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Abstract

Reinforcement learning aims to learn optimal policies from interaction with environments
whose dynamics are unknown. Many methods rely on the approximation of a value function
to derive near-optimal policies. In partially observable environments, these functions de-
pend on the complete sequence of observations and past actions, called the history. In this
work, we show empirically that recurrent neural networks trained to approximate such value
functions internally filter the posterior probability distribution of the current state given the
history, called the belief. More precisely, we show that, as a recurrent neural network learns
the Q-function, its hidden states become more and more correlated with the beliefs of state
variables that are relevant to optimal control. This correlation is measured through their
mutual information. In addition, we show that the expected return of an agent increases
with the ability of its recurrent architecture to reach a high mutual information between its
hidden states and the beliefs. Finally, we show that the mutual information between the
hidden states and the beliefs of variables that are irrelevant for optimal control decreases
through the learning process. In summary, this work shows that in its hidden states, an
RNN approximating the Q-function of a partially observable environment reproduces a suf-
ficient statistic from the history that is correlated to the relevant part of the belief for taking
optimal actions.

1 Introduction

Latest advances in reinforcement learning (RL) rely heavily on the ability to approximate a value function
(i.e., state or state-action value function). Modern RL algorithms have been shown to be able to produce
approximations of the value functions of Markov decision processes (MDPs) from which high-quality policies
can be derived, even in the case of continuous and high-dimensional state and action spaces (Mnih et al., 2015;
Lillicrap et al., 2015; Mnih et al., 2016; Haarnoja et al., 2018; Hessel et al., 2018). The adaptation of these
techniques to partially observable MDPs (POMDPs) is not straightforward. Indeed, in such environments,
the agent only receives partial observations of the underlying states of the environment. Unlike MDPs where
the value functions are written as functions of the current state, in POMDPs the value functions are written
as functions of the complete sequence of observations and past actions, called the history. Moreover, the value
functions of a history can equivalently be written as functions of the posterior probability distribution over
the current state given this history (Bertsekas, 2012). This posterior probability distribution is called the
belief and is said to be a sufficient statistic from the history for the value functions of the POMDP. However,
the computation of the belief requires one to known the POMDP model and is generally intractable with
large or continuous state spaces. For these two reasons, practical RL algorithms rely on the definition of the
value functions as functions of the complete history (i.e., history or history-action value function), while the
definition of the value functions as functions of the belief (i.e., belief or belief-action value function) is more
of theoretical interest.

Approximating the value functions as functions of the histories requires one to use function approximators
that are able to process sequences of arbitrary length. In practice, RNNs are good candidates for such
approximators (Bakker, 2001; Hausknecht & Stone, 2015; Heess et al., 2015). RNNs are parametric approx-
imators that process sequences, time step by time step, exhibiting memory through a hidden state that is
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passed recurrently over time. The RNN is thus tasked with outputting the value directly from the history.
We focus on the approximation of the history-action value function, or Q-function, in POMDPs using a para-
metric recurrent Q-learning (PRQL) algorithm. More precisely, RNNs are trained with the deep recurrent
Q-network (DRQN) algorithm (Hausknecht & Stone, 2015; Zhu et al., 2017).

Since we know that the belief is a sufficient statistic from the history for the Q-function of this history
(Bertsekas, 2012), we investigate if RNNs, once trained, reproduce the belief filter when processing a history.
This investigation is conducted in this work by studying the performance of the different agents with regard
to the mutual information (MI) between their hidden states and the belief. We focus on POMDPs for which
the models are known. The benchmark problems chosen are the T-Maze environments (Bakker, 2001) and
the Mountain Hike environments (Igl et al., 2018). The first ones present a discrete state space, allowing
one to filter the belief using Bayes’ rule, and representing this distribution over the states in a vector whose
dimension is equal to the number of distinct states. The second ones present a continuous state space,
making the belief update intractable. We thus rely on particle filtering in order to approximate the belief
by a set of states, called particles, distributed according to the belief distribution. The MI between the
hidden states and the beliefs is periodically estimated during training, using the mutual information neural
estimator (MINE) algorithm (Belghazi et al., 2018). The MINE estimator is extended with the Deep Set
architecture (Zaheer et al., 2017) in order to process sets of particles in the case of POMDPs with continuous
state-spaces. This methodology allows one to measure the ability and tendency of recurrent architecture to
reproduce the belief filter when trained to approximate the Q-function.

In Section 2, we formalise the problem of optimal control in POMDPs, we present the PRQL algorithms
for deriving near-optimal policies and we explain the MINE algorithm for estimating the MI. In Section 3,
the beliefs and hidden states are defined as random variables whose MI is measured. Afterwards, Section 4
displays the main results obtained for the previously mentioned POMDPs. Finally, Section 5 concludes and
proposes several future works and algorithms motivated by our results.

2 Background

In Subsection 2.1, POMDPs are introduced, along with the belief, policy, and Q-functions associated with
such decision processes. Afterwards, in Subsection 2.2, we introduce the DRQN algorithm that is used in
our experiments. This algorithm is a particular instance of the PRQL class of algorithms that allows to
approximate the Q-function for deriving a near-optimal policy in a POMDP. Finally, in Subsection 2.3, we
present the MINE algorithm that is used for estimating the MI between the hidden states and beliefs in our
experiments.

2.1 Partially observable Markov decision processes

In this work, the environments are modelled as POMDPs. Formally, a POMDP P is an 8-tuple P =
(S,A,O, p0, T,R,O, γ) where S is the state space, A is the action space, and O is the observation space.
The initial state distribution p0 gives the probability p0(s0) of s0 ∈ S being the initial state of the decision
process. The dynamics are described by the transition distribution T that gives the probability T (st+1 | st,at)
of st+1 ∈ S being the state resulting from action at ∈ A in state st ∈ S. The reward function R gives the
immediate reward rt = R(st,at, st+1) obtained after each transition. The observation distribution O gives
the probability O(ot | st) to get observation ot ∈ O in state st ∈ S. Finally, the discount factor γ ∈ [0, 1[
gives the relative importance of future rewards.

Taking a sequence of t actions (a0:t−1) in the POMDP conditions its execution and provides a sequence of
t + 1 observations (o0:t). Together, they compose the history η0:t = (o0:t,a0:t−1) ∈ H0:t until time step
t, where H0:t is the set of such histories. Let η ∈ H denote a history of arbitrary length sampled in the
POMDP, and let H =

⋃∞
t=0H0:t denote the set of histories of arbitrary length.

A policy π ∈ Π in a POMDP is a mapping from histories to actions, where Π = H → A is the set of such
mappings. A policy π∗ ∈ Π is said to be optimal when it maximises the expected discounted sum of future
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rewards starting from any history η0:t ∈ H0:t at time t ∈ N0

π∗ ∈ arg max
π∈Π

E
π,P

[ ∞∑
t′=t

γt′−trt′

∣∣∣∣∣ η0:t

]
, ∀η0:t ∈ H0:t, ∀t ∈ N0. (1)

The history-action value function, or Q-function, is defined as the maximal expected discounted reward that
can be gathered, starting from a history η0:t ∈ H0:t at time t ∈ N0 and an action at ∈ A

Q(η0:t,at) = max
π∈Π

E
π,P

[ ∞∑
t′=t

γt′−trt′

∣∣∣∣∣ η0:t,at

]
, ∀η0:t ∈ H0:t, ∀at ∈ A, ∀t ∈ N0. (2)

The Q-function is also the unique solution of the Bellman equation (Smallwood & Sondik, 1973; Kaelbling
et al., 1998; Porta et al., 2004)

Q(η,a) = E
P

[
r + γ max

a′∈A
Q(η′,a′)

∣∣∣∣ η,a], ∀η ∈ H, ∀a ∈ A (3)

where η′ = η ∪ (a,o′) and r is the immediate reward obtained when taking action a in history η. From
equation (1) and equation (2), it can be observed that any optimal policy satisfies

π∗(η) ∈ arg max
a∈A

Q(η,a), ∀η ∈ H. (4)

Let P(S) be the set of probability measures over the state space S. The belief b ∈ P(S) of a history η ∈ H
is defined as the posterior probability distribution over the states given the history, such that b(s) = p(s | η).
The belief filter f∗ is defined as the function that maps a history η to its corresponding belief b

f∗(η) = b, ∀η ∈ H. (5)

Using Bayes’ rule, for an initial observation η = (o), the belief b = f∗(η) is defined by

b(s) = p0(s)O(o | s)∫
S p0(s′)O(o | s′) ds′ , ∀s ∈ S (6)

and for a history η′ = η ∪ (a,o′), the belief b′ = f∗(η′) is recursively defined by

b′(s′) =
O(o′ | s′)

∫
S T (s′ | s,a) b(s) ds∫

S O(o′ | s′)
∫

S T (s′ | s,a) b(s) ds ds′ , ∀s
′ ∈ S. (7)

where b = f∗(η). Equation (7) provides a way to update the belief b to b′ through a filter step f once
observing new information (a,o′)

b′ = f(b; a,o′). (8)

The belief is known to be a sufficient statistic from the history in order to act optimally (Bertsekas, 2012).
It means that the Q-function only depends on the history through the belief filtered from this same history.
It implies in particular that the Q-function takes the following form

Q(η,a) = Q(f∗(η),a), ∀η ∈ H, ∀a ∈ A (9)

where Q : P(S) × A → R is called the belief-action value function, or Q-function. This function gives the
maximal expected discounted reward starting from a belief b ∈ P(S) and an action a ∈ A, where the belief
b = f∗(η) results from an arbitrary history η ∈ H. Altough the exact belief filter is often unknown or
intractable, this factorisation of the Q-function still motivates the compression of the history in a statistic
related to the belief, when processing the history for predicting the Q-function.

3



Under review as submission to TMLR

2.2 Parametric Recurrent Q-learning

We call PRQL the family of algorithms that aim at learning an approximation of the Q-function with a
recurrent architecture Qθ, where θ ∈ Rdθ is the parameter vector. These algorithms are motivated by
equation (4) that shows that an optimal policy can be derived from the Q-function. The strategy consists
of minimising, with respect to θ, for all (η,a), the distance between the estimation Qθ(η,a) of the LHS of
equation (3), and the estimation of the expectation EP [r + γmaxa′∈AQθ(η′,a′)] of the RHS of equation
(3). This is done by using transitions (η,a, r,o′, η′) sampled in the POMDP, with η′ = η ∪ (a,o′). In its
simplest form, given such a transition, the PRQL algorithm updates the parameters θ ∈ Rdθ of the function
approximator according to

θ ← θ + α

(
r + γ max

a′∈A
{Qθ(η′,a′)} − Qθ(η,a)

)
∇θQθ(η,a). (10)

This update corresponds to a gradient step in the direction that minimises, with respect to θ the squared
distance between Qθ(η,a) and the target r + γmaxa′∈A {Qθ(η′,a′)} considered independent of θ. It can be
noted that, in practice, such algorithms introduce a truncation horizon H such that the histories generated
in the POMDP have a maximum length of H. From the approximation Qθ, the policy πθ is given by
πθ(η) = arg maxa∈AQθ(η,a). Equation (4) guarantees the optimality of this policy if Qθ = Q. Even though
it will alter the performance of the algorithm, any policy can be used to sample the transitions (η,a, r,o′, η′).

The function approximator Qθ of PRQL algorithms should be able to process inputs η ∈ H of arbitrary
length, making RNN approximators a suitable choice. Indeed, RNNs process the inputs sequentially, ex-
hibiting memory through hidden states that are outputted after each time step, and processed at the next
time step along the following input. More formally, let x0:t = [x0, . . . ,xt] with t ∈ N0 be an input sequence.
At any step k ∈ {0, . . . , t}, RNNs maintain an internal memory state hk through the update function (11)
and output a value yk through the output function (12). The initial state h−1 is given by the initialization
function (13).

hk = uθ(hk−1,xk), ∀k ∈ N0, (11)
yk = oθ(hk), ∀k ∈ N0, (12)

h−1 = iθ. (13)

These networks are trained based on backpropagation though time where gradients are computed in a
backward pass through the complete sequence via the hidden states (Werbos, 1990).

In the experiments, we use the DRQN algorithm (Hausknecht & Stone, 2015; Zhu et al., 2017) to learn
policies. This algorithm is a PRQL algorithm that shows good convergence even for high-dimensional
problems. The DRQN algorithm is detailed in Algorithm 1 of Appendix B. In this algorithm, for a given
history η0:t of arbitrary length t, the inputs of the RNN are xk = (ak−1,ok), k = 1, . . . , t and x0 = (0,o0),
and the output of the RNN at the last time step yt = oθ(ht) ∈ R|A| gives yat

t = Qθ(η0:t,at), for any at ∈ A.
We also define the composition u∗

θ : H → Rdθ of equation (13) and equation (11) applied on the complete
history, such that

ht = u∗
θ(η0:t) =

{
uθ(u∗

θ(η0:t−1),xt), t ≥ 1
uθ(iθ,xt), t = 0

(14)

The following recurrent architectures are used in the experiments: LSTM (Hochreiter & Schmidhuber, 1997),
GRU (Chung et al., 2014), BRC and nBRC (Vecoven et al., 2021), and MGU (Zhou et al., 2016).

2.3 Mutual Information Neural Estimator

In this work, we are interested in establishing if a recurrent function approximator reproduces the belief filter
during PRQL. Formally, this is performed by estimating the MI between the beliefs and the hidden states
of the RNN approximator Qθ. In this subsection, we recall the concept of MI and how it can be estimated
in practice.
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The MI is theoretically able to measure any kind of dependency between random variables (Kraskov et al.,
2004). The MI between two jointly continuous random variables X and Y is defined as

I(X;Y ) =
∫

X

∫
Y
p(x, y) log p(x, y)

pX(x) pY (y) dx dy (15)

where X and Y are the support of the random variables X and Y respectively, p is the joint probability
density function of X and Y , and pX and pY are the marginal probability density functions of X and Y ,
respectively. It is worth noting that the MI can be defined in terms of the Kulback-Leibler (KL) divergence
between the joint p and the product of the marginals q = pX ⊗ pY , over the joint space Z = X × Y

I(X;Y ) = DKL(p || q) =
∫

Z
p(z) log

(
p(z)
q(z)

)
dz (16)

In order to estimate the MI between random variables X and Y from a dataset {(xi, yi)}N
i=1, we rely on the

MINE algorithm (Belghazi et al., 2018). This technique is a parametric approach where a neural network
outputs a lower bound on the MI, that is maximised by gradient ascent. The lower bound is derived from
the Donsker-Varhadan representation of the KL-divergence (Donsker & Varadhan, 1975)

DKL(p || q) = sup
T :Z→R

E
z∼p

[T (z)]− log
(
E

z∼q

[
eT (z)

])
(17)

where the supremum is taken over all functions T such that the two expectations are finite. The lower bound
IΦ(X;Y ) on the true MI I(X;Y ) is obtained by replacing T by a parameterised function Tϕ : Z → R with
ϕ ∈ Φ, and taking the supremum over the parameter space Φ of this function. If Φ corresponds to the
parameter space of a neural network, then this lower bound can be approached by gradient ascent using
empirical means as estimators of the expectations. The resulting procedure for estimating the MI is given
in Algorithm 3 in Appendix D.

3 Measuring the correlation between the hidden states and beliefs

In this work, we study if PRQL implicitly approximates the belief filter by reaching a high MI between the
RNN’s hidden states and the beliefs, that are both generated from random histories. In this section, we
first explain the intuition behind this hypothesis, then we define the joint probability distribution over the
hidden states and beliefs that defines the MI.

As explained in Section 2, the belief filter is generally intractable. As a consequence, PRQL algorithms
use approximators Qθ that directly take the histories as input. In the DRQN algorithm, these histories
are processed recurrently according to equation (11), producing a new hidden state ht after each input
xt = (at−1,ot)

ht = uθ(ht−1; (at−1,ot)). (18)

These hidden states should thus summarise all relevant information from past inputs in order to predict the
Q-function at all later time steps. The belief is known to be a sufficient statistic from the history for these
predictions (9). Moreover, the belief bt is also updated recurrently, according to equation (8) after each
transition (at−1,ot)

bt = f(bt−1; at−1,ot). (19)

The parallel between equation (18) and equation (19), knowing the sufficiency of the belief (9), justifies the
appropriateness of the belief filter f as the update function uθ of the RNN approximator Qθ. It motivates
the study of the reconstruction of the belief filter by the RNN.

In practice, this is done through the measurement of the MI between the hidden state ht and the belief bt at
any time step t ∈ N0. Formally, for a given history length t ∈ N0, the policy πθ of the learning algorithm, as
defined in Subsection 2.2, induces a distribution pπθ

(η | t) over histories η ∈ H. This conditional probability

5



Under review as submission to TMLR

distribution is zero for all history of length t′ ̸= t. Given a distribution p(t) over the length of trajectories,
the joint distribution of h and b is given by

p(h, b) =
∞∑

t=0
p(t)

∫
H
p(h, b | η) pπθ

(η | t) dη (20)

where p(h, b | η) is a Dirac distribution for h = u∗
θ(η) and b = f∗(η) given by equation (14) and equation (5),

respectively. In the following, we estimate the MI between h and b under the joint distribution of equation
(20).

4 Experiments

In this section, the experimental protocol and environments are described and the results are given. More
specifically, in Subsection 4.1, we describe the experimental protocol applied to the different environments.
The results are reported for four different POMDPs: the T-Maze and Stochastic T-Maze in Subsection 4.2,
and the Mountain Hike and Varying Mountain Hike in Subsection 4.3. Afterwards, in Subsection 4.4,
irrelevant state variables and observations are added to the decision processes, and the MI is measured
separately between the hidden states and the belief of the relevant and irrelevant variables.

4.1 Experimental protocol

As explained in Subsection 2.2, the parameters θ of the approximation Qθ are optimised with the DRQN
algorithm. After e episodes of interaction with the POMDP, the DRQN algorithm gives the policy
πθe(η) = arg maxa∈AQθe(η,a). In the experiments, the empirical cumulative reward Ĵ(θe) of the policy
πθe

is reported, along with the estimated MI Î(θe) between the random variables h and b under the dis-
tribution (20) implied by πθe . Each estimate is reported averaged over four training sessions. In addition,
confidence intervals show the minimum and maximum of these estimates.

The empirical return is defined as Ĵ(θe) = 1
I

∑I−1
i=0

∑H−1
t=0 γtri

t, where I is the number of Monte Carlo
rollouts, H the truncation horizon of the DRQN algorithm, and ri

t is the reward obtained at time step t of
Monte Carlo rollout i. As far as the estimation of the MI is concerned, we sample time steps with equal
probability p(t) = 1/H, t ∈ {0, . . . ,H − 1}, where H is the truncation horizon of the DRQN algorithm.
The uniform distribution over time steps and the current policy πθe

define the probability distribution (20)
over the hidden states and beliefs. The MI is estimated from samples of this distribution using the MINE
estimator Î(θe) (see Subsection D.1 for details).

For POMDPs with continuous state spaces, the computation of the belief b is intractable. The belief is
thus approximated by a set of state particles S that follows the true belief distribution f∗(η), using particle
filtering (see Appendix C). In this case, the architecture of the MINE estimator is extended with the deep
set architecture (Zaheer et al., 2017) that allows to process sets of arbitrary sizes. Instead of receiving a
vector b of fixed size |S| as input, the MINE estimator first computes a permutation-invariant embedding of
the set of particles S computed according to the Deep Set architecture (see Subsection D.2 for details).

4.2 Deterministic and Stochastic T-Mazes

The T-Maze is a POMDP where the agent is tasked at finding the treasure in a T-shaped maze (see Figure 8
in Subsection A.2). The state is given by the position of the agent in the maze and the maze layout that
indicates whether the goal lies up or down after the crossroads. The initial state determines the maze layout
and it never changes afterwards. The initial observation made by the agent indicates the layout. Navigating
in the maze provides zero reward, except when bouncing onto a wall, in which case a reward of −0.1 is
received. Finding the treasure provides a reward of 4. Beyond the crossroads, the states are always terminal.
The optimal policy thus consists of going through the maze, while remembering the initial observation in
order to take the correct direction at the crossroads. This POMDP is parameterised by the corridor length
L ∈ N and stochasticity rate λ ∈ [0, 1] that gives the probability of moving in a random direction at any
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time step. The deterministic T-Maze (λ = 0) was originally proposed in (Bakker, 2001). The discount factor
is γ = 0.98. This POMDP is formally defined in Subsection A.2.

As explained in Subsection 2.2, the histories can be sampled with an arbitrary policy in PRQL algorithms.
In practice, we use an ε-greedy stochastic policy that selects its action according to the current policy with
probability 1− ε, and according to the exploration policy E(A) with probability ε. Usually, the exploration
policy is chosen to be the uniform distribution U(A) over the action. However, for the T-Maze, the exploration
policy E(A) is tailored to this POMDP to alleviate the exploration problem, that is independent of the study
of this work. The exploration policy forces one to walk through the right of the corridor with E(Right) = 1/2
and E(Other) = 1/6 where Other ∈ {Up,Left,Down}. To better disambiguate between high-quality policies,
the empirical return is displayed with an exponential scale in the following graphs.
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Figure 1: Deterministic T-Maze (L = 50). Evolution of the return Ĵ(θe) and the MI Î(θe) after e episodes
(left), and the return Ĵ(θe) with respect to the MI Î(θe) (right).

On the left in Figure 1, the expected return is shown along with the MI between the hidden states and
the belief as a function of the number of episodes, for a T-Maze of length L = 50. Both the performance
of the policy and the MI increase during training. We also observe that, at any given episode, RNNs that
have a higher return, such as the nBRC or the BRC, correspond to cells that have a higher MI between
their hidden states and the belief. Furthermore, the LSTM that struggles to achieve a high return has a
significantly lower MI than the other cells. Finally, we can see that the evolution of the MI and the return
are correlated, which is highlighted on the right in Figure 1. Indeed, the return increases with the MI,
with a linear correlation coefficient of 0.8233 and a rank correlation coefficient of 0.6419. These correlations
coefficients are also detailed for each cell separately in Appendix F. It can also be noted that no RNN with
less than 5 bits of MI reaches the maximal return, which is 4 for the Deterministic T-Maze.

In Figure 2, we can see that all previous observations also hold for a T-Maze of length L = 100. On the left,
we can see that the slower the MI increases, the later the maximal return is reached by the policy. For this
length, in addition to the LSTM, the GRU struggles to achieve the maximal return, which is reflected in the
evolution of its MI that increases more slowly than for the other RNNs. It is also interesting to notice that,
on average, the MGU overtake the BRC in term of return after 2000 episodes, which is also the case for the
MI. Here, the linear correlation coefficient between the MI and the return is 0.5347 and the rank correlation
coefficient is 0.6666. Once again, we observe that a minimum amount of MI between the hidden states and
the belief is required for the policy to be optimal. Here, at least 4.5 bits of MI is necessary.

In Figure 3, the results are shown for the Stochastic T-Maze with L = 50 and λ = 0.3. On the contrary
to the Deterministic T-Maze, where the belief is a Dirac distribution over the states, there is uncertainty
on the true state in this environment. We can nevertheless observe that previous observations hold for
this environment too. The MI and the expected return are indeed both increasing throughout the training
process, and the best performing RNNs, such as the BRC and nBRC, have a MI that increases faster and
stays higher, while the LSTM struggles to reach both a high return and a high MI. Here, the linear correlation
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Figure 2: Deterministic T-Maze (L = 100). Evolution of the return Ĵ(θe) and the MI Î(θe) after e episodes
(left), and the return Ĵ(θe) with respect to the MI Î(θe) (right).
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Figure 3: Stochastic T-Maze (L = 50, λ = 0.3). Evolution of the return Ĵ(θe) and the MI Î(θe) after e
episodes (left), and the return Ĵ(θe) with respect to the MI Î(θe) (right).

coefficient between the MI and the return is 0.5460 and the rank correlation coefficient is 0.6403. It can also
be noticed on the right that the best performing policies have a MI of at least 4.5 bits in practice.

4.3 Mountain Hike and Varying Mountain Hike

The Mountain Hike environment is a POMDP modelling an agent walking through a mountainous terrain.
The agent has a position on a two-dimensional map and can take actions to move in four directions relative
to its initial orientation: Forward, Backward, Right and Left. First, we consider that its initial orientation
is always North. Taking an action results in a translation in the corresponding direction plus some Gaussian
noise. The only observation available is a noisy measure of its relative altitude to the mountain top, that is
always negative. The reward is also given by this relative altitude, such that the goal of this POMDP is to
to obtain the highest possible cumulative altitude. Around the mountain top, the states are terminal. The
optimal policy thus consists of going as fast as possible towards those terminal states while staying on the
crests in order to get less negative rewards than in the valleys. This environment is represented in Figure 9 in
Subsection A.3. This POMDP is inspired by the Mountain Hike environment described in (Igl et al., 2018).
The discount factor is γ = 0.99. We also consider the Varying Mountain Hike in the experiments, a more
difficult version of the Mountain Hike where the agent randomly faces one of the four cardinal directions
(i.e., North, West, South, East) depending on the initial state. The agent does not observe its orientation.
As a consequence, the agent needs to maintain a belief about its orientation given the observations in order
to act optimally. This POMDP is formally defined in Subsection A.3.
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Ĵ

(θ
e)

LSTM

GRU

BRC

NBRC

MGU

Figure 4: Mountain Hike. Evolution of the return Ĵ(θe) and the MI Î(θe) after e episodes (left), and the
return Ĵ(θe) with respect to the MI Î(θe) (right).

Figure 4 shows on the left the expected return and the MI during training for the Mountain Hike environment.
It is clear that the DRQN algorithm promotes a high MI between the belief and the hidden states of the
RNN, even in continuous-state environments. It can also be seen that the evolution of the MI and the
evolution of the return are strongly linked throughout the training process, for all RNNs. We can also see
on the right in Figure 4 that the correlation between MI and performances appears clearly for each RNN.
For all RNNs, the linear correlation coefficient is 0.5948 and the rank correlation coefficient is 0.2965. In
particular, we see that the best policies, with a return around −20, are clearly separated from the others
and have a significantly higher MI on average.
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Figure 5: Varying Mountain Hike. Evolution of the return Ĵ(θe) and the MI Î(θe) after e episodes (left),
and the return Ĵ(θe) with respect to the MI Î(θe) (right).

In Figure 5, we can see the evolution and the correlation between the return and the MI for the Varying
Mountain Hike environment. The correlation is even clearer than for the other environments. This may be
due to the fact that differences in term of performances are more pronounced than for the other experiments.
Again, the worse RNNs such as the LSTM and the BRC have a significantly lower MI compared to the other
cells. In addition, the performances of any RNN is strongly correlated to their ability to reproduce the belief
filter, as can be seen on the right, with a sharp increase in empirical return as the MI increases from 2.5 to
4.5 bits. More precisely, the linear correlation coefficient between the MI and the return is 0.5375 and the
rank correlation coefficient is 0.6283. This increase occurs throughout the training process, as can be seen
on the left.
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4.4 Belief of variables irrelevant to optimal control

Despite the belief being a sufficient statistic from the history in order to act optimally, it may be that only the
belief of some state variables is necessary for optimal control. In this subsection, we show that approximating
the Q-function with an RNN will only tend to reconstruct the necessary part, naturally filtering away the
belief of irrelevant state variables.

In order to study this phenomenon, we construct a new POMDP P ′ from a POMDP P by adding new
state variables, independent of the original ones, and irrelevant for optimal control. More precisely, we
add d irrelevant state variables sI

t that follows a Gaussian random walk. In addition, the agent acting in
the POMDP P ′ obtains partial observations oI

t of the new state variables through an unbiased Gaussian
observation model. Formally, the new states and observations are distributed according to

p(sI
0) = ϕ(sI

0; 0,1) (21)
p(sI

t+1 | sI
t ) = ϕ(sI

t+1; sI
t ,1), ∀t ∈ N0, (22)

p(oI
t | sI

t ) = ϕ(oI
t ; sI

t ,1), ∀t ∈ N0, (23)

where ϕ(x;µ,Σ) is the probability density function of a multivariate random variable of mean µ ∈ Rd and
covariance matrix Σ ∈ Rd×d, evaluated at x ∈ Rd, and 1 is the identity matrix.
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Figure 6: Deterministic T-Maze (L = 50) with d irrelevant state variables. Evolution of the return Ĵ(θe)
and the MI Î(θe) for the belief of the irrelevant and relevant state variables after e episodes.

Figure 6 shows the return and the MI measured for the GRU on the T-Maze environment with L = 50.
It can be observed, as for the classic T-Maze environment, that the MI between the hidden states and the
belief of state variables that are relevant to optimal control increases with the return. In addition, the MI
with the belief of irrelevant variables decreases during training. It can also be seen that, for d = 4, the
MI with the belief of irrelevant variables remains higher than the MI with the belief of relevant variables,
due to the high entropy of this irrelevant process. Finally, it is interesting to note that the MI continues to
increase (resp. decrease) with the belief of relevant (resp. irrelevant) variables long after the optimal policy
is reached, suggesting that the hidden states of the RNN still change substantially.

Figure 7 shows the return and the MI measured for the GRU on the Mountain Hike environment. The
same conclusions as for the T-Maze can be drawn, with a clear increase of the MI for the relevant variables
throughout the training process, and a clear decrease of the MI for the irrelevant variables. In addition, it
can be seen that the optimal policy is reached later when there are more irrelevant variables. It is also clear
that adding more irrelevant variables increases the entropy of the irrelevant process, which leads to a higher
MI between the hidden states and the irrelevant state variables.
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Î

(θ
e)

[b
it

]

Belief for sI

Belief for s

(a) d = 1

−40

−20

R
et

u
rn
Ĵ
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Figure 7: Mountain Hike with with d irrelevant state variables. Evolution of the return Ĵ(θe) and the MI
Î(θe) for the belief of the irrelevant and relevant state variables after e episodes.

5 Conclusions

In this work, we have shown, empirically, that the approximation of the Q-function by recurrent neural
networks in partially observable environments comes with the approximation of the belief filter of the state
variables that are relevant to optimal control. More precisely, we have shown that the MI between the hidden
states of the RNN and the belief of states variables that are relevant for optimal control was increasing
throughout the training process. In addition, we have shown that the ability of a recurrent architecture to
reproduce, through a high MI, the belief filter conditions the performance of its policy. Finally, we showed
that the MI between the hidden states and the beliefs of state variables that are irrelevant for optimal control
decreases through the training process, suggesting that RNNs only focus on the relevant part of the belief.

This work also opens up several paths for future work. First, this work suggests that enforcing a high MI
between the hidden states and the beliefs leads to an increase in the performances of the algorithm and
in the return of the resulting policy. While other works have focused on an explicit representation of the
belief in the hidden states (Karkus et al., 2017; Igl et al., 2018), which required to design specific recurrent
architectures, we propose to implicitly embed the belief in the hidden state of any recurrent architecture by
maximising their MI. This can be done by adding an auxiliary loss such that the RNN also maximises the
MI. In practice, this can be implemented by backpropagating the MINE loss beyond the MINE architecture
through the unrolled RNN architecture, such that the hidden states are optimized to get a higher MI with
the beliefs.

Moreover, this work could be extended to algorithms that approximate other functions of the histories than
the Q-function. Notably, this study could be extended to the hidden states of a recurrent policy learned by
policy-gradient algorithms or to the hidden states of the actor and the critic in actor-critic methods. We
may nevertheless expect to find similar results since the value function of a policy tends towards the value
function when the policy tends towards the optimal policy.
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A Environments

In this section, the class of environments that are considered in this work are introduced. Then, the envi-
ronments are formally defined.

A.1 Class of environments

In the experiments, the class of POMDPs that are considered is restricted to those where we can observe
from ot if a state st is terminal. A state s ∈ S is said to be terminal if, and only if{

T (s′ | s,a) = δs(s′), ∀s′ ∈ S,∀a ∈ A
R(s,a, s) = 0, ∀a ∈ A

(24)
(25)

where δs denotes the Dirac distribution centred in s ∈ S. As can be noted, the expected cumulative reward
of any policy when starting in a terminal state is zero. As a consequence, the Q-function of a history for
which we observe a terminal state is also zero for any initial action. The PRQL algorithm thus only has to
learn the Q-function of histories that have not yet reached a terminal state. It implies that the histories that
are generated in the POMDP can be interrupted as soon as a terminal state is observed.

A.2 T-Maze environments

The T-Maze environment is a POMDP (S,A,O, p0, T,R,O, γ) parameterised by the maze length L ∈ N and
the stochasticity rate λ ∈ [0, 1]. The formal definition of this environment is given below.

m = Up

m = Down

c = (0, 0) c = (1, 0) c = (2, 0) c = (3, 0) c = (4, 0) c = (5, 0) c = (6, 0) . . . c = (L, 0)

c = (L, 1)

c = (L,−1)

c = (0, 0) c = (1, 0) c = (2, 0) c = (3, 0) c = (4, 0) c = (5, 0) c = (6, 0) . . . c = (L, 0)

c = (L, 1)

c = (L,−1)

Figure 8: T-Maze state space. Initial states in blue, terminal states in gray, and treasure states hatched.

State space. The discrete state space S is composed of the set of positions C for the agent in each of the
two maze layouts M. The maze layout determines the position of the treasure. Formally, we have

S =M×C
M = {Up,Down}
C = {(0, 0), . . . , (L, 0)} ∪ {(L, 1), (L,−1)}

(26)
(27)
(28)

A state st ∈ S is thus defined by st = (mt, ct) with mt ∈ M and ct ∈ C. Let us also define F =
{st = (mt, ct) ∈ S | ct ∈ {(L, 1), (L,−1)}} the set of terminal states, four in number.
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Action space. The discrete action space A is composed of the four possible moves that the agent can take

A = {(1, 0), (0, 1), (−1, 0), (0,−1)} (29)

that correspond to Right, Up, Left and Down, respectively.

Observation space. The discrete observation space O is composed of the four partial observations of the
state that the agent can perceive

O = {Up,Down,Corridor, Junction} . (30)

Initial state distribution. The two possible initial states are sUp
0 = (Up, (0, 0)) and sDown

0 =
(Down, (0, 0)), depending on the maze in which the agent lies. The initial state distribution p0 : S → [0, 1]
is thus given by

p0(s0) =


0.5 if s0 = sUp

0
0.5 if s0 = sDown

0
0 otherwise

(31)

Transition distribution. The transition distribution function T : S ×A× S → [0, 1] is given by

T (st+1 | st,at) =
{
δst

(st+1) if st ∈ F
(1− λ)δf(st,at)(st+1) + λ

4
(∑

a∈A δf(st,a)(st+1)
)

otherwise
(32)

where st ∈ S,at ∈ A and st+1 ∈ S, and f is given by

f(st,at) =
{

st+1 = (mt, ct + at) if st ̸∈ F , ct + at ∈ C
st+1 = (mt, ct) otherwise

(33)

where st = (mt, ct) ∈ S and at ∈ A.

Reward function. The reward function R : S ×A× S → R is given by

R(st,at, st+1) =



0 if st ∈ F
0 if st ̸∈ F , st+1 ̸∈ F , st ̸= st+1

−0.1 if st ̸∈ F , st+1 ̸∈ F , st = st+1

4 if st ̸∈ F , st+1 ∈ F , ct+1 =
{

(L, 1) if mt+1 = Up
(L,−1) if mt+1 = Down

−0.1 if st ̸∈ F , st+1 ∈ F , ct+1 =
{

(L,−1) if mt+1 = Up
(L,+1) if mt+1 = Down

(34)

where st = (mt, ct) ∈ S,at ∈ A and st+1 = (mt+1, ct+1) ∈ S.

Observation distribution. In the T-Maze, the observations are deterministic. The observation distribu-
tion O : S ×O → [0, 1] is given by

O(ot | st) =



1 if ot = Up, ct = (0, 0),mt = Up
1 if ot = Down, ct = (0, 0),mt = Down
1 if ot = Corridor, ct ∈ {(1, 0), . . . , (L− 1, 0)}
1 if ot = Junction, ct ∈ {(L, 0), (L, 1), (L,−1)}
0 otherwise

(35)

where st = (mt, ct) ∈ S and ot ∈ O.
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Exploration policy. The exploration policy E : A → [0, 1] is a stochastic policy that is given by E(Right) =
1/2 and E(Other) = 1/6 where Other ∈ {Up,Left,Down}. It enforces the exploration of the right hand side
of the maze layouts. This exploration policy, tailored to the T-Maze environment, allows one to speed up
the training procedure, without interfering with the study of this work.

Truncation horizon. The truncation horizon H of the DRQN algorithm is chosen such that the expected
displacement of an agent moving according to the exploration policy in a T-Maze with an infinite corridor
on both sides is greater than L. Let r = E(Right) and l = E(Left). In this infinite T-Maze, the probability of
increasing its position is p = (1−λ)r+λ 1

4 and the probability of decreasing its position is q = (1−λ)l+λ 1
4 .

As a consequence, starting at 0, the expected displacement after one time step is x̄1 = (1 − λ)(r − l). By
independence, x̄H = Hx̄1 such that, for x̄H ≥ L, the time horizon is given by

H =
⌈

L

(1− λ)(r − l)

⌉
. (36)

A.3 Mountain Hike environments

The Varying Mountain Hike environment is a POMDP (S,A,O, p0, T,R,O, γ) parameterised by the sensor
variance σO ∈ R and the transition variance σT ∈ R. The formal definition of this environment is given
below.
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Figure 9: Mountain hike altitude function h in X .

State space. The state space S is the set of positions X and orientations C that the agent can take.
Formally, we have 

S = X × C
X = [−1, 1]2

C = {0◦, 90◦, 180◦, 270◦}

(37)
(38)
(39)

The orientation c = 0◦, 90◦, 180◦ and 270◦ corresponds to facing East, North, West and South, respectively.
The set of terminal states is F = {s = (x, c) ∈ S | ∥x− (0.8, 0.8)∥< 0.1}.

Action space. The discrete action space A is composed of the four possible directions in which the agent
can move

A = {(0, 0.1), (−0.1, 0), (0,−0.1), (0.1, 0)} (40)
that correspond to Forward, Left, Backward and Right, respectively.
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Observation space. The continuous observation space is O = R.

Initial state distribution. The initial position is always is always x = (−0.8,−0.8) and the initial
orientation is sampled uniformly in C, such that the initial state distribution p0 : S → [0, 1] is given by

p0(s0) =
∑
c∈C

1
|C|
δ((−0.8,−0.8),c)(s0) (41)

Transition distribution. The transition distribution T : S × A × S → [0, 1] is given by the conditional
probability distribution of the random variable (st+1 | st,at) that is defined as

st+1 =
{

st if st ∈ F
clampS (st +R(c) at +N (0, σT )) otherwise

(42)

where clampS(s) is the function that maps s to the point in S that minimizes its distance with s, and

R(c) =
(

cos c − sin c
sin c cos c

)
(43)

is the two-dimensional rotation matrix for an angle c.

Reward function. The reward function R : S ×A× S → R is given by

R(st,at, st+1) =
{

0 if st ∈ F
h(st+1) otherwise

(44)

where st ∈ S,at ∈ A, st+1 ∈ S, and h : S → R− is the function that gives the relative altitude to the
mountain top in any state. Note that the altitude is independent of the agent orientation.

Observation distribution. The observation distribution O : S ×O → [0, 1] is given by

O(ot | st) = ϕ(ot;h(st), σ2
O) (45)

where st ∈ S and ot ∈ O, and where ϕ(·;µ, σ2) denotes the probability density function of a univariate
Gaussian random variable with mean µ and standard deviation σ.

Mountain Hike. The Mountain Hike environment is a POMDP (S,A,O, p0, T,R,O, γ), parameterised
by the sensor variance σO ∈ R and the transition variance σT ∈ R. The formal definition of this environment
is identical to that of the Varying Mountain Hike, except that the initial orientation of the agent is always
North, which makes it an easier problem. The initial state distribution is thus given by

p0(s0) = δ((−0.8,−0.8),90◦)(s0). (46)

Exploration policy. The uniform distribution U(A) over the action space A is chosen as the exploration
policy E(A).

Truncation horizon. The truncation horizon of the DRQN algorithm is chosen equal to H = 80 for the
Mountain Hike environment and H = 160 for the Varying Mountain Hike environment.

B Deep Recurrent Q-network

The DRQN algorithm is an instance of the PRQL algorithm that introduces several improvements over
vanilla PRQL. First, it is adapted to the online setting by interleaving the generation of episodes and the
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update of the estimation Qθ. In addition, in the DRQN algorithm, the episodes are generated with the ε-
greedy policy σε

θ : H → P(A), derived from the current estimation Qθ. This stochastic policy selects actions
according to arg maxa∈AQθ(·,a) with probability 1−ε, and according to an exploration policy E(A) ∈ P(A)
with probability ε. In addition, a replay buffer of histories is used and the gradient is evaluated on a batch
of histories sampled from this buffer. Furthermore, the parameters θ are updated with the Adam algorithm
(Kingma & Ba, 2014). Finally, the target rt + γmaxa∈AQθ′(η0:t+1,a) is computed using a past version Qθ′

of the estimation Qθ with parameters θ′ that are updated to θ less frequently, which eases the convergence
towards the target, and ultimately towards the Q-function. The DRQN training procedure is detailed in
Algorithm 1.

Algorithm 1: DRQN - Q-function approximation
Parameters: N ∈ N the buffer capacity.

C ∈ N the target update period in term of episodes.
E ∈ N the number of episodes.
H ∈ N the truncation horizon.
I ∈ N the number of gradient steps after each episode.
ε ∈ R the exploration rate.
α ∈ R the learning rate.
B ∈ N the batch size.

Inputs : (S,A,O, T, R, O, p0, γ) a POMDP.
E(A) ∈ P(A) the exploration policy.

1 Initialise empty replay buffer B
2 Initialise parameters θ randomly
3 for e = 0, . . . , E − 1 do
4 if e mod C = 0 then
5 Update target network with θ′ ← θ

// Generate new episode, store history and rewards
6 Draw an initial state s0 according to p0 and observe o0
7 Let η0:0 = (o0)
8 for t = 0, . . . , H − 1 do
9 Select at ∼ E(A) with probability ε, otherwise select at = arg maxa∈A {Qθ(η0:t, a)}

10 Take action at and observe rt and ot+1
11 Let η0:t+1 = (o0, a0, o1, . . . , ot+1)
12 if |B| < N then add (η0:t, at, rt, ot+1, η0:t+1) in replay buffer B
13 else replace oldest transition in replay buffer B by (η0:t, at, rt, ot+1, η0:t+1)
14 if ot+1 is terminal then
15 break

// Optimise recurrent Q-network
16 for i = 0, . . . , I − 1 do
17 Sample B transitions (ηb

0:t, ab
t , rb

t , ob
t+1, ηb

0:t+1) uniformly from the replay buffer B

18 Compute targets yb =
{

rb
t + γ maxa∈A

{
Qθ′ (ηb

0:t+1, a)
}

if ob
t+1 is not terminal

rb
t otherwise

19 Compute loss L =
∑B−1

b=0

(
yb −Qθ(ηb

0:t, ab
t )
)2

20 Compute direction g using Adam optimiser, perform gradient step θ ← θ + αg

C Particle filtering

As explained in Section 2, the belief filter becomes intractable for certain POMDPs. In particular, POMDPs
with continuous state space require one to perform an integration over the state space. Furthermore, in
these environments, the belief should be represented by a function over a continuous domain instead of a
finite-dimensional vector. Such arbitrary beliefs cannot be represented in a digital computer.

To overcome these two difficulties, the particle filtering algorithm proposes to represent an approximation
of the belief by a finite set of samples that follows the belief distribution. In other words, we represent
bt ∈ P(S) by the set of M samples

St = {sm
t }

M−1
m=0 (47)

where sm
t ∈ S, m = 0, . . . ,M − 1 being independent realisations of the distribution bt.
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Particle filtering is a procedure that allows one to sample a set of states St that follow the belief distribution
bt. The set is thus updated each time that a new action at−1 is taken and a new observation ot is observed.
Although this procedure does not require to evaluate expression (8), it is necessary to be able to sample
from the initial state distribution p0 and from the transition distribution T , and to be able to evaluate the
observation distribution O. This process, illustrated in Algorithm 2, guarantees that the successive sets
S0, . . . , SH have (weighted) samples following the probability distribution b0, . . . , bH defined by equation (8).

Algorithm 2: Particle filtering
Parameters: M ∈ N the number of particles
Inputs : (S,A,O, T, R, O, p0, γ) a POMDP.

H ∈ N the number of transitions
η0:H = (o0, a0, . . . , oH−1, aH−1, oH) ∈ H0:H a history

// Generate weighted samples following the initial belief b0

1 Sample s0
0, . . . , sM−1

0 ∼ p0
2 η ← 0
3 for m = 0, . . . , M − 1 do
4 wm

0 ← O(o0 | sm
0 )

5 η ← η + wm
0

6 for m = 0, . . . , M − 1 do
7 wm

0 ← wm
0 /η

8 S0 =
{

(sm
0 , wm

0 )
}M−1

m=0
// Generate successive weighted samples following the beliefs b1, . . . , bH

9 for t = 1, . . . , H do
10 η ← 0
11 for m = 0, . . . , M − 1 do
12 Sample l ∈ {0, . . . , M − 1} according to p(l) = wl

t−1
13 Sample sm

t ∼ T (· | sl
t−1, at−1)

14 wm
t ← O(ot | sm

t )
15 η ← η + wm

t

16 for m = 0, . . . , M − 1 do
17 wm

t ← wm
t /η

18 St =
{

(sm
t , wm

t )
}M−1

m=0

Algorithm 2 starts from N samples from the initial distribution p0. These samples are initially weighted
by their likelihood O(o0 | sn

0 ). Then, we have three steps that are repeated at each time step. First, the
samples are resampled according to their weights. Then, given the action, the samples are updated by
sampling from T (· | sn

t ,at). Finally, these new samples are weighted by their likelihood O(ot+1 | sn
t+1)

given the new observation ot+1, as for the initial samples. As stated above, this method ensures that the
(weighted) samples follow the distribution of the successive beliefs.

D Mutual Information Neural Estimator

In Subsection D.1, the MI estimator that is used in the experiments is formally defined, and the algorithm
that is used to derive this estimator is detailed. In Subsection D.2, we formalise the extension of the MINE
algorithm with the Deep Set architecture.

D.1 Estimator

As explained in Subsection 2.3, the ideal MI neural estimator, for a parameter space Φ, is given by

IΦ(X;Y ) = sup
ϕ∈Φ

iϕ(X;Y ) (48)

iϕ(X;Y ) = E
z∼p

[Tϕ(z)]− log
(
E

z∼q

[
eTϕ(z)

])
(49)

However, both the estimation of the expectations and the computation of the supremum are intractable. In
practice, the expectations are thus estimated with the empirical means over the set of samples {(xn,yn)}N−1

n=0
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drawn from the joint distribution p and the set of samples {(xn, ỹn)}N−1
n=0 obtained by permuting the samples

from Y , such that the pairs follow the product of marginal distributions q = pX ⊗ pY . In order to estimate
the supremum over the parameter space Φ, the MINE algorithm proposes to maximise iϕ(X;Y ) by stochastic
gradient ascent over batches from the two sets of samples, as detailed in Algorithm 3. The final parameters
ϕ∗ obtained by this maximisation procedure define the estimator

Î = 1
N

N−1∑
n=0

Tϕ∗(xn,yn)− log
(

1
N

N−1∑
n=0

eTϕ∗ (xn,ỹn)

)
(50)

that is used in the experiments. This algorithm was initially proposed in (Belghazi et al., 2018).

Algorithm 3: MINE - lower bound optimization
Parameters: E ∈ N the number of episodes.

B ∈ N the batch size.
α ∈ R the learning rate.

Inputs : N ∈ N the number of samples.
D = {(xn, yn)}N−1

n=0 the set of samples from the joint distribution.
1 Initialise parameters ϕ randomly.
2 for e = 0, . . . , E − 1 do
3 Let p a random permutation of {0, . . . , N − 1}.
4 Let p̃1 a random permutation of {0, . . . , N − 1}.
5 Let p̃2 a random permutation of {0, . . . , N − 1}.
6 while i = 0, . . . ,

⌊
N
B

⌋
do

7 Let S ←
{

(xp(k), yp(k))
}(i+1)B−1

k=iB
a batch of samples from the joint distribution.

8 Let S̃ ←
{

(xp̃1(k), yp̃2(k))
}(i+1)B−1

k=iB
a batch of samples from the product of

marginal distributions
9 Evaluate the lower bound

L(ϕ)←
1
B

∑
(x,y)∈S

Tϕ(x, y)− log

 1
B

∑
(x̃,ỹ)∈S̃

eTϕ(x̃,ỹ)


10 Evaluate bias corrected gradients G(ϕ)← ∇̃ϕL(ϕ)
11 Update network parameters with ϕ← ϕ + αG(ϕ)

D.2 Deep Sets

As explained in Subsection 4.1, the belief computation is intractable for environments with continuous state
spaces. In the experiments, the beliefs of such environments is approximated by sets of particles S = {sm}M

m=1
that are guaranteed to follow the belief distribution, such that s ∼ b, ∀s ∈ S (see Appendix C). In this case,
the two sets of input samples of the MINE algorithm take the form

{(xn,yn)}N−1
n=0 = {(hn, Sn)}N−1

n=0 (51)

=
{

(hn, {sn,m}M
m=1)

}N−1

n=0
. (52)

In order to process particles from sets Sn as input of the neural network Tϕ, we choose an architecture that
guarantees its invariance to permutations of the particles. The deep set architecture (Zaheer et al., 2017),
that is written as ρϕ

(∑
s∈S ψϕ(s)

)
, provides such guarantees. Moreover, this architecture is theoretically

able to represent any function on sets, under the assumption of having representative enough mappings ρϕ

and ψϕ and the additional assumption of using finite sets S when particles come from an uncountable set as
in this work. The function Tϕ is thus given by

Tϕ(h, S) = µϕ

(
h, ρϕ

(∑
s∈S

ψϕ(s)
))

(53)

when the belief is approximated by a set of particles.
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E Hyperparameters

The hyperparameters of the DRQN algorithm are given in Table 1 and the hyperparameters of the MINE
algorithm are given in Table 2. The hyperparameters of the Mountain Hike and Varying Mountain Hike
environments are given in Table 3.

Name Value Description
S 2 Number of RNN layers
D 1 Number of linear layers (no activation function)
H 32 Hidden state size
N 8192 Replay buffer capacity
C 10 Target update period in term of episodes
I 10 Number of gradient steps after each episode
ε 0.2 Exploration rate
B 32 Batch size
α 1× 10−3 Adam learning rate

Table 1: DRQN architecture and training

Name Value Description
L 2 Number of hidden layers
H 256 Hidden layer size
N 10 000 Training set size
E 200 Number of epochs
B 1024 Batch size
α 1× 10−3 Adam learning rate
R 16 Representation size for the Deep Set architecture
α 0.01 EMA rate for the bias corrected gradient

Table 2: MINE architecture and training

Name Value Description
σO 0.1 Standard deviation of the observation noise
σT 0.05 Standard deviation of the transition noise

Table 3: Mountain Hike and Varying Mountain Hike

F Correlations between the empirical return and the estimated mutual information

The correlation between the empirical return and the estimated MI are computed with the Pearson’s linear
correlation coefficient and the Spearman’s rank correlation coefficient. These coefficients are reported for
all environments and all cells in Table 4 and Table 5. The columns named aggregated give the correlation
coefficients measured over all samples of Î and Ĵ from all cells.
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Environment Aggregated LSTM GRU BRC nBRC MGU
T-Maze (L = 50, λ = 0.0) 0.8233 0.7329 0.8500 0.8747 0.9314 0.9178

T-Maze (L = 100, λ = 0.0) 0.5347 0.3624 0.6162 0.6855 0.6504 0.6299
T-Maze (L = 50, λ = 0.3) 0.5460 0.2882 0.8008 0.7229 0.7424 0.6159

Mountain Hike 0.5948 0.7352 0.6177 0.4338 0.5857 0.5485
Varying Mountain Hike 0.5375 0.4621 0.5059 0.3575 0.4318 0.4451

Table 4: Pearson’s linear correlation coefficient for each environment and cell.

Environment Aggregated LSTM GRU BRC nBRC MGU
T-Maze (L = 50, λ = 0.0) 0.6419 0.7815 0.5963 0.5403 0.4009 0.5002

T-Maze (L = 100, λ = 0.0) 0.6666 0.5969 0.7108 0.5058 0.4605 0.5534
T-Maze (L = 50, λ = 0.3) 0.6403 0.3730 0.6600 0.5090 0.4706 0.6497

Mountain Hike 0.2965 0.5933 0.1443 0.2762 0.4337 0.2630
Varying Mountain Hike 0.6283 0.5308 0.4709 0.3674 0.4090 0.3721

Table 5: Spearman’s rank correlation coefficient for each environment and cell.
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