the non-convex optimisation problem, we train
multiple overparameterised student networks to
best imitate the target function; (ii) to reverse
engineer the target network’s weights, we employ
an ad-hoc clustering procedure that reveals the
learnt weight vectors shared between students –
these correspond to the target weight vectors. We
demonstrate successful weights and size recovery
of trained shallow and deep networks with less
than 10% overhead in the layer size and describe
an ‘ease-of-identifiability’ axis by analysing 150
synthetic problems of variable difficulty.

1. Introduction
It is known since the 1980s that finding a solution to the
XOR problem with gradient descent is easier with a larger
hidden layer, even though a minimal network with two hid-
den neurons is theoretically sufficient to solve the problem
(Rumelhart et al., 1986). Indeed, even very small networks
have a non-convex loss function (Fukumizu & Amari, 2000;
Mei et al., 2018; Frei et al., 2020; Yehudai & Ohad, 2020;

*Equal contribution 1Department of Life Sciences and Com-
puter Sciences, EPFL, Lausanne, Switzerland. 2Center for Data
Science, NYU, New York, United States. Correspondence to:
Flavio Martinelli <flavio.martinelli@epfl.ch>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Şimşek et al., 2024). Recent advances in the theory of
artificial neural networks indicate that the loss function is
rough – i.e. predominantly populated by saddle points – for
networks of minimal size (Şimşek et al., 2021), but becomes
effectively convex in the limit of infinitely large hidden lay-
ers (Jacot et al., 2018; Chizat & Bach, 2018; Du et al., 2019;
Rotskoff & Vanden-Eijnden, 2022). In a teacher-student
setup, where teacher and student share the same architecture,
the complexity of the loss landscape is linked to the ratio
between the amount of permutation-induced critical points
(zero gradients, non-zero loss) and the number of global
minima at zero population loss (Şimşek et al., 2021).
Importantly, as the width of the student increases, this ratio
undergoes a substantial change: from much larger than
one to very close to zero; suggesting that already for mild
overparameterisation the amount of interconnected global
minima largely dominates the amount of critical points
(Cooper, 2018; Şimşek et al., 2021). This is consistent with
our empirical observations: without overparameterisation,
students trained to imitate the target (teacher) network get
stuck in local high-loss minima. Instead, if we expand the
student width to four times the width of the target network
we can reliably reach near-zero loss (Fig. 4). At zero loss,
target and student networks are functionally identical; but
they are networks of different sizes and parameters. Here
we ask the following question: “Is it possible to recover the
weights and width of the target network from (near-zero)
loss, overparameterised students?”

To answer this question, we first characterise the equiva-
lence class of zero-loss overparameterised students – i.e.
all possible weight structures that can preserve functional
equivalence of a given hidden layer. Three types of symme-
tries arise at the neuron level: (i) Permutation symmetries:
student neurons copying the weights of teacher neurons
can be found in arbitrary order within the hidden layer;
(ii) Overparameterisation symmetries: redundant neuron
groups can duplicate input weights to imitate a teacher neu-
ron or cancel each others’ contribution. (iii) Activation
function symmetries: even, odd or scaling symmetries in the
activation function give rise to combinations of neurons that
degenerate into constant or linear outputs, weight vectors of
opposite signs with respect to teacher neurons or scaling fac-
tors transferred to adjacent layers; and combinations thereof.

1



Expand-and-Cluster: Parameter Recovery of Neural Networks

Expand Cluster

parameters

parameters

N

Figure 1. Expand-and-Cluster: we overcome the non-convex
problem of recovering the q parameters of an unknown network
by: (i) expanding the dimensionality of the parameter space Θ by
a factor ρ to relax the optimisation problem, Θ → Θ̂; (ii) mapping
the loss minimiser in expanded space θ̂∗ to the original parameter
space via clustering of N overparameterised solutions, θ̂∗ → θ∗.

As shown by Şimşek et al. (2021) in a restricted setting, at
zero loss each teacher neuron is duplicated by the student at
least once. Importantly, we show that each teacher neuron
input weight vector is preserved in zero-loss students up
to a sign and/or scaling factor. Even on smoother overpa-
rameterised landscapes, exact zero loss is not numerically
achievable in practice. Therefore, we developed a clustering
procedure to separate neurons that are consistently found
across N different student networks from redundant units
that do not persist across networks. The former are the ones
copying the teacher’s hidden neuron weights.

In summary, we tackle the highly non-convex parameter
identification problem with a technique that resembles
a popular strategy in the field of applied mathematics
(Lovász & Schrijver, 1991): we expand, or lift, the
optimisation space to higher dimensions, find a solution
through standard optimisation techniques, and cluster to
project the solution back to the original parameter space
(Fig. 1). Our contributions can be summarised as follows:

• A small, constant overparameterisation factor is
enough to solve the non-convex problem due to the
combinatorial proliferation of global minima, in agree-
ment with Şimşek et al. (2021);

• Building upon previous works (Petzka et al., 2020;
Şimşek et al., 2021), we provide a complete formula-
tion of overparameterisation and activation function
symmetries. We discover a covert symmetry for activa-
tions functions composed of a linear and an even term
(e.g. ReLU, GELU, softplus, SiLU);

• We introduce Expand-and-Cluster, the first parameter
recovery method suitable for any activation function to
solve the identification problem in shallow, deep feed-
forward and convolutional layers of unknown widths.

2. Motivation
1. Understanding loss landscapes: In teacher-student
setups, the ratio of global minima to other zero-gradient
points is speculated to be an indicator of ‘trainability’ of a
given student – i.e. to positively correlate to the probability
of a training procedure to converge to a global minimum
(Şimşek et al., 2021). However, this quantification gives
only a static view of the trainability question, ignoring
any effects that overparameterisation might induce to
the dynamics of training. We empirically validate these
speculations by showing that overparameterisation is a
good indicator of student trainability for a rich family of
differently shaped teachers (Fig. 4).
2. Neuroscience: Retrieving the connectivity of neural
circuits is a daunting task. Neuroscientists either infer the
connectivity with massive connectomic imaging endeavours
(Shapson-Coe et al., 2024), or try to estimate it from partial
recordings of unit activities (Haspel et al., 2023). Although
the second approach has many advantages, it is unclear how
accurately one can reverse engineer the connectivity from
unit activation recordings. To start simple, we tackle this
question in a deep-learning setting. In contrast to Rolnick
& Kording (2020), we provide a learning-based solution
adaptable to any activation function that relies on natural
stimulation protocols, for example, the data the teacher is
trained on. We see this work as a fundamental step towards
reverse engineering brain circuits.
3. Model stealing attacks: Testing the extent to which
it is possible to steal information from deployed models
has important practical consequences (Carlini et al., 2024).
For example, once all parameters of a deployed network
are identified, stronger and malicious adversarial attacks
(requiring gradient or architecture information) can be
performed on a deployed service (Chakraborty et al., 2018),
posing security threats and ethical issues. Given the small
scale of reconstructed models in the field, this is not yet an
issue of concern.

3. Related Work
1. Fundamental distinction with pruning and distillation:
Despite the apparent similarities, our model identification
problem differs substantially from the classic pruning setting
(Hoefler et al., 2021). In pruning, one trades the number of
parameters with a tolerated increase in test loss. In distilla-
tion settings, the focus is also on generalisation performance
(Hinton et al., 2015). Moreover, students are often smaller
and of a different architecture than the teacher (Beyer et al.,
2022). Even in the case of self-distillation (Furlanello et al.,
2018), the student is not expected to be functionally equiv-
alent to the teacher (Stanton et al., 2021). In our setting,
any increase in imitation loss or change in architecture is
unacceptable, as it would result in reconstructing a poten-
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tially good approximation of the target network but not its
parameterisation. Loss-unaware pruning schemes such as
magnitude pruning (LeCun et al., 1989; Han et al., 2015;
Frankle & Carbin, 2019) or structural pruning based on
weight properties (Srinivas & Babu, 2015; Mussay et al.,
2021) have no means of preserving the target parameters
within the student. While loss-aware structural pruning tech-
niques (Hu et al., 2016; Chen et al., 2022) could have more
control in trading pruning and loss increase, they come with
no clear guarantee to remove all the non-trivial redundant
structures described by the symmetries and, at the same
time, preserve the target network parameters. Given the
lack of alternative methods for non-relu activations, pruning
constitutes one baseline for comparison in our experiments.

2. Non-convex optimisation and loss landscapes: Many
non-convex optimisation problems are tackled with the fol-
lowing strategy: (i) expand, or lift, to a higher dimensional
space to relax the problem and guarantee convergence to
global minima; (ii) map, or project, the relaxed solution to
the original space by exploiting the problem’s intrinsic sym-
metries and geometry (Zhang et al., 2020). This approach
is used in applied mathematics (Lovász & Schrijver, 1991;
Lasserre, 2001), machine learning (Janzamin et al., 2015;
Zhang et al., 2020) and many others (Sun, 2021). Despite
the above-mentioned achievements, for neural networks,
the picture is far from complete. Unlike infinitely-wide
neural networks (Jacot et al., 2018), the loss functions
of finite-width networks exhibit several non-convexities
causing the gradient flow (from different initialisations)
to converge to local minima non-identical to one another
(Safran & Shamir, 2018; Arjevani & Field, 2021; Abbe
et al., 2022). Yet, overparameterised solutions found
by different initializations are similar in function space
(Allen-Zhu & Li, 2020), they can be approximately mapped
to each other by permutation of hidden neurons and exhibit
the linear mode connectivity phenomenon (Singh & Jaggi,
2020; Wang et al., 2020; Entezari et al., 2022; Ainsworth
et al., 2022; Jordan et al., 2022). Even though the mildly
overparameterised regime is non-convex, we show that we
can exploit its reduced complexity to find zero-loss solutions
in our identification setup; and that any zero-loss student
can be exactly mapped to every other zero-loss student.

3. Interpretability: Explaining in qualitative terms the
behaviour of single neurons embedded in deep networks
is a challenging task (Olah et al., 2018; Zhang et al., 2021).
For example, in symbolic regression, small networks with
vanishing training loss are desirable for interpretability
(Udrescu & Tegmark, 2020; Liu et al., 2024). Comple-
mentary to the notion of ‘superimposed-features’ neurons
found in underparameterised students (Elhage et al., 2022;
Şimşek et al., 2024), we provide explanations about the role
of each hidden neuron found in zero-loss overparameterised
students relative to a teacher network of minimal size.

4. Functionally Equivalent Model Extraction: Our work
focuses on functionally equivalent extractions, that is re-
trieving a modelM such that ∀x ∈ X,M(x) =M∗(x),
whereM∗(x) is the target model. This type of extraction
is the hardest achievable goal in the field of Model Stealing
Attacks (Oliynyk et al., 2022), using only input-output pairs
(Jagielski et al., 2020). Out of all the functionally equivalent
models we aim to extract the one of minimal size. Con-
ditions for neural network identifiability and their symme-
tries have been studied theoretically for different activation
functions (Sussmann, 1992; Fefferman, 1994; Zhong et al.,
2017; Bui Thi Mai & Lampert, 2020; Petzka et al., 2020;
Vlačić & Bölcskei, 2021; 2022; Bona-Pellissier et al., 2021;
Stock & Gribonval, 2022), although overparameterised solu-
tions were considered only in Tian et al. (2019) and Şimşek
et al. (2021). Existing functionally equivalent extractions
of trained networks rely on identifying boundaries between
linear regions of shallow ReLU networks (Baum, 1991;
Jagielski et al., 2020) and single output deep ReLU net-
works (Rolnick & Kording, 2020; Carlini et al., 2020). Jan-
zamin et al. (2015) show a theoretical reconstruction based
on third-order derivatives. Fornasier et al. (2022), build-
ing upon (Fornasier et al., 2019; Fu et al., 2020; Fornasier
et al., 2021; Fiedler et al., 2023), propose an identification
method for wide committee machines (shallow networks
with unit norm second layer weights), where knowledge
of the teacher layer size is necessary. Anachronistically,
Tramèr et al. (2016) learn small, shallow teacher networks
(20 hidden nodes) with overparameterised students but do
not claim any parameter recovery. Shallow networks with
polynomial activation functions can be globally optimised
under some guarantees by lifting the optimisation problem
to tensor decomposition (Janzamin et al., 2015; Mondelli
& Montanari, 2019). We are the first to propose a recovery
method for arbitrary activation functions on shallow and
deep fully connected networks of unknown layer widths.
Our method is learning-based and fundamentally different
from the known approaches. However, none of these meth-
ods were shown to work in large-scale applications.

4. Symmetries of the identification problem
To characterise the symmetries of the identification problem
we start by reviewing the results of Şimşek et al. (2021),
which are for neurons with no biases and asymmetric ac-
tivation function. We will later extend this formulation
to the practical deep learning setting and describe a con-
vert symmetry that arises when the activation function is a
combination of a linear and an even function. For teacher-
student setups, we call a student ‘overparameterised’ if it
has more hidden neurons than the teacher in at least one
layer. If an overparameterised student network replicates
the teacher mapping with zero loss, the space of all possible
solutions is fully described by the geometry of the global
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Figure 2. Catalogue of student neuron types at zero loss: zero loss overparameterised students can only contain a few neuron types.
Left: a teacher neuron is defined along with a sketch of its output, the grey bar indicates the finite input support x to the neuron; the same
colour-coded letters indicate equal quantities. A) Neuron types from Şimşek et al. (2021) adapted with biases: duplicate-type neurons
combine to replicate a teacher neuron by copying its weight vector w∗ and bias b∗, their activations ai sum up to the teacher activation
a∗. Zero types have aligned weight vectors and biases but cancel each other via output weights. B) Novel neuron types: constant types
contribute a fixed amount to the next layer by learning a null vector. For even + linear activation functions, linear type groups combine to
contribute a linear function. Linear duplicate type groups copy the teacher vector and its opposite, replicating the teacher neuron up to a
linear mismatch. Offbound types: at non-exact zero loss, their input support is placed in the linear or zero region of σ.

minima manifold (Şimşek et al., 2021). The global minima
manifold contains only two types of hidden units, namely
duplicate and zero-type neurons (see theorem 4.2 of Şimşek
et al. (2021) and Fig. 2A); under the following assumptions:
one-hidden layer network

∑m
i=1 aiσ(wix), infinite input

data support, population loss limit, no bias and analytical
activation function σ with infinite non-zero even and odd
derivatives evaluated at zero. The last assumption guaran-
tees that the activation function has no symmetries around
zero. The intuition for the result of Şimşek et al. (2021)
is that, for zero-loss solutions, each teacher hidden neuron
a∗σ(w∗x) must be copied in the student by a duplicate-type
group of one or more units, contributing

∑
i aiσ(wix). The

duplicates’ input weight vectors are all aligned with the
teacher neuron, wi = w∗ ∀i, while their weighted contribu-
tion equals the teacher neuron’s output weight

∑
i ai = a∗.

In the same student there can also exist zero-type neuron
groups with a null contribution to the student input-output
mapping, characterised by w1 = · · · = wq,

∑
i ai = 0.

These neuron types are summarized in Figure 2A.

We extend the categorization of neuron types of Şimşek et al.
(2021) to neurons with bias, finite input data support and ac-
tivation functions that can be decomposed into even or odd
functions plus a constant or a linear component. This gener-
alization includes commonly used activation functions such
as ReLU, GELU, SiLU, sigmoid, tanh, softplus, and others
(see Appendix A.2 for details). The catalogue of new neu-
ron types is sketched in Figure 2B. In the case of a teacher
neuron with bias a∗σ(w∗x+ b∗), a group of duplicate-type∑

i aiσ(wix + bi) has input weight vectors and biases
aligned to the teacher: wi = w∗, bi = b∗ ∀i;

∑
i ai = a∗.

The new zero-type group has aligned, but arbitrary, weights
and biases w1 = · · · = wq, b1 = · · · = bq,

∑
i ai = 0.

With biases, constant-type student neurons can also arise:
they have vanishing input weights w = 0 and contribute

a constant amount of aσ(b) to the next layer; to keep an
exact mapping of the teacher (zero loss), this constant
contribution must be cancelled out in the next-layer biases
or with another constant-type neuron.

Even + linear activation function: when the activation
can be decomposed into an even and a linear function
σ(z) = σlin(z) + σeven(z), for the sake of exposition
we let σlin(z) = z, three phenomena arise: (i) Neu-
rons can combine to contribute a linear + even function
in non-trivial ways: a1σ(wx + b) + a2σ(−wx − b) =
(a1−a2)(wx+b)+(a1+a2)σeven(wx+b). This allows two
or more student neurons to combine in groups of positively
aligned (+wx+b) and negatively aligned (−wx−b) neurons.
If in such a group

∑
i ai = 0, the neurons cancel the even

component of the function and contribute a linear function:
linear-type group. (ii) Linear-type groups can effectively
‘flip’ the sign of the input weight vector and bias of another
neuron in the layer: σ(wx+b)−2(wx+b) = σ(−wx−b). A
linear-type group can therefore correct the contribution of a
neuron that learns the opposite teacher vector, or, more gen-
erally, correct the linear component of a group of positively
and negatively aligned duplicate neurons; the latter named
linear duplicate-type group (Fig. 2B). (iii) These linear-type
groups can ultimately be combined into an affine operation:
Θx+ β =

∑K
k [(a∗k × w∗

k)x+ a∗kb
∗
k], where k is the index

of duplicate neurons of opposite weight vector and bias, ×
is the outer vector product, Θ ∈ Rdout×din , β ∈ Rdout . No-
tably: rank(Θ) = min(K, din, dout). See Appendix A.2.1
for a more detailed explanation. The even + linear sym-
metry is found in ReLU, LeakyReLU, GELU, Softplus,
SiLU/Swish and other commonly used activation functions.
A concrete numerical example of different neurons found by
a softplus student is shown in Figure A.5. Odd (+ constant)
activation function: when σ(x) = c + σodd(x), student
neurons can duplicate the teacher neuron with flipped signs:
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Algorithm: Expand-and-Cluster
Input: Unknown network’s , L layers,    activation 

Train N overparameterized student networks on
for in L do

collect weight vectors     from all N students
Compute L2 pairwise distances
Dendrogram tree hierarchical clustering on
Cut tree to maximise #clusters of size 
Remove small clusters ( size           )
Remove clusters of median within-cluster angle
Retrieve set of remaining clusters

into hidden neurons

end for
= reconstruct output layer

finetune all weights with
Output: Network parameters , hidden layer sizes



Identify suitable expansion     with quick training runs

Train the N overparameterized student networks on
with reconstructed weights frozen

Teacher
Overparameterized

students

Figure 3. Parameter identification with Expand-and-Cluster. A) Training scheme: once an overparameterisation factor yields
near-zero training losses, train N overparameterised students on the teacher-generated dataset D(X, y); B) Similarity matrix: L2-
distance between hidden neurons’ input weight vectors of layer l for all N students. Large-sized clusters are good candidate weight
vectors. C) Dendrogram obtained with hierarchical clustering: the selected linkage threshold is shown in orange. Clusters
are eliminated if too small (blue) or unaligned (red), the remaining clusters are shown in green. The code is available at https:
//github.com/flavio-martinelli/expand-and-cluster.

a∗σ(w∗x+ b) = −a∗σ(−w∗x− b)+ c. This is the case for
tanh and sigmoid. Positive scaling: for piece-wise linear ac-
tivation functions such as ReLU and LeakyReLU, a positive
scalar can be transferred between input and output weight
vectors: a∗σ(w∗x+ b∗) = ca∗σ( 1c (w

∗x+ b∗)), where c >
0. Finally, in near zero-loss solutions, there can be offbound-
type neurons: their hyperplane, spanned by wx + b = 0,
is placed outside of the input domain of the neuron. This
results in the activation function being used in its asymp-
totic part (often constant or linear). The symmetries just de-
scribed define the functional equivalence class between zero-
loss overparameterised students. We show empirically, that
the redundancy given by overparameterisation symmetries
facilitates gradient descent in converging to a minimal loss.
Given activation function symmetries, ReLU networks have
the most amount (see A.2.3). Whether or not this fact plays
a role in the ability to avoid the non-convexities of training is
a matter of future research. Most importantly, the only way
an overparameterised student can reach zero loss is by rep-
resenting all the neurons at least once (Şimşek et al., 2021).
By getting rid of all the redundant terms (zero, constant, lin-
ear and duplicate groups), teacher neurons can be identified
up to permutation within the layer, a sign and/or a scaling
factor. A numerical example of mapping a zero-loss overpa-
rameterised student into the teacher is shown in Figure A.6.

5. Expand-and-Cluster algorithm
If a student can be trained to exact zero loss, which is pos-
sible in small setups, it is almost trivial to identify the dif-
ferent neuron types, including the teacher neurons (see two
exact numerical examples in figs. A.5, A.6). However, in
larger setups, overparameterised networks are difficult to
train to exact zero loss because of computational budgets
and limited machine precision. Therefore we need ways
to identify the teacher neurons from imperfectly trained
students. These students present approximate duplicates
of teacher neurons as well as neurons of other types that
point in arbitrary directions. In a group of N imperfectly
trained students, neurons that approximate the teacher can
be found consistently across students, while redundant units
have arbitrarily different parameterisations. Therefore we
propose the following procedure (Fig. 3):

Step 1: Expansion phase. Find the correct overparame-
terisation by rapidly training a sequence of networks with
increasing sizes of hidden layers to a fixed convergence
criterion. To do so, use teacher-generated input-output
pairs (teacher queries), D = {X, y}, and minimize the
mean square error loss between un-normalized outputs
(e.g. before the softmax operation) of teacher and student
networks. This allows finding a network width m at which
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convergence to nearly zero loss is possible (Fig. A.2B).

Step 2: Training phase. Train N students of L layers,
width m, on teacher queries D = {X, y} to minimize the
loss to the lowest value achievable with classic optimiser
techniques (Fig. 3A).

Step 3: Clustering phase. Collect the first unreconstructed
hidden layer neurons of the N students, then cluster the
input weight vectors with hierarchical clustering on the L2
distance. In the case of even or odd symmetries, we want
to avoid finding different clusters for neurons of merely op-
posite signs. Therefore we arbitrarily align all input weight
vectors to have a positive nth element. This operation, which
we call ‘canonicalization’, maintains the functional equiva-
lence, since there are ways to compensate for the sign flip
for both odd and even symmetries (see section above). In
the case of positive scaling symmetry, the clustering is per-
formed on the cosine distance. With a threshold selection
criteria that maximizes the number of large clusters (size
≥ γN, 0<γ≤1), we obtain groups of aligned weight vectors;
these clusters should include all duplicate teacher neurons.
Proceed to filter out clusters whose elements are not aligned
in angle (median alignment≥ β), removing eventual zero or
constant type neuron clusters. Then, merge each remaining
cluster of duplicate neurons into single hidden neurons by
choosing the element in the cluster belonging to the lowest
loss student. Due to the unidentifiability of weight vector
signs for even+linear symmetries, we can recover the net-
work up to an affine transformation Θx+ β. Therefore, to
preserve the functional equivalence of the network, we solve
the linear regression problem to find the affine transforma-
tion that minimises the error between the overparameterised
students and the network with the newly reconstructed layer.
We noticed that higher layers align with the teacher weights
only at prohibitively low losses (Tian, 2020). Therefore,
if the student networks have more than one hidden layer
left to reconstruct, we go back to Step 2 and train again N
overparameterised students of L← L− 1 layers, using as
input X the output of the last reconstructed layer. Repeat
this procedure until the last hidden layer is reconstructed
(Fig. 3 Algorithm 1, more details in Appendix A.6.2).

Step 4: Fine-tuning phase. Adjust all the reconstructed
network parameters using the training data.

6. Results
6.1. Synthetic teacher experiments

To test the effects of overparameterisation on the traversabil-
ity of landscapes, we devised a series of very challenging
regression tasks inspired by the parity-bit problem (or mul-
tidimensional XOR), known to be a difficult problem for
neural networks (Rumelhart et al., 1986). We construct syn-
thetic one-hidden layer teacher networks of varying input

dimension din, and hidden neuron number r. Our construc-
tion yields XOR-like and checkerboard-like functions where
teacher neurons’ hyperplanes are often parallel to each other
and divide the input space into separate regions (Fig. 4A),
see Appendix A.4 for more details. In contrast to our ap-
proach, constructing shallow networks with randomly drawn
input weight vectors yields easy tasks since all weights tend
to be orthogonal (Saad & Solla, 1995; Goldt et al., 2019; Ra-
man et al., 2019). For this experiment we use the asymmet-
ric activation function g(x) = softplus(x) + sigmoid(4x).

We trained overparameterised students on the family of
teachers described above (Figs. 4 and A.17). For an overpa-
rameterisation factor ρ, the student hidden layer has m = ρr
neurons. To not venture away from the theoretical setting
of near-zero loss, we trained all the networks with the ODE
solver MLPGradientFlow.jl (Brea et al., 2023). This allowed
us to find global and local minima with machine precision
accuracy for networks without overparameterisation (Fig.
4B, ρ = 1). However, even with optimised solvers and
slightly larger networks, it becomes challenging to converge
fully to global minima within a reasonable amount of time
(Fig. 4C, ρ ∈ {2, 4, 8}). Hence, methods to deal with
imperfectly trained students are needed. Since training is
full-batch (30k data points), the only source of randomness
is in the initialization; see Appendix A.6 for more details.
Figure 4C shows a beneficial trend as overparameterisation
increases, but also highlights a strong dependence on the
dataset (or teacher) complexity r/din: as the number of hy-
perplanes per input dimension increases, it becomes harder
for students to arrange into a global minimum configuration.

We find that direct training of 20 student networks without
overparameterisation (teacher with r = 4 hidden neurons
and input dimensionality din = 4) does not yield a single
case of convergence to zero loss (Fig. 5A, ρ = 1, hidden
layer size 4). For the same teacher, Expand-and-Cluster can
reconstruct the network up to machine-error zero loss and
correct hidden-layer size if an overparameterisation of ρ ≥ 2
is used in Step 2 of the algorithm (Fig. 5A, star-shaped data-
points). This suggests that successful retrieval of all param-
eters of the teacher is possible (Fig. 5A). We test the quality
of parameter identification with Expand-and-Cluster for
each teacher network of Figure 4 and illustrate the final loss
of the reconstructed networks in Figure 5B. For example,
for ρ = 4, 8 and of the 30 teachers with input dimensional-
ity din = 8, all except 2 networks were correctly identified
as indicated by a zero-loss solution (RMSE ≤ 10−14, dark
blue in Fig. 5B). Of 150 different teachers, 118 (∼ 80%)
were correctly identified with ρ = 4. In all but 7 out of 118
successful recoveries, the number of neurons found matches
that of the teacher; the other cases have at most up to 4
neurons in excess (these can be easily categorised into zero-
type and constant-type neurons, see e.g. Fig. A.5). One
can trade reconstruction loss vs. excess neurons by tuning
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Figure 4. Synthetic teachers define tasks of variable difficulty. A) For fixed din, teacher complexity increases with number r of
hidden neurons: contourplot of the teacher network output. Each hidden neuron generates a hyperplane, wi

Tx + bi = 0 (dashed
lines); the direction of the weight vector wi is indicated by an arrow starting from the hyperplane and the sign of the output weight ai

by its colour. Top left: generalization of the XOR or parity-bit problem to a regression setting. From left to right: As the number of
teacher hidden neurons r increases the contour lines become more intricate. B) Non-convexity prevents training to zero loss: for each
combination of din = 2, 4, 8, 16, 32 and r = 2, 4, 8 we generated 10 teachers; for each teacher, we trained 20 or 10 students (for r = 8)
with different seeds. Each teacher corresponds to one row of dots while each dot corresponds to one seed (see inset bottom right). Dark
blue dots indicate loss below 10−14. Student networks of the same size as the teacher (ρ = 1) get often stuck in local minima. The effect
is stronger for larger ratios r/din. C) Effects of overparameterisation on convergence: student networks with overparameterisation
ρ ≥ 2 are more likely to converge to near-zero loss than those without. We report the following general trends: (i) overparameterisation
avoids high loss local minima, (ii) the dataset complexity, i.e. number of hidden neurons per input dimension r/din, determines the
amount of overparameterisation needed for reliable convergence to near-zero loss. For difficult teachers, i.e. overcomplete (r/din ≥ 1),
training is very slow and convergence is not guaranteed in a reasonable amount of time (see Fig. A.3).

the β and γ parameters of Expand-and-Cluster (not shown).
We conclude that, given a reasonably low loss, parameter
identification is possible. Overparameterisation plays a key
role in enabling gradient descent to find a global minimum,
but this effect weakens as the ratio r/din increases. We
note that given more training time, even the hardest teachers
could be learnt with overparameterisation ρ = 8 (Fig. A.3).

6.2. Weight identification of trained networks

To show how the procedure scales to bigger applications,
we recover parameters of networks trained on the MNIST
(LeCun, 1998), FashionMNIST (Xiao et al., 2017) and
CIFAR10 (Krizhevsky et al., 2009) datasets. We pre-trained
different one-hidden layer teachers composed of r hidden
neurons and different activation functions σ. For parameter
recovery, we must have access to the classifier’s proba-

bilistic output (e.g. the values before or after the softmax)
and not only the most probable class (e.g. values after an
argmax). We then used input-output pairs generated by
the last layer of the teacher to define a regression task for
students of overparameterisation ρ = 4. After applying
Expand-and-Cluster we obtain reconstructed networks
of hidden layer size m̂. We compare the reconstructed
networks with teachers in Table 1, and show low RMSE loss
(mismatch between teacher logits and reconstructed net-
work’s logits is on the order of 10−4), close to perfect size
recovery m̂/r ≈ 1 and low average cosine-distance <d>
between each teacher and reconstructed network neuron
input-weight vectors. More metrics are shown in Table A.3.
Note that the difficulty of the training dataset the teacher is
trained on is not crucial for the identification process, as the
student networks are trained on teacher-generated labels.
The slight reduction in average cosine alignment <d> for
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Figure 5. A) Expand-and-Cluster applied to mildly overparameterised students reaches zero loss: a total of 80 student networks
with 4, 8, 16 or 32 hidden neurons have been trained using data generated by a teacher with r = 4 hidden neurons and din = 4 input
dimensions. None of the 20 students with 4 hidden neurons reached zero loss (orange dots, ρ = 1), while all overparameterised student
networks have zero loss with 4 hidden neurons after reconstruction (large coloured stars). B) Loss after Expand-and-Cluster for all
teacher networks and student sizes from Figure 4: the colour of each small horizontal bar represents the final loss. Only a small
fraction of teacher networks (i.e., those in yellow) were not identified correctly.

CIFAR10 teachers is likely due to the higher dimensionality
of the input images (3 channels instead of 1). Experiments
in Table 1 show successful identification when the input
queries to the teacher are done with the same dataset the
teacher was trained on. Depending on the application, one
may not have access to the teacher’s training data. We show
in Table 2 that even if the teacher is trained on MNIST, the
student can be trained on teacher queries from FashionM-
NIST and still achieve on par reconstruction performance.
We speculate that not any type of input query will be
suitable to collect informative data-points from the teacher.
Further research is needed to understand the quantity and
quality of queries needed for successful identification.

Expand-and-Cluster can identify deep fully connected
networks trained on synthetic data (see Appendix A.5) and
larger networks trained on MNIST, Figure 6A (3 hidden lay-
ers of 30 neurons each, ρ = 3, σ = g). The reconstruction
identifies layer sizes up to 4 neurons in excess for the last
hidden layer and achieves a loss of 3 orders of magnitude
lower than similar-sized networks trained from random
initialization. Expand-and-Cluster can be applied “as is”
also to convolutional layers. Without loss of generality, one
can treat each convolution channel as a hidden neuron of
an MLP and the same symmetries described in Section 4
apply. We show good preliminary reconstruction results for
convolutional teacher layers in the appendix section A.7.

Given that our methodology for identification involves a
compression step, we consider if currently available pruning
methods are able to shrink overparameterised students back

Table 1. Identification of shallow networks: successful recon-
struction to low RMSE L, similar size m̂/r ≈ 1 and low average
cosine distance d between identified and target neurons. All teach-
ers are trained and queried with the same dataset, indicated in the
leftmost column.

σ r L m̂/r <d(wi, w
∗
i )>

M
N

IS
T

g 256 1.5 · 10−3 1.008 2.1 · 10−4

sigmoid 256 8.4 · 10−4 1.08 3.8 · 10−4

tanh 128 1.7 · 10−3 1.04 1.3 · 10−4

softplus 64 2.3 · 10−3 1.08 1.4 · 10−4

relu 64 8.2 · 10−3 1.12 4.6 · 10−4

gelu 64 1.8 · 10−3 1.08 1.4 · 10−4

leakyrelu 64 3.3 · 10−3 1.01 1.8 · 10−4

Fa
sh

io
n g 64 4.7 · 10−4 1.04 3.3 · 10−5

sigmoid 64 2.5 · 10−3 1.17 6.8 · 10−3

softplus 64 3.7 · 10−3 1.28 1.5 · 10−3

tanh 64 3.3 · 10−4 1.11 4.8 · 10−5

C
IF

A
R

10

g 64 3.7 · 10−3 1.00 5.0 · 10−3

sigmoid 64 1.2 · 10−3 1.06 2.7 · 10−3

softplus 64 7.1 · 10−3 1.06 1.4 · 10−2

relu 64 2.3 · 10−3 1.92 2.4 · 10−3

Table 2. Identification with a dataset different from the teacher
training dataset: a teacher network trained on MNIST is recon-
structed by training students from teacher queries performed with
a different dataset: FashionMNIST.

σ r L m̂/r <d(wi, w
∗
i )>

g 64 1.14 · 10−3 1.11 2.26 · 10−4
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Figure 6. A) Identification of multiple hidden layers: A deep
teacher of layer sizes 784-30-30-30-10 is reconstructed with
Expand-and-Cluster(N = 50, γ = 0.5, β = π/5) applied to
students of factor ρ = 3 overparameterisation (magenta dots) with
4 excess neurons in the last hidden layer (magenta star). B) Base-
line comparison with pruning techniques: recovery of a shallow
network trained on MNIST. Weight pruning methods: Han et al.
(2015), lottery ticket hypothesis (LTH) (Frankle & Carbin, 2019)
and structural pruning OTOv2 (Chen et al., 2022) cannot achieve
low imitation loss (RMSE) and equal teacher size (excess parame-
ters = 0) simultaneously, while our algorithm Expand-and-Cluster
(EC) is successful (star-points). Different colours indicate different
hyperparameters of the methods (regularisation coefficient λ for
OTOv2 and pruning iteration number for the other two).

to the teacher size. We compare Expand-and-Cluster to
classic pruning techniques such as magnitude pruning (Han
et al., 2015), lottery ticket hypothesis (Frankle & Carbin,
2019) and the state-of-the-art structural pruning method
OTOv2 (Chen et al., 2022). OTOv2 employs mixed ℓ1/ℓ2
regularisation at the level of units, combined with projected
gradients to push units to zero. To ensure a fair comparison
in terms of computational budget, we compare one run of
Expand-and-Cluster (N = 10, r = 128, σ = tanh) with
10 runs of the other methods where we sweep their hyper-
parameters (ρ = 4 for all students), Figure 6B. Expand-
and-Cluster (EC) requires virtually no hyperparameter tun-
ing, as γ and β are robust to changes in their values (Fig.
A.7). We also show that with N ≥ 5 student networks
Expand-and-Cluster identifies the teacher network with at
most 10% additional neurons (Fig. A.8). The comparison

shown in Figure 6B highlights a clear boundary between
our method and current alternatives. We speculate that the
iterative nature of these pruning algorithms is not suited to
the identification problem, as gradually shrinking the pa-
rameter space can lead to rougher landscapes that exhibit
high non-convexity, leading to convergence to local minima.
While Expand-and-Cluster fully exploits the expressivity of
the overparameterised parameter space. Notably, the weight
pruning methods of Han et al. (2015) and Frankle & Carbin
(2019) are not capable of pruning entire units (Fig. A.7).

7. Conclusions and future work
Given data generated by a teacher of known size and archi-
tecture, it is usually impossible to recover its parameters by
fitting a student network of the same size as the teacher with
standard gradient-based training procedures. The detour to
network expansion and clustering is our proposed approach
to reliably find the teacher parameters.

Considering the symmetries involved, each neuron weight
vector can be fully identified in networks with asymmetric
activation functions, identified up to a sign for activation
functions with odd or even+linear symmetries and identified
up to a constant scaling for activation functions with
positive scaling symmetry. Convolutional layer symmetries
are mappable to the ones listed in Section 4, by simply
treating individual channel weight kernels as hidden neuron
weight vectors. Pooling and normalisation layers are not
expected to introduce new symmetries. Other symmetries
induced by deep ReLU networks are discussed in Grigsby
et al. (2023), but those are mostly unidentifiable structures
that do not contribute to the input-output mapping of a
network. To identify modern convolutional networks, an
analysis of the symmetries of residual layers is needed.

At this stage, our results are limited to small-scale setups,
primarily due to the high computational budget required
to reach low losses in bigger networks. A straightforward
extension of this work is to focus on scaling to deeper
networks and layer types, as well as speeding up the
training process. Another future research direction concerns
the query dataset needed to reconstruct the teacher network.
Theoretical developments are required to answer questions
such as: what type of input queries are informative for
the identification process? How can one generate more
queries when access to teacher training data is limited or
not granted? How many queries are sufficient? Towards
reverse engineering biological neural circuits, we show that
we can solve the weight identifiability problem in artificial
feed-forward networks. However, further steps are needed
to improve the reconstruction of connectivity from neural
activity measurements, to cope, for example, with recurrent
connectivity, unknown and noisy activations, partial
observability or the integration of anatomical information.
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Vlačić, V. and Bölcskei, H. Affine symmetries and neural
network identifiability. Advances in Mathematics, 376:
107485, 2021.
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Zhang, Y., Tiňo, P., Leonardis, A., and Tang, K. A survey
on neural network interpretability. IEEE Transactions on
Emerging Topics in Computational Intelligence, 2021.

Zhong, K., Song, Z., Jain, P., Bartlett, P. L., and Dhillon,
I. S. Recovery guarantees for one-hidden-layer neural net-
works. In International conference on machine learning,
pp. 4140–4149. PMLR, 2017.

13



Expand-and-Cluster: Parameter Recovery of Neural Networks

A. Appendix
A.1. Code availability

The code is available at https://github.com/flavio-martinelli/expand-and-cluster.

A.2. Activation functions

A.2.1. EVEN PLUS LINEAR ACTIVATION FUNCTIONS

Considering a neuron with an activation function that can be decomposed into linear plus even terms:

aσ(wx+ b) = ac1 · (wx+ b) + aσeven(wx+ b)

where c1 is the slope of the linear approximation around 0. The total contribution of aligned, +(wx + b), and opposite,
−(wx+ b), student neurons is:

∑
i∈N+

aiσ(wx+ b) +
∑

j∈N−

ajσ(−(wx+ b)) = c1

 ∑
i∈N+

ai −
∑

j∈N−

aj

 (wx+ b)

︸ ︷︷ ︸
Linear

+

∑
k∈N±

ak σeven(wx+ b)︸ ︷︷ ︸
Even

where N+, N−, N± contain aligned, opposite or all neuron indices, respectively.

If
∑

k∈N± ak = 0, we obtain a linear-type group that contributes a linear function to the next layer; to keep an exact
mapping of the teacher, there must be another linear-type group in the same layer contributing the exact opposite linear term.
If
∑

k∈N± ak = a∗, then the neuron group is a linear duplicate-type, replicating a teacher neuron up to a misaligned linear
contribution; that can be accounted for by another linear group in the same layer. An example of different neurons reached
by a softplus student is shown in supplementary Figure A.5.

A.2.2. CONSTANT PLUS ODD ACTIVATION FUNCTIONS

Considering a neuron with an activation function that can be decomposed into a constant plus odd term:

aσ(wx+ b) = ac0 + aσodd(wx+ b)

where c0 = σ(0). The total contribution of aligned and opposite student neurons is:

∑
i∈N+

aiσ(wx+ b) +
∑

j∈N−

ajσ(−(wx+ b)) = c0
∑

k∈N±

ak︸ ︷︷ ︸
Constant

+

 ∑
i∈N+

ai −
∑

j∈N−

aj

σodd(wx+ b)

︸ ︷︷ ︸
Odd

where N+, N−, N± contain aligned, opposite or all neuron indices, respectively.

If
∑

i∈N+ ai −
∑

j∈N− aj = 0, we obtain a constant-type group; to keep an exact mapping of the teacher, the sum of all
constant-type groups in the same layer and the next layer bias must add up to contribute the original bias of the next layer
neuron. If

∑
i∈N+ ai −

∑
j∈N− aj = a∗, then the neuron group is a duplicate-type, replicating a teacher neuron up to a

misaligned constant contribution; that can be accounted for by other constant groups in the same layer or biases in the next.
For tanh, there is no constant contribution term (c0 = 0) while it is the case for sigmoid.

A.2.3. CLASSIFICATION OF ACTIVATION FUNCTIONS BASED ON SYMMETRIES

• No symmetries sigmoid + softplus, Mish (Misra, 2019), SELU (Klambauer et al., 2017),

• Odd: tanh

14

https://github.com/flavio-martinelli/expand-and-cluster


Expand-and-Cluster: Parameter Recovery of Neural Networks

▷ Odd + constant: sigmoid

• Even + linear: GELU (Hendrycks & Gimpel, 2016), Swish/SiLU (Ramachandran et al., 2017)

▷ Even + linear + constant: softplus
▷ Even + linear + positive scaling: ReLU, LeakyReLU

A.3. Expand-and-Cluster detailed procedure

The input weight vectors of all neurons in a given layer of N mildly overparameterised students are clustered with
hierarchical clustering (Murtagh & Contreras, 2012) using the average linkage function ℓ(A,B) = 1

|A|·|B|
∑

i∈A
∑

j∈B Sij ,
where Sij = ∥wi −wj∥2 and wi and wj are input weight vectors of neurons in the same layer but potentially from different
students (Fig. 3B). To identify the clusters of teacher neurons we look for the appropriate height h to cut the dendrogram
resulting from hierarchical clustering (Fig. 3C). With K(h) = {κ1, κ2, . . .} the set of clusters at threshold h, and |κi| the
size of cluster i, we define the set C(h, γN) = {κi ∈ K(h) | |κi| ≥ γN} of clusters larger than a fraction γ ∈ (0, 1] of the
number of students N . For γ > 1/N , the set C(h, γN) usually does not contain small clusters of zero or offbound type
neurons, because they are not aligned between different students. We cut the dendrogram at the height that maximises the
number of big clusters: ℏ = argmaxh|C(h, γN)|. The set C(ℏ, γN) may still contain clusters of non-aligned neurons
whose input weights are close in Euclidean distance (e.g. approximate constant-type neurons with ∥wi∥ near zero) but not
aligned in angle. Therefore we remove clusters whose within-cluster median angle is higher than β. Each remaining cluster
is then collapsed into a single hidden neuron with a winner-take-all policy: we choose the weight vector(s) that belong to the
best-performing student in the cluster. Note that if multiple output weights a1, . . . , aq of the same network belong to the
same cluster, they can be combined into a single output weight a =

∑
i ai, following the definition of duplicate neurons

(Fig. 2). If the best student duplicates a given teacher neuron more than once, we take their average. Alternatively, we have
also tried to average over all neurons in each cluster and obtained a similar final performance. The hyperparameters of
Expand-and-Cluster (N, γ, β) used for each experiment are summarised in Appendix A.6.4.

The biases could approximately be reconstructed by identifying all the constant-type neurons, but we found this procedure
somewhat brittle. Instead, we fine-tune all bias parameters (keeping constant the weight vectors) with a few steps of gradient
descent on the reconstructed network. After each layer reconstruction, we retrain N students with fixed non-trainable
reconstructed layers but learnable biases, and the remaining layers are overparameterised and learnable. In this retraining
phase, we monitor the learned bias values bnk of the last reconstructed layer, if the same neuron k learns different bias values
across different students n (stdn(b

n
k ) > 0.1) we consider that neuron badly clustered and therefore remove it from the layer.

We repeat this procedure until the last hidden layer, the final output layer can be reconstructed by simply retrieving the
output weights of the last hidden layer neurons. Ultimately further fine-tuning can be performed on the whole network to
minimise the loss as much as possible.

A.4. Synthetic data in teacher-student networks

All tasks with synthetic data have d-dimensional uniformly distributed input data in the range xi ∈ [−
√
3,
√
3]. A specific

task is defined by the parameters of a teacher network. Each hidden neuron i of the teacher is randomly sampled from a
set of input weights wi ∈ {−1, 0, 1}din , output weights ai ∈ {−1, 1} and biases bi ∈ {− 2

3

√
3,− 1

3

√
3, 0, 1

3

√
3, 2

3

√
3}. We

repeat the sampling if two hidden neurons are identical up to output weights signs to avoid two hidden neurons cancelling
each other. The resulting input weight vectors w are first normalised to unity and then both w and b are multiplied by a
factor of 3. The above procedure yields hyperplanes in direction w located at a distance |b|/||w|| from the origin, and
a steeply rising (or falling) activation on the positive side of the hyperplane. Finally, analogous to batch normalization,
the output weights and biases are scaled such that the output has zero-mean and unit variance when averaged over the
input distribution: a← a/std(y) and b2 = −⟨y⟩/std(y), where y is the output vector of the network. We study teachers
with input dimensionality din ∈ {2, 4, 8, 16, 32} and hidden layer size r ∈ {2, 4, 8}. Figure 4A shows examples of
different teachers with input dimension din = 2 and a single hidden layer. We use the asymmetric activation function
σ = σsig(4x) + σsoft(x), where σsig = 1

1+e−x and σsoft = log(1 + ex) for all our simulations unless specified otherwise.
The construction of deep teacher networks follows the same mechanism as described above, with the additional extra step of
scaling the weights such that each unit of the successive layer receives standardised inputs, analogous to what batch-norm
would do for a full batch. This procedure ensures that the input support to each layer does not drift to values that are
off-bounds with respect to where each hidden neuron hyperplane is placed. Classically trained networks also follow this
scheme to have useful activations, but it is crucial to avoid potential support drift in arbitrarily constructed deep networks.
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A.5. Recovery of deep artificial teacher networks

We built two and three hidden layers networks by stacking the procedure to generate artificial teachers detailed in Ap-
pendix A.4. Expand-and-Cluster without retraining step at each layer reconstruction was applied to these networks: the
reconstructed networks have one or two superfluous neurons for the two and three-layer teachers, respectively; (Fig. A.1).
We emphasise that the final loss of the pruned student networks is at least 8 orders of magnitudes lower than the loss of the
best out of 10 students trained with the correct number of neurons in each of the hidden layers. Thus, running 10 training
runs with student networks overparameterised by a factor of ρ = 8 enables us to correctly identify or nearly identify the
teacher network, while direct training was not successful with the same number of runs (Fig. A.1). Detailed explanations on
training and reconstruction are explained in the following sections (Appendix A.6.2 and Appendix A.6.4).

Layer sizes
8-4-2-1

8-5-2-1
8-32-16-1

16-8-4-2-1

16-64-32-16-1

16-8-4-4-1

Overparametrized student Reconstructed network

R
M

S
E

Figure A.1. Deep artificial teachers: a teacher with input dimension 8, a first hidden layer with 4 neurons, and a second hidden layer
with 2 neurons, and a single output (denoted as 8-4-2-1, left) was constructed by stacking the procedure of Figure 4 and generated data to
train students of overparameterisation ρ = 8 (denoted as 8-32-16-1). Similarly, a teacher with architecture 16-8-4-2 (right) generated data
to train students with architecture 16-64-32-16. Expand-and-Cluster applied to students trained with an overparameterisation of ρ = 8
identified the teacher network with one additional neuron in the first hidden layer (left) or with two additional neurons in the third hidden
layer (right). In both cases, the loss is below 10−10 whereas direct training with the ‘correct’ network architecture never reached a loss
below 10−2.

A.6. Training and reconstruction details

A.6.1. SYNTHETIC TEACHER TASKS

To explore overparameterised networks trained to exact zero-loss or up to machine precision (for Float64 machine precision
is at 1016), we integrated the gradient flow differential equation θ̇(t) = −∇L(θ(t),D) with ODE solvers, where L is the
mean square error loss. Specifically, we used the package MLPGradientFlow.jl (Brea et al., 2023) to follow the gradient with
high accuracy and exact or approximate second-order methods to fine-tune convergence to a local or global minimum. All
of the toy model networks are trained with Float64 precision on CPU machines (Intel Xeon Gold 6132 on Linux machines).

The networks of Figure 4 were trained on an input dataset X of 30k data points drawn from a uniform distribution between
−
√
3 and +

√
3 and targets y computed by the teacher network on the same input X. Students were initialised following

the Glorot normal distribution, mean 0 and std =
√

2
fan in+fan out (Glorot & Bengio, 2010). We allocated a fixed amount of

iteration steps per student: 5000 steps of the ODE solver KenCarp58 for all networks, plus an additional 5000 steps of
exact second order method NewtonTrustRegion for non-overparameterised networks (ρ = 1) or 250 steps of BFGS
for overparameterised networks (ρ ≥ 2). The stopping criteria for the second training phase were: mean square error loss
≤ 10−31 or gradient norm∇L(θ(t)) ≤ 10−16. Each iteration step is full-batch, the only source of randomness in a student
network is its initialization.

The networks shown in Figure 5, after reconstruction, were fine-tuned for a maximum of 15 minutes with
NewtonTrustRegion if the number of parameters was below or equal to 32 or LD SLSQP otherwise.
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A.6.2. SYNTHETIC DEEP NETWORKS

Toy deep students were trained on a dataset generated in the same way as their shallow counterparts. We allocated 3 hours to
solve the gradient flow ODE with Runge-Kutta4 followed by 6 to 12 hours of approximate second-order optimisation
with BFGS. After reconstruction, we gave 60 minutes of time budget to fine-tune with LD SLSQP (Fig. 6A).

A.6.3. TRAINING OF TEACHERS AND STUDENTS

Several teachers with a single hidden layer of 10, 30 or 60 neurons were trained with the activation function defined in
Appendix A.2 to best classify the MNIST dataset by minimizing the cross-entropy loss with the Adam optimiser (Kingma &
Ba, 2015) and early stopping criterion. For each hidden-layer size, the best-performing teacher was used to train the students,
see Figure A.3A. The student networks were trained to replicate the teacher logits (activation values before being passed to
the softmax function) by minimizing a mean square error loss. Students were initialised with the Glorot uniform distribution,

ranging from −a to a, where a =
√

6
fan in+fan out . The training was performed with the Adam optimiser on mini-batches of

size 640 with an adaptive learning rate scheduler that reduces the learning rate after more than 100 epochs of non-decreasing
training loss. A maximum of 25k epochs was allocated to train these students on GPU machines (NVIDIA Tesla V100 32G).
For the layerwise reconstruction of deep teacher networks, every retraining was given a maximum of 10k epochs.

The reconstructed networks shown in Figure 6B are fine-tuned with the same optimising recipe for a maximum of 2000
epochs. For deep reconstructed networks, a final finetuning of 15k epochs was performed on all the parameters.

A.6.4. EXPAND-AND-CLUSTER HYPERPARAMETERS

The Expand-and-Cluster procedure has only 3 hyperparameters to tune: the number of student networks N , the cutoff
threshold to eliminate small clusters γ and the maximally admitted alignment angle β.

• Shallow synthetic teachers: all the procedure was performed with N = 10 (for r = 8) or N = 20 (for r = 2, 4),
γ = 0.8 and β = π/24.

• Deep synthetic teachers: we reconstructed the synthetic deep networks without the retraining step at each layer
reconstruction. This required looser conditions, especially for the higher layers: for the synthetic deep networks of
2 hidden layers: N = 10, γ = 0.4 and β = 1 − arccos(0.01) ≃ 8◦; for the 3 hidden layer case: N = 20, γ = 1/3,
β ≃ 0.26◦ for the first layer and β ≃ 30◦ for the other layers. The alignment gets quickly lost as depth increases,
motivating the looser β angles. We found this procedure too brittle and decided to modify the algorithm into the version
in the main paper (Fig. 3) by adding the retraining step at each layer reconstruction. The reconstruction results for deep
MNIST teachers follow this updated algorithm.

• Shallow MNIST teachers: for MNIST student networks we notice that no alignment of weight vectors can be
expected for the corner pixels of the images because these pixels have the same value for nearly all input images. This
prevents weights connected to corner pixels from moving from the random initialization. Therefore we removed the
uninformative pixels using the tree-based feature importance method Boruta (Kursa & Rudnicki, 2010) to identify with
statistical significance the informative features; the resulting map is shown in Figure A.3B. The parameters used for
Expand-and-Cluster on MNIST shallow networks of Figure 6B are γ = 0.5 and β = π/6 while N sweeps from 2 to
20.

• Deep MNIST teacher: all the procedure was performed with N = 50, γ = 0.5 and β = π/5 for every layer.
Layerwise reconstruction alternated to the training of new students is a much more stable procedure than the one
described for deep synthetic teachers as there is no need to tune the Expand-and-Cluster parameters for every layer.

A.7. Convolutional layers reconstruction

We trained a convolutional neural network on the CIFAR10 dataset. The network is composed of two convolutional layers
of 16 channels, each followed by a maxpool operation. After the convolutions, a fully connected layer of 32 hidden neurons
computes the outputs. Students were trained with overparameterisation factor ρ = 3, we adapted the clustering algorithm to
consider channels in the convolutional layers as analogous to hidden neurons of an MLP. The alignment of the different
channel weights between the teacher and the reconstructed student is shown in Fig. A.16.
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A.8. Supplementary figures and table

# Successful
training runs

MSE

A B

Figure A.2. A) overparameterisation performance scales beyond simple linear parameter scaling: we successfully retrieve an
identical input-output mapping of the original network with a student of the same size (ρ = 1) only 2 times out of 1024 runs. If we
instead train 8 times fewer networks (n = 128) that are 8 times bigger (ρ = 8) we achieve a significant improvement in success rate,
72 out of 128 runs. Note that the computational budget of the two experiments is equal. Example shown with teacher configuration
din = 16, r = 4, teacher #7. B) Probing expansion factors: It is impossible to know the overparameterisation factor of a student if
the teacher is unknown. Nevertheless, one can probe different student sizes with quick training runs of stochastic gradient descent to
identify a suitable student size that gives minimal losses. With a fixed time budget per training run, we notice an increase in MSE for large
overparameterisation.

M
SE

Figure A.3. Training longer slowly decreases student loss for difficult teachers: the results shown in Figure 4 for difficult teachers are
not at convergence despite the large amount of ODE solver steps dedicated (5K for every simulation). If training is continued we can see a
slow decrease in loss, hinting that a very complex landscape is generated by difficult teachers. This simulation took more than a day to
compute. Each colour corresponds to a different student loss curve, the teacher used was of din = 2, r = 8.

Table A.3. Detailed statistics of experiments of Table 6A: L is the root mean square error loss of the student network, m̂/r is the
number of neurons of the student divided by the teacher size, <d(wi, w

∗
i )> and maxi d(wi, w

∗
i ) are the average and maximum cosine

distance between reconstructed and teacher input weight vectors (absolute value cosine distance in case of symmetries where the sign of
the weight vector cannot be recovered), <d(ai, a

∗
i )> and maxi d(ai, a

∗
i ) are the same metrics for the output weights.

σ r N γ β L m̂/r <d(wi, w
∗
i )> maxi d(wi, w

∗
i ) <d(ai, a

∗
i )> maxi d(ai, a

∗
i )

g 256 20 0.5 π/3 1.53 · 10−3 1.008 2.13 · 10−4 1.92 · 10−3 3.48 · 10−8 2.41 · 10−6

sigmoid 256 20 0.9 π/3 8.37 · 10−4 1.12 3.77 · 10−4 6.00 · 10−3 5.49 · 10−4 2.84 · 10−2

tanh 128 10 0.9 π/3 1.73 · 10−3 1.04 1.29 · 10−4 9.26 · 10−4 3.06 · 10−5 3.91 · 10−3

softplus 64 20 0.9 π/3 2.97 · 10−3 1.09 1.08 · 10−2 6.82 · 10−1 5.66 · 10−3 3.62 · 10−1

relu 64 20 0.5 π/3 8.16 · 10−3 1.12 4.63 · 10−4 8.02 · 10−3 3.34 · 10−5 2.03 · 10−3
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A B

Figure A.4. A) MNIST teachers misclassification error on test set. B) MNIST important pixels mask obtained with BORUTA
(Kursa & Rudnicki, 2010): only connections projecting from yellow pixels are considered for the Expand-and-Cluster procedure.
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hidden layer size
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= sigmoid

128 133 512
hidden layer size
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100
= tanh

64 69 256
hidden layer size
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10 1

100
= softplus

64 72 256
hidden layer size

10 3
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10 1
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= relu

noOP
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MNIST shallow teachers

Figure A.9. Loss and size comparisons for MNIST experiments of Table 1 of the main paper: without overparameterisation (noOP,
blue dots) training gets stuck at high loss values due to the extreme non-convexity of the landscape. These networks show poor imitation
of the teachers and no alignment in weights. Only σ = tanh seems to be an exception to this phenomenon. Overparameterisation is
necessary to reliably reach lower losses due to the proliferation of global minima in the landscape (OP, red dots). Expand-and-Cluster can
successfully reconstruct the teacher network from the overparameterised students (EC, yellow stars), with few excess neurons.
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Neuron# w1 w2 w3 w4 b a
1 0.0798 -0.1591 -1.1932 0.1544 -0.4069 -0.6425
2 0.0885 0.0562 1.4687 -0.0843 1.8938 -3.2114
3 0.5641 -1.2116, -0.9090 0.5318 0.0863 1.3291
4 -1.0788 -1.1397 -0.0288 0.7331 0.7795 1.3658

Final layer bias: 1.4088

Neuron# w1 w2 w3 w4 b a
1 0.0000 -0.0000 -0.0002 0.0000 0.0745 0.5669
2 -1.0788 -1.1397 -0.0288 0.7331 0.7795 1.3658
3 0.3933 -0.4649 -0.1984 0.1733 0.0283 -0.0000
4 -0.0381 0.0759 0.5690 -0.0736 0.1359 0.5343
5 -0.0798 0.1591 1.1932 -0.1544 0.4052 -0.2547
6 0.0675 -0.0581 -0.1721 0.1226 -0.0294 -0.0000
7 0.0000 0.0000 0.0000 0.0000 0.0518 0.2907
8 0.0049 0.0391 0.6151 -0.0676 -0.0452 -0.0000
9 0.0798 -0.1591 -1.1932 0.1544 -0.4079 -0.3878
10 0.5641 -1.2116 -0.9090 0.5318 0.0863 1.3291
11 -0.0001 0.0001 0.0002 -0.0001 0.1579 0.2025
12 0.0381 -0.0759 -0.5690 0.0736 -0.1359 -0.5343
13 0.0885 0.0562 1.4687 -0.0843 -2.0982 -3.2114
14 0.0000 -0.0000 -0.0003 0.0001 0.0881 0.5097
15 -0.2952 0.0844 0.3304 0.0897 0.0357 -0.0000
16 0.6287 0.6561 0.1238 -0.3991 -0.4162 -0.0000

Final layer bias: 0.2826.

Duplicate-type

Linear duplicate-type

Linear-type

Constant-type

Zero-type

TEACHER

STUDENT

Figure A.5. Example parameters of a softplus teacher and student: the table above shows the parameters of a din = 4, r = 4 softplus
teacher. The table below shows the parameters of a student of ρ = 4 trained on the defined teacher to RMSE ∼ 10−11. At a near-zero
loss, we can classify all the different neurons (colour-coded) composing the student, following the classification scheme of Figure 2.
Note that the presence of a linear duplicate type implies the presence of a linear type, this group of 4 neurons (blue and purple coded)
collaborates to replicate teacher neuron #1.
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w1|b1 = 
-0.0186427   0.4867954  -0.8733170;
  0.5345224  0.5345224    0.6546536;
-0.5344955   0.5345515  -0.6546519; 
  0.5345224  -0.5345224 -0.6546536;
  0.9595642  -0.2811053 -0.0147064; 
-0.5345463   -0.5345069  0.6546468; 
  0.2360052  -0.9713955 -0.0263089; 
-0.9760868  -0.2163494 -0.0211512; 
  0.5343965  -0.5346584  0.6546454;
-0.0700507  -0.4458648  0.8923549
w2|b2 = 
  0.0262744   0.8999724  1.14440945
  0.8999724  -5.448301e-17 0.8999724
  2.77555e-17 6.58288e-17 -0.2444369
-1.8647370    0.3454407

w1|b1 = 
-0.0186427  0.4867954  -0.8733170; 
  0.5345224  0.5345224   0.6546536; 
-0.5344955  0.5345515  -0.6546519;
 0.5345224 -0.5345224  -0.6546536;
-0.5345463 -0.5345069   0.6546468; 
 0.5343965 -0.5346584   0.6546454; 
-0.0700507 -0.4458648   0.8923549
w2|b2  =
-0.0262744   0.8999724    1.1444094
  0.8999724   0.8999724  -0.2444369 
-1.8647370   0.3454407

w1|b1 = 
 0.5345224  0.5345224   0.6546536; 
-0.5344955  0.5345515  -0.6546519;
 0.5345224 -0.5345224  -0.6546536;
-0.5345463 -0.5345069   0.6546468; 
 0.5343965 -0.5346584   0.6546454; 
w2|b2  =
0.8999724    1.1444094    0.8999724 
0.8999724   -0.2444369    0.3454407

m = 0.130626, 0.831420
q = 1.664007

w1|b1 = 
  0.5345224  0.5345224   0.6546536;
  0.5344955 -0.5345515   0.6546519 
  0.5345224 -0.5345224  -0.6546536;
-0.5345463  -0.5345069   0.6546468;
w2|b2  =
0.8999724    0.899972  0.8999724 
0.8999724    0.3454407

m = 0.4810555, 1.4431665
q = -2.413197

w1|b1 = 
 0.5345224  0.5345224   0.6546536;
-0.5344955  0.5345515  -0.6546519 
-0.5345224 -0.5345224   0.6546536;
-0.5345463  -0.5345069   0.6546468;
w2|b2  =
0.8999724    0.8999726    0.8999724 
0.8999724    0.3454407

m = 4.568909e-5, -1.216726e-5
q = -1.824034 

q + b2_student - b2_teacher = 7.7221e-6

w1|b1 = 
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0.8999724 0.8999724 0.8999724
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w1|b1 = 
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 0.2360052  -0.9713955  -0.02630894;
-0.9760868 -0.2163494   -0.02115127; 
-0.5345912 -0.5344777    0.65463399; 
 0.5343965  -0.5346584   0.65464546; 
-0.0700507  -0.4458648   0.89235496

w2|b2 = 
-0.0262744 0.8999724 1.1444094 
 0.8999724 -5.4483016e-17  0.6890537 
 0.1148067 -0.1148067 6.582886e-17 
 0.2109187 -0.2444369 -1.864737
 0.3454407

Teacher Student

Merging duplicates Removing zero-types

Removing o�-bounds Merging opposite linear duplicate

Flipping weight signs = teacher neuron

Figure A.6. Mapping an exact zero loss overparameterised relu student to the teacher using symmetries: A numerical example of
a σ = relu, r = 4, din = 2, dout = 1 teacher. We follow the same network representation as in figure 4: we plot each hidden neuron
hyperplane (wx+ b = 0) and the input weight vector as an arrow, the colour of the arrow indicates if the scalar output weight is > 0 (red),
< 0 (blue) or ≈ 0 (white). Top left: representation of the teacher, each input and output weight vector (concatenated with bias) are shown
numerically on the right side of each figure. Top right: σ = relu,m = 12, din = 2, dout = 1,L = 10−16 overparameterised student.
Following plots from left to right, top to bottom: each plot shows a step towards mapping the student network to the teacher. Each step
maintains functional equivalence by making use of the symmetries of Section 4. Red parameters indicate the parameters modified in the
next step, green parameters are the parameters that have been modified with the current step (if both green and red should be present, we
leave it in red). In order: Merging duplicates: a pair of duplicate neurons is merged by summation of their output weights. Removing
zero-types: neurons with near-zero output weights (white arrows) are removed. Removing off-bounds: off-bound neurons (one is barely
visible at the top of the contour plot) are removed by taking care of their contribution. In this case, the off-bounds relu neurons have their
hyperplane outside of the input domain and their weight vector pointing towards the input domain, hence they contribute a linear function
to the output. Therefore a linear transformation mx+ q is added to maintain functional equivalence. Merging opposite linear duplicates:
Neurons that share a hyperplane but features pointing in opposite directions can be merged into a unique neuron + linear component.
Flipping weight signs: finally, the weight vectors opposite to the teacher are flipped by adding a linear component. We verify that the final
linear component sums up to zero to confirm the functional equivalence of the mapping.
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Figure A.7. Neurons in excess with respect to other pruning methods: same experiment as Figure 6A but looking at the number of
neurons in excess. The weight pruning methods lottery ticket hypothesis (LTH) (Frankle & Carbin, 2019) and classic magnitude pruning
(Han et al., 2015) never effectively push all the weights of any unit to zero (as they were not designed to do so). The structural pruning
method OTOv2 (Chen et al., 2022) instead prunes only units. Training N = 10 overparameterised students for Expand-and-Cluster
(EC) is computationally equivalent to training 10 runs of parameter search for the other methods. While EC and OTOv2 runs can be
parallelised, for LTH and Han et al. they need to be run sequentially. Once N = 10 overparameterised students are trained, testing
different hyperparameter sets for EC is not as computationally expensive. Different runs of EC for different parameters γ and β show how
EC hyperparameter search is not as crucial as a search for a regularisation coefficient λ. Inset – Expand-and-Cluster robustness to
hyperparameter sweep: The star-shaped points highlight the stable robustness in the performance of EC for different hyperparameter
settings. We sweep γ ∈ [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] while keeping β = π/3 and β ∈ [π/2.4, π/3, π/4, π/6, π/18, π/180]
while keeping γ = 0.75. The only set of parameters that fails the reconstruction is γ = 0.75, β = π/180. Looking at the role of these
parameters in detail: β filters out unaligned clusters which tend to have elements orthogonal to each other. Any value of β ≥ π/6 is
sufficient to filter out unaligned clusters without filtering potentially important duplicates. While γ is involved in filtering out small
clusters that we expect to be made of zero-type neurons, therefore any value of γ that is too low (γ ≤ 0.4) would risk filtering out
important clusters, while a value of γ too high risks to miss some clusters of duplicates.
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Figure A.8. A) MNIST shallow teachers: fraction of excess neurons with respect to the teacher size) clustered as a function of the N
students used for Expand-and-Cluster(N, γ = 0.5, β = π/6). Combined statistics across three shallow teachers of sizes r ∈ {10, 30, 60}
pre-trained on MNIST data.
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Figure A.10. Reconstruction of σ = g network.
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Figure A.11. Reconstruction of σ = sigmoid network.

Figure A.12. Comparing reconstructed and target network of MNIST experiments in Table 6A: The left plots show the distance of
each teacher neuron input (top) or output (bottom) weight vector with respect to the closest neuron of the reconstructed network. To
indicate the unidentifiability of the sign of the weight vectors, we indicate in red the bars of neurons identified with the opposite sign.
The right vertical plot shows how many excess neurons were found and to what teacher neuron they align the closest (in input weight
vector); empty dashed bars indicate excess neurons with output weight vector norms below 0.1 (putatively zero neurons). We can still
find duplicate neurons in reconstructed networks, they can be seen in these plots by having an excess neuron closely aligned to a teacher
neuron and, consequently, a worse precision in alignment of the output weights (because of imprecisions in the sum of the duplicates’
output weight vectors). The teacher neurons are ordered by descending output weight vector norm, as the lowest norm output weight
neurons tend to be learnt at later stages of the learning process (i.e. at lower losses (Tian, 2020)).
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Figure A.13. Reconstruction of σ = tanh network.
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Figure A.14. Reconstruction of σ = softplus network.
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Figure A.15. Reconstruction of σ = relu network.
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Figure A.16. Alignment of channel weights between teacher and reconstructed student: The figure shows the alignment of the
different channel weights between the teacher and the reconstructed student for the convolutional network trained on the CIFAR10 dataset.
The left plot is conv-layer 1, and the right plot is conv-layer 2.
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Figure A.17. Visualization of all din = 2 teachers used for results in Figure 4 and 5
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