
Efficient Policy Optimization in Robust Constrained
MDPs with Iteration Complexity Guarantees

Sourav Ganguly
Department of ECE

New Jersey Institute of Technology
New Jersey, USA
sg2786@njit.edu

Kishan Panaganti
Department of CMS

California Institute of Technology
(now at Tencent AI Lab, Seattle, WA)

kpb.research@gmail.com

Arnob Ghosh
Department of ECE

New Jersey Institute of Technology
New Jersey, USA

arnob.ghosh@njit.edu

Adam Wierman
Department of CMS

California Institute of Technology
California, USA

adamw@caltech.edu

Abstract

Constrained decision-making is essential for designing safe policies in real-world
control systems, yet simulated environments often fail to capture real-world ad-
versities. We consider the problem of learning a policy that will maximize the
cumulative reward while satisfying a constraint, even when there is a mismatch
between the real model and an accessible simulator/nominal model. In particular,
we consider the robust constrained Markov decision problem (RCMDP) where an
agent needs to maximize the reward and satisfy the constraint against the worst
possible stochastic model under the uncertainty set centered around an unknown
nominal model. Primal-dual methods, effective for standard constrained MDP
(CMDP), are not applicable here because of the lack of the strong duality prop-
erty. Further, one cannot apply the standard robust value-iteration based approach
on the composite value function either as the worst case models may be different
for the reward value function and the constraint value function. We propose a
novel technique that effectively minimizes the constraint value function–to satisfy
the constraints; on the other hand, when all the constraints are satisfied, it can
simply maximize the robust reward value function. We prove that such an algo-
rithm finds a policy with at most ϵ sub-optimality and feasible policy afterO(ϵ−2)
iterations. In contrast to the state-of-the-art methods, we do not need to employ a
binary search, thus, we reduce the computation time for larger value of discount
factor (γ), and achieve a better performance for large state space.

1 Introduction
Ensuring safety or satisfying constraints is important for implementation of the RL algorithms in
the real system. A poorly chosen action can lead to catastrophic consequences, making it crucial to
incorporate safety constraints into the design. For instance, in self-driving cars [1], a slight safety
violation can result in serious harm to the system. Constrained Markov Decision Process (CMDP)
can address such safety concerns where the agent aims to maximize the expected reward while keep-
ing the expected constraint cost within a predefined safety boundary [2] (cf.(5)). CMDPs effectively
restricted agents from violating safety limits [3, 4]. However, in many practical problems, an al-
gorithm is trained using a simulator which might be different from the real world. Thus, policies
obtained for CMDP in simulated environment can still violate the constraint in the real environment.

To resolve the above issues, recently, researchers considered robust CMDP (RCMDP) problem
where the constraint needs to be satisfied even when there is a model-mismatch due to the sim-

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Wall-clock time comparisons (in secs)

Environment Name RNPG (our) EPIRC-PGS (γ vals.)
0.9 0.99 0.995

CRS 48.574 190.53 228.65 290.15
Garnet 78.406 290.21 316.23 453.14

Modified Frozenlake 160.31 453.7 561.47 620.12
Garbage collector 177.13 344.87 400.13 489.54

Table 1: Comparison of execution times averaged over multiple runs between RNPG, and EPIRC-PGS (inner
loop T = 100 and outer-loop K=10) (Some more experimental results to demonstrate faster performance of our
algorithms can be found in appendix G)

to-real gap. In particular, we seek to solve the problem

RCMDP objective: min
π

max
P∈P

Jπ,P
c0 s.t. max

P∈P
Jπ,P
ci ≤ b, i ∈ {1, . . . ,K}. (1)

where Jcn is the expected cumulative cost for the associated RCMDP cost function cn (see Sec-
tion 2). Here P is the uncertainty set centered around a nominal (simulator) model described in (6).
Note that learning the optimal policy for RCMDP are more challenging compared to the CMDP. In
particular, the main challenge lies in the fact that the standard primal-dual based approaches, which
achieve provable sample complexity results for the CMDP problems [5, 6], cannot achieve the same
for the robust CMDP problem as the problem may not admit strong duality even when the strict fea-
sibility holds [7]. This is because the state occupancy measure is no longer convex as the worst-case
transition probability model depends on the policy. Due to the same reason, even applying robust
value iteration is not possible for the Lagrangian unlike the non-robust CMDP problem.

Recently, [8] proposed an epigraph approach to solve the problem in (1). In particular, they consid-
ered

min
π,b0

b0 s.t. Jπ
cn − bn ≤ 0; n ∈ {0, . . . ,K}. (2)

Hence, the objective is passed on to the constraint with an objective of how tight the constraint can
be. [8] finds the optimal policy for each b0, and then optimized b0 using a binary search. They
showed that for each b0, the iteration complexity is O(ϵ−4) to find the optimal policy. Note that
one needs to evaluate robust value function at every iteration for each b0 which is costly operation
especially when γ is large as it is evident by Table 1. Further, the binary search method only works
when the estimation is perfect [9], thus, if the robust policy evaluator is noisy which is more likely
for the large state-space, the binary search method may not work as it is evident in our function
approximation setup (Appendix G). Moreover, the complexity of iteration is only O(log(ϵ−1)ϵ−4),
which is worse than that of the CMDP [10]. We seek to answer the following:

Can we develop a computationally more efficient (without binary search) ap-
proach for robust CMDP problem with a faster iteration complexity bound?

Our Contributions

• We propose a novel approach to address the optimization problem. Specifically, we reformulate it
as follows:

min
π

max

{
Jπ
c0

λ
,max

n

[
Jπ
cn − bn

]}
. (3)

This formulation balances the trade-off between optimizing the objective and satisfying the con-
straints. When maxn

[
Jπ
cn − bn

]
> 0, the focus is on reducing constraint violations. Otherwise,

the objective Jπ
c0 is minimized, scaled by the factor λ. Notably, this framework eliminates the need

for binary search over λ; solving the above problem directly yields a policy that respects the con-
straints for an appropriately chosen λ. We show the almost equivalence of optimal solution of (3)
and (1). However, because of the point-wise maximum over the multiple objectives, it introduces
additional challenges in achieving the iteration complexity, as the index of the value function of
the objective now depends on the policy.

• We propose an algorithm (RNPG) that gives a policy which is at most ϵ-sub optimal and feasible
after O(ξ−2ϵ−2) iterations if the strict feasibility parameter ξ is known. This is the first result to
show that strict safety feasibility can be achieved. This improves the existing iteration complexity

2

O(log

(
1

(1− γ)ϵ

)
ϵ−4) achieved by EPIRC-PGS by [8]. Our algorithm does not rely on binary

search and uses KL regularization instead of projected gradient descent. We also show that if we
do not know ξ, we can achieve a policy that violates the constraint by at most ϵ amount while
being at most ϵ-suboptimal with O(1/ϵ4) iteration complexity. Moreover, our dependence on the

state-space (S), and the effective horizon (i.e.,
1

1− γ
) are much better compared to EPIRC-PGS.

• We extend our framework to the function approximation setup by proposing a robust constrained
actor-critic with integral probability metric as the uncertainty metric. For the finite-state, our
empirical results show that our proposed approaches achieve a feasible policy with good reward
(comparable or better than the one achieved by EPIRC-PGS, see Table 11) at a faster wall-clock
time (see Table 1)1 compared to the EPIRC-PGS. From Table 1, it is evident that our algorithm
speeds up the computation process by at-least 2 times as compared to EPIRC-PGS algorithm when
γ = 0.9 and at-least 3 times to EPIRC-PGS when γ = 0.995. For the function approximation
setup, our proposed approach is the only one that achieves feasibility and even a better reward to
the robust version of CRPO [11] during the test time for Cartpole experiment (Table 12). Further,
we outperform EPIRC-PGS significant manner for the function approximation setup both in terms
of performance and the training time showing its efficacy.

1.1 Related Works

CMDP: The convex nature of the state-action occupancy measure ensures the existence of a zero
duality gap between the primal and dual problem for CMDP, making them well-suited for solution
via primal-dual methods [2, 12–19]. The convergence bounds and rates of convergence for these
methods have been extensively studied in [20–24, 6, 25, 26]. Beyond primal-dual methods, LP-
based and model-based approaches have been explored to solve the primal problem directly [27, 18,
28, 29, 11, 30]. However, the above approaches cannot be extended to the RCMDP case.

Robust MDP: For robust (unconstrained) MDPs (introduced in [31]), recent studies obtain the
sample complexity guarantee using robust dynamic programming approach [32–36]. Model-free
approaches are also studied [34, 37–43]. However, extending these methods to Robust Constrained
MDPs (RCMDPs) presents additional challenges. The introduction of constraint functions com-
plicates the optimization process as one needs to consider the worst value function both for the
objective and the constraint.

RCMDP: Unlike non-robust CMDPs, there is limited research available on robust environments.
In [7], it was shown that the optimization function for RCMDPs is not convex, making it difficult
to solve the Lagrangian formulation, unlike in standard CMDPs. Some studies have attempted
to address this challenge using a primal-dual approach [44, 7] without any iteration complexity
guarantee. [45] proposed a primal-dual approach to solve RCMDP under the strong duality by
restricting to the categorical randomized policy class. However, they did not provide any iteration
complexity guarantee. As we discussed, [8] reformulates the Lagrangian problem into an epigraph
representation, addressing the limitations of previous methods while providing valuable theoretical
insights. However, this method requires a binary search, significantly increasing computational
complexity. Moreover, the binary search approach fails when the estimated robust policy value
function is noisy [9].

2 Problem Formulation

CMDP: We denote a MDP as M = ⟨S,A,P, C, {cj}Kj=1, γ⟩ where S,A,P : S × A × S → R
denote state space, action space, and probability transition function respectively. γ ∈ [0, 1) denotes
the discount factor and ci : S × A → R, for i = {0, 1, . . . ,K}, denotes the constraint function.
Let R+ = max (0, R) for any real number R and π : S → A denote a policy. Let β : S → ∆(S)
denote the initial state distribution where ∆(S) denotes the probability distribution taken over space
S. Let V P,π

ci (s) : S → R, s.t. i ∈ {0, . . . ,K} (where c0 ∈ C denote the cost for the objective)
denote the value function obtained by following policy π and the transition model P where

V π,P
ci (s) := EP,π

[
∞
Σ
t=1

γt−1π(a|s)cti(s, a)
]
, (4)

1The system specifications are, Processor: Intel(R)Core(TM)i7-14700-2.10 GHz, Installed RAM 32.0 GB
(31.7 GB usable),64-bit operating system, x64-based processor No GPU.

3

where cti(s, a) denotes the single step ‘i’th-cost/reward for being at a state ‘s’ and taking action ‘a’ at
the ‘t’-th instant. Without loss of generality, we assume 0 ≤ ci(s, a) ≤ 1 s.t. i ∈ {0, . . . ,K}. This
is in consistent with the existing literature [8]. We also denote JP,π

ci = ⟨ρ, V P,π
ci ⟩ for i ∈ {0, . . . ,K}

where ρ is the initial state-distribution. For notational simplicity, we denote H = 1/(1 − γ) as the
maximum cost value.

The MDP M forms a constrained MDP when constraint cost functions are bounded by a threshold,
leading to the following optimization problem,

CMDP objective: min Jπ,P
c0 s.t. Jπ,P

ci ≤ bi ∀i ∈ {1, . . . ,K}. (5)

Note that even though we consider a cost-based environment to be consistent with the RCMDP
literature [8] where the objective is to minimize the expected cumulative cost, our analysis can
easily go through for reward-based environment where the objective is to maximize the expected
cumulative reward. Further, we can also consider the constraints of the form Jπ,P

ci ≥ bi.

RCMDP: We consider that we have access to the nominal model P0, however, the true model might
be different compared to the nominal model P0. Such a scenario is relevant when we train using
simulator, however, the real environment might be different compared to the simulator. The state-
of-the art choice for the uncertainty set is to collect all the probability distribution which are in close
proximity to a nominal model P0 ∈ ∆(S ×A). Thus P =

⊗
(s,a)∈S×A P(s,a) such that

P(s,a) = {P ∈ ∆(S) : D(P, P0(s, a)) ≤ ρ}, (6)

where D(., .) is the distance measure between two probability distribution and ρ denotes the max-
imum perturbation possible from the nominal model. Some poplar choices for D(., .) are TV dis-
tance, χ2 distance and KL-divergence [32].

Equation (6) satisfies the (s, a)-rectangularity assumption. It is important to note that our analy-
sis and algorithm remain applicable as long as a robust policy evaluator, that is, maxP∈P J

π,P
ci is

available. Therefore, we can also extend our approach to consider s-rectangular uncertainty sets. In
addition, it is possible to extend this to the integral probability metric (IPM). However, without such
an assumption, evaluating a robust value function becomes an NP-hard problem.

The objective in constrained robust MDPs is to minimize (or maximize in a reward based setting)
the worst case value function while keeping the worst case expected cost function within a thresh-
old (user defined) as defined in (1). We denote maxP J

P,π
ci = Jπ

ci as the worst possible expected
cumulative cost corresponding to cost ci following the policy π.

Learning Metric: Since we do not know the model, we are in the data-driven learning setting.
Here, we are interested in finding the number of iterations (T) required to obtain a policy π̂ with
sub-optimality gap of at most ϵ, and a feasible policy incurring no violations. That is, after T
iterations, π̂ satisfies

Gap(π̂) = J π̂
c0 − Jπ∗

c0 ≤ ϵ and Violation(π̂) = max
n

J π̂
cn − bn ≤ 0, (7)

where π∗ is the optimal policy of (1). Note that we do not assume any restriction on the policy class
Π unlike in [8]. In [45], the policy class increases as T increases as it is an ensemble of the learned
policies up to time T . Here, Π denotes any Markovian policy.

Thus, the iteration complexity measures how many iterations required to obtain a feasible policy
with sub-optimality gap of at most ϵ. Iteration complexity is a standard measure for unconstrained
robust MDP [38]. In addition to sub-optimality gap, we also seek to achieve a feasible policy π̂ for
RCMDP. Note that unlike in [8], where they allowed a violation of ϵ, here, we want to find a feasible
policy, a stricter requirement.

Difficulty with the vanilla primal-dual method The most celebrated method to solve a constrained
optimization problem is by introducing Lagrangian multiplers. Let us consider λ = (λ1 . . . λK) ∈
RN

+ be the set of langrangian multipliers introduced to convert the primal problem eqn. (1) into the
dual space which is shown in eqn. (8)

J∗ = min
π∈Π

max
λ∈RN

+

max
P∈P

Jπ,P
c0 +

N

Σ
i=1
λi.max

P∈P
(Jπ,P

ci − bi). (8)

In the CMDP problem, [46] shows that the strong duality holds when there exists a strictly feasible
policy (aka Slater’s condition). However, a concurrent work [47] highlighted that strong duality

4

does not hold for the RCMDP problem as the occupancy measure is no longer convex as the worst
transition model differs for different policies. In addition to that, in [8] a strong ambiguity regarding
the tractability in solving lagrangian problem is discussed. Further, even if one fixes λ, one cannot
apply robust value iteration approach to find the optimal policy for the Lagrangian unlike the CMDP.
Hence, it is evident to look for alternative measures to find a solution to the optimality problem.

3 Policy Gradient Approach for RCMDPs

In this section, we discuss our approach to solve the RCMDP problem (eqn.(1)). In what follows,
we describe our policy optimization algorithm RNPG in detail.

3.1 Our Proposed Approach

In order to address the challenges of the primal-dual problem, We consider the following problem

min
π

max{Jπ
c0/λ,max

n
[Jπ

cn − bn]}. (9)

Intuition: Note that when Jπ
ci ≤ bi for all i = 1, . . . ,K, the second term in the objective becomes

negative, and since Jπ
c0 ≥ 0, the optimization will focus on minimizing Jπ

c0 , as the policy is likely to
be feasible with respect to all constraints. Conversely, if there exists any i such that Jπ

ci > bi, then
for a sufficiently large λ, the term Jπ

c0/λ becomes smaller than Jπ
ci − bi, causing the optimization to

prioritize reducing the most violated constraint Jπ
ci .

Even though we can not claim that (9) and (1) are the same, we can claim that the optimal solution of
(9) can only violate the constraint by at most ϵ-amount by a suitable choice of λ. Hence, minimizing
(9) amounts to searching for policies that can violate at most ϵ amount. Thus, the optimal policy of
(1) can be an optimal of (9). In particular, optimal policy of (9) indeed has a smaller cost compared
to that of (1). We formalize this as the following result.

Proposition 1. Suppose that π̂∗ is the optimal policy of (9) then J π̂∗

c0 ≤ Jπ∗

c0 , and can only violate
the constraint by at most ϵ with λ = 2H/ϵ.

The key distinction from the epigraph-based approach proposed in [8] is that we avoid tuning the
hyperparameter b0 via binary search. This significantly reduces computational overhead, as also
demonstrated in our empirical evaluations. Furthermore, tuning b0 typically requires accurate esti-
mation, even an unbiased estimation would not work, which is prohibitive as the state-space grows
when a high-probability estimate becomes challenging.

Since our goal is to obtain a feasible policy, we assume that the optimal policy is strictly feasible.

Assumption 1. We assume that maxn J
π∗

cn − bn ≤ −ξ, for some ξ > 0.
The above assumption is required because we want to have a feasible policy rather bounding the
violation gap to ϵ. Note that we only need to know (or, estimate) the value of ξ. Of course, we do
not need to know the optimal policy π∗. Using ξ, we can show that we achieve a feasible policy
with at most ϵ-gap in Theorem 4.1. Intuitively, if ξ > ϵ, it means that by choosing λ = 2H/ξ,
we can actually guarantee feasibility according to Proposition 1. We relax this ξ-dependency in
Theorem 6.1 where we show that we can achieve a policy with at most ϵ-gap and ϵ-violation.

We consider the problem

min
π

max{Jπ
c0/λ,max

n
Jπ
cn − bn + ξ}. (10)

Note that even though for theoretical analysis to achieve a feasible policy we assume the knowledge
of ξ; for our empirical evaluations, we did not assume that and yet we achieved feasible policy with
good reward exceeding the state-of-the-art performance. Hence, we modify the policy space to be
ξ-dependent.

3.2 Policy Optimization Algorithm

We now describe our proposed robust natural policy gradient (RNPG) approach inspired from the
unconstrained natural policy gradient [48]. For notational simplicity, we define Ji(π) = Jπ

ci −bi+ξ
for i = 1, . . . ,K, and J0(π) = Jπ

c0/λ. The policy update is then given by–

πt+1 ∈ argmin
π∈Π

⟨∇πtJi(πt), π − πt⟩+
1

αt
KL(π||πt) where i = argmax{

Jπ
c0

λ
, {Jπ

cn − bn + ξ}Kn=1}

5

where KL is the usual Kullback-Leibler divergence. Note that this is a convex optimization problem,
and can be optimized efficiently. If we use, ℓ2 regularization, i.e., ||π−πt||22, then it becomes a robust
projected policy gradient (RPPG) adapted from the unconstrained version (see Appendix D) [49, 38],
a variant of which is used in [8] to find optimal policy for each b0. Of course, our approach also
works for ℓ2 norm which we define in Algorithm 4. Empirically, we observe that KL-divergence has
a better performance, and provide iteration complexity for RNPG.

The complete procedure is described in Algorithm 1. First, we evaluate Jπt
ci and ∇πtJ

πt
ci using the

robust policy evaluator which we describe in the following.

Robust Policy Evaluator: Our algorithm assumes access to a robust policy evaluation oracle that
returns the worst-case performance of a given policy, i.e., Jπ

ci = maxP∈P J
π,P
ci . This assumption is

standard and is also adopted in both constrained [8] and unconstrained [38] robust MDP frameworks.

As we discussed, several efficient techniques exist for evaluating robust policies under various uncer-
tainty models especially with (s, a) rectangular assumption (6). In this work, we focus on the widely
studied and expressive KL-divergence-based uncertainty set, which not only captures an infinite
family of plausible transition models but also admits a closed-form robust evaluation method.

The robust value function under the KL-uncertainty set is formalized in Lemma D.1 (see Ap-
pendix D). The advantage is that we obtain a closed form expression for the robust value function,
and we can evaluate it by drawing samples from the nominal model only. For further background
on KL and other uncertainty sets, we refer the reader to [50, 34, 33].

Our framework is not limited to KL-divergence. Efficient robust value function evaluation tech-
niques exist for other popular uncertainty models such as Total Variation (TV), Wasserstein, and
χ2-divergence sets [32, 51, 52, 33]. These approaches typically leverage dual formulations to effi-
ciently solve the inner maximization problem required for robust evaluation. We need our robust pol-
icy evaluator to be only ϵ-accurate. For many uncertainty sets including popular (s, a)-rectangular
perturbation (e.g., KL-divergence, TV-distance, χ2 uncertainty sets) this requires O(1/ϵ2) samples
[32, 34]. Hence, we need Tϵ−2 samples in those cases.

Policy Update: In order to evaluate ∇πtJ
π
i , we use the following result directly adapted to our

setting from [48]
Lemma 3.1. For any π ∈ Π, transition kernel P : S × A → ∆(S), for i = 1, . . . ,K

(∇Ji,P (π))(s, a) =
1

1− γ
dπP (s)Q

π
i,P (s, a), where Qπ

i,P (s, a) = Qπ
ci,P

, and Q0,P = Qπ
c0,P

/λ.

Consider it = argmin{Jπt
c0 /λ, {J

πt
ci − bi + ξ}Ki=1}, and pt = argmax Jπt,pt

cit
, we can evaluate

∇πt
Jπt,pt
cit

using the robust evaluator for Qπt,pt
cit

(·, ·) as mentioned.

Hence, the natural policy update at iteration t can be decomposed as multiple independent Mirror
Descent updates across the states–

πt+1,s = argmin
∆A

{⟨Qπt,pt

it
, πs⟩+

1

αt
KL(πs||πt,s)}, ∀s. (11)

Again, this is efficient since it is convex. We use direct parameterization and soft-max parameteriza-
tion for the policy update (Appendix F) by solving the optimization problem (11). The Algorithm 1
outputs π∗

t corresponding to the minimum objective over T iterations. We characterize T , the itera-
tion complexity in the next section.

Although Algorithm 1 includes ξ for theoretical analysis, we do not assume knowledge of ξ in our
empirical evaluations. In Section 6, we discuss how we achieve a slightly weaker iteration complex-
ity result without assuming the knowledge of ξ.
4 Theoretical Results

In this section, we will discuss the results obtained for our RNPG algorithm (Algorithm 1). Before
describing, the main results, we state the Assumptions.
Assumption 2. There exists β ∈ (0, 1) such that γp(s′|s, a) ≤ βp0(s

′|s, a) ∀s′, s, a, and p ∈ P .

This was a common assumption for unconstrained RMDP as well [53, 54]. Assumption 2 states that
if the perturbed distribution assigns positive probability to an event, the nominal model should also

6

Algorithm 1 Robust-Natural Policy Gradient for constrained MDP (RNPG)

Input: α , λ, T , ρ, V(.) (Robust Policy Evaluator, see Algorithm 2))
Initialize: π0 = 1/|A|.
for t = 0 . . . T − 1 do

Jπt

ci ,∇J
πt

ci = V(ci, ρ) where i = {0, 1, . . . ,K}.
Update πt+1 according to (11).

end for
Output policy argmint∈0,...,T−1 max{Jπt

c0 /λ,maxi(J
πt
ci − bi + ξ)}.

assign positive probability to that event. Otherwise, a mismatch in supports could lead to unsampled
regions and render finite-iteration bounds intractable. More importantly, Algorithm 1 does not need
to know β. We also did not enforce in our empirical studies. The algorithm still performed well,
suggesting that the practical impact may be less restrictive than the theory implies. Also, EPIRC-
PGS [8] assumed that the ratio between the state-action occupancy measures on the states covered
by all policies and the initial state distribution is bounded.

We also consider a slightly stronger optimal policy for the surrogate problem.
Assumption 3. We consider π̂∗,a uniform minimizer across all states of the surrogate problem in
(9), i.e., π̂∗ is a solution of minπ max{V π,P

c0 (s)/λ,maxn maxP V
π,P
ci − bn} for all s.

A similar assumption is also considered for the unconstrained problem [54, 31].

Theorem 4.1. Under Assumptions 1, 2, and 3 with λ = 2H/min{ξ, 1}, αt = α0 =
1− γ√
TS

after

T = O(ϵ−2ξ−2(1− γ)−2(1− β)−2S log(|A|)) iterations, Algorithm 1 returns a policy π̂ such that
J π̂
r − Jπ∗

r ≤ ϵ, and maxn J
π̂
cn − bn ≤ 0.

Thus, Algorithm 1 has an iteration complexity of O(ϵ−2). Also, the policy is feasible and only at
most ϵ-sub optimal. Our result improves upon the result O(ϵ−4) achieved in [8]. Further, they did
not guarantee feasibility of the policy (rather, only ϵ-violation). More importantly, we do not need
to employ a binary search algorithm. Thus, our algorithm is computationally more efficient. Our
dependence on S, A, and (1 − γ)−1 are significantly better compared to [8] as well. Note that for
the unconstrained case the iteration complexity isO(ϵ−1) [48]; whether we can achieve such a result
for robust CMDP has been left for the future.

As we mentioned, we do not use this ξ for our empirical evaluations. Yet our results indicate that
we can achieve feasible policy with better performance compared to EPIRC-PGS in significantly
smaller time. In Section 6, we also obtain the result when we relax Assumption 1 with slightly
worse iteration complexity by simply putting ξ = 0, and λ = 2H/ϵ.

4.1 Proof Outline

The proof will be divided in two parts. First, we bound the iteration complexity for ϵ-sub optimal
solution of (10). Subsequently, we show that the sub-optimality gap and violation gap using the
above result.

Bounding the Iteration complexity for (10): The following result is the key to achieve the iteration
complexity result of Algorithm 1 for the Problem (10)
Lemma 4.2. The policy π̂ returned by Algorithm 1 satisfies the following property:

max{J π̂
c0/λ,max

n
J π̂
cn − bn} −max{Jπ

c0/λ,max
n

Jπ
cn − bn} ≤ ϵ/λ (12)

for any policy π after O(λ2ϵ−2(1− γ)−4(1− β)−2) iterations under Assumptions 2, and 3.

Hence, the above result entails that Algorithm 4 returns a policy which is at most ϵ-suboptimal for
the problem (10) after O(ϵ−2ξ−2). We show that using this result we bound the sub-optimality and
the violation gap.

Technical Challenge: The main challenge compared to the policy optimization-based approaches
for unconstrained RMDP is that here the objective (cf.(9)) is point-wise maximum of multiple value

7

functions for a particular policy. Hence, one might be optimizing different objectives at different it-
erations at πt is varying across the iterations. Hence, unlike the unconstrained case, we cannot apply
the robust robust performance difference Lemma as the value-function index might be different for
πt, and πt+1. Instead, we bound it using Assumption 2, Holder’s, and Pinsker’s inequality.

Bounding the Sub-optimality Gap: By Assumption 1, Jπ∗

cn ≤ bn−ξ. Hence, maxn J
π∗

cn −bn+ξ ≤
Jπ∗

c0 /λ as Jπ∗

c0 ≥ 0. Thus,

(J π̂
c0 − Jπ∗

c0)/λ

≤ max{J π̂
c0/λ,max

n
J π̂
cn − bn + ξ} −max{Jπ∗

c0 /λ,max
n

Jπ∗

cn − bn + ξ} ≤ ϵ/λ (13)

where the last inequality follows from Lemma 4.2. By multiplying both the sides by λ, we have the
result.

Bounding the Violation: We now bound the violations.

max
n

(J π̂
cn − bn + ξ) ≤ max

n
(J π̂

cn − bn + ξ)− Jπ∗

c0 /λ+H/λ

≤ max{J π̂
c0/λ,max

n
J π̂
cn − bn} −max{Jπ∗

c0 /λ,max
n

Jπ∗

cn − bn + ξ}+H/λ

≤ ξ/2 + ϵ/λ ≤ ξ, (14)

where for the first inequality, we use the fact that Jπ∗

c0 /λ ≤ H/λ. For the secnond inequality, we
use the fact that Jπ∗

cn ≤ bn − ξ. Hence, maxn J
π∗

cn − bn + ξ ≤ Jπ∗

c0 /λ. Since λ ≥ 2H/ξ, thus,
H/λ ≤ ξ/2. Note that ϵ/λ = ϵmin{ξ, 1}/(2H) ≤ ϵξ/(2H) ≤ ξ/2. Hence, the above shows that
maxn(J

π̂
cn − bn) ≤ 0.

5 Experimental Results
We evaluate our algorithms2 on two environments: (i) Garnet, and (ii) Constrained Riverswim
(CRS). Additional experimental results are provided in Appendix E.

We have fixed λ = 50 across the environments. This demonstrates that with the inclusion of a
KL regularization term over policy updates, RNPG eliminates the need for manual tuning of λ.
A sufficiently large fixed value (λ = 50) yields consistently strong performance. For a detailed
description of the hyperparameters used, please refer to Appendix E.

Garnet: The Garnet environment is a well-known RL benchmark that consists of nS states and nA
actions, as described in [55]. For our experiments, we consider G(15, 20) with 15 states and 20 ac-
tions. The nominal probability function, reward function, and utility function are each sampled from
separate normal distributions: N (µa, σa), N (µb, σb), and N (µc, σc), where the means µa, µb, and
µc are drawn from a uniform distribution Unif(0, 100). To ensure valid probability distributions,
the nominal probabilities are exponentiated and then normalized. In this environment, we seek to
maximize the reward while ensuring that the constraint is above a threshold.

0 200 400 600 800 1000
Iteration

0

50

100

150

200

Cu
m

ul
at

iv
e

Ob
je

ct
iv

e
re

wa
rd

Objective function

RNPG
RPPG
EPIRC

0 200 400 600 800 1000
Iteration

0

20

40

60

80

100

120

Cu
m

ul
at

iv
e

co
ns

tra
in

t c
os

t

Constraint function

RNPG
RPPG
EPIRC
baseline
Safe region
Unsafe Region

Figure 1: Comparison of RNPG, RPPG and EPIRC-PGS on Garnet(15,20) environment. Here, we want to
maximize the objective (vf), and want the constraint (cf) to be above the baseline.
Constrained River-swim (CRS): The River-Swim environment consists of six states, each repre-
senting an island in a water body. The swimmer begins at any island and aims to reach either end

2The complete implementation is available at https://github.com/Sourav1429/RCAC_NPG.git

8

https://github.com/Sourav1429/RCAC_NPG.git

of the river to earn a reward. At each state, the swimmer has two possible actions: swim left (a0) or
swim right (a1). Rewards are only provided at the boundary states, while intermediate states do not
offer any rewards. The leftmost state, s0, and the rightmost state, s5, correspond to the riverbanks.
As the swimmer moves from s0 to s5, the water depth increases, and dangerous whirlpools become
more prevalent. This progression is captured by a safety constraint cost, which varies across states.
The safety cost is lowest at s0 and reaches its maximum at s5, reflecting the increasing risk as the
swimmer ventures further downstream. Here the goal is to maximize the cumulative reward while
ensuring the cumulative cost is below a threshold.

0 200 400 600 800 1000
Iteration

0

20

40

60

80

100

120

Cu
m

ul
at

iv
e

Ob
je

ct
iv

e
re

wa
rd

Objective function

RNPG
RPPG
EPIRC

0 200 400 600 800 1000
Iteration

20

25

30

35

40

45

50

Cu
m

ul
at

iv
e

co
ns

tra
in

t c
os

t

Constraint function

RNPG
RPPG
EPIRC
baseline
Unsafe region
Safe Region

Figure 2: Comparison of RPPG and EPIRC-PGS on CRS environment. Here we want to maximize the
objective (vf) while constraint (cf) being below the threshold line.

5.1 Analysis of results

• Does RNPG perform better than EPIRC-PGS?
Performance: Our experimental results demonstrate that RNPG consistently outperforms EPIRC-
PGS, in both environments. In fact, for the CRS environment (Figure 2) RNPG is the only one that
produces a feasible policy. EPIRC-PGS is unable to produce a feasible policy there. In the Garnet
environment (Figure 1), RNPG finds a feasible policy while achieving a better reward compared
to the EPIRC-PGS. Also, RNPG shows a better convergence property and is more stable because
of the KL regularization.
Computational Time: RNPG exhibits significant improvements in computational efficiency,
achieving convergence at least 4x faster than EPIRC-PGS for γ = 0.9, and 6x faster for γ = 0.995
in the CRS setting (Table 1). In the Garnet environment, RNPG achieves a 5x speedup over
EPIRC-PGS for γ = 0.9, and at least 8x speedup for γ = 0.995 (Table 1). The higher speed up
in the Garnet environment because of the higher state-space. The difference in runtime can be
attributed to the fact that RNPG eliminates the need for binary search for each b0 value in (2) as
described above, and it uses a KL regularization.
To summarize, RNPG performs better compared to EPIRC-PGS in terms of achieving a better
reward while maintaining feasibility across the environments. Moreover, the convergence is stable
across the environments, and reduces the computational time significantly compared to EPIRC-
PGS as theoretical result suggested.

• KL regularization compared to ℓ2 regularization.
We also compare RNPG with RPPG (see Appendix D), a projected robust gradient descent variant
that uses an ℓ2 regularizer instead of KL for policy update in (11). In the CRS environment, RPPG
performs slightly better than EPIRC-PGS by maintaining smaller constraint violations, though
it still occasionally breaches the safety threshold. In the Garnet environment, RPPG achieves a
better performance compared to EPIRC-PGS while maintaining feasibility, however, it achieves a
smaller reward compared to RNPG. RNPG is also much stable, showing that KL regularization is
more effective compared to ℓ2 regularization. Note that RPPG also has a smaller computational
time compared to EPIRC-PGS (see Table 11), which demonstrates that removing the binary search
is the key, as EPIRC-PGS also uses ℓ2 regularization for policy update.

• Does λ require extensive tuning for RNPG?
A particularly notable observation from our experiments is that RNPG performs robustly across
different environments using a fixed value of λ = 50. This highlights that RNPG does not need to
set different λ values for different environments as theoretical result suggested. Rather, one high
λ-value is enough to achieves feasibility while achieving good reward.

9

6 Discussions and Limitation
Relaxing Assumption 1: We achieve our results in Theorem 4.1 where we assume that the optimal
policy is strictly feasible and the feasibility parameter ξ is known. We will relax both the features
of the assumption that ξ is known, and the optimal policy is strictly feasible in the following with
a slightly worse iteration complexity while ensuring that the policy has violation of at most ϵ, the
same metric achieved by EPIRC-PGS [8].

Theorem 6.1. Algorithm 1 gives a policy π̂ such that J π̂
c0 − Jπ∗

c0 ≤ ϵ and maxn J
π̂
cn − bn ≤ ϵ after

O(ϵ−4(1− γ)−4(1− β)−2 log(|A|)) number of iterations when we plug λ = 2H/ϵ and ξ = 0.

Note that since we are not assuming strict feasibility of the optimal policy, we can only bound the
violation up to ϵ. The key here is to use λ = 2H/ϵ as we do not know ξ, and then obtain an ϵ2-close
result using Lemma 4.2. This makes the iteration complexity of O(ϵ−4). Note that our dependence
on S, A, and 1/(1 − γ) are significantly better compared to EPIRC-PGS[8]. Further, we do not
employ binary search. The proof is in Appendix C.

6.1 Extending to Function Approximation: Robust Constrained Actor-Critic (RCAC)
We extend our framework to the function approximation setting motivated by the work of [54] for
unconstrained Robust MDP problem. In particular, we consider the integral probability metric (IPM)
as an uncertainty set, dF (p, q) = supf∈F{pT f − qT f} where F ⊆ R|S|. Many metrics such as
Kantorovich metric, total variation, etc., are special cases of IPM under different function classes
[56]. We then consider the IPM-based uncertainty set, Ps,a = {q|dF (q, p0s,a) ≤ ρ} around the
nominal model.

Consider the linear function approximation setting where V π
ci,w = Ψwπ

ci where Ψ ∈ ℜ|S|×d is a
feature matrix of ψT (s) ∀s as each row. We now consider the following function class F = {s →
ψ(s)T ζ, ζ ∈ ℜd, ||ζ||2 ≤ 1}. Now, we can apply the Proposition 1 in [57] to achieve the worst case
value function. In particular, we have supq∈dF (q,p0

s,a)
qTV π

ci,w = (p0s,a)
TV π

ci,w + ρ||wπ
ci,2:d

||2 where
we normalize to let the first coordinate of ψ(s) = 1. Hence, we can use the following equation to
compute the robust Bellman operator

LPV
π
ci,w = ci(s, a) + γV π

ci,w + ρ||wci,2:d||2, (15)

with the next state s′ is drawn from the nominal model. Guided by the last regularization term of
the empirical robust Bellman operator in (15), when considering value function approximation by
neural networks we add a similar regularization term for all the neural network parameters except
for the bias parameter in the last layer. We use the expression in (15) for the robust value function
for the gradient, and Jci in Algorithm 1. We need to estimate the robust Q function. In order to
estimate the Q-function we first use (15) by plugging the V -approximation, and then we use the
linear regression to fit the critic for the robust Q-function. The details can be found in Appendix G.

From the empirical results in Figure 9 and Table 12, it is evident that our proposed approach outper-
forms the state-of-the-art approaches. More importantly, compared to the EPIRC-PGS (adapted to
the function approximation setting), our approach achieves a significantly better performance with
small wall-clock time. Also, our proposed approach outperforms the robust version of the CRPO
algorithm [11, 47]. In Appendix H we showed that robust CRPO may not achieve a finite time
iteration complexity guarantee even for finite-state space.

7 Conclusions and Future Works
In this work, we present a novel algorithm that leverages the projected policy gradient and natural
policy gradient techniques to find an ϵ-suboptimal and a feasible policy after O(ϵ−2) iterations for
RCMDP problem. We demonstrate the practical applicability of our algorithm by testing it on sev-
eral standard reinforcement learning benchmarks. The empirical results highlight the effectiveness
of RNPG, particularly in terms of reduced computation time and achieving feasibility and a better
reward compared to other state-of-the-art algorithms for RCMDP.

Relaxing Assumption 2, and 3 constitute an important future research direction. Achieving a lower
bound or improving the iteration complexity is also an important future research direction. Charac-
terizing the results for other uncertainty sets also constitutes an important future research direction.
Iteration complexity guarantee for the function approximation setting has been left for the future.

10

Acknowledgments

AG and SG acknowledge NJIT Startup Fund indexed 172884. SG acknowledges Neurips 2025 for
awarding him with the NeurIPS 2025 Scholar Award. AW and KP acknowledge NSF grants CCF-
2326609, CNS-2146814, CPS-2136197, CNS-2106403, and NGSDI-2105648 and support from the
Resnick Sustainability Institute. KP also acknowledges support from the ‘PIMCO Postdoctoral Fel-
low in Data Science’ fellowship at the California Institute of Technology and the Resnick Institute.

References
[1] Ran Emuna, Avinoam Borowsky, and Armin Biess. Deep reinforcement learning for

human-like driving policies in collision avoidance tasks of self-driving cars. arXiv preprint
arXiv:2006.04218, 2020.

[2] Eitan Altman. Constrained markov decision processes with total cost criteria: Lagrangian
approach and dual linear program. Mathematical methods of operations research, 48:387–
417, 1998.

[3] Shuang Qiu, Xiaohan Wei, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. Upper confidence
primal-dual optimization: Stochastically constrained markov decision processes with adver-
sarial losses and unknown transitions. arXiv preprint arXiv:2003.00660, 2020.

[4] Sindhu Padakandla, KJ Prabuchandran, Sourav Ganguly, and Shalabh Bhatnagar. Data efficient
safe reinforcement learning. In 2022 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 1167–1172. IEEE, 2022.

[5] Sharan Vaswani, Lin F Yang, and Csaba Szepesvári. Near-optimal sample complexity bounds
for constrained mdps. arXiv preprint arXiv:2206.06270, 2022.

[6] Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Provably efficient model-free constrained rl
with linear function approximation. Advances in Neural Information Processing Systems, 35:
13303–13315, 2022.

[7] Yue Wang, Fei Miao, and Shaofeng Zou. Robust constrained reinforcement learning. arXiv
preprint arXiv:2209.06866, 2022.

[8] Toshinori Kitamura, Tadashi Kozuno, Wataru Kumagai, Kenta Hoshino, Yohei Hosoe, Kazumi
Kasaura, Masashi Hamaya, Paavo Parmas, and Yutaka Matsuo. Near-optimal policy identifi-
cation in robust constrained markov decision processes via epigraph form. arXiv preprint
arXiv:2408.16286, 2024.

[9] Michael Horstein. Sequential transmission using noiseless feedback. IEEE Transactions on
Information Theory, 9(3):136–143, 1963.

[10] Jiashuo Jiang and Yinyu Ye. Achieving o(1/ϵ) sample complexity for constrained markov
decision process. arXiv preprint arXiv:2402.16324, 2024.

[11] Tengyu Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe reinforcement
learning with convergence guarantee. In International Conference on Machine Learning, pages
11480–11491. PMLR, 2021.

[12] Santiago Paternain, Miguel Calvo-Fullana, Luiz FO Chamon, and Alejandro Ribeiro. Safe
policies for reinforcement learning via primal-dual methods. IEEE Transactions on Automatic
Control, 68(3):1321–1336, 2022.

[13] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by pid lagrangian methods. In International Conference on Machine Learning, pages 9133–
9143. PMLR, 2020.

[14] Qingkai Liang, Fanyu Que, and Eytan Modiano. Accelerated primal-dual policy optimization
for safe reinforcement learning. arXiv preprint arXiv:1802.06480, 2018.

[15] Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization.
arXiv preprint arXiv:1805.11074, 2018.

11

[16] Ming Yu, Zhuoran Yang, Mladen Kolar, and Zhaoran Wang. Convergent policy optimization
for safe reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

[17] Liyuan Zheng and Lillian Ratliff. Constrained upper confidence reinforcement learning. In
Learning for Dynamics and Control, pages 620–629. PMLR, 2020.

[18] Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained
mdps. arXiv preprint arXiv:2003.02189, 2020.

[19] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
learning. Advances in neural information processing systems, 21, 2008.

[20] Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo R Jovanovic. Natural policy
gradient primal-dual method for constrained markov decision processes. In NeurIPS, 2020.

[21] Tianjiao Li, Ziwei Guan, Shaofeng Zou, Tengyu Xu, Yingbin Liang, and Guanghui Lan. Faster
algorithm and sharper analysis for constrained markov decision process. Operations Research
Letters, 54:107107, 2024.

[22] Tao Liu, Ruida Zhou, Dileep Kalathil, PR Kumar, and Chao Tian. Policy optimization for
constrained mdps with provable fast global convergence. arXiv preprint arXiv:2111.00552,
2021.

[23] Donghao Ying, Yuhao Ding, and Javad Lavaei. A dual approach to constrained markov de-
cision processes with entropy regularization. In International Conference on Artificial Intelli-
gence and Statistics, pages 1887–1909. PMLR, 2022.

[24] Honghao Wei, Xin Liu, and Lei Ying. Triple-q: A model-free algorithm for constrained rein-
forcement learning with sublinear regret and zero constraint violation. In International Con-
ference on Artificial Intelligence and Statistics, pages 3274–3307. PMLR, 2022.

[25] Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Achieving sub-linear regret in infinite horizon
average reward constrained mdp with linear function approximation. In The Eleventh Interna-
tional Conference on Learning Representations, 2022.

[26] Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Towards achieving sub-linear regret and hard
constraint violation in model-free rl. In International Conference on Artificial Intelligence and
Statistics, pages 1054–1062. PMLR, 2024.

[27] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.
In International conference on machine learning, pages 22–31. PMLR, 2017.

[28] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A
lyapunov-based approach to safe reinforcement learning. Advances in neural information pro-
cessing systems, 31, 2018.

[29] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yu-
val Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757,
2018.

[30] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-
based constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.

[31] Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

[32] Kishan Panaganti and Dileep Kalathil. Sample complexity of robust reinforcement learning
with a generative model. In International Conference on Artificial Intelligence and Statistics,
pages 9582–9602. PMLR, 2022.

[33] Wenhao Yang, Liangyu Zhang, and Zhihua Zhang. Toward theoretical understandings of robust
markov decision processes: Sample complexity and asymptotics. The Annals of Statistics, 50
(6):3223–3248, 2022.

12

[34] Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, Matthieu Geist, and Yuejie Chi. The curious price
of distributional robustness in reinforcement learning with a generative model. Advances in
Neural Information Processing Systems, 36:79903–79917, 2023.

[35] Pierre Clavier, Erwan Le Pennec, and Matthieu Geist. Towards minimax optimality of model-
based robust reinforcement learning. arXiv preprint arXiv:2302.05372, 2023.

[36] Zhengqing Zhou, Zhengyuan Zhou, Qinxun Bai, Linhai Qiu, Jose Blanchet, and Peter Glynn.
Finite-sample regret bound for distributionally robust offline tabular reinforcement learning.
In International Conference on Artificial Intelligence and Statistics, pages 3331–3339. PMLR,
2021.

[37] Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. A finite sample complexity
bound for distributionally robust q-learning. In International Conference on Artificial Intelli-
gence and Statistics, pages 3370–3398. PMLR, 2023.

[38] Qiuhao Wang, Chin Pang Ho, and Marek Petrik. Policy gradient in robust mdps with global
convergence guarantee. In International Conference on Machine Learning, pages 35763–
35797. PMLR, 2023.

[39] Yue Wang and Shaofeng Zou. Online robust reinforcement learning with model uncertainty.
Advances in Neural Information Processing Systems, 34:7193–7206, 2021.

[40] Yue Wang, Alvaro Velasquez, George K Atia, Ashley Prater-Bennette, and Shaofeng Zou.
Model-free robust average-reward reinforcement learning. In International Conference on
Machine Learning, pages 36431–36469. PMLR, 2023.

[41] Yue Wang, Jinjun Xiong, and Shaofeng Zou. Achieving minimax optimal sample complexity
of offline reinforcement learning: A dro-based approach. 2023.

[42] Zhipeng Liang, Xiaoteng Ma, Jose Blanchet, Jiheng Zhang, and Zhengyuan Zhou. Single-
trajectory distributionally robust reinforcement learning. arXiv preprint arXiv:2301.11721,
2023.

[43] Zijian Liu, Qinxun Bai, Jose Blanchet, Perry Dong, Wei Xu, Zhengqing Zhou, and Zhengyuan
Zhou. Distributionally robust q-learning. In International Conference on Machine Learning,
pages 13623–13643. PMLR, 2022.

[44] Daniel J Mankowitz, Dan A Calian, Rae Jeong, Cosmin Paduraru, Nicolas Heess, Sumanth
Dathathri, Martin Riedmiller, and Timothy Mann. Robust constrained reinforcement learning
for continuous control with model misspecification. arXiv preprint arXiv:2010.10644, 2020.

[45] Zhengfei Zhang, Kishan Panaganti, Laixi Shi, Yanan Sui, Adam Wierman, and Yisong Yue.
Distributionally robust constrained reinforcement learning under strong duality. In Reinforce-
ment Learning Conference.

[46] Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
reinforcement learning has zero duality gap. Advances in Neural Information Processing Sys-
tems, 32, 2019.

[47] Shaocong Ma, Ziyi Chen, Yi Zhou, and Heng Huang. Rectified robust policy optimization
for model-uncertain constrained reinforcement learning without strong duality. arXiv preprint
arXiv:2508.17448, 2025.

[48] Qiuhao Wang, Shaohang Xu, Chin Pang Ho, and Marek Petrik. Policy gradient for robust
markov decision processes. arXiv preprint arXiv:2410.22114, 2024.

[49] Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization:
Global convergence and faster rates for regularized mdps. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, pages 5668–5675, 2020.

[50] Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust rein-
forcement learning using offline data. Advances in neural information processing systems, 35:
32211–32224, 2022.

13

[51] Kishan Panaganti Badrinath and Dileep Kalathil. Robust reinforcement learning using least
squares policy iteration with provable performance guarantees. In International Conference
on Machine Learning, pages 511–520. PMLR, 2021.

[52] Zaiyan Xu, Kishan Panaganti, and Dileep Kalathil. Improved sample complexity bounds for
distributionally robust reinforcement learning. In International Conference on Artificial Intel-
ligence and Statistics, pages 9728–9754. PMLR, 2023.

[53] Aviv Tamar, Shie Mannor, and Huan Xu. Scaling up robust mdps using function approxima-
tion. In International conference on machine learning, pages 181–189. PMLR, 2014.

[54] Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, PR Kumar, and Chao Tian. Natural actor-
critic for robust reinforcement learning with function approximation. Advances in neural in-
formation processing systems, 36:97–133, 2023.

[55] Yudan Wang. Model-free robust reinforcement learning with sample complexity analysis.
Master’s thesis, State University of New York at Buffalo, 2024.

[56] Alfred Müller. Integral probability metrics and their generating classes of functions. Advances
in applied probability, 29(2):429–443, 1997.

[57] Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, PR Kumar, and Chao Tian. Natural actor-
critic for robust reinforcement learning with function approximation. Advances in neural in-
formation processing systems, 36, 2024.

[58] Wenhao Yang, Han Wang, Tadashi Kozuno, Scott M. Jordan, and Zhihua Zhang. Robust
markov decision processes without model estimation, 2023. URL https://arxiv.org/abs/
2302.01248.

[59] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De Cola, Tristan
Deleu, Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-
Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis.
Gymnasium: A standard interface for reinforcement learning environments, 2024. URL
https://arxiv.org/abs/2407.17032.

[60] Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An improved analysis of
(variance-reduced) policy gradient and natural policy gradient methods. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural In-
formation Processing Systems, volume 33, pages 7624–7636. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
56577889b3c1cd083b6d7b32d32f99d5-Paper.pdf.

14

https://arxiv.org/abs/2302.01248
https://arxiv.org/abs/2302.01248
https://arxiv.org/abs/2407.17032
https://proceedings.neurips.cc/paper_files/paper/2020/file/56577889b3c1cd083b6d7b32d32f99d5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/56577889b3c1cd083b6d7b32d32f99d5-Paper.pdf

Contents

1 Introduction 1

1.1 Related Works . 3

2 Problem Formulation 3

3 Policy Gradient Approach for RCMDPs 5

3.1 Our Proposed Approach . 5

3.2 Policy Optimization Algorithm . 5

4 Theoretical Results 6

4.1 Proof Outline . 7

5 Experimental Results 8

5.1 Analysis of results . 9

6 Discussions and Limitation 10

6.1 Extending to Function Approximation: Robust Constrained Actor-Critic (RCAC) . 10

7 Conclusions and Future Works 10

A Proof of Proposition 1 17

B Proof of Lemma 4.2 17

B.1 Proof of Lemma B.3 . 19

C Proof of Theorem 6.1 19

D Robust policy evaluator based on KL divergence 19

E Experiments 21

E.1 Constrained River-swim . 22

E.1.1 Environment Description . 22

E.1.2 Discussions of the result . 23

E.2 Garnet problem . 24

E.2.1 Environment Description . 24

E.2.2 Implementation details . 24

E.2.3 Discussion of Results . 25

E.3 Modified Frozen-lake . 26

E.3.1 Environment description . 26

E.3.2 Discussion of results . 26

E.4 Garbage collection problem . 27

E.4.1 Environment description . 27

15

E.4.2 Discussion of results . 28

F Implementation Details of RNPG and RPPG 29

F.1 RNPG . 29

F.2 Robust Projected Policy Gradient (RPPG) . 30

G Extension to Continuous state space (Robust Constrained Actor Critic) 30

G.1 Results and discussion . 31

H Connection with the CRPO 33

16

A Proof of Proposition 1

Proof. Recall that π̂∗ is the solution of (9). For the first result, we have:

J π̂∗

c0 /λ− Jπ∗

c0 /λ ≤ max{J π̂∗

c0 /λ,max
n

[J π̂∗

cn − bn]} −max{Jπ∗

c0 /λ,max
n

[Jπ∗

cn − bn]}

≤ 0 (16)

where we use the fact that π∗ is feasible in the first inequality. For the second inequality, we use the
optimality of π̂∗ for (9).

We prove the second result using contradiction. Assume that the optimal solution π̂∗ of (9) violates
the constraint by ϵ. We then show by contradiction that it cannot be an optimal solution of (9). Since
at least one of the constraints violates by ϵ, thus maxn[J

π̂∗

cn − bn] ≥ ϵ. Note that since λ = 2H/ϵ,
therefore J π̂∗

c0 ≤ ϵ/2 as the maximum value of J π̂∗

c0 is H . Thus, we have

max{J π̂∗

c0 /λ,max
n

[J π̂∗

cn − bn]} ≥ ϵ. (17)

Now, consider the optimal solution π∗ of (1). It is feasible thus maxn[J
π∗

cn − bn] ≤ 0. Further,
Jπ∗

c0 /λ ≤ ϵ/2. Hence,

max{Jπ∗

c0 /λ,max
n

[Jπ∗

cn − bn]} ≤ ϵ/2 < ϵ ≤ max{J π̂∗

c0 /λ,max
n

[J π̂∗

cn − bn]}, (18)

which contradicts the fact that π̂ is optimal for (9). This proves the second result.

B Proof of Lemma 4.2

We use the following results proved in [48] in order to prove Lemma 4.2.

Lemma B.1 ([48, Lemma 4.1]). Let us assume that it = argmax{Jπt
ci − bi}, then,

αt⟨Qπt,pt

s,it
, πt+1,s − y⟩+B(πt+1,s, πt,s) ≤ B(y, πt,s)−B(y, πt+1,s), (19)

where B is the Bregman’s divergence.

The above result follows from Bregmen divergence and the policy update. In our case, B is the KL
divergence.

Lemma B.2 ([48, Lemma A.3]). For any π, π′, p, ci, and ρ, we have

Jci,ρ(π
′, p)− Jci,ρ(π, p) =

1

1− γ

∑
s

dπ,pρ (s)
∑
a

(π′
s,a − πs,a)Q

π′,p
s,a,ci . (20)

The following result is a direct consequence of Assumption 2, and has been proved in Appendix B.1.

Lemma B.3. For any π ∈ Π

Φ(π)− Φ(π̂∗) ≤ 1

1− β
E
s∼d

π∗,p0
ρ

[⟨Qπ,p
ci , πs − π̂∗⟩], (21)

where i = argmax{Jπ
ci − bi}, and p = argmax Jπ,P

ci .

Now, we are ready to prove Lemma 4.2.

Proof. From Lemma B.3

Φ(πt)− Φ(π̂∗) ≤ 1

1− β

∑
s

dπ̂
∗,p0

ρ (s)
∑
a

(πt,s,a − π̂∗
s,a)Q̂

πt,pt
s,a,cit

.

where Q̂ is the estimated value. Consider that the worst-case evaluator is only ϵ0 is close that is
||Qπt,pt

cit
− Q̂πt,pt

cit
||∞ ≤ ϵ0.

17

Hence, we have

Φ(πt)− Φ(π̂∗) ≤ 1

1− β

∑
s

dπ̂
∗,p0

ρ (s)
∑
a

(πt,s,a − π̂∗
s,a)Q

πt,pt
s,a,cit

+ ϵ0 (22)

Applying Lemma B.1 (subtracting and adding ⟨Qπt,pt

s,it
, πt,s⟩ , we then have from (22)

Φ(πt)− Φ(π̂∗) ≤

[
1

1− β
E
s∼d

π̂∗,p0
ρ

[⟨Qπt,pt

s,it
, πt,s − πt+1,s⟩+

1

α
B(π̂∗, πt)−

1

α
B(π̂∗, πt+1)−

1

α
B(πt+1, πt)]] + ϵ0.

(23)

Now,

⟨Qπt,pt

s,it
, πt,s − πt+1,s⟩ −

1

α
B(πt+1, πt) ≤ ||qπt,pt

s,it
||∞||πt,s − πt+1,s||1 −

1

2α
||πt,s − πt+1,s||21

=
−1

2α
(αt||Qπt,pt

s,it
||∞ − ||πt,s − πt+1,s||1)2 +

α

2
||Qπt,pt

s,it
||2∞

≤ α

2
||Qπt,pt

s,it
||2∞. (24)

where we use the Holder’s inequality for the first inequality. For the second inequality, we use the
Pinsker’s inequality as B is the KL divergence.

Hence, by summing over t, and using (24) we have from (23),

∑
t

(Φ(πt)− Φ(π̂∗)) ≤ 1

1− β

T−1∑
t=0

E
s∼d

π̂∗,p0
ρ

α||Qπt,pt

s,i ||2∞

+
1

α(1− β)
E
s∼d

π̂∗,p0
ρ

[B(π̂∗, πt)−B(π̂∗, πt+1)] + Tϵ0

≤ 1

(1− β)

T−1∑
t=0

αS
1

(1− γ)2
+

1

α(1− β)
E
s∼d

π̂∗,p0
ρ

B(π̂∗, π0) + Tϵ0. (25)

Here, we use the fact that ||Qπt,pt
s,a,ci ||∞ ≤ 1

1− γ
. This is easy to discern for i = {1, . . . ,K}. For

i = 0, we have ||Qπt,pt
s,a,c0 ||∞ ≤ 1

(1− γ)λ
≤ min{ξ/2, 1/2} < 1

1− γ
as ξ ≤ 1

1− γ
. Hence, from

(25),∑
t

(Φ(πt)− Φ(π̂∗)) ≤ 1

(1− β)
TαS

1

(1− γ)2
+

1

α(1− β)
E
s∼d

π̂∗,p0
ρ

B(π̂∗, π0) + Tϵ0. (26)

Now, replacing π0 =
1

|A|
, and α =

(1− γ)√
TS

, we have

∑
t

(Φ(πt)− Φ(π̂∗)) ≤ 1

1− β

√
ST log(|A|) 1√

(1− γ)2
+ Tϵ0. (27)

Thus,

Φ(π̂)− Φ(π̂∗) ≤ 1

T

∑
t

(Φ(πt)− Φ(π̂∗)) ≤
√
S log(|A|)

(1− β)
√
T (1− γ)2

+ ϵ0, (28)

where we use the fact that π̂ = argmint=0,...,T−1 max{Jπt
c0 ,maxn{Jπt

cn − bn}}.

Hence, when T = O(
4

(1− γ)2(1− β)2
S log(|A|)(1/ϵ2)) iteration, the above is bounded by ϵ, if

ϵ0 = ϵ/2. The result now follows.

18

B.1 Proof of Lemma B.3

Proof. Let i = argmax{Jπ
ci − bi}, and p = argmax Jπ,P

ci . Now,

Φ(π)− Φ(π̂∗) ≤ Jπ,p
ci −max

P
J π̂∗,P
ci . (29)

We now bound the right-hand side, and assume that p∗ = argmax J π̂∗,P
ci

V π
ci (ρ)− V π̂∗

ci (ρ) = V π
ci (ρ)− Es∼ρEπ̂∗ [ci(s, a) + γ

∑
s′

p∗(s′|s, a)V π∗

ci (s′)]

= Es∼ρEa∼π̂∗ [V π
ci (ρ)− ci(s, a) + γ

∑
s′

p(s′|s, a)V π
ci (s

′)]

− Es∼ρEπ̂∗γ[
∑
s′

p∗(s′|s, a)V π̂∗

ci (s′)−
∑
s′

p(s′|s, a)V π
ci (s

′)]

≤
∑
s∼ρ

⟨Qπ
ci , π − π̂∗⟩ − γEs∼ρEπ̂∗ [

∑
s′

p(s′|s, a)(V π̂∗

ci (s′)− V π
ci (s

′))]

where the inequality follows from the fact that p∗ = argmax
∑

s′ p
∗(s′|s, a)V π̂∗

ci (s′). Hence,

V π
ci (ρ)− V π̂∗

ci (ρ) ≤
∑
s∼ρ

⟨Qπ
ci , π − π̂∗⟩+ βEs∼ρEπ̂∗ [

∑
s′

p0(s
′|s, a)(V π

ci (s
′)− V π̂∗

ci (s′))]. (30)

where we use the fact that V π
ci (s

′) ≥ V π̂∗

ci (s′) by Assumption 3, and Assumption 2. By recursively,
expanding we get the result.

C Proof of Theorem 6.1

Proof. Here, we just consider the following objective

min
π

max{Jπ
c0/λ,max

n
Jπ
cn − bn}, (31)

since we do not know ξ, here, we only use maxn J
π
cn − bn instead of maxn J

π
cn − bn + ξ. We

consider λ = 2H/ϵ.

Sub-optimality gap: Since π∗ is feasible, thus, Jπ∗

c0 /λ ≥ maxn J
π∗

cn − bn. Thus,

(J π̂
c0 − Jπ∗

c0)/λ

≤ max{J π̂
c0/λ,max

n
J π̂
cn − bn} −max{Jπ∗

c0 /λ,max
n

Jπ∗

cn − bn}

≤ ϵ2/(2H), (32)

where the inequality follows from Lemma 4.2 with λ = O(1/ϵ). Now, using λ = 2H/ϵ and
multiplying both the sides we get the results.

Violation Gap: We now bound the violation.

max
n

J π̂
cn − bn

≤ max{J π̂
c0/λ,max

n
J π̂
cn − bn} −max{Jπ∗

c0 /λ,max
n

Jπ∗

cn − bn}+H/λ

≤ ϵ2/(2H) + ϵ/2 ≤ ϵ, (33)

where we use the fact that Jπ∗

c0 /λ ≤ H/λ ≤ ϵ/2. Hence, the result follows.

D Robust policy evaluator based on KL divergence

Robust Policy evaluator: Our algorithm assumes the existence of a robust policy evaluator oracle
that evaluates maxP∈P J

π,P
ci for a given π. There are many evaluation techniques that are used to

19

efficiently evaluate a robust policy perturbed by popular uncertainty measures. In this work, we
evaluate our policies using a variant EPIRC-PGS algorithm [8] for KL uncertainty set (as shown in
Algorithm 2).

The general robust DP equation is given by Equation (34)

(ROBUST DP): Q(t+1)
cn (s, a) = cn(s, a) + γmax

p∈P

∑
s′∈S

p(s′)V t
cn(s

′),

where V t
cn(s

′) :=
∑
a′∈A

π(s′, a′)Qt
cn(s

′, a′).
(34)

P = ⊗s,aP(s,a) where P(s,a) = {P ∈ ∆(S)|KL [P |P0(.|s, a)] ≤ CKL},

where P satisfies (s, a)-rectangularity assumption and KL[p|q] =
∑

s∈S p(s) ln
p(s)
q(s) for two prob-

ability distribution p, q ∈ ∆(S). The KL uncertainty evaluator (see Algorithm 2) is justified by
Lemma 4 and 5 in [8].

Algorithm 2 KL Uncertainty Evaluator

1: Input: policy π, nominal probability transition function p0, perturbation parameter CKL, ci =
[c0, c1, . . . cK], smoothing factor αkle,discount factorγ, ρ, |S|, |A|

2: Q,V = Robust Q-table(ci,π,p0,CKL) (see Algorithm 3)
3: P ∗[s, a, .] = αklep

0[s, a, .] exp
(

V [.]
CKL

)
∀(s, a) ∈ S ×A

4: T [s, s′] = Σ
a∈A

π(a|s)P ∗(s, a, s′), ∀(s, s′) ∈ S × S

5: Qπ
ci,P∗ = (I − γT)−1ci

6: Ĵ = ρT
(

Σ
a∈A

(π(a|s)Qπ
ci,P∗(s, a))

)
7: dπP∗ = (1− γ)(I − γT)−1ρ

8: ∇Ĵ = HdπP∗(s)Qπ
ci,P∗(s, a) ∀ (s, a) ∈ S ×A

9: Return: Ĵ ,∇Ĵ

The KL uncertainty evaluator follows from Lemma D.1. In Algorithm 2, we need the Robust Q-
table. The compact algorithm for that is given in Algorithm 3.

Algorithm 3 Robust Q-table

1: Input: ci, π, p0, CKL, ρ, smoothing factor α
2: Initialize: Q(s, a) = 0 ∀(s, a) ∈ S ×A, V (s) = 0 ∀s ∈ S, Qprev(s, a) = 0 ∀(s, a) ∈ S ×A
3: s = ρ(.), τ = 1000, i = 1
4: while i < τ do
5: Qprev(s, a) = Q(s, a) ∀(s, a) ∈ S ×A
6: a = π(.|s)
7: s′ = p0(.|s, a)
8: P ∗ = p0(s, a, .) exp

(
α V [.]

CKL

)
9: Q[s, a] = ci[s, a] + γ⟨P ∗, V ⟩

10: V [s] = ⟨π[.|s], Q(s, .)⟩ ∀s ∈ S
11: s = s′

12: if Q(s, a) = Qprev(s, a) ∀(s, a) ∈ S ×A then
13: Break out of loop
14: end if
15: i = i+ 1
16: end while
17: Return: Q, V

20

Lemma D.1. (Lemma 4 in [31]) Let v ∈ R|S| and 0 < q < ∆(S). The value of optimization
problem

min
p∈∆(S)

⟨p, v⟩ such that KL[p||q] < CKL (35)

is equal to

min
θ≥0

θCKL + θ ln (⟨q, exp (−v
θ
)⟩). (36)

Let θ∗ be the solution of equation (36), then the solution of (35) becomes,

p ∝ q exp (− v

θ∗
). (37)

Using lemma D.1, Equation (34) can be implemented as

Q(t+1)
cn (s, a) = cn(s, a) + γ

∑
s∈S

P ∗
(s,a)(s

′)V (t)
cn (s′),

where P ∗
(s,a) ∝ p0(.|s, a) exp

(
V t
cn(.)

θ∗(s,a)

)
,

and θ∗(s,a) := argmin
θ≥0

θCKL + θ ln

(
⟨p0(.|s, a), exp

(
V t
cn(.)

θ

)
⟩
)
.

(38)

While Equation (36) is convex in nature, solving it for all p(.|s, a)∀(s, a) ∈ (S,A) in Equation (38)
is computationally extensive in practice. Rather than the exact constrained problem, [58] proposed
a regularized robust DP update.

Q(t+1)
cn (s, a) = cn(s, a) + γmax

p∈∆S

(∑
s′∈S

p(s′)V t
cn(s

′)− C
′

KLKL[p||p0(.|s, a)]

)
, (39)

where C
′

KL > 0 is a constant. This regularized form can be efficiently written as Equation (40)

Q(t+1)
cn = cn(s, a) + γ

(
Σ

s′∈S
P ∗
(s,a)(s

′)V t
cn(s

′)

)
,

where P ∗
(s,a) ∝ p0(.|s, a) exp

(
V t
cn(.)

C
′
KL

)
.

(40)

The equivalence can be concluded from the duality since it is convex optimization problem. The
following lemma also shows that the convergence is fast.

Lemma D.2. (Adaptation from Proposition 3.1 and Theorem 3.1 [58]) For any C
′

KL > 0, there
exists CKL > 0 such that Equation (39) converges linearly to the fixed point of Equation (38).

E Experiments

The environments where we test our algorithms are as given below (Some results are shown in the
main paper under Experiments section (Section 5)). Before moving on to the individual environ-
ment, we first state the hyper-parameters that are fixed throughout the environments.

Common hyperparameters

The initial state distribution, denoted by ρ, is generated by sampling from a standard normal dis-
tribution followed by applying a softmax transformation to convert the resulting values into a valid
probability distribution over states. In particular, for each state, a random number is generated from
N (0, 1). Then it is normalized using softmax in order to avoid negative values.

The discount factor γ is set to 0.99 across all algorithms and environments to ensure consistency.
However, in order to evaluate computational efficiency (wall-clock time), we run EPIRC PGS with
multiple discount factors: γ = 0.9, 0.99, and 0.995.

21

EPIRC PGS follows a double-loop structure, as described in [8], where the outer loop uses the iter-
ation index K and the inner loop uses index T . In our experiments, we set K = 10 and T = 100,
yielding a total of K × T = 1000 iterations. This ensures that all algorithms are compared over the
same number of update steps.

Both RPPG and RNPG require an initial policy specification. For RPPG, we initialize the policy uni-
formly: π0(a | s) = 1/|A| for all s ∈ S. In contrast, RNPG parameterizes the policy directly using a
vector θ, where θ0 ∼ N (0, 1) and |θ0| = |S| × |A|.
Both algorithms also depend on the hyperparameter λ. For RNPG, λ is fixed at 50 across all experi-
ments. For RPPG, λ is treated as a variable hyperparameter, with values specified individually in the
corresponding experimental sections.

The learning rate α is set to 10−3 for all algorithms across all environments. Another important
hyperparameter is the loop control variable τ , used in Algorithm 3. The operations inside the loop
of Algorithm 3 represent a robust Bellman update. It has been shown in [31] that the soft Bellman
operator is a contraction mapping. Therefore, setting τ to a large value ensures convergence to a
fixed pointQ(s, a), and subsequently to the corresponding value function V (s). In our experiments,
we fix τ = 1000. For theoretical justification, refer to Lemmas D.1 and D.2

E.1 Constrained River-swim

The River-swim environment is a widely studied benchmark in optimization theory and stochastic
control. The detailed explanation of the algorithm is as given below.

E.1.1 Environment Description

The environment consists of six distinct states, conceptualized as islands dispersed across a large
body of water. At the start of each episode, a swimmer is placed on one of these landmasses.

The swimmer’s objective is to navigate toward one of the two terminal islands—representing the
river’s endpoints—to receive a reward. At each state, the swimmer can choose between two actions:
swimming to the left or to the right. Rewards are only provided upon reaching the terminal states,
whereas all intermediate states yield zero reward (refer to Table 2).

During the transition between states, the swimmer encounters adversarial elements, such as strong
water currents and hostile tribal inhabitants residing on certain islands. These hazards are modeled as
a cost incurred for occupying a given state. The transition probabilities between states are compactly
represented in Table 2, while the immediate state-wise rewards and constraint costs are summarized
in Table 3. Note that the reward is high at the extreme right-hand side as this is the best state,
however, it also corresponds to high current or high cost. All the parameters including the value of
CKL of the MDP are represented in Table 4.

State Action Probability for next state
s0 a0 s0:0.9, s1:0.1

si, i ∈ {1, 2, . . . 5} a0 si:0.6, si−1 : 0.3, si+1 : 0.1
si, i ∈ {0, 1, . . . 4} a1 si:0.6, si−1 : 0.1, si+1 : 0.3

s5 a1 s5:0.9, s4:0.1
Table 2: Transition probability of River-swim environment

State Reward Constraint cost
s0 0.001 0.2
s1 0 0.035
s2 0 0
s3 0 0.01
s4 0.1 0.08
s5 1 0.9

Table 3: The reward and constraint cost received at each state

22

Hyperparameters Value

Environment
Parameters

|S| 6
|A| 2
p0 Table 2
c0, c1 Table 3
b 42

KL Uncertainity Evaluator
(Algorithm 2)

γ 0.99
αkle 10−4

Robust Q table
CKL 0.1
αkle 10−4

RPPG λ 10
Table 4: Hyperparameter used for all subroutines for CRS environment

0 200 400 600 800 1000
Iteration

0

20

40

60

80

100

120

Cu
m

ul
at

iv
e

Ob
je

ct
iv

e
re

wa
rd

Objective function

RNPG
RPPG
EPIRC

(a) Expected objective function comparison

0 200 400 600 800 1000
Iteration

20

25

30

35

40

45

50

Cu
m

ul
at

iv
e

co
ns

tra
in

t c
os

t

Constraint function

RNPG
RPPG
EPIRC
baseline
Unsafe region
Safe Region

(b) Expected cost function comparison

Figure 3: Comparison of RPPG and EPIRC-PGS on CRS environment

E.1.2 Discussions of the result

The iteration-wise expected reward (value function) and expected constraint cost are illustrated in
Figure 3. From Figure 3a, we observe that EPIRC PGS (denoted as EPIRC) achieves the highest
objective reward. However, as shown in Figure 3b, it significantly violates the constraint threshold,
failing to remain within the designated safe region. Since the agent’s goal is not only to maximize
long-term reward but also to ensure safety by satisfying the constraint, EPIRC PGS falls short in
this regard.

RPPG achieves a higher value function than RNPG, as seen in Figure 3a. However, a closer look at
Figure 3b reveals that RPPG also marginally violates the constraint boundaries. RNPG effectively
captures the trade-off between reward maximization and the constraint satisfaction, navigating as
close as possible to the constraint boundary. It stops at the point where further increase in reward
would result in constraint violations, thereby maintaining a feasible and safe policy.

Our algorithm relies on a key hyperparameter, λ. This parameter plays a crucial role in balancing
the objective and constraint terms during policy updates. Specifically, λ should be chosen to be
sufficiently large such that when the constraint violation Jπt

ci − bi is marginal (i.e., Jπt
ci − bi > ξ for

some small ξ > 0 and for any i ∈ 1, 2, . . . ,K), the scaled objective term Jπt
c0 /λ does not dominate

the update direction.

If λ is set too small, the influence of the objective term becomes large. As a result, the algorithm
may prioritize minimizing the objective cost (or maximizing the reward, depending on the envi-
ronment setting) at the expense of constraint satisfaction. This contradicts our goal of maximizing
the expected objective return such that the expected constraint values are below a certain threshold.
To illustrate the impact of λ on the performance and feasibility of RNPG, we conduct experiments
using different values of λ, with results presented in Figure 4. Note that higher value of λ indeed
reduces the value function, but also decreases the cumulative cost. We set λ = 50 throughout the

23

0 200 400 600 800 1000
Iteration

20

40

60

80

100

120

Ex
pe

ct
ed

 v
al

ue
s o

f v
f

Effect of lambda(RNPG)

lambda=10
lambda=30
lambda=15
lambda=50

0 200 400 600 800 1000
Iteration

20

25

30

35

40

45

50

Ex
pe

ct
ed

 v
al

ue
s o

f c
f

Effect of lambda(RNPG)

lambda=10
lambda=30
lambda=15
lambda=50
baseline
Unsafe region
Safe region

Figure 4: Effect of λ on RNPG for the CRS environment

experiment for RNPG as it corresponds to feasible solution for each environment. Hence, it shows
that for RNPG, we do not need to costly hyper-parameter tuning for λ as a relatively high value of
λ ensures feasibility as the Theory suggested.

Furthermore, Table 11 presents a comparison of wall-clock time across the algorithms. RNPG
completes in the shortest time, running approximately 1.6× faster than RPPG and at least 4× faster
than EPIRC PGS (at γ = 0.9). These results demonstrate that RNPG not only achieves competitive
performance but also does so with significantly improved computational efficiency compared to both
RPPG and EPIRC PGS.

The results highlight RNPG’s ability to consistently learn robust and safe policies while outperform-
ing RPPG and EPIRC-PGS in terms of both reliability and computational efficiency, even under
adverse environmental dynamics.

E.2 Garnet problem

E.2.1 Environment Description

The Garnet environment is a standard Markov Decision Process (MDP) framework commonly used
to evaluate reinforcement learning (RL) algorithms in a controlled setting. It is characterized by
a predefined number of states nS and actions nA, where the transition probabilities, rewards, and
utility functions are randomly sampled from specified distributions. The transition dynamics in
Garnet are typically sparse, meaning that each state does not transition to all other states, but instead
has a limited number of possible successor states for each action. Mathematically, the environment
is defined by a transition probability matrix P (s′ | s, a), a reward function R(s, a), and, in the
case of constrained RL, a utility function U(s, a). These elements are often drawn from normal
distributions, i.e.,

P (s′ | s, a) ∼ N (µa, σa), R(s, a) ∼ N (µb, σb), U(s, a) ∼ N (µc, σc)

.

where the means µa, µb, µc are sampled from a uniform distribution Unif(0, 100). Since the transi-
tion probability matrix must be valid (i.e., each row should sum to 1), the probabilities are exponen-
tiated and normalized using a softmax transformation:

p0(s′ | s, a) = exp(P (s′ | s, a))∑
s′′ exp(P (s

′′ | s, a))
.

E.2.2 Implementation details

In this environment, both the reward and cost values are stochastic, sampled randomly rather than
being deterministically assigned. The cost (or reward) values are generated as follows:

24

R = c0 ∼ N (µb, σb). (41)

where µb ∼ U [0, 10] and σb = 1. Similarly we generate the cost function. Here, we use c0 and
R interchangeably because the Garnet environment is formulated as a reward-based MDP with a
utility-based constraint function. Unlike the Constrained River-swim environment, the objective
here is to maximize the long-term expected reward while ensuring that the expected utility remains
above a specified threshold.

The hyperparameters used for this environment are listed in Table 5

Hyperparameters Value

Environment
Parameters

|S| 15
|A| 20
b 90

KL Uncertainity Evaluator
(Algorithm 2)

γ 0.99
α = αkle 10−3

Robust Q table
CKL 0.05

α = αkle 10−3

RPPG λ 15
Table 5: Hyperparameter used for all subroutines for Garnet environment

0 200 400 600 800 1000
Iteration

0

50

100

150

200

Cu
m

ul
at

iv
e

Ob
je

ct
iv

e
re

wa
rd

Objective function

RNPG
RPPG
EPIRC

(a) Expected objective function comparison

0 200 400 600 800 1000
Iteration

0

20

40

60

80

100

120

Cu
m

ul
at

iv
e

co
ns

tra
in

t c
os

t
Constraint function

RNPG
RPPG
EPIRC
baseline
Safe region
Unsafe Region

(b) Expected cost function comparison

Figure 5: Comparison of RPPG and EPIRC-PGS on Garnet(15,20) environment λ = 30

E.2.3 Discussion of Results

The results are shown in Figure 5. As previously discussed, the Garnet environment incorporates a
utility function in the constraint rather than a traditional cost function. Therefore, a feasible optimal
policy is expected to yield an expected utility (constraint) value that remains above a predefined
threshold. For consistency in terminology and to avoid confusion, we refer to the utility function as
the “constraint function” in Figure 5b.

From Figure 5b, it is evident that all three algorithms—RNPG, RPPG, and EPIRC PGS—satisfy
the constraint throughout training, thus producing feasible policies at each iteration. However, Fig-
ure 5a shows that RNPG achieves a noticeably higher expected objective return compared to both
EPIRC PGS and RPPG.

Figure 5 provides further insight into RNPG’s behavior. Initially, RNPG operates well within the
safe region and progressively improves its objective return. As it approaches the constraint bound-
ary, the algorithm detects the potential violation and adjusts its trajectory accordingly—prioritizing
safety over additional reward. This contrasts with the behavior of RPPG and EPIRC PGS, which
also maintain feasibility but yield comparatively lower objective returns. These results highlight
the advantage of incorporating a natural policy gradient approach, which allows RNPG to balance
safety and performance more effectively.

25

In addition to performance, we compare the computational efficiency of the algorithms. Table 11
shows that RNPG requires a computation time comparable to RPPG, but significantly outperforms
EPIRC PGS in terms of speed. Specifically, RNPG is at least 5× faster than EPIRC PGS when γ =
0.9, and nearly 8× faster when γ = 0.995. The increased runtime for EPIRC PGS at higher discount
factors is attributed to the longer binary search required for constraint satisfaction as γ approaches 1.
The key takeaway from this experiment is that RNPG demonstrates greater sensitivity to constraint
boundaries and exhibits strong potential for scalability to larger state and action spaces. Notably,
the Garnet environment used in this study contains 15 states and 20 actions. These results suggest
that, with efficient implementation, RNPG can be effectively extended to high-dimensional settings.

E.3 Modified Frozen-lake

The general Frozen-lake is as special type of grid world problem. The vanilla Frozen-lake problem
can be found in gymnasium library [59]. However, in this work, we create a small modification to
make the problem more challenging and interesting.

E.3.1 Environment description

The Frozen Lake environment is modeled as a d×d grid world, where the agent begins its journey at
the top-left corner, s0 = (0, 0), and aims to reach the bottom-right goal state sd2−1 = (d−1, d−1).
At each time step, the agent may choose one of four primitive actions: move left, right, up, or down,
constrained by the grid boundaries.

The environment contains multiple types of states:

• Goal state: Reaching the terminal state yields a high reward.
• Hole states: If the agent steps into a hole, it falls in and receives a very low reward.
• Normal states: All other transitions yield a moderate reward.

In addition to reward dynamics, the environment contains hazardous blocks, which are selected ran-
domly at each iteration. These represent dynamic threats (e.g., thin ice, traps, or roaming predators)
and impose a high constraint cost when visited. The stochastic nature of these threats introduces
uncertainty in the agent’s experience, making the problem both risky and difficult to optimize.

The agent’s objective is to learn a policy that maximizes the expected cumulative reward while
incurring only marginal harm. In other words, it must learn to reach the goal while minimizing the
cumulative constraint cost associated with hazardous states.

We formulate this problem as a Constrained Markov Decision Process (CMDP) under model un-
certainty. For all experiments, we set the grid size to d = 4. To map a 2D coordinate (x, y) to its
corresponding 1D state index, we define a wrapping function:

wrap((x, y)) = x× d+ y.

The probability distribution function is shown in Table 6.

The rewards and cost functions are given in Table 7. In particular, if it reaches the goal state the
reward is +1. If the agent hits the obstacle, the cost is 1, and and the frozen grid it is 0.3. Note that
the a grid is obstacle or not is decided randomly at the beginning of an episode.

We detail all the other parameters in Table 8.

E.3.2 Discussion of results

The results obtained of the given environment is depicted in Figure 6. As seen in Figure 6b, all the
three algorithms successfully learns the feasible policies. However, on observing Figure 6a, we can
clearly notice the dominance of RNPG by learning policies with better rewards. From Table 11,
we see that for the frozen lake environment, the computation time of RPPG and RNPG is almost
comparable. However, RNPG is atleast 3x as faster as EPIRC-PGS for γ = 0.9 and almost 4x faster
than EPIRC-PGS for γ = 0.995.

The key takeaway from this enviornment is to show that even with added obstacles randomly, the
agent can find a feasible high objective return policy as compared to RPPG and EPIRC-PGS

26

Present state action Transition probabilities
(x = 0, y = 0) up (x = 0, y = 0) : 2/3,(x+ 1, y) = 1/6 and (x, y + 1) = 1/6
(x = 0, y ̸= 0) up (x = 0, y) : 1/2,(x+ 1, y) = 1/6,(x, y + 1) = 1/6 and (x, y − 1) = 1/6
(x ̸= 0, y ̸= 0) up (x− 1, y) : 1/2,(x+ 1, y) = 1/6,(x, y + 1) = 1/6 and (x, y − 1) = 1/6
(x = 0, y = 0) left (x = 0, y = 0) : 2/3,(x+ 1, y) = 1/6 and (x, y + 1) = 1/6
(x ̸= 0, y = 0) left (x, y = 0) : 1/2,(x+ 1, y) = 1/6, (x− 1, y) = 1/6 and (x, y + 1) = 1/6
(x ̸= 0, y ̸= 0) left (x, y − 1) : 1/2,(x+ 1, y) = 1/6,(x, y + 1) = 1/6 and (x− 1, y) = 1/6
(x = 3, y = 3) down (x = 3, y = 3) : 2/3,(x− 1, y) = 1/6 and (x, y − 1) = 1/6
(x = 3, y ̸= 3) down (x = 3, y) : 1/2,(x− 1, y) = 1/6,(x, y + 1) = 1/6 and (x, y − 1) = 1/6
(x ̸= 3, y ̸= 3) down (x+ 1, y) : 1/2,(x− 1, y) = 1/6,(x, y + 1) = 1/6 and (x, y − 1) = 1/6
(x = 3, y = 3) right (x = 3, y = 3) : 2/3,(x− 1, y) = 1/6 and (x, y − 1) = 1/6
(x ̸= 3, y = 3) right (x, y = 3) : 1/2,(x+ 1, y) = 1/6, (x− 1, y) = 1/6 and (x, y − 1) = 1/6
(x ̸= 3, y ̸= 3) right (x, y − 1) : 1/2,(x+ 1, y) = 1/6,(x, y + 1) = 1/6 and (x− 1, y) = 1/6

Table 6: Transition probabilities for Frozen lake environement

State Reward constraint cost
(x=3,y=3) +1 0

(x,y) if frozen lake 0 0.3
(x,y) if obstacle 0.01 1
all other (x,y) 0.05 0

Table 7: State wise rewards and constraint cost for the Frozen lake environment

0 200 400 600 800 1000
Iteration

0

20

40

60

80

100

Cu
m

ul
at

iv
e

Ob
je

ct
iv

e
re

wa
rd

Objective function (Modified Frozenlake)

RNPG
RPPG
EPIRC_PGS

(a) Expected objective function comparison

0 200 400 600 800 1000
Iteration

0

50

100

150

200

250

300

Cu
m

ul
at

iv
e

co
ns

tra
in

t c
os

t

Constraint function (Modified Frozenlake)
RNPG
RPPG
EPIRC_PGS
baseline
Safe region
Unsafe Region

(b) Expected cost function comparison

Figure 6: Comparison of RNPG, RPPG and EPIRC-PGS on Modified Frozen-lake environment

E.4 Garbage collection problem

E.4.1 Environment description

We model a city as a 4× 4 grid, where each cell represents a city block. A garbage collection robot
is deployed to navigate this grid and collect waste while minimizing operational risk and resource
expenditure.

Certain blocks offer higher rewards due to significant waste accumulation (e.g., near hospitals or
markets). However, urban conditions are inherently dynamic. These high-reward blocks are not
known in advance and are constantly changing showing the rapid changes of city areas. At each
time step, 40% of the blocks are randomly designated as hazardous, representing unpredictable
real-world events such as:

• Sudden traffic congestion

• Unreported toxic waste dumps

• Temporary road closures or civil disturbances

27

Hyperparameters Value

Environment
Parameters

|S| 15
|A| 4
p0 Table 6
c0, c1 Table 7
b 55

KL Uncertainity Evaluator
(Algorithm 2)

γ 0.99
α = αkle 10−3

Robust Q table
CKL 0.02

α = αkle 10−3

RPPG λ 50
Table 8: Hyperparameter used for all subroutines for Modified Frozen-lake environment

These hazardous blocks incur a higher constraint cost if visited. Importantly, the set of hazardous
blocks changes at every iteration, introducing a layer of real-time uncertainty in the environment.

The robot must learn a policy that balances the dual objectives of:

1. Maximizing long-term reward by collecting from high-value blocks
2. Minimizing cumulative constraint costs induced by environmental hazards

The transition probabilities are similar to the Frozenlake environment. Hence the transition proba-
bilities for this environment can be depicted by Table 6. The reward and cost structure is given in
Table 9. While the reward is fixed at the Goal location, the reward at garbage location is 0.01. Note
that whether a certain grid is a garbage location or not is decided randomly. Similarly, the cost is 1
at a blocked grid. Again, the identities of the blocked grids are randomly decided.

State Reward Cost incurred
(x=3,y=3) 1 0.01

(x,y) if garbage 0.01 -
(x,y) if blockage - 1

(x,y) all other state 0.001 0.01
Table 9: Reward and cost structure for Garbage collector environment

The hyperparameters for the various sub-routines are as listed in Table 10.

Hyperparameters Value

Environment
Parameters

|S| 15
|A| 4
p0 Table 6
c0, c1 Table 9
b 60

KL Uncertainity Evaluator
(Algorithm 2)

γ 0.99
α = αkle 10−3

Robust Q table
CKL 0.02

α = αkle 10−3

RPPG λ 50
Table 10: Hyperparameter used for all subroutines for Garbage collector environment

E.4.2 Discussion of results

In this subsection, we will present the performance of the RPPG, EPIRC PGS and our algorithm
(RNPG)(Figure 7). As shown in Figure 7b, due to the randomness of the environment, the algorithms
have some minor fluctuations. However, in this environment, RPPG and RNPG obey the constraints
for the complete duration, but, EPIRC PGS violates the constraint. Although none of the algorithms

28

0 200 400 600 800 1000
Iteration

0

25

50

75

100

125

150

175

Cu
m

ul
at

iv
e

Ob
je

ct
iv

e
re

wa
rd

Objective function (Garbage_collector)

RNPG
RPPG
EPIRC_PGS

(a) Expected objective function comparison

0 200 400 600 800 1000
Iteration

0

50

100

150

200

250

300

Cu
m

ul
at

iv
e

co
ns

tra
in

t c
os

t

Constraint function (Garbage collector)
RNPG
RPPG
EPIRC_PGS
baseline
Safe region
Unsafe Region

(b) Expected cost function comparison

Figure 7: Comparison of RNPG, RPPG and EPIRC-PGS (or, EPIRC PGS) on Garbage collector environment

Best policy’s objective and constraint return comparison

Env
Nm

RPPG RNPG EPIRC-PGS (γ vals.)
0.9 0.99 0.995

vf cf vf cf vf cf vf cf vf cf
CRS, b1 = 42.5 120.3 43.1 102.1 42.2 127.2 44.8 121.2 48.1 123.4 46.4

Garnet, b1 = −90 102.6 -96.5 208.1 -98.7 100.3 -112.4 100.6 -108.3 102.4 -110.2
MFL, b1 = 52.5 61.4 53.1 109.2 39.2 62.3 53.7 60.3 57.7 66.3 51.7
GC, b1 = 52.5 161.2 49.2 172.2 22.1 131.2 52.0 142.5 55.6 138.1 54.1

Table 11: Comparison of the best policy objective (vf) and constraint function (cf) values. b1 indicates the
threshold value. RNPG not only achieves the best value, but also gives a feasible policy.

stabilize completely yet RPPG and RNPG are in the safe zone. In terms of objective return, it
can be seen from Figure 7a, the expected return for RNPG is predominantly higher than RPPG
and EPIRC PGS. While comparing the time (Table 11) for completion RPPG is the fastest in this
environment marginally beating RNPG but still the speeds of both algorithms are comparable. When
compared with EPIRC PGS, RNPG is winning fairly with a speedup of 2x compared to EPIRC PGS
when γ = 0.9 and a speedup of nearly 3x compared to EPIRC PGS when γ = 0.995.

This environment demonstrates that, even under random obstacle placement, the agent can success-
fully learn a feasible policy that outperforms RPPG and EPIRC PGS in terms of objective return.

F Implementation Details of RNPG and RPPG

F.1 RNPG

Note that in (11) one can use direct parameterization for policy update in RNPG. To facilitate opti-
mization, we also adopt a soft-max representation of the policy space. Let the policy be parameter-
ized by θ, such that:

πθt(a | s) = exp (θt[s])∑
s∈S exp (θ[s])

. (42)

Using this parameterization, we reformulate the policy update as the solution to the following con-
strained optimization problem:

θt+1 ∈ argmax
θt+1

〈
∇Jπθt

cch , θt+1 − θt
〉
− αt KL(πθt+1

∥πθt), (43)

where the objective index ch is selected as:

ch = argmax

{
J
πθt
c0

λ
, max
i=1,...,K

(
J
πθt
ci − bi

)}
.

29

This formulation enables us to apply the Natural Policy Gradient method by incorporating the ge-
ometry of the policy space through the Fisher Information Matrix F [60]. The resulting closed-form
update rule is:

θt+1 = θt − αlr ·
1

2αt
F−1∇Jπθt

cch .

F.2 Robust Projected Policy Gradient (RPPG)

We also compare the Robust Projected Policy Gradient (RPPG) which uses ℓ2 regularization instead
of the KL regularization. Here, we use direct parameterization. The policy update is given in the
following.

πt+1 ∈ argmin
π∈Π

⟨∇πt
Ji(πt), π − πt⟩+

1

2αt
∥π − πt∥2, (44)

where i = argmax
{

Jπ
c0

λ ,maxn
(
Jπ
cn − bn + ξ

)}
.

Upon careful observation, we see that Equation (44) is convex. To find the optimal solution of πt+1,
we use projected gradient descent. Equation (44) can be updated as

πt+1 = argmin
π∈Π

∥π − (πt − αt∇πt
Jπt
i)∥2 . (45)

This is the Euclidean projection of the gradient step onto the simplex:

πt+1 = Π∆ (πt − αt∇πt
Ji(πt)) (46)

From Lemma 3.1, we get the value of ∇πtJi(πt) using the robust Q value evaluator in Algorithm 3.
We finally project the resulting value into the policy space simplex, Π. To perform projection, we
find ∥π − (πt − αt∇πt

Ji(πt))∥2 ∀ π ∈ Π. However, this process is cumbersome, hence we can
leverage the cvxpy package from Python to optimally solve the update equation.

Algorithm 4 Robust-Projected Policy Gradient for CMDP with uncertainties (R-PPG)

1: Input: Robust Policy evaluator (Algorithm 2), bi s.t. i ∈ {1,K}, ξ, λ
2: Initialization: π̂(·|s)0 = 1/|A| for all s, T.
3: for t = 0, . . . , T − 1 do
4: Evaluate Jπt

j = maxP J
πt

j,P for j = {c0 . . . cK} using the robust policy evaluator oracle.
5: ch = argmax(Jπt

c0 /λ, J
πt
ci − bi + ξ) s.t. i ∈ {1,K}

6: if ch ̸= 0 then
7: πt+1 = ProjΠ{πt − αt∇Jπt

cch
}.

8: else
9: πt+1 = ProjΠ{πt − αt∇Jπt

c0 /λ}
10: end if
11: end for
12: Output π̂ = argmint∈0,...,T−1 max{Jπt

c0 /λ,maxi{Jπt
ci − b+ ξ}}

As shown in Algorithm 4, RPPG leverages Projected Policy Gradient method to reach the optimal
policy. In general ℓ2 regularizer does not ensure small changes in the policies and might deviate a lot
from the previous policy. Thus, KL-regularizer has a better performance over ℓ2 regularizer which
we further demonstrate by our results in Section E.

G Extension to Continuous state space (Robust Constrained Actor Critic)

We present our robust constrained actor–critic framework designed for the function approximation
setting as discussed in Section 6.1. The model comprises two critic networks—one estimating the re-
ward value function Jc0 and the other corresponding to the Constraint value function Jc1 . Although
we focus on a single constraint for clarity, the framework readily generalizes to handle multiple con-
straints. In addition to the critic networks, an actor network is employed to generate actions based on
the current state. To model distributional robustness, we consider IPM as described in Section 6.1.

30

Let us consider the critic network be parameterized by w where each layer contains d paramters
including the bias (i.e, wl

1:d where wl
1 is assumed to be the bias term in the l-th layer with l ∈

{1, 2, . . . , L}). Overall approach is depicted in Algorithm 5.

Algorithm 5 Robust Constrained Actor Critic (RCAC)

1: Input: T, ρ, b
2: Initialization: wr (for objective estimation), wc (for constraint estimation) and θ0 for actor

network parameterization
3: for t = 0, . . . , T − 1 do
4: Get estimate for Jr = ⟨ρ, Vwr

(s)⟩ and Jc = ⟨ρ, Vwc
(s)⟩

5: ch = argmax(Jr/λ, (Jc − b))
6: Update wch using wch = wch + αk.∇wch

MSE(⟨ρ, Vt(s)⟩, Jch) (Note Vt(s) is target Value
function obtained by Robust TD update (using equation (15)))

7: Update θ using θt = θt−1 + α.E [∇θ log(πθ(a|s)).(Qch(s, a)− Vch(s))] (We change this
step to Natural Policy Gradient update for RCAC NPG).

8: end for

At each step, we get the Value function estimate Vr and Vc from the respective Critic networks.
After obtaining both, we make a choice as to whether to update the constraint critic parameters or
the objective critic parameters. For the selected critic, we find the target value function using the
robust bellman operator along with a guided regularization term on the last layer only [54]. We
compute the robust value according to (15).

For our experiments, we chose the famous Cartpole environment, where the intial state is fixed and
deterministic so ρ(i) is a unit vector.(However, it can be extended to different distribution.)

ρ(s) =

{
1 if s = s0
0 otherwise

(47)

In our study, we introduced uncertainty in the next-state transition after each action. While alter-
native sources of uncertainty could be incorporated—such as perturbing the executed actions or
simulating external disturbances (e.g., wind forces acting on the cart)—we focused on state tran-
sition perturbations because they have a more direct and analyzable impact on value estimation.
Perturbing the action space was deemed less meaningful in this environment, as the action set is dis-
crete with only two possible values, making the resulting learning challenge comparatively trivial.
The detailed results and observations are presented in the following subsection.

G.1 Results and discussion

In this sub-section, we list the results obtained when we tried our algorithm against the standard
cartpole-v1 environment available in gymnasium library. The cartpole-v1 algorithm comprises of a
continuous state space having 4 components and two discrete actions. We introduce uncertainity by
adding noise to the next state obtained after taking an action. The noise is adding a uniform value
between 0 and 0.1 to the original next state value (s

′
= s

′
+ Unif([0, 0.1])) and then clipped it

between the predefined bounds of cartpole environment.

We divided the experiments results into two phases. The first is the training phase (depicted by Fig-
ures 8) and the second is during the testing phase (depicted by Figures 9). During the training phase,
we only train the robust variants RCAC, RCAC with NPG, Robust CRPO, EPIRC-PGS by consid-
ering δ = 0.04. However, for constrained actor-critic (CAC), we do not train the robust version.
During the training phase (Figure 8), apart from EPIRC-PGS, all the algorithms perform similarly
in terms of reward and the cost value function (We highlight our two algorithms RCAC with NPG,
and RCÅC, separately in figure 10). EPIRC-PGS did not converge and could not complete the en-
tire episode highlighting that binary search approach is not possible to scale for large state-space.
However, when these algorithms were tested (Figure 9) on the environment having a perturbation
uniformly between 0 and 0.04, the performance of CAC is unstable and did not provide any feasi-
ble policy. Only, our proposed approaches achieve feasibility while being close to the optimality.
Robust CRPO also violates the constraint (slightly) while achieving less reward compared to our
approaches. The performances of the algorithms is compactly represented in table 12.

31

Algorithm Average reward value Average cost value
Constrained Actor Critic 495.23 294.6248

RCAC 494.81 177.8432
RCAC with NPG 495.0 197.9937

Robust CRPO 488.06930 213.473
EPIRC PGS 114.8 53.79

Table 12: Tabular comparisons of the average value function and cost function during the testing
phase. CAC although returns policies with high objective function but the actions are unsafe as can
be inferred from the high constraint function (safety baseline is 200)

It is also important to note down the wall clock time for the various algorithms. EPIRC PGS takes
the highest wall clock time approximately 24029.013 seconds which is nearly 4× of the time taken
for the other algorithms namely RCAC with NPG (7175.31 seconds), CAC(6815.89 seconds), RCAC
(5975.65 seconds) and Robust CRPO (4275.67 seconds) in decreasing order of the wall clock time
requirements. 9.

0 2000 4000 6000 8000 10000
Iterations

0

200

400

600

800

Co
st

 fu
nc

tio
n

Comparison of Cost function on Cartpole environment
RCAC
RCAC_NPG
CAC
Robust_CRPO
EPIRC_PGS_CS
Safe region
Unsafe region
Baseline

(a) Value function comparison

0 2000 4000 6000 8000 10000
Iterations

0

100

200

300

400

500

Va
lu

e
fu

nc
tio

n

Comparison of Value function on Cartpole environment

RCAC
RCAC_NPG
CAC
Robust_CRPO
EPIRC_PGS_CS

(b) Cost function comparison

Figure 8: Comparison of RCAC, RCAC NPG, robust CRPO and other standard Constrained MDP
solutions on the Cartpole problem during training phase

0 20 40 60 80 100
Iterations

0

100

200

300

400

500

Va
lu

e
fu

nc
tio

n

Comparison of Value function on Cartpole environment

RCAC
RCAC_NPG
CAC
Robust_CRPO

(a) Value function comparison

0 20 40 60 80 100
Iterations

0

100

200

300

400

500

600

Co
st

 fu
nc

tio
n

Comparison of Cost function on Cartpole environment
RCAC
RCAC_NPG
CAC
Robust_CRPO
Safe region
Unsafe region
Baseline

(b) Cost function comparison

Figure 9: Comparison between RCAC, CRPO and Vanilla Constrained Actor Critic during testing
period δ = 0.04 (deflection from the nominal model)

32

0 2000 4000 6000 8000 10000
Iterations

0

100

200

300

400

500

Va
lu

e
fu

nc
tio

n

Comparison of Value function on Cartpole environment

RCAC
RCAC_NPG

(a) Value function comparison

0 2000 4000 6000 8000 10000
Iterations

0

100

200

300

400

500

600

700

800

Co
st

 fu
nc

tio
n

Comparison of Cost function on Cartpole environment
RCAC
RCAC_NPG
Safe region
Unsafe region
Baseline

(b) Cost function comparison

Figure 10: The comparison plots between our two main variants of Robust Constrained Actor Critic
variants (RCAC and RCAC NPG)

H Connection with the CRPO

CRPO is one of the popular approach for non-robust CMDP which has been proposed in [11]. In the
CRPO algorithm, one minimizes the objective when all the constraints are satisfied, and minimizes
the constraint value if the policy violates the constraint for at least one constraint. In particular, the
objective function can be represented as

min
π
Jπ
c01(max

n
Jcn − bn ≤ 0) + max

n
(Jcn − bn)1(max

n
Jcn − bn > 0). (48)

Thus, one might think that there are some connections with our approach and the robust CRPO.
First, we provide the challenges in extending the results to the RCMDP case. In [11], they bound the
difference in the value function corresponding to the policies between two steps using the standard
value difference lemma. However, the standard value difference lemma does not hold in the robust
case as the worst case transition probabilities differ according to the probabilities.

In what follows, we point out the difference of our approach and potentially robust CRPO ap-
proach. In order to obtain iteration complexity, we seek to use the smoothness property of the
objective by invoking Moreu’s envelope as done in [8]. In particular, we use a smooth function
max{Jπ

r /λ,maxn J
π
cn − bn} as an objective instead of the one in (48). It turns out the this modifi-

cation is essential for obtaining the iteration complexity. Note the difference–we are not switching
to minimize the constraint cost value functions when the constraints are not satisfied, rather we are
only minimizing those when maxn J

π
cn − bn becomes larger than Jπ

c0/λ. Thus, as λ becomes larger
it becomes similar to CRPO. Also, note that in the asymptotic sense as λ→ ∞, we can not guaran-
tee the sub-optimality gap anymore showing that perhaps, robust CRPO algorithm may not achieve
the iteration complexity bound.

33

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim is addressed in two folds, (i) we reflect upon the theoretical
guarantees as is evident from Section 4 and also in the appendix, and (ii) we check the prac-
tical applicability of our algorithms on some standard finite state-action space benchmarks
for standard RL as shown in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention the major limitations identified by us before conclusion
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

34

Answer: [Yes]
Justification: We clearly state all the assumptions and the detailed proof using those as-
sumptions
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Due to page limitation, we talk about the empirical results in detail in the ap-
pendices disclosing the complete details about creating the environment and corresponding
code and plots to solve it.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

35

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The complete details can be found in Section 5 and Appendix A,B and c
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We disclose all the hyperparameters necessary to replicate in Appendix B and
C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [NA]
Justification: We consider a single run so the confidence interval was not necessary
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We make this information available as a footnote in Section 1

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We declare that we read and understood it and did our best to conform it

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our experiments are based on some standard benchmarks and we did not use
any real life experiments.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

37

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As we perform testing on some standard toy examples, it does not give way
to any negative impacts

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We are not shipping our code with any source code or binary files from any
other existing libraries, so there are no concerns over getting permission or including a
license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

38

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: We have made our code public and will create a suitable readme file for its
use.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve in any crowdsourcing experiment
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We are not involved in any crwod sourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

39

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs for the core method development, we use it for grammar
chack and for better appeal.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works

	Problem Formulation
	Policy Gradient Approach for RCMDPs
	Our Proposed Approach
	Policy Optimization Algorithm

	Theoretical Results
	Proof Outline

	Experimental Results
	Analysis of results

	Discussions and Limitation
	Extending to Function Approximation: Robust Constrained Actor-Critic (RCAC)

	Conclusions and Future Works
	Proof of Proposition 1
	Proof of Lemma 4.2
	Proof of Lemma B.3

	Proof of Theorem 6.1
	Robust policy evaluator based on KL divergence
	Experiments
	Constrained River-swim
	Environment Description
	Discussions of the result

	Garnet problem
	Environment Description
	Implementation details
	Discussion of Results

	Modified Frozen-lake
	Environment description
	Discussion of results

	Garbage collection problem
	Environment description
	Discussion of results

	Implementation Details of RNPG and RPPG
	RNPG
	Robust Projected Policy Gradient (RPPG)

	Extension to Continuous state space (Robust Constrained Actor Critic)
	Results and discussion

	Connection with the CRPO

