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Abstract

Label smoothing and vocabulary sharing are
two widely used techniques in neural machine
translation models. However, we argue that
jointly adopting these two techniques can be
conflicting and even leads to sub-optimal per-
formance, since the soft label produced by la-
bel smoothing still considers the source-side
words that would not appear at the target side.
To address this issue, we propose Masked La-
bel Smoothing (MLS), a new mechanism that
masks the soft label probability of source-side
words to zero. Simple yet effective, MLS man-
ages to better integrate label smoothing with
vocabulary sharing and hence improves the
quality of the translation. Our extensive ex-
periments show that MLS consistently yields
improvement over original label smoothing on
different datasets, including bilingual and mul-
tilingual translation in both BLEU and calibra-
tion scores.

1 Introduction

Recent advances in Transformer-based (Vaswani
et al., 2017) models have achieved remarkable suc-
cess in Neural Machine Translation (NMT). For
most NMT studies (Vaswani et al., 2017; Song
et al., 2019; Lin et al., 2020; Pan et al., 2021),
there are two widely used techniques to improve
the quality of the translation: Label Smoothing
(LS) and Vocabulary Sharing (VS). Label smooth-
ing (Pereyra et al., 2017) turns the hard one-hot
labels into a soft weighted mixture of the golden
label and the uniform distribution over the whole
vocabulary, which serves as an effective regular-
ization technique to prevent over-fitting and over-
confidence (Miiller et al., 2019) of the model. In
addition, vocabulary sharing (Xia et al., 2019) is
another commonly used technique, which unifies
the vocabulary of both source and target language
into a whole vocabulary, and therefore the vocabu-
lary is shared. It enhances the semantic correlation
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Figure 1: Venn diagram showing the structure of the
shared vocabulary, which can be divided into three
parts: Source (S), Common (C), and Target (T).

Model DE-EN VI-EN
Transformer 33.54 29.95
- w/ Label Smoothing (LS) 34.76 30.73
- w/ Vocabulary Sharing (VS)  33.83 29.36
-w/LS+VS T 34.56 30.41

Table 1: Results in IWSLT’ 14 DE-EN and IWSLT’15
VI-EN datasets.} denotes consistent setting to (Vaswani
et al., 2017). Jointly adopting label smoothing and vo-
cabulary sharing techniques cannot achieve further im-
provements, but leads to sub-optimal performance.

between the two languages and reduces the number
of total parameters of the embedding matrices.

However, in this paper, we argue that jointly
adopting both label smoothing and vocabulary shar-
ing techniques can be conflicting, and leads to sub-
optimal performance. Specifically, with vocabulary
sharing, the shared vocabulary can be divided into
three parts as shown in Figure 1. But with label
smoothing, the soft label still considers the words
at the source side that are impossible to appear at
the target side. This would mislead the translation
model and exerts a negative effect on the transla-
tion performance. As shown in Table 1, although
introducing label smoothing or vocabulary shar-
ing alone can outperform the vanilla Transformer,
jointly adopting both of them cannot obtain further
improvements but achieves sub-optimal results.

To address the conflict of label smoothing and



vocabulary sharing, we first propose a new mecha-
nism named Weighted Label Smoothing (WLS) to
control the label distribution and its parameter-free
version Masked Label Smoothing (MLS). Simple
yet effective, MLS constrains the soft label not to
assign soft probability label towards the words be-
longing to the source side. In this way, we not only
keeps the benefits of both label smoothing and vo-
cabulary sharing, but also address the conflict of
these two techniques to improve the quality of the
translation.

According to our experiments, MLS leads to
a better translation not only in BLEU scores
but also reports improvement in model’s calibra-
tion. Compared with original label smoothing
with vocabulary sharing, MLS outperforms in
WMT’ 14 EN-DE(+0.47 BLEU), IWSLT 16 EN-
RO (+0.33 BLEU) and other 7 language pairs in-
cluding DE,RO-EN multilingual translation task.

2 Background

Label Smoothing The original label smoothing
can be formalized as:

7" =g(1 - a) + a/K (1)

K denotes the number of classes, « is the label
smoothing parameter, ¢/ K is the soft label, ¢ is a
vector where the correct label equals to 1 and others
equal to zero and ¢~ is the modified targets.

Label smoothing is first introduced to image
classification (Szegedy et al., 2016) task. Pereyra
et al. (2017); Edunov et al. (2018) explore label
smoothing’s application in Sequence generation
from token level and Norouzi et al. (2016) propose
sentence level’s label smoothing. Theoretically,
Gao et al. (2020); Miiller et al. (2019); Meister
et al. (2020) all point out the relation between label
smoothing and entropy regularization. To generate
more reliable soft labels, Lukasik et al. (2020) takes
semantically similar n-grams overlap into consid-
eration level label smoothing, Zhang et al. (2021)
investigate generating soft labels based on the statis-
tics of the model prediction for the target category
and Wang et al. (2021) propose a new form of label
smoothing to diversify dialog generation.

Vocabulary Sharing Vocabulary sharing is
widely applied in most neural machine translation
studies (Vaswani et al., 2017; Song et al., 2019; Lin
et al., 2020; Pan et al., 2021). Researchers have
conducted in-depth studies in Vocabulary Sharing.

Category DE->EN RO->EN VI->EN
Source 39% 50% 36%
Common 20% 8% 11%
Target 41% 42% 53%

Table 2: The distribution of different categories of
the shared vocabulary forWMT’ 14 DE-EN, IWSLT’ 16
RO-EN, and IWSLT’15 VI-EN datasets. The propor-
tion of tokens belonging to source category is up to
50%, which would mislead the translation model.

Liu et al. (2019) propose shared-private bilingual
word embeddings, which give a closer relationship
between the source and target embeddings. While
Kim et al. (2019) point out that there is an vocabu-
lary mismatch between parent and child languages
in shared multilingual word embedding.

3 Conlflict Between Label Smoothing and
Vocabulary Sharing

Words or subwords in a language pair’s joint dictio-
nary can be categorized into three classes: source,
common and target using Venn Diagram accord-
ing to their belonging to certain language as de-
picted in Figure 1. This can be achieved by check-
ing whether one token in the joint vocabulary also
belongs to the source/target vocabulary. We formal-
ized the categorization algorithm in Appendix A.

Then we compute the tokens’ distribution in dif-
ferent translation directions as shown in Table 2.
Tokens in source class account for a large propor-
tion up to 50%. When label smoothing and vocab-
ulary sharing are together applied, the smoothed
probability will be allocated to words that belong
to the source class. Those words have zero over-
lap with the possible target words, therefore they
have no chance to appear in the target sentence,
which might introduce extra bias for the translation
system during training process.

Table 3 reveals the existence of conflict, that the
joint use of label smoothing and vocabulary sharing
doesn’t compare with solely use one technique in
all language pairs with a maximum loss of 0.32
BLEU score.

4 Methods
4.1 Weighted Label Smoothing

To deal with the conflict when executing la-
bel smoothing, we propose a plug-and-play
Weighted Label Smoothing mechanism to control
the smoothed probability’s distribution.



(a) Bilingual Translation

| WMT’14 | IWSLI’16 | IWSLT’14 | IWSLT’15 | CASIA
Model | DE-EN | EN-DE | RO-EN | EN-RO | DE-EN | VIEN | ZH-EN
Transformer 30.85 | 27.21 | 2203 | 1961 33.54 29.95 20.66
-w/ VS 31.08 | 27.51 | 2220 | 1991 33.83 29.36 20.88
-w/LS 31.14 | 27.53 | 2296 | 20.68 34.76 30.73 21.10
- w/LS+VS 30.98 | 27.44 | 2289 | 20.59 34.56 30.41 21.04
- w/MLS (ours) | 31.43* | 27.91% | 23.22%* | 20.88%* | 35.04%* 30.57% | 21.23*
(b) Multilingual Translation
| IWSLT’I4+IWSLT’16 |  IWSLT’14+IWSLT’167

Model | DE,RO-EN | DE-EN | RO-EN | DE,RO-EN | DE-EN | RO-EN

- w/LS+VS 33.78 3724 | 23.15 3325 37.44 | 2040

-wW/MLS (ours) | 34.10%* | 37.53+* | 23.19%% | 33.53% | 37.77%* | 20.86**

Table 3: Results of bilingual translation tasks (a) and multilingual translation (b). T denotes the balanced version of
multilingual translation data. Same conflict between LS and VS occurs in all language pairs. Our MLS outperforms
the original label smoothing with vocabulary sharing in all experiments with significance levels when of p < 0.01
(**), p < 0.05 (*) and also beats individually using LS or VS in most cases.

Weighted Label Smoothing(WLS) has three pa-
rameters 3¢, O, s apart from the label smoothing
parameter «, where the ratio of the three parame-
ters represents the portion of smoothed probability
allocated to the target, common and source class
and the sum of the three parameters is 1. The
distribution within token class follows a uniform
distribution. WLS can be formalized as:

gV =g(1-a)+ )

where ¢ is a vector where the element corre-
sponding to the correct token equals to 1 and others
equal to zero. 3 is a vector that controls the distri-
bution of probability allocated to incorrect tokens.
We use t;, ¢;, s; to represent probability allocated
to the i-th token in the target,common,source cate-
gory, all of which form the distribution controlling
vector 3 with ZZK Bi; = . The restriction can be
formalized as:

ZtiIZCiIZSi:ﬁtiﬁciﬁs €))

4.2 Masked Label Smoothing

Based on the Weight Label Smoothing mechanism,
we can now implement Masked Label Smoothing
by set 55 to 0 and regard the target and common
category as one category. In this way, Masked
Label Smoothing is parameter-free and implicitly
injects external knowledge to the model. And we
have found out that this simple setting can reach
satisfactory results according our experiments.

We illustrate different label smoothing methods
in Figure 2. It is worth noticing that MLS is differ-
ent from setting WLS’s parameters to 1-1-0 since
there might be different number of tokens in the
common and target vocab.

Label Smoothing

w\o Label Smoothing

probability
probability

y' tlt2t3clc2c3s1s2s3

y' tlt2t3clc2c3s1s2s3

Masked Label Smoothing

probability
probability

y' tlt2t3clc2c3sls2s3 y'tlt2t3clc2c3sls2s3

Figure 2: Illustration of different label smoothing meth-
ods. The height of each bar in the graph denoted the
probability allocated to each token. %’ is the current
token during current decoding phase. We assume that
there are only 10 tokens in the joint vocabulary and t1-
t3 belongs to target class, cl-c3 belongs to common
class and s1-s3 belongs to source class.

S Experiments

5.1 Task Settings

For bilingual translation, we conduct experiments
on 7 translation tasks. We choose language
pairs that have different ratio of common sub-
words. These include WMT’ 14 DE-EN,EN-DE,
IWSLT’ 14 DE-EN, IWSLT 15 VI-EN, IWSLT’ 16
RO-EN,EN-RO and CASIA ZH-EN.



Model DE-EN VI-EN DE,RO-EN DE,RO-EN*

- w/LS+VS 9.711 13.07 11.62 10.77
- w/MLS (ours)  9.67 12.63 11.37 8.82

Table 4: Inference ECE score (less is better) on differ-
ent translation tasks. x denotes the balanced version of
multilingual data. MLS leads to an average of 0.7 lower
ECE score, suggesting better model calibration.

For multilingual translation, we combine the
IWSLT 16 RO-EN and IWSLT’ 14 DE-EN datasets
to formulate a RO,DE-EN translation task. We
make a balanced multilingual dataset that has equal
numbers of DE-EN and RO-EN training examples
to reduce the impact of imbalance languages.

We use the Transformer base (Vaswani et al.,
2017) model as our baseline model. During train-
ing, we fix the label smoothing parameter « to
0.1 whenever LS is applied. We list the concrete
training and evaluation settings in Appendix B.

5.2 Results

Bilingual Table 3 shows the results of bilingual
translation experiments. The results reveal the con-
flict between LS and VS that models with only LS
outperform models with both LS and VS in all ex-
periments. Our Masked Label Smoothing obtained
consistent improvements over original LS+VS in
all tested language pairs significantly.

The eftectiveness of MLS maintained under dif-
ferent «v value as shown in Table 6,7 for both BLEU
and chrF, which further proves that not only the in-
crease in target vocabulary, but also the decrease
of probabilities in source vocabulary matters in the
improvement of translation performance.

Multilingual As shown in Table 3 , MLS
achieves consistent improvement over the origi-
nal label smoothing in both the original and the
balanced multilingual translation dataset under all
translation directions. Compared with the imbal-
anced version, the balanced version gave better
BLEU scores in DE-EN direction while much
worse performance in RO-EN translation. We dis-
cuss more of the multilingual result in Appendix C.

MLS proves its robustness and effectiveness un-
der different translation settings.

6 Discussion

6.1 Improvement in Model’s Calibration

Guo et al. (2017) have pointed out that by soften-
ing the estimation targets, label smoothing prevents

Bt | Be | Bs | RO-EN | EN-RO | DE-EN

- - - 22.80 23.15 30.94
173 | 173 | 1/3 | 22.68 23.19 31.40
17211721 0 23.05 23.19 31.18
172 0 | 172 | 22.86 23.01 31.33
0 | 172|172 2222 23.33 30.85
172 | 1/4 | 1/4 | 2273 23.16 30.92

Table 5: Value "-" denotes the original label smoothing.
WLS generally can improve the translation quality with
right parameters. Only (1/2,1/2,0) can outperform the
original label smoothing (-,-,-) on all tasks.

the model from becoming over-confident therefore
improve the calibration of model as analyzed in
(Miiller et al., 2019). Inference ECE score (Wang
et al., 2020) reflects models calibration during in-
ference. We compute the inference ECE scores
of our models as shown in Table 4. The results
indicate that MLS will lead to better calibration.

6.2 Exploring of Weighted Label Smoothing

As reported in Table 5, we further explore the influ-
ence of different weighted label smoothing settings
on multiple translation tasks including IWSLT’ 16
RO-EN,EN-RO and WMT’ 14 DE-EN.

According to the result, though the best BLEU
score’s WLS setting vary from different tasks, we
still have two observations: First, applying WLS
can generally boost the quality of translation com-
pared to the original label smoothing. Second,
only WLS with 3, 8., Bs each equals to 1/2-1/2-0
can outperform the original label smoothing on all
tasks, which suggests the setting is the most robust
one. Thus we recommend using this setting as the
initial setting when applying our WLS.

Furthermore, the winner setting agrees with the
form of Masked Label Smoothing since they both
allocate zero probability to the source category’s
tokens, which further proves the effectiveness and
robustness of Masked Label Smoothing.

7 Conclusion

We reveal and analyse the conflict between label
smoothing and vocabulary sharing techniques, and
point out that jointly adopting them may lead to
sub-optimal performance. To address this issue, we
introduce a plug-and-play Masked Label Smooth-
ing mechanism to eliminate the conflict. Simple
yet effective, MLS shows a consistent and signif-
icant improvement over original label smoothing
with vocabulary sharing.
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A Algorithms

Algorithm 1 Divide Token Categories

Input: List: S, T, J

Output: List: A,B,C

Description: S is the vocabulary list for source
language, T for target language, J for joint vocabu-
lary. A is the output vocabulary for source tokens,
B for common tokens, C for target tokens.

1: Initialize empty list A,B,C
2: foriinJ do

3 ifiin S andiin T then
4 B.add(i)

5: else

6 ifiin S then

7 A.add(i)

8: else

9: C.add(i)

10: return A,B,C

B Experiment Details

We use the official train-dev-test split of WMT’ 14
and IWSLT’14,15,16 dataset. For CASIA ZH-EN
dataset, we randomly select 5000 sentences as de-
velopment set and 5000 sentences as test set from
the total dataset.

We evaluate our method upon Transformer-Base
(Vaswani et al., 2017) and conduct experiments
under same hyper-parameters for fair comparison.
We use compound_split_bleu.sh from fairseq to
compute the final bleu scores. The inference ECE
score! and chrF score” are computed through open
source scripts.

Before training, we first apply BPE(Sennrich
et al., 2016) to tokenize the corpus for 16k steps
each language and then learn a joint dictionary.
During training, the label smoothing parameter o
is set to 0.1 in all experiments. We use Adam
optimizer with betas to be (0.9,0.98) and learning
rate is 0.0007. During warming up steps, the initial
learning rate is le-7 and there are 5000 warm-up
steps. We use a batchsize of 4096 together with
an update-freq of 4 on two Nvidia 3090 GPUs.
Dropout rate is set to 0.3 and weight decay is set to
0.0001 for all experiments. We use beam size as 5
during all testing.

"https://github.com/shuo-git/InfECE
Zhttps://github.com/m-popovic/chrF

C Result Analysis

Multilingual Compared with the imbalanced
version, the balanced version gave better BLEU
scores in DE-EN direction while much worse per-
formance in RO-EN translation for both the origi-
nal label smoothing and MLS.

It indicates that the cut down on RO-EN training
examples does weaken the generalization of model
in RO-EN translation however doesn’t influence the
DE-EN translation quality since the RO-EN data
might introduce bias to the training process for
DE-EN translation. Compared with the bilingual
translation, DE-EN translation outperform by a
large margin with RO-EN data enhancement no
matter whether MLS is applied, which is consistent
to (Aharoni et al., 2019).

Different Alpha for LS We report the result of
different alpha value in following tables:

BLEU IWSLT EN-RO

alpha | 0.1 03 0S5
LS+VS | 20.54 20.65 20.62 | 20.60
MLS | 20.57 20.99 21.1 | 20.88

Avg

chrF IWSLT EN-RO
alpha 0.1 0.3 0.5

Avg

LS+VS | 4554 4579  45.7 | 45.68
MLS 45.68 46.29 46.4 | 46.12
Table 6: Result under different alpha scores on

IWSLT16 EN-RO dataset.

BLEU IWSLT RO-EN Avg
alpha 0.1 0.3 0.5

LS+VS | 22.54 2295 2298 | 22.82
MLS 22.89 231 23.07 | 23.02
chrF IWSLT RO-EN Avg
alpha 0.1 0.3 0.5

LS+VS | 47.09 4729 47.23 | 47.20
MLS 48.23 48.36 47.39 | 47.99

Table 7: Result under different alpha scores on

IWSLT16 RO-EN dataset.



