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Abstract

Flow models transform data gradually from one modality (e.g. noise) onto another (e.g.
images). Such models are parameterized by a time-dependent velocity field, trained to fit
segments connecting pairs of source and target points. When the pairing between source
and target points is given, training flow models boils down to a supervised regression prob-
lem. When no such pairing exists, as is the case when generating data from noise, training
flows is much harder. A popular approach lies in picking source and target points inde-
pendently (Lipman et al., 2023). This can, however, lead to velocity fields that are slow
to train, but also costly to integrate at inference time. In theory, one would greatly ben-
efit from training flow models by sampling pairs from an optimal transport (OT) measure
coupling source and target, since this would lead to a highly efficient flow solving the Ben-
amou & Brenier dynamical OT problem. In practice, recent works have proposed to sample
mini-batches of n source and n target points and reorder them using an OT solver to form
better pairs. These works have advocated using batches of size n =~ 256, and considered OT
solvers that return couplings that are either sharp (using e.g. the Hungarian algorithm) or
blurred (using e.g. entropic regularization, a.k.a. Sinkhorn). We follow in the footsteps of
these works by exploring the benefits of increasing this mini-batch size n by three to four
orders of magnitude, and look more carefully on the effect of the entropic regularization &
used in the Sinkhorn algorithm. Our analysis is facilitated by new scale invariant quantities
to report the sharpness of a coupling, while our sharded computations across multiple GPU
or GPU nodes allow scaling up n. We show that in both synthetic and image generation
tasks, flow models greatly benefit when fitted with large Sinkhorn couplings, with a low
entropic regularization ¢.

1 Introduction

Finding a map that can transform a source into a target measure is a task at the core of generative modeling
and unpaired modality translation. Following the widespread popularity of GAN formulations (Goodfel-
low et al., 2014), the field has greatly benefited from a gradual, time-dependent parameterization of these
transformations as normalizing flows (Rezende & Mohamed, 2015) and neural ODEs (Chen et al., 2018).
Such flow models are now commonly estimated using flow matching (Lipman et al., 2024). While a velocity
formulation substantially increases the expressivity of generative models, this results on the other hand in
a higher cost at inference time due to the additional burden of running an ODE solver. Indeed, a common
drawback of Neural-ODE solvers is that that they require potentially many steps, and therefore many passes
through the flow network, to generate data. In principle, to mitigate this problem, the gold standard for
such continuous-time transformations is given by the solution of the Benamou & Brenier dynamical optimal
transport (OT) problem, which should be equivalent, if trained perfectly, to a 1-step generation achieved by
the Monge map formulation (Santambrogio, 2015, §1.3). In practice, while the mathematics (Villani, 2003)
of optimal transport have contributed to the understanding of these methods (Liu et al., 2022), it remains
unclear whether tools from the computational OT toolbox (Peyré & Cuturi, 2019), which is typically used
to compute large scale couplings on data (Klein et al., 2025), can decisively help with the estimation of flows
in high-dimensional / high-sample sizes regimes.

Stochastic interpolants. The flow matching (FM) framework (Lipman et al., 2024), introduced in con-
current seminal papers (Peluchetti, 2022; Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Neklyudov
et al., 2023) proposes to estimate a flow model by leveraging a pre-defined interpolation p; between source pg
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and target p; measures — the stochastic interpolant following the terminology of Albergo & Vanden-Eijnden.
That interpolation is the crucial ingredient used to fit a parameterized velocity field with a regression loss. In
practice, such an interpolation can be formed by sampling Xy ~ po independently of X; ~ p; and defining
ue as the law of X; := (1 — t)X + tX;. One can then fit a parameterized time-dependent velocity field
vy (t,x) that minimizes the expectation of | X; — Xo — vo(X7,T)||*> wr.t. Xo,X; and T a random time
variable in [0,1]. This procedure (hereafter abbreviated as Independent-FM, I-FM) has been immensely
successful, but can suffer from high variance, and as highlighted by (Liu, 2022) the I-FM loss can never
be zero. Furthermore, minimizing it cannot recover an optimal transport path: the effect of this can be
measured by noticing a high curvature when integrating the ODE needed to form an output from an input
sample point Xg.

From I-FM to Batch-OT FM. To fit exactly the OT framework, ideally one would choose p; to be the
MecCann interpolation between o and f11, which would be p; := ((1 —¢)Id+#1T*) 4o, where T* is the Monge
map connecting po to . Unfortunately, this insight is irrelevant, since knowing 7™ would mean that no
flow needs to be trained at all. Adopting a more practical perspective, Pooladian et al. (2023) and Tong
et al. (2023) have proposed to modify I-FM and select pairs of source and target points more carefully,
using discrete OT solvers. Concretely, they sample mini-batches x3 ..., x} from pg and x1,...,x7} from puy;
compute an n x n OT coupling matrix; sample pairs of indices (i, j¢) from that bistochastic matrix, and
feed the flow model with pairs x(if, x3‘. This approach, referred to as Batch OT-FM in the literature, was
recently used and adapted in Tian et al. (2024); Generale et al. (2024); Klein et al. (2023); Davtyan et al.
(2025); Kim et al. (2024). Despite their appeal, these modifications have not yet been widely adopted. The
consensus stated recently by Lipman et al. (2024) seems to be still that "the most popular class of affine
probability paths is instantiated by the independent coupling”.

Can mini-batch OT really help? We try to answer this question by noticing first that the evaluations
carried out in all of the references cited above use batch sizes of 28 = 256 points, more rarely 219 = 1024,
upper bounded by 212 = 4096 for Kim et al. (2024). We believe that for many of these works this might be
due to a reliance on the Hungarian algorithm (Kuhn, 1955) whose O(n?) complexity is prohibitive for large
n. We also notice that, while these works also consider entropic OT (EOT) (Cuturi, 2013), they stick to a
single € regularization value in their evaluations (e.g. 0.2 Kim et al. (2024)). We go back to the drawing
board in this paper, and study whether batch OT-FM can reliably work, and if so at which regimes of
mini-batch size n, regularization ¢, and for which data dimensions d. Our contributions are:

o Rather than drawing an artificial line between Batch-OT (in Hungarian or EOT form) and I-FM, we
leverage the fact that all of these approaches can be interpolated using EOT: Hungarian corresponds to
the case where ¢ — 0 while I-FM is recovered with € — co. I-FM is therefore a particular case of Batch-OT
with infinite regularization, which can be continuously moved towards batch-OT.

e We modify the Sinkhorn algorithm when used with the squared-Euclidean cost: we drop norms and only
use negative dot-product. This improves stability and still returns the correct solution.

o We define a renormalized entropy for couplings, to pin them efficiently on a scale of 0 (bijective assignment
induced by a permutation, e.g. that returned by the Hungarian algorithm) to 1 (independent coupling).
This quantity is useful because, unlike transport cost or entropy regularization e, it is bounded in [0, 1]
and does not depend on the data dimension d or coupling size n X n.

o We explore in our experiments substantially different regimes for n and €. We vary the mini-batch size
from n = 2! = 2048 to n = 22! = 2,097,152 and consider an adaptive grid to set e that results in Sinkhorn
couplings whose normalized entropy is distributed within [0, 1].

2 Background Material on Optimal Transport and Flow Matching

Let P2 (R?) denote the space of probability measures over R? with finite second moment. Let yu,v € Pa(R?),
and let T'(, v) be the set of joint probability measures in Py (R? x R?) with left-marginal ;4 and right-marginal
v. The OT problem in its Kantorovich formulation is:

Walu? = ot [ [ Sl = ylPdnay). 1)

mET (p,v)
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A minimizer of (1) is called an OT coupling measure, denoted 7*. If 1 was a noise source and v a data
target measure, 7 would be the perfect coupling to sample pairs of noise and data to learn flow models:
sample xg,x; ~ 7* and ensure the flow models bring x( to x;. Such optimal couplings 7* are in fact induced
by pushforward maps: when paired optimally, a point x¢ can only be associated with a x; = T'(x¢), where
T : R — R? is the Monge optimal transport map, defined as follows:

T*(,v) = argmin [ = TGP 2)

where the push-forward constraint Ty = v means that for X ~ p one has T(X) ~ v. Monge OT maps
have been characterized by Brenier in great detail:

Theorem 1 (Brenier (1991)). If u € Pa(RY) has an absolutely continuous density then (2) is solved by a
map T* of the form T* = Vu, where u : R* — R is convex. Moreover if u is a convex potential that is such
that Vugp = v then Vu solves (2).

As a result of Theorem 1, one can choose an arbitrary convex potential u, a starting measure u, and define
a synthetic task to train flow matching models between p := p and pq := Vupgp, for which a ground truth
coupling 7* is known. Inspired by Korotin et al. (2021) who considered the same result to benchmark Monge
(1781) map solvers, we use this setting in § 4.2 to benchmark batch-OT.

Entropic OT. Entropic regularization (Cuturi, 2013) has become the most popular approach to estimate
a finite sample analog of 7* using samples (x1,...,%X,) and (y1,...,y»). Using a regularization strength
€ > 0, a cost matrix C := [%sz —y;lI?]i; between these samples, the entropic OT (EOT) problem can be
presented in primal and dual forms as:

min (P,C)—cH(P), max (f+g,1,)—eclexp (%) s Loxn)s (3)
PeRiX",Pln:PTlnzln/n f,geR™

where H(P) = —(P,log(P)) is the discrete entropy functional and P is the bistochastic coupling matrix.

The optimal solutions to (3) are usually found with the

Sinkhorn algorithm, as presented in Algorithm 1, where Algorithm 1 SINK(X € R4 Y € R4 ¢ 1)
for a matrix S we write min.(S) = [—clog (1Te=S:/¢)];,
and @ is the tensor sum of two vectors, ie. (f @
g)i; = fi + g;. The optimal dual variables (3) (f¢,g%)
can then be used to instantiate a valid coupling matrix
Pc = exp ((f¢ @ g° — C)/e), which approximately solves
the finite-sample counterpart of (1). An important re-
mark is that as e — 0, the solution P¢ converges to the
optimal transport matrix solving (1), while P¢ — #1an
as € — oco. These two limiting points coincide with the
optimal assignment matrix (or optimal permutation as returned e.g. by the Hungarian algorithm (Kuhn,
1955)), and the uniform independent coupling used implicitly in I-FM.

1: f,g <+ 0,,0,.
2 C [5lxi —y;lPliji <m,j<mn
while || exp (Lsgs—c) 1, — %1n||1 > 7 do

f+clogll, + min (C—-faog)+f
g+ clog+1, +min.(C"T —gaf)+g
end while
return f,g, P =exp ((f®g— C)/¢)

Independent and Batch-OT Flow Matching. FM Ajgorithm 2 FM 1-Step(uo, yi1, n, OT-SOLVE)
methods use a stochastic interpolant u; with law X; :=
(1 — )Xo + tX;, to minimize the expectation of a
squared-norm regression loss ming Er x, x, || X1 — Xo —
vo(X7,T)||?> where Xg ~ po, X1 ~ pu1 and T a ran-
dom variable in [0,1]. In I-FM, this interpolant is im-
plemented by taking independent batches of samples
Xg .., xPB from pg, xi,...,x7 from py, and tq,...,t,
time values sampled in [0,1], to form the loss values
xk — xF — vo((1 — t)xE + tpx¥,t)]|?. In the formal-
ism of Pooladian et al. (2023) and Tong et al. (2023), the
same samples x} ..., x and x1,...,x7} are first fed into a discrete optimal matching solver. This outputs a
bistochastic coupling matrix P € R™*™ which is then used to re-shuffle the n pairs originally provided to be

Xo = (xp,...,xB) ~ o

X1 = (X%7"'?X?) ~ H1

P + OT-SoLvE(Xy,Xy) or I,/n
(ilajl)v ey (vajn) ~P

t1,...,tn < TIMESAMPLER

%k (1 - te)xg" +tixyt, for k<n
L(0) = 3o lIxt* — xg" = vo (&, )2
6 < GRADIENT-UPDATE(VL(A))
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better coupled, and which should help the velocity field fit straighter trajectories, with less training steps.
The procedure is summarized in Algorithm 2 and adapted to our setup and notations. The choice I,,/n
corresponds to I-FM, as it would return the original untouched pairs (x§,x¥). Equivalently, I-FM would
also be recovered if the coupling was the independent coupling 1,,x,/n?, up to the difference on carrying out
stratified sampling (which would result in each noise/image observed once per mini-batch) or sampling with
replacement. More recently, Davtyan et al. (2025) have proposed to keep a memory of that matching effort
across mini-batches, by updating a large (of the size of the entire dataset) assignment permutation between
noise and full-batch data that is locally refreshed with the output of the Hungarian method run on a small

batch.

Batch-OT as an Enhanced Dataloader A crucial aspect of the batch-OT methodology is that in its
current implementations, any effort done to pair data more carefully with noise is disconnected from the
training of vy itself. Indeed, as currently implemented, OT variants of FM can be interpreted as meta-
dataloaders that do a selective pairing of noise and data, without considering 6 at all in that pairing. In
that sense, training and preparation of coupled noise/data pairs can be done independently.

3 Prepping Sinkhorn for Large Batch Size and Dimension.

On Using Large Batch Size and Selecting ¢ > 0. The motivation to use larger batch sizes for Batch-
OT lies in the fundamental bias introduced by using small batches in light of the OT curse of dimension-
ality (Chewi et al., 2024; Fatras et al., 2019), which cannot be traded off with more iterations on the flow
matching loss. Specifically, we provide the following lower bound that characterizes the statistical hardness
of optimal transport, and defer its proof to the Appendix A.1.

Proposition 2. Suppose the support of p1 has intrinsic dimension r, formalized in Assumption 5. Define
the coupling Xo, X1 ~ m, as follows: first draw Xg ~ M?” and Xy ~ u$™, then sample Xo, X1 ~ 7, (X0, X1)
for any coupling rule #,, supported on Xo,Xy. Then, for any xg € R?,

Varx,, x,~m, (Xl |X0 = Xo) > C’I’L_Z/T7

where ¢ > 0 is a constant depending only on C' and r of Assumption 5.

Note that the above proposition covers the case of using couplings that are supported on batches of noise
and data, as in Algorithm 1. When p¢ admits a density, the conditional variance under exact OT would be
zero. Thus, Proposition 2 shows the curse of dimensionality in learning optimal transport with any high-
dimensional data distribution pp, which is in contrast to minimax lower bounds (e.g. Chewi et al. (2024,
Theorem 2.15)) that only show the hardness for some unknown pair of distributions. This generality is at
the expense of limiting the (stochastic) coupling to be supported on (X, X1), which is the relevant setting
for flow matching. This curse of dimensionality becomes milder under the manifold hypothesis where r < d,
but still advocates for the use of large n.

The necessity of varying ¢ is that this regularization can offset the bias between a regularized empirical OT
matrix and its coupling measure counterpart, with favorable sample complexity (Genevay et al.; 2018; Mena
& Niles-Weed, 2019; Rigollet & Stromme, 2025).

Automatic Rescaling of . A practical problem arising when running the Sinkhorn algorithm lies in
choosing the £ parameter. As described earlier, while P¢ does follow a path from the optimal permutation
(i.e., returned by the Hungarian algorithm) to the independent coupling, as e varies from 0 to co, what
matters in practice is to pick relevant values in between these two extremes. To avoid using a fixed grid
that risks becoming irrelevant as we vary n and d, we revisit the strategy originally used in Cuturi (2013)
to divide the cost matrix C by its mean, median or maximal value, as implemented for instance in Flamary
et al. (2021). While needed to avoid underflow when instantiating a kernel matrix K = e~€/¢, that strategy
is not relevant when using the log-sum-exp operator in our implementation (as advocated in Peyré & Cuturi
(2019, Remark 4.23)), since the min, in our implementation is invariant to a constant shift in C, whereas
mean, median and max statistics are not. We propose instead to use the standard deviation (STD) of the
cost matrix. Indeed, the dispersion of costs around their mean has more relevance as a scale than the mean
of these costs itself. The STD can be computed in nd? time / memory, without having to instantiate the
cost matrix. When this memory cost increase from d to d? is too high, we subsample n = 24 = 16,384
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points. In what follows, we always pass the € value to the Sinkhorn algorithm 1 as & := std(C) x &, where ¢
is now a scale-free quantity selected in a logarithmic grid within [0.001, 1.0].

Scale-Free Renormalized Coupling Entropy. While useful to keep computations stable across runs,
the rescaling of ¢ still does not provide a clear idea of whether a computed coupling P¢ from n to n points
is sharp (close to an optimal permutation) or blurred (closer to what I-FM would use). While a distance to
the independent coupling can be computed, that to the optimal Hungarian permutation cannot, of course,
be derived without computing it beforehand which would incur a prohibitive cost. Instead, we resort to a
fundamental information inequality used in Cuturi (2013): if P is a valid coupling between two marginal
probability vectors a, b, then one has £ (H(a) + H(b)) < H(P) < H(a) + H(b). As a result, for any ¢, we
define the renormalized entropy € of a coupling of a, b:

2H(P)

N e+ 1)

—1€(0,1].

When a = b = 1,,/n, as considered in this work, this simplifies to £(P) := H(P)/logn — 1. Independently
of the size n and ¢, £(P?) provides a simple measure of the proximity of P¢ to an optimal assignment matrix
(as £ gets closer to 0) or to the independent coupling (as £ reaches 1). As a result we report £(P¢) rather
than e in our plots (or to be more accurate, the average of £(P?) computed over multiple mini-batches).
Figures 9 and 10 in the appendix are indexed by ¢ instead.

From Squared Euclidean Costs to Dot-products. Using the notation T*(u,v) introduced in (2), we
notice an equivariance property of Monge maps. For s € R? and r € R, we write L, for the dilation and
translation map L,s(x) = rx +s. Naturally, L 3(x) = (x —s)/r = L1/, _s/,(x), but also L, s = Vw,
where w;. ;(x) := 5||x]|? — sTx is convex.

Lemma 3. The Monge map T(u,v) is equivariant w.r.t to dilation and translation maps, as

T*((Lr,s)#,ua (Lr',s')#y) = Lr',s’ © T*(M, V) o Lr_,sl

Proof. Following Brenier’s theorem, let u be a convex potential such that T*(u,v) = Vu. Set F':= L,/ g ©
Vuo Lol Then F is the composition of the gradients of 3 convex functions. Because the Jacobians of L,
and L are respectively rI; and Iy/r, they commute with the Hessian of u. Therefore the Jacobian of I is
symmetric, positive definite, and F' is the gradient of a convex potential that pushes (L, s)xpu to (L ¢ )pv,
and is therefore their Monge map by Brenier’s theorem. O

In practice this equivariance means that, when focusing on permutation matrices (which can be seen as the
discrete counterparts of Monge maps), one is free to rescale and shift either point cloud. This remark has
a practical implication when running Sinkhorn as well. When using the squared-FEuclidean distance matrix,
the cost matrix is a sum of a correlation term with two rank-1 norm terms, C = —XY7 + %(512 +1,77)
where & and ~ are the vectors composed of the n squared norms of vectors in X and Y. Yet, due to the
constraints P1,, = a,PT1,, = b, any modification to the cost matrix of the form C = C — c1l — 1,47,
where ¢,d € R" only shifts the (3) objective by a constant: (P,C) = (P,C) — 21%7¢ — 117d. In practice,
this means that norms only perturb Sinkhorn without altering the optimal coupling, and one should focus
on the negative correlation matrix C := —XY7', replacing Line 2 in Algorithm 1. We do observe substantial
stability gains of these properly rescaled costs when comparing two point clouds (see Appendix A.2).

Warm-starting Sinkhorn. Solving the EOT problem (3) from scratch for each new batch of noise-data
pairs (X, X1) is generally unnecessarily costly, since the solution is discarded each time a new batch is
drawn. For large batch sizes, we propose to use the OT solution to ith batch (X(()i), ng)) by warm-starting
Sinkhorn for the (i + 1)th batch (XéiJrl),X(liH)). Let (f*,g*) be the optimal dual potentials for a given

batch (X,Y). Then, these potentials can be extended to the continuous domain:
f(x) = elog% + mein(C(x, Vi) —&j)s

gly) =celog = + mEiH(C(Xz‘,}’) —1f).
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For a new batch (X’,Y’), we use the above formula to initialize the potentials (f',g’), ie. (f',g') +
(£(x})i,8(y’);)- Since (3) is strictly convex, the choice of initialization has no influence on the solution. In
practice, we find that warm-starting Sinkhorn substantially reduces the number of iterations required and
the overall runtime of OTFM. We ablate the role of warmstart in Appendix A.3.

Computing Matchings in PCA Space. With the dot-product cost we can further use Principal Com-
ponent Analysis (PCA) to optimally reduce the dimensionality of the cost matrix and significantly speed up
Sinkhorn computation. Let x and y represent noise and data samples respectively, and let A € R¥*? denote
the projection matrix whose rows contain top-k PCA directions. The PCA reconstruction of y is AT Ay,
and x'y ~xTATAy = x'y,

where x and y are the projection of x and y onto the PCA subspace. Note that we can achieve this
dimensionality reduction regardless of the structure of x, and this trick can be applied in the generative
setting where x is an isotropic Gaussian vector. This reduces the naive runtime of computing the cost
matrix from n2d to n2k. For large n, we compute the cost matrix on the fly per Sinkhorn iteration and avoid
materializing the entire matrix at once, hence this reduction also occurs per iteration. In our experiments,
we can achieve an almost 10x speedup in Sinkhorn computation from PCA by using k as small as 500 for the
ImageNet-64 dataset with d = 12,228, without sacrificing generation quality; see Appendix A.4 for details.

Precomputing Noise/Data Pairs. We can completely separate the computational cost of preparing cou-
pled noise/data pairs from the cost of training the model. To do so, as n datapoints are retrieved from a
dataloader and n Gaussian samples are drawn, we can accumulate and buffer the outputs of Steps 1-4 of
Algorithm 1 in a new augmented dataloader. To avoid storing noise vectors, we generate each noise vector
using a single PsuedoRandom Number Genearator (PRNG) key, and only store pairs of data identifier and
the corresponding PRNG key for the coupled noise vector. When training an FM model (Steps 5-8 of Algo-
rithm 2), we load pairs of data identifier and PRNG key from this new dataloader, retrieve the corresponding
data, and generate the noise using the key. We use this approach while ablating any hyperparameters of FM
training, to avoid Sinkhorn recomputations.

Scaling Up Sinkhorn to Millions of High-Dimensional Points. When guiding flow matching with
batch-OT as presented in Algorithm 2, our ambition is to vary n and € so that the coupling P¢ used to sample
indices can be both large (n ~ 10°) and sharp if needed, i.e. with an e that can be brought to arbitrarily low
levels so that £(P¢) = 0. To that end, we leverage the OTT-JAX implementation of the Sinkhorn algorithm
(Cuturi et al., 2022), which can be natively sharded across multi-GPUs, or more generally multiple nodes
of GPU machines equipped with efficient interconnect. In that approach, inspired by the earlier mono-GPU
implementation of Feydy (2020), all n points from source and target are sharded across GPUs and nodes
(we have used either 1 or 2 nodes of 8 GPUs each, either NVIDIA H100 or A100). A crucial point in our
implementation is that the cost matrix C = —XY7 (following remark above) is never instantiated globally.
Instead, it is recomputed at each min. operation in Lines 4 and 5 of Algorithm 1 locally, for these shards.
All sharded results are then gathered to recover f, g newly assigned after that iteration. When outputted,
we use ¢ and g° and, analogously, never instantiate the full P¢ matrix (this would be impossible at sizes
n ~ 10% we consider) but instead, materialize it blockwise to do stratified index sampling corresponding to
Line 4 in Algorithm 2. We use the Gumbel-softmax trick to vectorize the categorical sampling of each of
these lines to select, for each line index ¢, the corresponding column j;.

4 Experiments

We revisit the application of Algorithm 2 using the modifications to the Sinkhorn algorithm outlined in
Section 3 to consider various benchmark tasks for which I-FM has been used. We consider synthetic tasks
in which the ground-truth Monge map is known, and benchmark unconditioned image generation using
CIFAR-10 (Krizhevsky et al., 2009), and the 32x32 and 64x64 downsampled variants (Chrabaszcz et al.,
2017) of the ImageNet dataset (Deng et al., 2009).

Sinkhorn Hyperparameters. To track accurately whether the Sinkhorn algorithm converges for low e
values, we set the maximal number of iterations to 50,000. We use the adaptive momentum rule introduced
in Lehmann et al. (2022) beyond 2000 iterations to speed-up harder runs. Overall, all of the runs below
converge: even for low €, we achieve convergence except in a very few rare cases. The threshold 7 is set
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to 0.001 and we observe that it remains relevant for all dimensions, as we use the l-norm to quantify
convergence.

4.1 Evaluation Metrics To Assess the Quality of a Flow Model vy

All metrics used in our experiments can be interpreted as lower is better.

Negative log-likelihood. Given a trained flow model vy(t,x), the density p;(x) obtained by pushing
forward po(x) along the flow map of vy can be computed by solving

Ingt(xt) = Ingo(XO) - ~/O (Vm 'V0)<tvxt) dt, Xy = VG(t7Xt)7 (4)

Similarly, given a pair (¢,x), the density p;(x) can be evaluated by backward integration (Grathwohl et al.,
2018, Section 2.2). The divergence (V. -vy)(t,x;) requires computing the trace of the Jacobian of vg(¢,-). As
commonly done in the literature, we use the Hutchinson trace estimator with a varying number of samples
to speed up that computation without materializing the entire Jacobian and use either an Euler solver with
50 steps for synthetic tasks or a Doprib adaptive solver for image generation tasks, both implemented in the
Diffrax toolbox (Kidger, 2021). Given n points x1,...,x? ~ v, the negative log-likelihood (NLL) of that set
is

1 ;
L) := - Zlogpl(xﬁ).
i=1

subject to (4). We alternatively report the bits per dimension (BPD) statistic, given by BPD = £/(d log 2).

Curvature. We use the curvature of the field vy as defined by Lee et al. (2023): for n integrated trajectories

(x},...,x) starting from samples at ¢ = 0 from j, the curvature is defined as

1 S ! 7 7 7
w0) = 3 [ vt x) - (xf — i) Bt
=1

where the integration is done with an Euler solver with 50 steps for synthetic tasks and the Dopri5 solver
evaluated on a grid of 8 steps for image generation tasks. The smaller the curvature, the more the ODE
path looks like a straight line, and should be easy to integrate.

Reconstruction loss. For synthetic tasks in Sections 4.2, we have access to the ground-truth transport map
Ty that generated the target measure 1 from p. In both cases, that map is parameterized as the gradient of
a convex Brenier potential, respectively a piecewise quadratic function and an input convex neural network,
ICNN (Amos et al., 2017). For a starting point x¢, we can therefore compute a reconstruction loss (a variant
of the £2-UVP in Korotin et al. (2021)) as the squared norm of the difference between the true map T™*(xq)
and the flow map Ty obtained by integrating vo(¢,-) (using a varying number of steps with a Euler solver
or with the Dopri5 solver), defined using n points sampled from p as

R0) = -3 [Taloch) ~ To(xb)I3.
i=1

FID. We report the FID metric (Heusel et al., 2017) in image generation tasks. For CIFAR-10 we use the
train dataset of 50,000 images, for ImageNet-32 and ImageNet-64 we subset a random set of 50,000 images
from the train set. For generation we consider four integration solvers, Euler with 4, 8 and 16 steps (a.k.a.
Number of Function Evaluations (NFE)) and a Dopri5 solver from the Diffrax library (Kidger, 2021).

4.2 Synthetic Benchmark Tasks, d = 32 ~ 256

We consider in this section synthetic benchmarks of medium dimensionality (d = 32 ~ 256). We favor this
synthetic setting over other data sources with similar dimensions (e.g. PCA reduced single-cell data (Bunne
et al., 2024)) in order to have access to the ground-truth reconstruction loss, which helps elucidate the impact
of OT batch size n and e.
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Piecewise Affine Brenier Map. The source is a standard Gaussian and the target is obtained by mapping
it through the gradient of a potential, itself a (convex) piecewise quadratic function obtained using the
pointwise maximum of k rank-deficient parabolas:

u(x) = maxu;(x) = gllx[* + 5[ Ai(x = my)||* - [| Ay ]?, ()

where A; ~ Wishart(£,1;),m; ~ N(0,314),¢; ~ N(0,1) and all means are centered around zero after
sampling. In practice, this yields a transport map of the form Vu(x) = x + A;«(x — m;+) where i* is
the potential selected for that particular x (i.e. the argmax in (5)). The correction —||A;m;||? is designed
to ensure that these potentials are sampled equally even when m; is sampled far from 0. The number of
potentials & is set to d/16. Examples of this map are shown in Appendix A.5 for dimension 128. We consider
this setting in dimensions d = 32,64, 128, 256.

Korotin et al. Benchmark. The source is a predefined Gaussian mixture and the ground-truth OT map
is a pre-trained ICNN. We consider this benchmark in various dimensions d = 32 ~ 256, using their I[CNN
checkpoints (see Appendix A.6). This problem is more challenging than the previous one, because both the
source and target distributions have multiple modes, and the OT map itself is a fairly complex ICNN.

Velocity Field Parameterization and Training. The NFE 4 8 16 Adaptive
velocity fields are parameterized as MLPs with 5 hidden
layers, each of size 512 when d = 32,64 and 1024 when
d = 128,256. Time in [0,1] is encoded using d/8 Fourier
encodings. All models are trained with unpaired batches:
the sampling in Line 1 of Algorithm 2 is done as Xg ~
while for Line 2, X; := Tp(X() where X is a new sample
from p and T is applied to each of the n points described
in X{. All models are trained for 8192 steps, with effective
batch sizes of 2048 samples (256 per GPU) to average a
gradient, a learning rate of 1073 (we tested with 1072 or
104, the former was unstable while the latter was less
efficient on a subset of runs). The model marked as A in
the plots is a flow model trained with perfect supervision,
i.e. given ground-truth paired samples Xo ~ p and X; :=
To(Xo), provided in the correct order. I-FM is marked as
v. For all other runs, we vary ¢ (reporting renormalized entropy £(P¢)) and the total batch size n used to
compute couplings, somewhere between 2048 and 2,097,152. These runs are carried out on a single node
with 8 GPUs, and therefore the data is sharded in blocks of size n/8 when running the Sinkhorn algorithm.

Figure 1: Samples generated from models trained
on ImageNet-64. n denotes the total OT batch
size. We use ¢ = 0.1 and the Euler solver
(Dopri5 for adaptive with NFE ~ 270). More
samples provided in Figure 14.

Results. The results displayed in Figures 2 and 3 paint a homogeneous picture: as can be expected,
increasing n is generally impactful and beneficial for all metrics. The interest of decreasing e, while beneficial
in smaller dimensions, can be less pronounced in higher dimensions. Indeed, we find that renormalized
entropies around =z 0.1 should be advocated, if one has in mind the computational effort needed to get these
samples, pictured at the bottom of each figure.

4.3 Unconditioned Image Generation, d = 3072 ~ 12288.

As done originally in Lipman et al. (2023), we consider unconditional generation of the CIFAR-10, ImageNet-
32 and ImageNet-64 datasets.

Velocity Field Parameterization and Training. We use the network parameterization given in Tong
et al. (2024, see Section E.8) for CIFAR-10 and those given in Pooladian et al. (2023, see Table 10) for
ImageNet-32 and ImageNet-64. We follow their recommendations on setting learning rates, batch sizes (to
average gradients) as well as total number of iterations: we train respectively for 400k, 438k and 957k using
effective batch sizes advocated in their paper, respectively 16 x 8, 128 x 8 and 50 x 16. We summarize these
choices in Table 4.

CIFAR-10. Results are presented in Figure 4, and further details in Appendix A.7. Compared to results
reported in Tong et al. (2023) we observe slightly better FID scores (about 0.1) for both I-FM and Batch OT-
FM. Note that the size of the dataset itself (50k, 100k when including random flipping as we do) is comparable
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Figure 2: Results on the piecewise affine OT Map benchmark. The three top rows present (in that
order) curvature, reconstruction and BPD metrics. Below, we provide compute times associated with running
the Sinkhorn algorithm as a per-example cost. This per-example cost is the total time needed to run Sinkhorn
to get n x n coupling divided by n. That cost would be 0 when using I-FM. We observe across all dimensions
improvements of all metrics.

(if not slightly lower) to our largest batch size n = 131,072, meaning some images are duplicated. Overall,
the results show the benefit of relatively larger batch sizes and suitably small €, that is more pronounced at
lower NFE.



Under review as submission to TMLR

d=32 d=64 d=128 d=1256

0.3 ] ¥ 03 M sl V| 0.251

5
al 021 0.20 1 /
13 § “\.*'( o 0.15 - ”
014 =8, ar : >

0.1 Ty 0.11
A A A 0.104 1 A 001

ﬁbs

a
Lol

<

2.0

Ls- I 1.5 v 15 Xy
@ . f} —
< 1.0 1.0- f 1.0 7 1.0

0-51 £ 0.5 = 0.51 0.51

A A A A
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Renorm. entropy E(P) Renorm. entropy E(P) Renorm. entropy E(P) Renorm. entropy E(P)

—o— 2048 —a— 131072 <o 2097152 v I-FM A Ground truth pairing
—u— 16384 ¢ 1048576

d=32 d= 64 B d=128 d=256
04 = 2| = 10 ™ 4 R - ©
R Y g 10 BB & & Q‘@, 10 5 & ==
. b4
-3 -3
10 7 3 -3 10 7 3 -
10 107 4

—4 _ —4
10 " 7§ 4 4 B
= 10 o 10 104_

Time per sample

" .
10~ 10 ; 10 4 1075

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 025 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Renorm. entropy E(P) Renorm. entropy E(P) Renorm. entropy £(P) Renorm. entropy E(P)

Figure 3: Results on the Korotin benchmark. As with Figure 2, we compute curvature and reconstruction
metrics, and compute times below. Some of the runs for largest OT batch sizes n are provided in the
supplementary. These runs suggest that to train OT models in these dimensions increasing n is overall
beneficial across the board.
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ImageNet-32 ImageNet-64
NFE — Adaptive NFE — Adaptive
nl 4 8 16 115+1 nl 4 8 16 269+ 1
I-FM 66.4 24.3 12.1 5.55 -FM 80.1 37.0 195 9.32
2048 38.2 16.8 10.0 5.89 4096 50.3 25.0 15.8 9.39
65536  33.1 15.1 9.28 4.88 32768  48.8 24.6 15.7 9.08

524288 31.5 148 9.19 4.85 131072 46.9 239 154 8.99

Table 1: FID for models trained across different OT batch sizes. We use the best checkpoint (w.r.t FID at
Dopri5) for each model, restricting results to the setting where the relative epsilon value ¢ = 0.1 for ease
of presentation (more detailed results can be seen in the plots of Figure 5).

Euler 4 Euler 8 Euler 16 Dopri5
\{ /)‘ \{ \{
0.28 ‘ 0.141
AN (TS
S 0.151% )e,f/' o P
0.26 0.15 1> = 0.121
L]
Joonal® ey .
=]
50 3.7
8 401 16 9.5 1 3.6 Y
=~
\{
30'%44—%» W_‘,w 3.51
% 14 - 9.0

0.000.250.500.751.00  0.000.250.500.751.00  0.000.250.500.751.00 0.0 0.25 0.50 0.75 1.00
Renorm. entropy E(P) Renorm. entropy E(P) Renorm. entropy E(P) Renorm. entropy E(P)

—e— 256 —-#-- 2048 @ 16384 @ 131072 v I-FM

Figure 4: Experiment metrics for CIFAR-10 image generation. We evaluate the trained models using the
Euler solver with three different number of steps, and with the Dopri5 solver and adaptive steps. The plots
demonstrate the benefits of a larger OT batch size to achieve significantly smaller curvature, and moderately
smaller FID at low number of integration steps. CIFAR-10 is not necessarily the best setup to evaluate
the performance of OT based FM, since the number of points is relatively low (the batch sizes we consider
involve in fact resampling data). Our experiments also suggest that in this setting, lower renormalized
entropy generally benefits the performance.

ImageNet-32 and ImageNet-64. Results are shown in Figures 5 and 6, and further details in Appen-
dices A.8 and A.9. Compared to results reported in Tong et al. (2023) we observe slightly better FID scores
(about 0.1 when using the Doprib5 solver for instance) for I-FM. Compared to CIFAR-10, these datasets are
more suitable for our large OT batch sizes as they contain significantly more samples, and we continue to
observe the benefits of larger batch size and proper choice of renormalized entropy.

Conclusion

Our experiments suggest that guiding flow models with large scale Sinkhorn couplings can prove beneficial
for downstream performance. We have tested this hypothesis by computing and sampling from both crisp
and blurry n x n Sinkhorn coupling matrices for sizes n in the millions of points, placing them on an
intuitive scale from 0 (close to using an optimal permutation as returned e.g. by the Hungarian algorithm)
to 1 (equivalent to the independent sampling approach popularized by Lipman et al. (2023)). This involved
efficient multi-GPU parallelization, realizing scales which, to our knowledge, were never achieved previously
in the literature. Although the scale of these computations may seem large, they are still relatively cheap
compared to the price one has to pay to optimize the FM loss, and, additionally, are completely independent

11
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Figure 5: ImageNet-32 experiment metrics. We observe that both FID and curvature are smaller when
using larger OT batch size, and smaller renormalized entropy tends to result in better metrics.
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Figure 6: ImageNet-64 results: Curvature and FID obtained with Euler integration with varying number
of steps, as well as Doprib integration.

from model training. As a result, they should be carried out prior to any training. While we have not
explored the possibility of launching multiple jobs with them (to ablate, e.g., for other fundamental aspects
of model training such as learning rates), we leave a more careful tuning of these training runs for future
work. We claim that paying this relatively small price to log and sample paired indices obtained from
large scale couplings results for mid-sized problems in great returns in the form of faster training and faster
inference, thanks to the straightness of the flows learned with the batch-OT procedure. For larger sized
problems, the conclusion is not so clear, although we quickly observe benefits when using middle values for
n (in the thousands) that typically improve when going beyond hundreds of thousands when relevant, and
renormalized entropies of around 0.1. This forms our main practical recommendation for end users.

12
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Limitations. Our results rely on training of neural networks. In the interest of comparison, we have used
the same model across all changes advocated in the paper (on n and £). However, and due to the scale of
our experiments, we have not been able to ablate important parameters such as learning rates when varying
n and €, and instead relied on those previously proposed for I-FM.
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A Appendix
A.1 The Necessity of Large OT Batch Size

Here, we formalize the assumptions in and provide the proof of Proposition 2.

Assuming that g admits a density, if we were to couple X and X; through optimal transport, by Theorem 1
we would have Var(X; | Xg) = 0 a.s. over X, where variance is the sum of coordinate variances. In general,
any coupling that provides Var(X;|Xy) = 0 allows for one-step generation, simply by performing least-
squares regression to learn E[X; |Xo]. Therefore, we adopt Var(X;|Xy) as a measure of success of a
coupling.

Recall from 2 that to obtain a pair of samples Xp, X; for training, we first draw n i.i.d. samples Xg ~ p&™
and X; ~ puP™. Then, we sample Xg, X; ~ 7, (X, X;), where #,, denotes the discrete optimal (entropic)
transport solution between the uniform distribution on Xy and X;. We only require #,(Xg,X1) to be
supported on Xy x Xy, as formalized by the following assumption.

Assumption 4. 7, (X, X1) is supported on Xy and X, more precisely,

7n(Xo, X1) Z (X0, X1)6,, () )

where (P;;(Xo,X1));; is some bistochastic matrix, equivariant under permutations of Xy and Xy, and ¢
denotes the Dirac measure.

To capture the intrinsic dimension of data, we can impose the following assumption on u;.
Assumption 5. For X and X’ drawn independently from the data distribution p;, we have

PlIX - X'| <] < Ct7,

for all £ > 0 and some C,r > 0.

Note that the volume of an r-dimensional ball of radius ¢ is proportional to ¢". Therefore, r in the above
assumption roughly captures the intrinsic dimension of data, typically assumed to be much less than the
ambient dimension, i.e. r < d.

We are now ready to present the proof of Proposition 2, which we repeat here for ease of reference.
Proposition 6. Suppose 7, is any coupling rule that satisfies Assumption /, and that j; satisfies Assumption
5. Define the coupling Xo, X1 ~ T, as follows: first draw Xo ~ pu3™ and Xy ~ p™, then sample Xo, X1 ~
#n(Xo,X1). Then, for any xo € R, we have

Varx, x, o, (X1 | Xo = x0) > cn_Q/T7

where ¢ > 0 is a constant depending only on C' and .

To prove Proposition 6, we use the fact that
1
Var(Xy | Xo = x0) = JE[| X1 — X111 Xo = xo,

where X7 and X/ are drawn independently from 7, (- | Xo = x¢). However, X; and X essentially come from
different batches X; and X/, and their only dependence is through being coupled with Xy = x¢. We can
remove this dependence by lower bounding the variance by the minimum distance between two batches of
ii.d. samples X; and X/. This is performed by the following lemma.

Lemma 7. Let m, be as defined in Proposition 6. Then, for any xo € R?, we have

\/VEJLI‘XOJ(I,\,Wn (Xl | XO = Xo) Z EXl»XiNHi@n‘@H?n [D(Xl, Xll)],

M| —

where D(Xy, X)) = miny, ex, x;ex; [[x1 — %1%
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Proof. To draw X1, X| ~ (- | Xo = X0) @ ma(- | Xo = X0) We can draw Xo, X{) ~ u&™ @ g™ and Xq, X; ~
p" @ p$™. We then replace the first sample in X and X{, with x to condition on Xy = x (in particular,
we rely on the equivariance of #,,), and denote them by Xo(x0) and X (xg). We can then write

1
wmxﬂxb:xgziEm&—xﬂFubzxd
1
= §E[E[||X1 — X111? | Xo(Xo), X(Xo), X1, X] | Xo = %o
1 2
=5E Do wa(Xo(x0), Xa) (1 | %0)Fa (X (x0), X)) (] [ x0) [x1 — x|
_x1€X1,x’1€X/1
> [ DXy, X)) ) #n(Xol(xo), Xp) (%1 | x0) i (Xf (x0), X)) (x] | %0)
L x1€X1,x/1€X’1

1
which finishes the proof. O

Using the above lemma, to prove Proposition 6, we only need to estimate the expected distance between two
batches of samples from ;.

Proof of Proposition 6. Let X1, X/ be independent batches of n i.i.d. samples from p;. We use expand our
notation by letting D(X1,x]) := miny, ex, ||x1 — x}|| be the distance between a single sample and a batch.
By the Markov inequality, for any ¢ > 0 we have

:mf[ﬂ{ﬂ&x@yﬂ&”

X/ ex/
=tE ]P’[D(Xl,Xl) >t X" } (Independence)
> tP[D(Xq, X7) > t]" (Jensen’s Inequality)

:mppxma>ﬂxﬂ
|

N X - xizax]]

X1€Xy

E [P X1 — X{|| > ¢ X{)")"

2
> tP[|| X1 — X1 > ¢]" (Jensen’s Inequality)
>t(1— C’tr)”Z. (Assumption 5)

Choosing t = (2Cn?)~/" and using the inequality (1 —1/(2z))* > 1/2 for all x > 1 yields E[D(X;,X})] >
(2Cn?)=1/" /2, which completes the proof. O

A.2 Using the negative dot-product cost rather than squared-Euclidean in Sinkhorn

As we mention in the main text, entropically regularized optimal transport plan for the squared Euclidean
cost can be equivalently recast using exclusively the negative scalar product (x,y) — —(x,y) between source
and target, and not on any absolute measure of scale. To see this, consider an affine map X = ax + 8 with
a > 0. Then:
(X,y) = a(x,y) + (B,y)-

The second term is a rank-1 term that will be absorbed by the optimal dual potentials (see (3)) and the factor
« amounts to a rescaling of the entropic regularization level . In particular, when there is only translation,
then o« = 1 and the transport plans are identical for the same €.
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Sinkhorn time, warmstart (s)  Sinkhorn time, no warmstart (s)
Batch size — 16384 65536 262144 524288 16384 65536 262144 524288
el
0.003 3.7 133.54 1271.23 4916.29 5.97 223.93 2300.03 9207.89
0.01 1.40 48.68 466.47 1791.55 2.02 73.64 710.40 2893.43
0.03 0.49 16.09 153.78 600.50 0.65 22.01 218.63 836.82
0.1 0.14 3.16 31.75 126.10 0.18 5.80 61.25 229.85
0.3 0.06 1.72 17.60 67.50 0.09 2.37 18.32 66.73

Table 2: Average per-batch Sinkhorn time in seconds, with and without warmstarting for 32x32 ImageNet
OTFM training.

Therefore for input data X € R"*? Y € R™*? the Sinkhorn transport plan depends only on the dot-product
cost —XY7T. We argue that it is always more natural to use the dot-product cost than the full squared-
Euclidean cost, and we find that in practice using directly the dot-product can improve the numerical
conditioning of the Sinkhorn algorithm. This is because we drop terms arising from the squared norm, which
can be very large. This becomes especially important for single-precision floating point computations, as is
the case for the large scale GPU applications we consider.

We illustrate this in Figure 7: we sample N = 8192 points {x;}¥ , in dimension d = 128 from the Gaussian
example described in Section 4.2 and map them through the piecewise affine Brenier map, i.e. y; = T(x;).
We then introduce a translation, ¥, =y + 5. We use the Sinkhorn algorithm (Algorithm 1) with either the
dot-product or squared Euclidean cost to compute the transport plan and record the number of iterations
taken, and our computations are carried out on GPU with single-precision arithmetic. Even though we
already use log-domain computation tricks to prevent under/overflow, we find that for small ¢, Sinkhorn
with squared Euclidean cost begins to suffer from numerical issues and fails to converge within the iteration
limit of 50,000.

cost
—eo— Dot product
104 5 )
Sqg. Euclidean
wn
C
=l
©
9 103 4
= o
c o,
9]
< \-\. /
£ AN
0w 102 i \!\. /
N, =%
10! A
1074 1073 1072 107! 10°
Relative ¢

Figure 7: Number of Sinkhorn iterations against relative £ for Gaussian piecewise affine OT example.

A.3 Sinkhorn Speedup from Warmstart

Table 2 shows the average time in seconds spent solving (3) using Sinkhorn iterations, for the values of
regularization level e and batch size n we consider. We find that for almost all choices of (n, ), warmstarting
yields significant speedups compared to the default Sinkhorn initialization. We therefore enable warmstart
by default in our experiments.
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A.4 Sinkhorn Speedup from PCA

Table 3 presents the average wall-clock time of running Sinkhorn on ImageNet-64 with a batch size of 131072
and € = 0.1. As can be seen, we can reduce dimension by a factor of almost 25, which reduces time by a factor
of 10, while having no significant impact on the quality of generated images measured by FID. Moreover,
the normalized entropy demonstrates that the coupling obtained from the reduced-dimensional cost matrix
has the same sharpness as the original coupling, which is expected since PCA will mostly preserve the dot
product cost, resulting in similar couplings.

k=500 k=1000 k=3000 k= 12288 (full dimension)

Sinkhorn time 1.45s 1.82s 4.05s 14.1s
FID@QNFE=4 48.4 48.1 47.0 47.3
FIDGNFE=8 24.7 24.4 24.0 24.2
FID@Q@NFE=16 16.0 15.8 15.8 15.8
FID@Dopri5 (Adaptive) 9.17 9.33 9.46 9.51
Renormalized Entropy 0.247 0.239 0.232 0.236

Table 3: Sinkhorn runtime per batch and FID for different solvers and different PCA dimension k. The
model is trained on ImageNet-64 with OT batch size = 131072 and € = 0.1. Note that the difference in FID
for full k£ compared to Table 1 is due to using a different random seed for training.

A.5 Gaussian Transported with a Piecewise Affine Ground-Truth OT Map

We present in Figure 8 examples of our piecewise affine OT map generation, corresponding to results pre-
sented more widely in Figures 2 and 9.

A.6 Korotin et al. Benchmark Examples

The reader may find examples of the Korotin et al. benchmark in their paper, App. A.1, Figure 6.
A.7 CIFAR-10 Detailed Results

We show generated images in Figure 12. We see general quantitative and qualitative improvements for larger
OT batch size and smaller renormalized entropy. However, these improvements are not as significant as our
observation for the more complex down-sampled ImageNet datasets in Appendices A.8 and A.9, likely due
to the fact that the dataset size is much smaller. We also plot BPD as a function of renomralized entropy
for CIFAR-10, ImageNet-32, and ImageNet-64, in Figure 11.

A.8 ImageNet-32 Detailed Results

Figure 13 shows generated images using I-FM and OT-FM with different batch sizes and different ODE
solvers. As expected, the greatest improvements in the quality of images occur with smaller number of
integration steps, which demonstrates the benefit of OT-FM for reducing inference cost.

A.9 ImageNet-64 Detailed Results

We also perform experiments on the 64 x 64 downsampled ImageNet dataset, where we observe an even
bigger gap between I-FM and OT-FM with large batch size both in terms of metrics (Figure 6) and in terms
of qualitative results (Figure 14). This observation implies that with a proper choice of entropy and batch
size, OT-FM is a promising approach to reduce inference cost and generate higher quality high-resolution
images.
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Figure 8: Example of the maps generated in our piecewise affine benchmark task. In these plots d = 128
and there are therefore 128/16 = 8 quadratic potentials sampled around 0. These 2D plots illustrate the
action of the same 128 dimensional map, pictured using 2D projections overs pairs chosen in [1,...,128].
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Figure 9: Plots corresponding to Figure 2 in main paper, on piecewise affine synthetic benchmark, using
directly the relative epsilon parameter as the x-axis (log-scale), instead of re-normalized entropy.
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Figure 10: Plots for the Korotin et al. benchmark, shown initially in Figure 3, using the relative epsilon &
parameter directly in the x-axis, in logarithmic scale.
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CIFAR-10 ImageNet-32 ImageNet-64
Channels 256 256 192
Depth 2 3 3
Channels multiple 1,2,2,2 1,2,2,2 1,2,3,4
Heads 4 4 4
Heads Channels 64 64 64
Attention resolution 16 4 8
Dropout 0.0 0.0 0.1
Batch size 128 1024 800
Iterations 400k 438k 957k
Learning Rate 2e-4 le-4 le-4
Learning Rate Scheduler Linear-Constant Polynomial Decay Constant
Warmup Steps 5k 20k -

Table 4: Hyperparameters used for training flow models for CIFAR-10 (based on those in Tong et al.
(2024)), ImageNet-32/64 (reproduced from Pooladian et al. (2023)).
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Figure 11: BPD for CIFAR-10 (Left), ImageNet-32 (Middle) and ImageNet-64 (Right). The BPDs
are computed using Doprib integration, evaluated on 50 times steps, and computed using 8 vectors for the
Hutchinson trace estimator. As a consequence of its high number of function evaluations, the Dopri5 solver
relies less on straightness of the flows. Therefore, we do not observe a significant difference across batch

sizes.
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Euler 4 Euler 8 Euler 16 Doprib

Figure 12: Non-curated images generated from models trained on CIFAR-10. The number following Euler
denotes NFE, while Dopri5 uses an adaptive number of evaluations. n denotes the total batch size for the
Sinkhorn algorithm. We use OT-FM models trained with € = 0.01.
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Euler 4 Euler 8 Euler 16 Doprib

Figure 13: Non-curated images generated from models trained on ImageNet-32. n denotes the total batch
size for the Sinkhorn algorithm. We use OT-FM models trained with ¢ = 0.1.
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Euler 8 Euler 16

Figure 14: Non-curated images generated from models trained on ImageNet-64. n denotes the total batch
size for the Sinkhorn algorithm. We use models trained with a varying trained with € = 0.1.
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