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Abstract

Label smoothing and vocabulary sharing are001
two widely used techniques in neural machine002
translation models. However, we argue that003
jointly adopting these two techniques can be004
conflicting and even leads to sub-optimal per-005
formance, since the soft label produced by la-006
bel smoothing still considers the source-side007
words that would not appear at the target side.008
To address this issue, we propose Masked La-009
bel Smoothing (MLS), a new mechanism that010
masks the soft label probability of source-side011
words to zero. Simple yet effective, MLS man-012
ages to better integrate label smoothing with013
vocabulary sharing and hence improves the014
quality of the translation. Our extensive ex-015
periments show that MLS consistently yields016
improvement over original label smoothing on017
different datasets, including bilingual and mul-018
tilingual translation in both BLEU and calibra-019
tion scores.020

1 Introduction021

Recent advances in Transformer-based (Vaswani022

et al., 2017) models have achieved remarkable suc-023

cess in Neural Machine Translation (NMT). For024

most NMT studies (Vaswani et al., 2017; Song025

et al., 2019; Lin et al., 2020; Pan et al., 2021),026

there are two widely used techniques to improve027

the quality of the translation: Label Smoothing028

(LS) and Vocabulary Sharing (VS). Label smooth-029

ing (Pereyra et al., 2017) turns the hard one-hot030

labels into a soft weighted mixture of the golden031

label and the uniform distribution over the whole032

vocabulary, which serves as an effective regular-033

ization technique to prevent over-fitting and over-034

confidence (Müller et al., 2019) of the model. In035

addition, vocabulary sharing (Xia et al., 2019) is036

another commonly used technique, which unifies037

the vocabulary of both source and target language038

into a whole vocabulary, and therefore the vocabu-039

lary is shared. It enhances the semantic correlation040
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Figure 1: Venn diagram showing the structure of the
shared vocabulary, which can be divided into three
parts: Source (S), Common (C), and Target (T).

Model DE-EN VI-EN

Transformer 33.54 29.95
- w/ Label Smoothing (LS) 34.76 30.73
- w/ Vocabulary Sharing (VS) 33.83 29.36
- w/ LS+VS † 34.56 30.41

Table 1: Results in IWSLT’14 DE-EN and IWSLT’15
VI-EN datasets.† denotes consistent setting to (Vaswani
et al., 2017). Jointly adopting label smoothing and vo-
cabulary sharing techniques cannot achieve further im-
provements, but leads to sub-optimal performance.

between the two languages and reduces the number 041

of total parameters of the embedding matrices. 042

However, in this paper, we argue that jointly 043

adopting both label smoothing and vocabulary shar- 044

ing techniques can be conflicting, and leads to sub- 045

optimal performance. Specifically, with vocabulary 046

sharing, the shared vocabulary can be divided into 047

three parts as shown in Figure 1. But with label 048

smoothing, the soft label still considers the words 049

at the source side that are impossible to appear at 050

the target side. This would mislead the translation 051

model and exerts a negative effect on the transla- 052

tion performance. As shown in Table 1, although 053

introducing label smoothing or vocabulary shar- 054

ing alone can outperform the vanilla Transformer, 055

jointly adopting both of them cannot obtain further 056

improvements but achieves sub-optimal results. 057

To address the conflict of label smoothing and 058

1



vocabulary sharing, we first propose a new mecha-059

nism named Weighted Label Smoothing (WLS) to060

control the label distribution and its parameter-free061

version Masked Label Smoothing (MLS). Simple062

yet effective, MLS constrains the soft label not to063

assign soft probability label towards the words be-064

longing to the source side. In this way, we not only065

keeps the benefits of both label smoothing and vo-066

cabulary sharing, but also address the conflict of067

these two techniques to improve the quality of the068

translation.069

According to our experiments, MLS leads to070

a better translation not only in BLEU scores071

but also reports improvement in model’s calibra-072

tion. Compared with original label smoothing073

with vocabulary sharing, MLS outperforms in074

WMT’14 EN-DE(+0.47 BLEU), IWSLT’16 EN-075

RO (+0.33 BLEU) and other 7 language pairs in-076

cluding DE,RO-EN multilingual translation task.077

2 Background078

Label Smoothing The original label smoothing079

can be formalized as:080

ŷLS = ŷ(1− α) +α/K (1)081

K denotes the number of classes, α is the label082

smoothing parameter, α/K is the soft label, ŷ is a083

vector where the correct label equals to 1 and others084

equal to zero and ŷLS is the modified targets.085

Label smoothing is first introduced to image086

classification (Szegedy et al., 2016) task. Pereyra087

et al. (2017); Edunov et al. (2018) explore label088

smoothing’s application in Sequence generation089

from token level and Norouzi et al. (2016) propose090

sentence level’s label smoothing. Theoretically,091

Gao et al. (2020); Müller et al. (2019); Meister092

et al. (2020) all point out the relation between label093

smoothing and entropy regularization. To generate094

more reliable soft labels, Lukasik et al. (2020) takes095

semantically similar n-grams overlap into consid-096

eration level label smoothing, Zhang et al. (2021)097

investigate generating soft labels based on the statis-098

tics of the model prediction for the target category099

and Wang et al. (2021) propose a new form of label100

smoothing to diversify dialog generation.101

Vocabulary Sharing Vocabulary sharing is102

widely applied in most neural machine translation103

studies (Vaswani et al., 2017; Song et al., 2019; Lin104

et al., 2020; Pan et al., 2021). Researchers have105

conducted in-depth studies in Vocabulary Sharing.106

Category DE->EN RO->EN VI->EN

Source 39% 50% 36%
Common 20% 8% 11%
Target 41% 42% 53%

Table 2: The distribution of different categories of
the shared vocabulary forWMT’14 DE-EN, IWSLT’16
RO-EN, and IWSLT’15 VI-EN datasets. The propor-
tion of tokens belonging to source category is up to
50%, which would mislead the translation model.

Liu et al. (2019) propose shared-private bilingual 107

word embeddings, which give a closer relationship 108

between the source and target embeddings. While 109

Kim et al. (2019) point out that there is an vocabu- 110

lary mismatch between parent and child languages 111

in shared multilingual word embedding. 112

3 Conflict Between Label Smoothing and 113

Vocabulary Sharing 114

Words or subwords in a language pair’s joint dictio- 115

nary can be categorized into three classes: source, 116

common and target using Venn Diagram accord- 117

ing to their belonging to certain language as de- 118

picted in Figure 1. This can be achieved by check- 119

ing whether one token in the joint vocabulary also 120

belongs to the source/target vocabulary. We formal- 121

ized the categorization algorithm in Appendix A. 122

Then we compute the tokens’ distribution in dif- 123

ferent translation directions as shown in Table 2. 124

Tokens in source class account for a large propor- 125

tion up to 50%. When label smoothing and vocab- 126

ulary sharing are together applied, the smoothed 127

probability will be allocated to words that belong 128

to the source class. Those words have zero over- 129

lap with the possible target words, therefore they 130

have no chance to appear in the target sentence, 131

which might introduce extra bias for the translation 132

system during training process. 133

Table 3 reveals the existence of conflict, that the 134

joint use of label smoothing and vocabulary sharing 135

doesn’t compare with solely use one technique in 136

all language pairs with a maximum loss of 0.32 137

BLEU score. 138

4 Methods 139

4.1 Weighted Label Smoothing 140

To deal with the conflict when executing la- 141

bel smoothing, we propose a plug-and-play 142

Weighted Label Smoothing mechanism to control 143

the smoothed probability’s distribution. 144
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(a) Bilingual Translation
WMT’14 IWSLT’16 IWSLT’14 IWSLT’15 CASIA

Model DE-EN EN-DE RO-EN EN-RO DE-EN VI-EN ZH-EN

Transformer 30.85 27.21 22.03 19.61 33.54 29.95 20.66
- w/ VS 31.08 27.51 22.20 19.91 33.83 29.36 20.88
- w/ LS 31.14 27.53 22.96 20.68 34.76 30.73 21.10
- w/ LS+VS 30.98 27.44 22.89 20.59 34.56 30.41 21.04
- w/ MLS (ours) 31.43* 27.91* 23.22** 20.88** 35.04** 30.57* 21.23*

(b) Multilingual Translation
IWSLT’14+IWSLT’16 IWSLT’14+IWSLT’16†

Model DE,RO-EN DE-EN RO-EN DE,RO-EN DE-EN RO-EN

- w/ LS+VS 33.78 37.24 23.15 33.25 37.44 20.40
- w/ MLS (ours) 34.10** 37.53** 23.19** 33.53** 37.77** 20.86**

Table 3: Results of bilingual translation tasks (a) and multilingual translation (b). † denotes the balanced version of
multilingual translation data. Same conflict between LS and VS occurs in all language pairs. Our MLS outperforms
the original label smoothing with vocabulary sharing in all experiments with significance levels when of p < 0.01
(**), p < 0.05 (*) and also beats individually using LS or VS in most cases.

Weighted Label Smoothing(WLS) has three pa-145

rameters βt, βc, βs apart from the label smoothing146

parameter α, where the ratio of the three parame-147

ters represents the portion of smoothed probability148

allocated to the target, common and source class149

and the sum of the three parameters is 1. The150

distribution within token class follows a uniform151

distribution. WLS can be formalized as:152

ŷWLS = ŷ(1− α) + β (2)153

where ŷ is a vector where the element corre-154

sponding to the correct token equals to 1 and others155

equal to zero. β is a vector that controls the distri-156

bution of probability allocated to incorrect tokens.157

We use ti, ci, si to represent probability allocated158

to the i-th token in the target,common,source cate-159

gory, all of which form the distribution controlling160

vector β with
∑K

i βi = α. The restriction can be161

formalized as:162 ∑
ti :

∑
ci :

∑
si = βt : βc : βs (3)163

4.2 Masked Label Smoothing164

Based on the Weight Label Smoothing mechanism,165

we can now implement Masked Label Smoothing166

by set βs to 0 and regard the target and common167

category as one category. In this way, Masked168

Label Smoothing is parameter-free and implicitly169

injects external knowledge to the model. And we170

have found out that this simple setting can reach171

satisfactory results according our experiments.172

We illustrate different label smoothing methods 173

in Figure 2. It is worth noticing that MLS is differ- 174

ent from setting WLS’s parameters to 1-1-0 since 175

there might be different number of tokens in the 176

common and target vocab. 177
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Figure 2: Illustration of different label smoothing meth-
ods. The height of each bar in the graph denoted the
probability allocated to each token. y′ is the current
token during current decoding phase. We assume that
there are only 10 tokens in the joint vocabulary and t1-
t3 belongs to target class, c1-c3 belongs to common
class and s1-s3 belongs to source class.

5 Experiments 178

5.1 Task Settings 179

For bilingual translation, we conduct experiments 180

on 7 translation tasks. We choose language 181

pairs that have different ratio of common sub- 182

words. These include WMT’14 DE-EN,EN-DE, 183

IWSLT’14 DE-EN, IWSLT’15 VI-EN, IWSLT’16 184

RO-EN,EN-RO and CASIA ZH-EN. 185
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Model DE-EN VI-EN DE,RO-EN DE,RO-EN*

- w/ LS+VS 9.77 13.07 11.62 10.77
- w/ MLS (ours) 9.67 12.63 11.37 8.82

Table 4: Inference ECE score (less is better) on differ-
ent translation tasks. ∗ denotes the balanced version of
multilingual data. MLS leads to an average of 0.7 lower
ECE score, suggesting better model calibration.

For multilingual translation, we combine the186

IWSLT’16 RO-EN and IWSLT’14 DE-EN datasets187

to formulate a RO,DE-EN translation task. We188

make a balanced multilingual dataset that has equal189

numbers of DE-EN and RO-EN training examples190

to reduce the impact of imbalance languages.191

We use the Transformer base (Vaswani et al.,192

2017) model as our baseline model. During train-193

ing, we fix the label smoothing parameter α to194

0.1 whenever LS is applied. We list the concrete195

training and evaluation settings in Appendix B.196

5.2 Results197

Bilingual Table 3 shows the results of bilingual198

translation experiments. The results reveal the con-199

flict between LS and VS that models with only LS200

outperform models with both LS and VS in all ex-201

periments. Our Masked Label Smoothing obtained202

consistent improvements over original LS+VS in203

all tested language pairs significantly.204

The effectiveness of MLS maintained under dif-205

ferent α value as shown in Table 6,7 for both BLEU206

and chrF, which further proves that not only the in-207

crease in target vocabulary, but also the decrease208

of probabilities in source vocabulary matters in the209

improvement of translation performance.210

Multilingual As shown in Table 3 , MLS211

achieves consistent improvement over the origi-212

nal label smoothing in both the original and the213

balanced multilingual translation dataset under all214

translation directions. Compared with the imbal-215

anced version, the balanced version gave better216

BLEU scores in DE-EN direction while much217

worse performance in RO-EN translation. We dis-218

cuss more of the multilingual result in Appendix C.219

MLS proves its robustness and effectiveness un-220

der different translation settings.221

6 Discussion222

6.1 Improvement in Model’s Calibration223

Guo et al. (2017) have pointed out that by soften-224

ing the estimation targets, label smoothing prevents225

βt βc βs RO-EN EN-RO DE-EN

- - - 22.80 23.15 30.94
1/3 1/3 1/3 22.68 23.19 31.40
1/2 1/2 0 23.05 23.19 31.18
1/2 0 1/2 22.86 23.01 31.33
0 1/2 1/2 22.22 23.33 30.85

1/2 1/4 1/4 22.73 23.16 30.92

Table 5: Value "-" denotes the original label smoothing.
WLS generally can improve the translation quality with
right parameters. Only (1/2,1/2,0) can outperform the
original label smoothing (-,-,-) on all tasks.

the model from becoming over-confident therefore 226

improve the calibration of model as analyzed in 227

(Müller et al., 2019). Inference ECE score (Wang 228

et al., 2020) reflects models calibration during in- 229

ference. We compute the inference ECE scores 230

of our models as shown in Table 4. The results 231

indicate that MLS will lead to better calibration. 232

6.2 Exploring of Weighted Label Smoothing 233

As reported in Table 5, we further explore the influ- 234

ence of different weighted label smoothing settings 235

on multiple translation tasks including IWSLT’16 236

RO-EN,EN-RO and WMT’14 DE-EN. 237

According to the result, though the best BLEU 238

score’s WLS setting vary from different tasks, we 239

still have two observations: First, applying WLS 240

can generally boost the quality of translation com- 241

pared to the original label smoothing. Second, 242

only WLS with βt, βc, βs each equals to 1/2-1/2-0 243

can outperform the original label smoothing on all 244

tasks, which suggests the setting is the most robust 245

one. Thus we recommend using this setting as the 246

initial setting when applying our WLS. 247

Furthermore, the winner setting agrees with the 248

form of Masked Label Smoothing since they both 249

allocate zero probability to the source category’s 250

tokens, which further proves the effectiveness and 251

robustness of Masked Label Smoothing. 252

7 Conclusion 253

We reveal and analyse the conflict between label 254

smoothing and vocabulary sharing techniques, and 255

point out that jointly adopting them may lead to 256

sub-optimal performance. To address this issue, we 257

introduce a plug-and-play Masked Label Smooth- 258

ing mechanism to eliminate the conflict. Simple 259

yet effective, MLS shows a consistent and signif- 260

icant improvement over original label smoothing 261

with vocabulary sharing. 262
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A Algorithms376

Algorithm 1 Divide Token Categories
Input: List: S, T, J
Output: List: A,B,C
Description: S is the vocabulary list for source

language, T for target language, J for joint vocabu-
lary. A is the output vocabulary for source tokens,
B for common tokens, C for target tokens.

1: Initialize empty list A,B,C
2: for i in J do
3: if i in S and i in T then
4: B.add(i)
5: else
6: if i in S then
7: A.add(i)
8: else
9: C.add(i)

10: return A,B,C

B Experiment Details377

We use the official train-dev-test split of WMT’14378

and IWSLT’14,15,16 dataset. For CASIA ZH-EN379

dataset, we randomly select 5000 sentences as de-380

velopment set and 5000 sentences as test set from381

the total dataset.382

We evaluate our method upon Transformer-Base383

(Vaswani et al., 2017) and conduct experiments384

under same hyper-parameters for fair comparison.385

We use compound_split_bleu.sh from fairseq to386

compute the final bleu scores. The inference ECE387

score1 and chrF score2 are computed through open388

source scripts.389

Before training, we first apply BPE(Sennrich390

et al., 2016) to tokenize the corpus for 16k steps391

each language and then learn a joint dictionary.392

During training, the label smoothing parameter α393

is set to 0.1 in all experiments. We use Adam394

optimizer with betas to be (0.9,0.98) and learning395

rate is 0.0007. During warming up steps, the initial396

learning rate is 1e-7 and there are 5000 warm-up397

steps. We use a batchsize of 4096 together with398

an update-freq of 4 on two Nvidia 3090 GPUs.399

Dropout rate is set to 0.3 and weight decay is set to400

0.0001 for all experiments. We use beam size as 5401

during all testing.402

1https://github.com/shuo-git/InfECE
2https://github.com/m-popovic/chrF

C Result Analysis 403

Multilingual Compared with the imbalanced 404

version, the balanced version gave better BLEU 405

scores in DE-EN direction while much worse per- 406

formance in RO-EN translation for both the origi- 407

nal label smoothing and MLS. 408

It indicates that the cut down on RO-EN training 409

examples does weaken the generalization of model 410

in RO-EN translation however doesn’t influence the 411

DE-EN translation quality since the RO-EN data 412

might introduce bias to the training process for 413

DE-EN translation. Compared with the bilingual 414

translation, DE-EN translation outperform by a 415

large margin with RO-EN data enhancement no 416

matter whether MLS is applied, which is consistent 417

to (Aharoni et al., 2019). 418

Different Alpha for LS We report the result of 419

different alpha value in following tables: 420

BLEU IWSLT EN-RO Avg

alpha 0.1 0.3 0.5
LS+VS 20.54 20.65 20.62 20.60
MLS 20.57 20.99 21.1 20.88

chrF IWSLT EN-RO Avg

alpha 0.1 0.3 0.5
LS+VS 45.54 45.79 45.7 45.68
MLS 45.68 46.29 46.4 46.12

Table 6: Result under different alpha scores on
IWSLT16 EN-RO dataset.

BLEU IWSLT RO-EN Avg

alpha 0.1 0.3 0.5
LS+VS 22.54 22.95 22.98 22.82
MLS 22.89 23.1 23.07 23.02

chrF IWSLT RO-EN Avg

alpha 0.1 0.3 0.5
LS+VS 47.09 47.29 47.23 47.20
MLS 48.23 48.36 47.39 47.99

Table 7: Result under different alpha scores on
IWSLT16 RO-EN dataset.
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