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ABSTRACT

In this work, we propose a novel method (GLOV) enabling Large Language Models
(LLMs) to act as implicit Optimizers for Vision-Language Models (VLMs) to enhance
downstream vision tasks. Our GLOV meta-prompts an LLM with the downstream task
description, querying it for suitable VLM prompts (e.g., for zero-shot classification with
CLIP). These prompts are ranked according to their fitness for the downstream vision
task. In each respective optimization step, the ranked prompts are fed as in-context exam-
ples (with their accuracies) to equip the LLM with the knowledge of the type of prompts
preferred by the downstream VLM. Furthermore, we also explicitly steer the LLM
generation in each optimization step by specifically adding an offset difference vector of
the embeddings from the positive and negative solutions found by the LLM, in previous
optimization steps, to the intermediate layer of the network for the next generation step.
This offset vector steers the LLM generation toward the type of language preferred by
the downstream VLM, resulting in enhanced performance on the downstream vision
tasks. We comprehensively evaluate our GLOV on 16 diverse datasets using two fami-
lies of VLMs, i.e., dual-encoder (e.g., CLIP) and encoder-decoder (e.g., LLaVa) models
– showing that the discovered solutions can enhance the recognition performance by up
to 15.0% and 57.5% (3.8% and 21.6% on average) for these models.
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Figure 1: The effect of prompt evolution on the downstream task performance. The shaded regions
represent the absolute top-1 classification accuracies for ImageNet (Deng et al., 2009) at each optimization
step by ensembling the top-3 prompts found w.r.t the accuracy on the 1-shot train set whereas the solid
lines represent the exponential moving average. The left plot is with CLIP VIT-B/32 (Radford et al., 2021),
and the right is with LLaVa-OV (Li et al., 2024) while the LLM employed is Llama-3 (Dubey et al., 2024).
Due to high computational cost, we only perform 25 optimization steps for LLaVa-OV.

1 INTRODUCTION

Orthogonal to traditional gradient-based optimization (Nesterov, 1983; Boyd & Vandenberghe, 2004;
Kingma & Ba, 2014; Ruder, 2016), the recent rise of large language models (Brown et al., 2020;
OpenAI, 2023; Chiang et al., 2023; Raffel et al., 2020; Touvron et al., 2023a;b; Dubey et al., 2024) and
vision-language foundation models (OpenAI, 2023; Li et al., 2024; Zhu et al., 2024; Alayrac et al., 2022;
Radford et al., 2021) has introduced the possibility of framing optimization in the context of natural
language prompts. This form of optimization typically does not require any gradient-based learning or
parameter update but focuses on extracting knowledge from the language models via suitable natural
language prompts. A large body of work focuses on finding natural language prompts optimized for
various downstream tasks for both LLMs (Yang et al., 2024; Wei et al., 2022; Kojima et al., 2022; Yao
et al., 2023) and VLMs (Pratt et al., 2023; Roth et al., 2023; Mirza et al., 2024), demonstrating impressive
gains in language-based and downstream vision tasks.

In our work, we frame optimization around discovering suitable natural language prompts for VLMs,
with the objective of improving performance on downstream vision tasks. Our proposed GLOV employs a
prompt search technique relying on a meta-prompt coupled with embedding space guidance, that drives the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

prompt optimization for the VLMs. We use the meta-prompt to iteratively query an LLM with downstream
task-specific description and ranked in-context examples derived from the previous (optimized) prompts.
In-context examples guide the LLM toward the desired output, and their ranking (measured on a small
held-out train set) provides the LLM with a sense of the language patterns preferred by the downstream
VLM. To further steer the LLM generation towards a notion of goodness in each optimization step, we
explicitly bias the language generation with a direction. The direction is determined by adding a hidden
state offset vector (on the last token during the autoregressive generation) derived from the positive
and negative prompts (based on their effectiveness on labeled training data) to the LLM’s activation space
during generation. The intuition is that by directing the LLM generation toward the positive prompts,
the model can discover semantically similar and potentially more effective solutions. One complete
optimization run, depicting the effectiveness of the discovered solutions and the effect of applying the
embedding space guidance is plotted in Figure 1. The best-performing prompts (on the held-out train
set) achieve an absolute improvement of 2.6% and 15.2% on ImageNet (Deng et al., 2009) test set over
CLIP (Radford et al., 2021) and LLaVa-OV (Li et al., 2024) respectively.

We extensively evaluate our GLOV on one of the fundamental tasks in computer vision: image
classification, and also touch upon the open-ended generation task of visual question answering
(VQA). We demonstrate the generalization of our GLOV on a total of 16 diverse datasets, with the two
commonly employed families of VLM models – the dual-encoder and the recent visual encoder-decoder
models (Radford et al., 2021; Li et al., 2024). We find that our GLOV can consistently discover highly
effective solutions for the downstream task of interest resulting in significant improvements across the board.
For example, the most effective prompts discovered for the dual-encoder models (e.g., CLIP) can improve
the accuracy up to 15.0% (3.81% on average) and for the encoder-decoder architectures (e.g., LLaVa),
the resulting prompts show an even larger improvement of up to 57.5% (21.6% on average). Furthermore,
we extensively ablate our proposed prompt optimization algorithm, design choices, and the effect of our
guidance mechanism, providing insights for future work.

2 RELATED WORK

Our work is related to large language and vision language models, approaches proposing methods for
steering the LLM outputs, and prompt optimization methods (through LLMs) for VLMs.

2.1 LLMS AND VLMS

Here, we first provide a brief overview of Large-Language Models (LLMs) and then move towards
Vision-Language Models (VLMs).

LLMs have revolutionized the natural language processing landscape. These models can typically be
divided into two major groups; namely the long-short-term-memory (LSTM) (Hochreiter & Schmidhuber,
1997) and transformer-based architectures (Vaswani et al., 2017). The former is based upon recurrent neural
networks (RNNs) that use gates to control the flow of information, allowing them to capture long-term
dependencies in sequential data. The latter is based on the self-attention mechanism, which enables the
model to process sequences in parallel and capture relationships between tokens regardless of distance.
Some notable works following the LSTM family of models include (Sutskever et al., 2014; Graves &
Schmidhuber, 2005; Bahdanau et al., 2015; Beck et al., 2024). The transformer-based architectures consist
of encoder or decoder-based LLMs. The encoder-based LLMs are primarily used for understanding tasks
like text classification and sentiment analysis, as they excel at capturing contextual information from
the input. Some notable works include BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019b), and
DistilBERT (Sanh et al., 2020). The decoder-based LLMs, on the other hand, are designed for generative
tasks such as text generation, translation, and summarization, with recent models including GPT-3 (Brown
et al., 2020), T5 (Raffel et al., 2020), GPT-4 (OpenAI, 2023), and the Llama family of models (Dubey
et al., 2024). In our work, since we need to access the weights of the LLMs, we resort to the open-source
Llama-3 model. However, potentially any open-source LLM can be employed.

VLMs can be placed in two categories. One group relies on dual-encoders (vision and text encoder),
usually trained in a contrastive manner and these models are typically strong at tasks like image recognition.
The most common among these methods are CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021),
OpenCLIP (Schuhmann et al., 2022), SigLIP (Zhai et al., 2023), and MetaCLIP (Xu et al., 2023). Many
methods (Mirza et al., 2024; 2023b; Doveh et al., 2023b;a; Lin et al., 2023; Mirza et al., 2023a) build
upon these models to further improve them for specific downstream tasks. The other group of methods
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aligns the visual modality with a frozen LLM and can be used for open-ended visual reasoning tasks like
image captioning, visual question-answering, etc. Some representative approaches from this group include
BLIP-2 (Li et al., 2023), Instruct-BLIP (Dai et al., 2023), MiniGPT (Zhu et al., 2024; Chen et al., 2024),
and the LLaVa family of models (Liu et al., 2023; Li et al., 2024). Similarly, some approaches (Doveh
et al., 2024; Gavrikov et al., 2024; Lin et al., 2024; Huang et al., 2024) build upon these models and
provide further improvements. In our work, we focus on the task of object recognition by employing both
families of models and frame the task of finding the optimal prompt templates (for CLIP (Radford et al.,
2021)) and suitable prompts for open-ended generation (for LLaVa (Li et al., 2024)) as an optimization
problem. Specifically, for the decoder-based VLMs, some recent works (Zhang et al., 2024) highlight
that these models struggle for fine-grained object recognition. However, we show in our work, for the
first time, that our GLOV can discover an optimal prompt that can greatly improve the visual recognition
ability of these models, without requiring any gradient-based learning or fine-tuning.

2.2 STEERING LLM RESPONSES

One line of work alters the responses from an LLM, without requiring any explicit gradient-based
fine-tuning. ActADD (Turner et al., 2023) proposes to reduce LLM hallucinations by altering the hidden
states. In their work, given a positive and a negative data point (model response), they propose to steer
the responses (e.g., to be less hateful) by adding the difference of the embeddings from these points to the
intermediate layers of the network. On the other hand, Proxy-Tuning (Liu et al., 2024a) proposes to adapt
the model responses on the logit level. Specifically, they model the responses from a smaller base model to
be similar to a larger instruction-tuned LLM by altering the softmax probabilities obtained from the smaller
base model. We also take inspiration from Turner et al. (2023); Liu et al. (2024a) and for the first time show
that such steering (applied on the embedding level) can also be used to improve downstream multi-modal
(vision-language) tasks. One difference between ActADD and our GLOV is that we add the difference
of the sentence embeddings (and not of the prompts themselves, as in ActADD) to only the last token.
Whereas, ActADD adds the difference of the (complete) sequence lengths to the first few tokens at the
generation step. In the ablations Section 4.3, we show that this seeming nuance has an important effect on
the performance of the downstream task, showing that our method might be more suitable for vision tasks.

2.3 LARGE-LANGUAGE MODELS AS PROMPT OPTIMIZERS

Some approaches propose employing LLMs (in an agentic workflow) to search for the optimal prompt
for the downstream task. OPRO (Yang et al., 2024) coins the term “LLMs as Optimizers” and proposes
iteratively discovering solutions (prompts) for natural language tasks by employing an LLM in a feedback
loop. Similarly, Liu et al. (2024b) proposes to find suitable prompts for dual-encoder VLMs (e.g., CLIP) by
iteratively prompting an LLM. Our GLOV also proposes to discover suitable prompts for VLMs but differs
from Liu et al. (2024b) in the sense that we are employing a meta-prompt that captures long-range dependen-
cies by tapping into the history-buffer of the in-context examples and employs task-specific knowledge that
helps to obtain prompts better suited for the downstream task. Furthermore, we propose a new method for
steering the LLM generation (through embedding space guidance) towards the responses that are more suit-
able for downstream VLMs. Powered by a suitable meta-prompt and the guidance scheme, our GLOV dis-
covers solutions which help to enhance visual tasks for both the dual-encoder and encoder-decoder models.

3 GLOV: GUIDED LLMS AS IMPLICIT OPTIMIZERS FOR VLMS

The goal of our GLOV is to improve the VLM’s downstream (vision) task performance by optimizing natu-
ral language prompts through employing an LLM in an iterative workflow. To achieve this, we build upon a
meta-prompt introduced by Mirza et al. (2024), differing from them, we leverage few-shot (e.g., 1-shot) held-
out labeled training examples to calculate the effectiveness of the solutions discovered in each optimization
step, which guides the optimization. Furthermore, effective prompt optimization is performed by providing
the LLM with explicit guidance conditioned on a prior of the difference of the sentence embeddings from
the positive and negative prompts discovered during the previous optimization iterations. Although the
application space of GLOV is general and we demonstrate its generalization ability on two popular families
of VLMs (e.g., dual-encoder (Radford et al., 2021) and encoder-decoder (Liu et al., 2023)), for simplicity,
here we focus our description around CLIP (Radford et al., 2021) while mentioning the differences for
LLaVa (Li et al., 2024) where appropriate. An overview of our methodology is provided in Figure 2.
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Figure 2: Overview of GLOV. GLOV consists of a Meta Prompt, which constitutes system instruction,
task description, and in-context examples (VLM prompts) which are evaluated (and ranked) on a few-shot
training data in each iteration. The Meta-Prompt instructs the LLM to generate several candidate solutions
in each optimization iteration, conditioned on the in-context examples which are fed in conjunction
with the accuracy values, highlighting their effectiveness. Furthermore, to steer the LLM generation
towards the language preferred by the VLM, we add the scaled difference of the sentence embeddings
(autoregressively) from the positive and negative text prompts to the intermediate layer of the LLM. This
process is repeated until the stopping condition is met (e.g., maximum iterations). Note, thatH+ andH−
refer to the sentence embeddings from the text prompts.

For the ease of assimilation, we divide the description of our GLOV into different parts. In Section 3.1
we describe the fitness function and how it can provide an interface for the LLM-VLM interaction. In
Section 3.2, we provide details about the meta-prompt employed in our work. Finally, we conclude in
Section 3.3 by providing details about the proposed guidance methodology.

3.1 LLM-VLM INTERACTION THROUGH FITNESS FUNCTION

The dataset-specific prompt templates P provided by CLIP (Radford et al., 2021) have been constructed
manually, requiring human effort. In this work, we frame the prompt search as an optimization problem
and propose to replace the human with an LLM, employed in an iterative feedback loop. Furthermore, we
explicitly guide the generation process of the LLM in each optimization step by proposing a novel guidance
methodology that can assist the LLM in understanding the style of language preferred by the downstream
VLM, even though the two models only interact through a fitness function. At each optimization step i,
the LLM provides multiple (e.g., 10) solutions to improve the downstream task performance. However, not
all solutions provided by the LLM are preferred for the downstream vision task. To obtain a measure of the
fitness (effectiveness) of the provided solutions to the downstream vision task, we evaluate all the candidate
solutions on a held-out few-shot (1-shot) labeled training datasetD. For CLIP (Radford et al., 2021), the
zero-shot likelihood of class ĉ for each discovered prompt p∈P during an optimization step can be found by

lĉ(x)=
ecos(ψĉ,ϕ(x))/τ∑
c∈Ce

cos(ψc,ϕ(x))/τ
, where ψc=ψ(p(c)), (1)

where ϕ and ψ represent the vision and text encoders of CLIP, x∈D, τ denotes the temperature constant,
cos refers to the cosine similarity, and p(c) replaces the ‘class’ placeholder in the discovered prompt p.
CLIP’s vision encoder ϕ produces the image embedding. The text embedding of a class c (belonging to
a set of candidate classes C) is obtained by incorporating the class name c in the found prompt, called a
VLM prompt, and embedding this text through the VLM’s text encoder ψ. The fitness of a prompt p∈P
can be found by comparing the predicted label with the ground truth, summarized as
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Fitness(p)=
1

|D|
∑

(x,y)∈D

1

[
argmax

c
lc(x)=y

]
, (2)

where 1 is an indicator function that is 1 if the predicted label matches the ground truth y and 0 otherwise.
For the encoder-decoder models (e.g., LLaVa), which produce open-ended outputs, we obtain the class
likelihoods by obtaining a symbolic representation of the image in textual form and comparing the text
embeddings from this symbolic representation with the text embeddings obtained for the individual class
names, using a dedicated sentence embedding model (Reimers & Gurevych, 2019). We expand on these
details in the Appendix Section A.

It is important to note that the fitness function forms a bridge between two disjoint models – the LLM and
the VLM, and is responsible for their interaction. The fitness (classification accuracy) provides feedback
to the LLM regarding the type of natural language sentences that are preferred by the downstream VLM.
The fitness function is responsible for ranking all the prompts provided as in-context examples to the
meta-prompt in each optimization iteration (c.f., Section 3.2) and also forms the basis for the application
of the embedding-space guidance methodology (c.f., Section 3.3) proposed in this work to bias the LLM
responses towards a notion of goodness.

3.2 META-PROMPT

The meta-prompt (c.f., Appendix Figure 5) is responsible for driving the iterative prompt optimization.
Specifically, it consists of 3 distinct parts, which are described as follows:

System prompt is a generic set of instructions that describe the task of the LLM. It helps a user to find
the optimal prompts, improving the downstream task accuracy. The system prompt remains static for
the entire optimization run.

Task description is dynamically changing at each optimization step. It consists of a description of
what is included in the main body of the prompt, e.g., what is expected from the LLM (i.e., a prompt),
a downstream task name, task description, quantity (and actual) best and worst prompt templates as
in-context examples, with their associated fitness, obtained through equation 2.

In-context examples serve to bootstrap the LLM to the type of output that is expected. In each
optimization step, we task the LLM to provide us with 10 candidate solutions (prompts). Each prompt is
evaluated w.r.t. a fitness function to obtain a (classification) score. We keep a global history of the prompts
(and associated fitness) generated during all the previous optimization steps and at each optimization step
i, the newly generated prompts and all the previous prompts are ranked according to their respective fitness
score. For the next optimization step i+1, topk, and bottomk prompts (we choose k=5) are selected
as in-context demonstrations and plugged into the meta-prompt together with their respective accuracies.
The intuition behind keeping a global history of prompts is to provide the LLMs with long-term knowledge
about what types of prompts have been effective for the VLM so that it can model its responses according
to them. The motivation behind the current choice of the topk and bottomk in-context examples is that
we intend to provide contrasting examples to the LLM from the opposite end of the spectrum (of goodness
and badness) so that the LLM can make sense of what are the type of responses preferred by the LLM.

3.3 STEERING THE LLM GENERATION PROCESS

At a higher level, given two prompts – positive and negative (identified through equation 2), our proposed
steering can be considered as analogous to computing a hidden state gradient towards the positive prompt,
effectively biasing the language generation away from the negative identified prompt in each optimization
step. The intuition is to condition the LLM text outputs according to the language preferred by the
downstream VLM. To this end, we show that the LLM outputs can be steered through simple arithmetic
in the hidden states of the present-day LLMs.

For a given LLM f with pre-trained parameters θ⃗, and given tokenized prompts p⃗b and p⃗w, the activation
responses at layer l are denoted as al(⃗p;⃗θ). This is an activation map of B×S×E, which denotes the
number of promptsB, tokenized sequence length S, and the hidden dimension sizeE. Typically, al does
not depend on all model parameters θ⃗, but we abuse the notation in the interest of simplicity. The sentence
embeddingsH+ andH− can be obtained by averaging the activations across the sequence length S
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ImageNet ImageNetv2 Caltech101 ImageNetR ImageNetS ImageNetA OxfordFlowers OxfordPets Mean

CLIP (S-TEMP) (Radford et al., 2021) 61.9 54.8 91.4 65.4 40.3 28.2 64.0 81.3
CLIP (DS-TEMP) (Radford et al., 2021) 63.3 56.0 89.9 67.9 42.1 30.2 66.6 83.2
LLM-OPT (Liu et al., 2024b) 62.8 55.6 92.3 67.5 41.9 28.1 67.0 78.1

GLOV (w/o guidance) 62.7 55.8 92.1 67.8 41.9 31.2 64.6 84.4
GLOV 64.5 56.6 93.7 68.5 43.0 32.5 67.7 85.5

StanfordCars DescribableTextures Food101 FGVCAircraft SUN397 UCF101 RESISC45 EuroSAT

CLIP (S-TEMP) (Radford et al., 2021) 60.2 40.2 77.6 18.1 62.1 60.4 54.1 35.8 55.8
CLIP (DS-TEMP) (Radford et al., 2021) 59.9 42.4 79.2 19.4 61.7 62.3 57.2 45.8 57.9
LLM-OPT (Liu et al., 2024b) 60.2 41.7 79.2 17.7 60.9 60.9 54.4 45.0 57.1

GLOV (w/o guidance) 59.6 41.4 78.5 19.7 62.2 63.0 61.4 46.9 58.3
GLOV 60.4 42.6 79.5 20.1 62.1 63.8 62.0 50.8 59.6

Table 1: Results on dual-encoder VLM. Top-1 accuracy (%) for 16 datasets obtained by employing
the ViT-B/32 backbone from OpenAI CLIP (Radford et al., 2021). S-TEMP refer to the results obtained
by using the default template (a photo of a <class name>), while DS-TEMP refer to the results
obtained by using the ensemble of dataset-specific prompts. GLOV (w/o guidance) represents the results
without the guidance applied to the LLM generation, whereas GLOV represents results obtained by adding
the guidance offset vector. The mean results over 20 datasets are reported in the bottom half of the table.
The bold numbers represent the best and the underline numbers represent the second-best accuracy.

H+=
1

S+

S+∑
s=1

al(p⃗+;⃗θ):,s,: H−=
1

S−

S−∑
s=1

al(p⃗−;⃗θ):,s,: (3)

where S+ and S− are the sequence lengths of prompts p⃗+ and p⃗−, respectively. The goal is to obtain
semantically meaningful sentence embeddings from the identified positive and negative prompts.

For each new token produced in the subsequent optimization iteration, the difference between H+ and
H− is added autoregressively to the embeddings of each generated token1. Let p⃗n denote the new token
appended to the (meta) prompt, then the updated sentence embeddingHn is given by

Hn=Hn+α·(H+−H−) (4)

where α is the scaling factor and is chosen via grid search. This process is repeated until the maximum
number of tokens is achieved for each prompt. In total we prompt the LLM (at each iteration) to provide us
with 10 prompt templates for CLIP and 5 for LLaVa to reduce the computation efforts. In an optimization
run p+ is always the prompt with the best accuracy w.r.t the fitness and p− is set to be the prompt with
the second-best accuracy. Since, we compute a form of the gradient-like differential between averages
of token hidden states, intuitively trying to identify a characteristic of task-specific improvement. Thus,
the intuition behind computing the differential between the best and the second best (in terms of fitness) is
to make it between points closest to the maximal value of the objective – which is a common mathematical
intuition. Furthermore, p+ and p− are only updated when a new prompt with higher accuracy is found.
This ensures that the guidance signal does not alter in each iteration, resulting in more stable optimization.

An important design choice in GLOV is the method adopted to calculate the sentence embeddings. Some
works, e.g., Jiang et al. (2023) hint that the decoder-based LLMs are not suitable for obtaining the sentence
embeddings. We ablate our proposed method of obtaining sentence embeddings (equation 3) in Section 4.3
and find it to provide strong results (while linear probing the embeddings from the middle layers of the
LLM) on common natural language classification tasks, hinting that our sentence embeddings can capture
semantically meaningful information from the prompts.

4 EXPERIMENTAL EVALUATIONS

In this section, we first provide a brief overview of the datasets we use for evaluating our GLOV, then
provide an overview of the different baselines and state-of-the-art methods we compare to, later discuss
the implementation details and finally conclude with a discussion on the results.

4.1 EVALUATION SETTINGS

Datasets: We extensively evaluate our GLOV on 16 object recognition datasets belonging to widely
different domains. These domains can be narrowed down to datasets containing commonly occurring

1We also experiment with several alternatives for adding the offset vector in the ablations Section 4.3, however,
we find that adding the offset to only the last token performs best.
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ImageNet ImageNetv2 Caltech101 ImageNetR ImageNetS ImageNetA OxfordFlowers OxfordPets Mean

LLaVA-OV (Li et al., 2024) 36.5 31.4 77.7 52.1 38.1 32.3 19.4 16.2
Meta-Prompt (Mirza et al., 2024) 45.0 42.5 86.1 64.9 45.9 42.9 28.5 53.7

GLOV (w/o guidance) 46.8 40.9 87.1 75.7 49.6 44.8 28.6 53.7
GLOV 51.7 46.1 92.6 77.6 49.9 43.6 39.6 54.3

StanfordCars DescribableTextures Food101 FGVCAircraft SUN397 UCF101 RESISC45 EuroSAT

LLaVA-OV (Li et al., 2024) 21.7 33.2 21.5 4.1 36.4 52.9 43.3 25.6 33.9
Meta-Prompt (Mirza et al., 2024) 65.4 49.0 58.1 39.7 40.0 55.1 49.4 41.4 50.4

GLOV (w/o guidance) 73.9 46.9 66.9 44.0 44.9 60.6 47.2 36.3 52.9
GLOV 79.2 51.7 67.0 41.0 46.0 59.7 51.1 36.3 55.5

Table 2: Results on encoder-decoder VLM. Top-1 accuracy (%) for 16 datasets obtained by employing
the LLaVa (One Vision) (Li et al., 2024). LLaVa (OV) refer to the results obtained by using a generic
prompt, while Meta-Prompt refer to the results obtained by obtaining the prompts through Mirza et al.
(2024). The mean results over 20 datasets are reported in the bottom half.

natural categories: ImageNet (Deng et al., 2009), ImageNetV2 (Recht et al., 2019), Caltech101 (Fei-Fei
et al., 2004), fine-grained classification datasets containing different task-specific images: Oxford
Flowers (Nilsback & Zisserman, 2008), Standford Cars (Krause et al., 2013), Oxford Pets (Parkhi et al.,
2012), Describable Textures Dataset (DTD) (Cimpoi et al., 2014), Food-101 (Bossard et al., 2014),
FGVC-Aircraft (Maji et al., 2013). Dataset used for scene classification: SUN397 (Xiao et al., 2010),
action recognition dataset: UCF101 (Soomro et al., 2012). Datasets consisting of out-of-distribution
images: ImageNet-(R)endition (Hendrycks et al., 2021a), ImageNet-(A)dversarial (Hendrycks et al.,
2021b), ImageNet-(S)ketch (Wang et al., 2019) and also datasets which contain images taken from a
satellite or an aerial view: EuroSAT (Helber et al., 2018) and RESISC45 (Cheng et al., 2017).

Baselines: We compare to the following baselines and state-of-the-art methods:

CLIP (Radford et al., 2021) denotes the zero-shot classification scores obtained by using the simple ‘{a
photo of a <class name>}’ template (S-TEMP) and dataset-specific templates (DS-TEMP2).
LLaVa-OV represent results obtained by using a base prompt3. LLM-OPT (Liu et al., 2024b) proposes to
find suitable text prompts for the downstream datasets by iterative refinement through an LLM. However,
their method relies only on the in-context examples without explicit guidance4. Meta-prompt (Mirza
et al., 2024) propose a method for improving the visual recognition performance of dual-encoder models
by generating category-level VLM prompts. Here we extend its evaluations to dual-encoder models5. For
completeness, we also compare with the gradient-based (few-shot) learning method CoOp (Zhou et al.,
2022) in the Appendix Table 5.

Implementation Details: To report the results for each dataset we use the test splits provided by Zhou
et al. (2022). All the baselines are also implemented in the same framework. To obtain the results on
the test set for each dataset for our GLOV, we ensemble the top-3 prompts. These prompts are chosen with
regard to the best-performing prompts on the 1-shot train set at a certain iteration during the optimization.
For our GLOV we use Llama-3 (Touvron et al., 2023a) from Hugging Face, whereas, for LLM-OPT we
keep consistent with their original implementation regarding all details. The best-performing prompts
for LLM-OPT are also chosen w.r.t the 1-shot train set. We set the maximum number of optimization
iterations to 100 (with 10 candidate solutions at each iteration) for the experiments with CLIP and 50 (with
5 candidate solutions) for LLaVa-OV, except for datasets containing 1000 classes (e.g., ImageNet), where
we set the maximum number of iterations to 25 to save computation time. In general, the experiments with
CLIP can run on a single NVIDIA 3090 (24GBs) GPU, and the experiments with LLaVa fit on an A40
(48GBs) GPU or similar. Our entire codebase is attached as .zip file with the supplementary material.

2https://github.com/openai/CLIP/blob/main/data/prompts.md
3The prompt used to obtain the base results is: Describe the category present in this image

briefly and also identify the name of the category present, which was able to match
or surpass accuracy reported by Zhang et al. (2024).

4Note that this method is not suitable for application on the encoder-decoder models because it requires a memory
bank of templates, which are not available a-priori for these models.

5The original publication generates category-level prompts for the dual-encoder models, which is a different setting
than the one studied in our work.
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4.2 RESULTS

We evaluate our GLOV extensively on 16 diverse datasets. In Table 1 we list the results by employing
the CLIP ViT-B/32 from OpenAI. We observe that our GLOV achieves better accuracy on all the datasets
evaluated. For example, as compared to CLIP, when using the simple prompt template, our vanilla GLOV
provides an average gain of 2.5%, with up to 11.0% gains on EuroSAT. Similarly, the gains increase even
further with our proposed guidance scheme. We observe gains of up to 15% (3.8% on average). On the
large-scale ImageNet dataset, we observe gains of 2.5%, which shows that our guidance can help to find
prompts that are generalizable across diverse categories of ImageNet. On the other out-of-distribution
(OOD) ImageNet variants, our GLOV is also able to show consistent improvements. We also compare
with the CLIP classifier constructed by ensembling the hand-crafted templates provided by OpenAI2 and
find that the prompts discovered through our GLOV can even improve upon these results. For example,
on the large-scale ImageNet dataset, the CLIP classifier built by ensembling the top-3 performing prompts
on the train set can provide a gain of 1.2%, while on average the performance improvements is 1.5%,
with up to 5.0% gains on the EuroSAT dataset. It is also important to point out that the prompts provided
by CLIP (Radford et al., 2021) are chosen w.r.t the accuracy on the test set (Liu et al., 2024b), whereas, our
GLOV searches for prompts by only having access to 1-shot training data highlighting the generalization
ability of our GLOV. Furthermore, as compared to ensembling 80 CLIP templates, our results are obtained
by only ensembling the top-3 prompts, highlighting redundancy in CLIP prompts.

In Table 1, we also compare our GLOV with LLM-OPT (Liu et al., 2024b). Even our vanilla prompting
method (without guidance) is on average 1.4% better than LLM-OPT. This highlights that our meta-prompt
is better suited to the task of prompt search. Our meta-prompt consists of task-specific and long-term knowl-
edge of the LLM’s responses about what it has generated in all the previous iterations, whereas, LLM-OPT’s
prompt does not contain long-term dependencies. Furthermore, we are providing the absolute accuracy as-
sociated with each of the in-context examples, which helps the LLM with fine-grained knowledge about the
effectiveness of the prompt. On the other hand, the prompt used by LLM-OPT (Liu et al., 2024b), naı̈vely
instructs the LLM to provide better prompts, with only providing good and bad prompts. From the results,
we also observe that our proposed guidance methodology further helps to obtain better results by obtaining
2.7% improvement on average, and with 1.7% improvements on the large-scale ImageNet. These results
highlight the effectiveness of our GLOV, which is further strengthened by our novel guidance mechanism.

In Table 2 we list the detailed results by employing the LLaVa-OV-7B model. Due to the generative nature
of these models, recent works (Geigle et al., 2024; Zhang et al., 2024) have highlighted the difficulty faced
in evaluating these models for fine-grained visual recognition. Specifically, Zhang et al. (2024) proposes
to fine-tune the models to improve their visual recognition performance. However, in our work, we find
that for these models, the fine-grained visual recognition performance can be greatly enhanced by finding
the optimal prompt (without requiring gradient-based learning). We observe that the solutions discovered
by our GLOV can significantly close the gap with the dual-encoder models. For example, we observe
up to 57.5% improvement (21.5% on average over 16 datasets) as compared to vanilla LLaVa-OV. We
also observe that our proposed guidance scheme has a significant impact on the results. For example,
after obtaining the prompt by directing the LLM towards the better solutions discovered, we observe a
significant average improvement (over 16 datasets) over the vanilla GLOV of 2.5% and notably on the
large-scale ImageNet dataset GLOV-guidance obtains a healthy improvement of 4.9%. These results
display the effectiveness of our proposed embedding space guidance schema.

These results show the quantitative benefits of our GLOV. We also visualize the evolution of accuracy on the
train set as the optimization process proceeds in Figure 1 for the ImageNet dataset. We observe that as the
prompt optimization proceeds, our GLOV shows a consistent increase in accuracy, and also our proposed
guidance fares better than the vanilla GLOV. These plots indicate that the LLM gradually starts to understand
the type of language preferred by the downstream VLM (while only being interfaced with a fitness function)
and our proposed guidance helps to provide it a direction, which is followed by the LLM to continuously
discover solutions that improve the downstream vision task. We delegate the actual (best) prompts found,
the evolution of prompts, and the optimization evolution for other datasets to Appendix Section B.

4.3 ABLATIONS

In this section, we provide extensive ablations to study the different aspects of our GLOV. First, we take
a closer look at all the design choices, then provide experiments that extend our method to VQA, later
we discuss the generalization ability of the found prompts, and finally conclude with experiments regarding
the choice of layer for our proposed guidance methodology.
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Figure 3: Ablating design choices. (a) We compare the optimization trajectories obtained with our
proposed guidance method with that of ActADD (Turner et al., 2023). (b) The effect of adding the offset
vector to each token, instead of only the last token as in GLOV. (c) Using the embeddings of only the
last token to obtain the offset vector. (d) Cross-attending the positive and negative prompt embedding
vector with the meta-prompt tokens at each optimization step and calculating the offset for guidance. (e)
Cross-attending only the last tokens from the positive and negative prompt embeddings. (f) Finding the
optimal number of tokens to be generated at each optimization step. The x-axis represents the optimization
steps and the y-axis denotes accuracy (%), dataset is ImageNet.

OxfordFlowers Aircraft Food101 Pets
Base 60.1 53.4 88.0 72.5
GLOV 62.9 57.5 89.5 73.9

Table 3: Generalization to visual question an-
swering task. Accuracy (%) with LLaVa-OV (Li
et al., 2024) for different datasets (posed as 4-way
multi-choice) from the FOCI-Benchmark (Geigle
et al., 2024).

ViT-B/16 ViT-L/14 MC-B/16 MC-L/14
Base 61.8 70.5 64.9 70.7
GLOV 63.9 72.7 66.3 72.5

Table 4: Generalization of prompts. Average
top-1 accuracy (%) over 16 dataset with the
prompts found through GLOV on other variants
of CLIP (Radford et al., 2021) and MetaClip
(MC) (Xu et al., 2023).

Design Choices: The eventual algorithm (c.f., Algorithm 1) for our GLOV (especially the guidance
scheme, i.e., GLOV-guidance) is chosen by intensely studying a variety of alternatives. Several of
these design choices experimented with, are plotted in Figure 3. For example, in Figure 3a we compare
ActADD (Turner et al., 2023) guidance scheme with our GLOV. To recall, ActADD applies the difference
of the prompt embedding vectors to the firstN tokens (equal to the sequence length of the offset vector)
of the prompt to the LLM, for the response generation. Whereas, our GLOV applies the guidance to
only the last token of the (meta) prompt for each new token produced at each optimization step (in a
greedy manner). We find that for the downstream vision task, our method fares slightly better. Similarly,
for each generation step, we also experiment by applying the offset vector to each of the tokens of the
prompt (c.f., Figure 3b) – resulting in stronger guidance – and by only using the last token embedding
for obtaining the offset vector (c.f., Figure 3c). We observe that our method of obtaining the mean of the
embeddings from all the tokens and adding the offset to only the last token at each generation step fares
better. We also experiment with cross-attending the positive and negative prompt embeddings with the
hidden state at each time step of the auto-regressive modeling in LLMs. Specifically in Figure 3d we
cross-attend all the tokens of the hidden state (query) with the positive and negative prompt embeddings
(keys-values) and obtain the offset vector, and in Figure 3e we only use the last token embedding for cross
attention. In both cases, we see that our proposed guidance scheme fares better. Finally, we experiment
with generating different numbers of tokens for each prompt (at each optimization step) and find that the
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Figure 4: Sweep for choosing the LLM layer for guidance. Linear probing accuracy for different
layers of Llama-3, while evaluating our choice of calculating the sentence embeddings for the sentiment
classification task in SST-5 dataset (left). Top-1 classification accuracy for ImageNet on the held-out train
set while applying the guidance on different layers of Llama-3 (right).

best results are obtained with 50 tokens. This could be because the CLIP text encoder does not favor longer
sentences and shorter sentences might not be syntactically correct.

Generalization to VQA: We further evaluate our method on the visual question answering task proposed
by Geigle et al. (2024). Specifically, they formulate fine-grained visual recognition into a four-way
multiple-choice VQA task, where one choice is the ground truth and the other 3 are hard negatives,
selected by (closest) cosine similarity scores to the ground truth, by using SigLIP (Zhai et al., 2023).
To obtain the results for our GLOV in Table 3 we optimize the <question> asked as prompt to the
VLM. The most effective prompts discovered at the end of the optimization are listed in the Appendix
Sections B.3 & B.4. These results provide a glimpse of the possibility of further extension of our work to
the task of open-ended VQA in other domains, where the goal can be to optimize the questions. Currently,
we leave such exploration for future work.

Generalization of Prompts: In Table 4 we evaluate the generalization ability of the discovered prompts
on various CLIP variants, e.g., MetaCLIP (Xu et al., 2023). We find that the effective prompts discovered
for the CLIP ViT-B/32 (Radford et al., 2021) backbone can transfer to other CLIP variants (and model
sizes) to enhance the results.

Choice of Layer for Guidance: One important design choice for our GLOV is the choice of layer in the
LLM for the embedding-space guidance. Furthermore, our method calculates the mean of the sequence
lengths, to obtain the sentence embeddings (c.f., equation 3), which is also an opportunity for introspection.
To obtain a measure of the quality of the sentence embeddings, we linear probe different layers in Llama-3,
on the popular sentiment classification task SST (Socher et al., 2013) and provide results in Figure 4 (left).
SST has been widely used to benchmark sentence representations (Conneau & Kiela, 2018). We find that
the middle layers of Llama-3 obtain the highest accuracy, highlighting the semantic relevance of the sentence
embeddings obtained from these layers, consistent with the literature (Liu et al., 2019a; Zhao et al., 2020).
Furthermore, we also run a sweep while applying the guidance on different layers in Llama-3 and plot the
resulting ImageNet accuracy on the 1-shot train set in Figure 4 (right). The accuracy peaks at layer 16 and
layer 17. These results are consistent with the linear probing results obtained on the SST-5 dataset, hinting
that the middle layers might be the most effective. Hence, keeping these results in view and following Turner
et al. (2023), we choose layer 17 in Llama-3 to apply the offset vector for steering the responses.

5 CONCLUSION

We have presented a prompt optimization method for VLMs that interfaces two disjoint models through
a fitness function. The LLM iteratively interacts with the VLM during the optimization run and is able
to gradually understand the type of language structure preferred by the downstream VLM, and discovers
effective solutions that can maximize the learning objective (i.e., the accuracy on the downstream vision
task). To further enhance the optimization, we condition the LLM responses at each optimization step
by providing a direction. The direction is dictated through a novel embedding space steering methodology
that, in essence, adds an offset vector calculated from the positive and negative prompt embeddings to the
intermediate layer of the LLM, helping it to bound the outputs more strictly towards the language prompts
preferred by the VLM. Extensive empirical evaluations with different VLM architectures on multiple
datasets highlight the effectiveness of our proposed GLOV.
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APPENDIX

In the following, we provide additional experiments and further explanations which might be helpful for the
reader to gain further insights and add clarity to the main manuscript. In Section A we further expand upon
the details regarding the calculation of the fitness of prompts for the encoder-decoder models. Then, in
Section B we list all the prompts used to obtain the results in the main manuscript (Tables 1, 2 & 3). Finally,
in Sections C & D we provide results while comparing with the gradient-based learning method proposed
by Zhou et al. (2022). Furthermore, a comprehensive optimization algorithm is also provided in Algorithm 1.

To encourage reproducibility, we have provided all the prompts discovered by our GLOV in Section B,
which can be used to obtain all the results provided in the main manuscript. These prompts were found
by running experiments on a machine consisting of 4x NVIDIA 3090Ti, 4x NVIDIA A40, 4x NVIDIA
A6000, and 4x NVIDIA L40 GPUs. For review, we also provide our entire codebase as code.zip with
detailed instructions to run in the Readme.md. The codebase will also be made public upon acceptance.

A FITNESS FOR ENCODER-DECODER MODELS

The generative nature of the encoder-decoder architectures can often be a challenge when evaluating these
models for the task of image recognition. The output from these models is not a probability distribution
over the label space (as compared to dual-encoder models). Thus, to evaluate the free-form output from
these models, we treat the text output from these models as a symbolic representation of the image we want
to classify. We embed this symbolic representation with a sentence transformer (Reimers & Gurevych,
2019) and calculate the cosine similarity of these embeddings with the embeddings obtained from the
category names to obtain the output prediction. Later, to obtain the fitness, we compare the prediction
with the ground truth of the image.

More formally, let G(x) denote the text generated by the encoder-decoder model for a given image
x∈D. We embed this generated text using a pre-trained sentence transformer, denoted by the embedding
function emb(·), resulting in an embedding emb(G(x))∈Rd, where d is the dimension of the embedding
space. For each class c∈C, we similarly embed the class name c using the same sentence transformer,
yielding emb(c)∈Rd. The prediction for the class ĉ can then be obtained by finding the class whose name
embedding has the highest cosine similarity with the generated text embedding:

ĉ=argmax
c∈C

cos(emb(G(x)),emb(c)), (5)

where cos(u,v)= u·v
|u|,|v| denotes the cosine similarity between vectors u and v.

To compute the fitness of the generated prompts p∈P in this context, we compare the predicted label
ĉ with the ground truth label y for each image. The fitness is defined as:

Fitness(p)=
1

|D|
∑

(x,y)∈D

1

[
argmax

c
cos(emb(G(x)),emb(c))=y

]
, (6)

where 1 is an indicator function that equals 1 if the predicted label matches the ground truth y and 0
otherwise.

B GLOV PROMPTS

Here, we list all the prompts discovered during the optimization runs. In Sections B.1 & B.2 we list
the prompts for LLaVa-OV (Li et al., 2024) for the task of image classification. In Sections B.3 & B.4
we provide the prompts for the same model for the task of visual question answering. Finally, in
Sections B.5 & B.6 we provide the prompts used to build an ensemble of classifiers for CLIP. Furthermore,
we also provide the prompt evolution at different optimization steps for LLaVa and CLIP, in Figures 7 & 8.
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B.1 GLOV (W/O GUIDANCE) - PROMPTS (LLAVA-OV - IMAGE CLASSIFICATION)

• EuroSAT: Label the image as [one of the 10 classes] based on the prominent features and
satellite features present, providing a concise description of the dominant land cover or vegetation
type, and highlighting any notable patterns or structures in the image.

• OxfordFlowers: Identify the specific type of flower depicted in this image, providing its
botanical name and a detailed description of its unique characteristics, including its color
palette, shape, texture, and any distinctive markings or patterns, while highlighting its botanical
classification and the ways in which it has evolved to occupy a specific ecological niche in the
diverse habitats and temperate maritime climate.

• ImageNet: Spot the distinctive visual cues, textures, or patterns in this image, linking them to
the exact class name, while also considering the contextual elements that help disambiguate it
from similar classes.

• ImageNetV2: Spot the distinctive visual cues, textures, or patterns in this image, linking them
to the exact class name, while also considering the contextual elements that help disambiguate
it from similar classes.

• UCF101: Elaborate on the specific attributes and characteristics of the human or object in the
image that uniquely define the UCF101 action category, highlighting notable patterns, shapes,
or movements that distinguish it from others, and further describe the context and scene where
the action takes place.

• ImageNetR: Can you describe the visual category depicted in this image, weaving together
artistic expression, cultural context, and semantic meaning to specify the ImageNet-R class that
masterfully harmonizes creative and literal aspects of the depiction, while acknowledging the
nuanced interplay between artistic interpretation, cultural influences, and original meaning in
the representation?

• ImageNetSketch: Envision the original ImageNet object’s most distinctive attributes and
describe how the sketched representation masterfully captures these nuances, ensuring a precise
correspondence to the class name.

• DescribableTextures: Identify the texture category and describe its characteristic visual pattern,
emphasizing the striking visual cues that make it instantly recognizable within its category, while
highlighting the most prominent feature that sets it apart from others.

• Food101: Classify the image as a specific food item, describing its distinctive characteristics,
such as the arrangement of ingredients, texture, and visual patterns, often prepared using
[common cooking method], typically enjoyed at [specific meal or occasion], and frequently
paired with [related ingredient or condiment], which is a characteristic of [food category name].

• FGVCAircraft: Pinpoint the aircraft model, emphasizing its distinctive configuration of wings,
fuselage, and control surfaces, while highlighting the nuanced variations that differentiate it from
other models within the broader category of aircraft, and accurately distinguishing it from similar
models.

• Caltech101: This object is a paradigmatic instance of [Caltech category name], exemplifying
the core characteristics and features that define the concept and accurately capturing the essence
of its category.

• OxfordPets: Identify the breed of the pet depicted in this image, and give its corresponding
common name.

• StanfordCars: Describe the specific make and model of the car in the image, highlighting its
unique design elements, notable features, and overall aesthetic appeal, while also analyzing its
market positioning, technological advancements, and historical significance within the automotive
industry, ultimately revealing its distinctiveness within its class.

• RESISC45: Can you describe the satellite or aerial photograph by focusing on the distinct spatial
relationships and arrangements of geographical features or man-made structures that define
its category, and then categorize it into one of the 45 categories in the RESISC45 dataset by
emphasizing the unique characteristics that set it apart from other categories while considering
the contextual information provided?
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• ImageNetA: Describe the object or concept depicted in this image by highlighting the most
significant visual cues that deviate from typical representations, and identify the category name
while emphasizing the subtle differences between this instance and expected examples within
the same class.

• SUN397: Classify the scene in this image by teasing out its intricate essence through a nuanced
analysis of its visual topography, comprising the harmonious interplay of its most prominent
elements, spatial arrangements, and subtle contextual cues, thereby pinpointing the precise SUN
category that accurately captures its unique character and situates it within the 397 options.

B.2 GLOV PROMPTS (LLAVA-OV - IMAGE CLASSIFICATION)

• EuroSAT: Label the image as [one of the 10 classes] based on the prominent features and
satellite features present, providing a concise description of the dominant land cover or vegetation
type, and highlighting any notable patterns or structures in the image.

• OxfordFlowers: Identify the type of flower in this image and provide its common name e.g.
’This is a species of [Common Name]’.

• ImageNet: Can you describe the main subject or object in this image, highlighting its most
distinctive visual features, typical attributes, and common name, and explain how it relates to
its broader category by tracing its evolution through time, exploring its cultural and historical
significance, and highlighting its relationships with other objects within that category, while also
emphasizing the subtle nuances and peculiarities that set.

• ImageNetV2: Can you describe the main subject or object in this image, highlighting its most
distinctive visual features, typical attributes, and common name, and explain how it relates to
its broader category by tracing its evolution through time, exploring its cultural and historical
significance, and highlighting its relationships with other objects within that category, while also
emphasizing the subtle nuances and peculiarities that set.

• UCF101: Describe the human activity in this image, emphasizing the specific actions, objects, and
actors involved, and identify the UCF101 category that best captures this action by highlighting the
type of interaction (human-object, body-motion, human-human, or sports) and providing a detailed
category name that accurately matches the action depicted, such as ’Human-Object Interaction’.

• ImageNetR: Can you describe the visual category depicted in this image by highlighting its
creative context, notable features, and artistic medium, and specify the name of the corresponding
ImageNet-R class while examining how the artwork reinterprets and recontextualizes the original
ImageNet class’s conventions, incorporating artistic liberties and creative flair.

• ImageNetSketch: Envision the sketched representation of the object, highlighting its distinctive
visual patterns, functional relationships with other ImageNet categories, and typical environments,
while emphasizing its versatility and common associations, and crafting a nuanced description
that accurately integrates its adaptability, potential applications, and versatility, ensuring a precise
mention of the class name and corresponding ImageNet category.

• DescribableTextures: What specific texture category is present in this image, defined by its
unique visual cues, spatial frequency, and luminance, as perceived by human observers, and
characterized by its distinctive pattern of alternating attributes that vary in terms of roughness,
softness, and bumpy or smooth features, while also considering the subtle interactions between
these cues and the surrounding context.

• Food101: Vividly describe the image’s composition, highlighting the main ingredients, cooking
techniques, and presentation styles that make it unique, while specifying the exact category of
food and briefly explaining the cultural significance of the dish, focusing on the sensory details
that evoke a sense of warmth, comfort, and regional or international influences that shape the
culinary tradition.

• FGVCAircraft: Can you identify the specific aircraft model or subcategory shown in this image,
and mention a key distinguishing characteristic that is both visually apparent to a non-expert
observer and closely related to the aircraft’s design evolution or historical context?

• Caltech101: Classify this image as one of the 101 object categories in the Caltech 101 dataset,
by pinpointing the object’s most salient visual elements and its nuanced interactions with the
surrounding environment, while providing a concise and accurate label for its corresponding
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category name that effectively captures the object’s proportions, orientation, and subtle
context-dependent appearances.

• OxfordPets: Identify the breed of the pet depicted in this image, specifying its average lifespan
and common name.

• StanfordCars: Classify the image as a specific car model, emphasizing its striking design
features, precise manufacturer, exact model year, and notable details, while highlighting the
subtle variations in its color palette, trim levels, and overall styling to accurately categorize it
among the fine-grained categories of cars.

• RESISC45: Can you describe the geographical feature or man-made structure depicted in the
image, highlighting its unique characteristics, features, and patterns that make it distinct from
other categories, and then consider the surrounding environment, terrain, and any notable visual
anomalies or textures that provide contextual clues to help identify the category from RESISC45?

• ImageNetA: Interpret the image as a subtle anomaly within a broader category, where the
depicted concept or object’s distinctive features and deviations from typical expectations subtly
alter our understanding of the category’s identity and necessitate a nuanced classification.

• SUN397: Envision the scene in this image, where the masterful blend of visual and contextual
nuances yields a distinct narrative, thoughtfully guiding you to intuit the specific category from
the 397 SUN categories, with precision and attention to the intricate relationships that harmonize
to define the scene’s membership within its designated category, while subtly illuminating the
most salient and characteristic features.

B.3 GLOV (W/O GUIDANCE) - PROMPTS (LLAVA-OV - VQA)

• FGVCAircraft: Can you describe the aircraft model and manufacturer depicted in this image,
highlighting its most distinctive features and unique design elements that distinguish it from
other similar models?

• OxfordPets: What OxfordPets breed is this image most likely to belong to, considering the
visual characteristics and features described in the Oxford-IIIT Pet Dataset?

• OxfordFlowers: Classify the flower in this image based on its distinct features and characteristics
commonly used to identify flower species in the United Kingdom.

• Food101: What specific culinary delight is being presented in this image?

B.4 GLOV PROMPTS (LLAVA-OV - VQA)

• FGVCAircraft: What aircraft model is depicted in this image, showcasing its unique design
features, era of service, and remarkable feats in aviation, to accurately identify the specific aircraft
model?

• OxfordPets: What OxfordPets breed is highlighted in this image, and how does its distinctive
appearance and characteristics contrast with those of other breeds?

• OxfordFlowers: Can you please classify the flower species in this image, noting its genus and
key features, and highlighting its unique characteristics that distinguish it from its closest relatives
within the same genus while also specifying its exact category within the 102 types of flowers?

• Food101: What food is being served in this image, considering its textures, colors, and culinary
and cultural context, as well as its typical preparation and serving methods?

B.5 GLOV (W/O GUIDANCE) PROMPTS (CLIP - IMAGE CLASSIFICATION)

• ImageNetR:
– A visually striking{} artwork that celebrates the intersection of artistry and imagination,

inviting the viewer to appreciate the creative expression and attention to detail.
– A captivating{} artifact that tells a story of creativity, technique, and self-expression, inviting

the viewer to appreciate the beauty in the imperfections.
– A masterfully crafted{} rendition, showcasing the creative fusion of textures, patterns, and

colors to evoke a sense of whimsy and wonder.
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• ImageNetA:

– A photo that illustrates the subtle yet significant ways in which the absence or presence
of a{} shapes the trajectory of a story, often in ways that are both unexpected and profound.

– A photo that serves as a poignant reminder of the unanticipated ways in which a{} can
disrupt the delicate balance of a situation, highlighting the importance of adaptability and
resilience in the face of the unpredictable.

– A photo that captures the dissonance between the appearance of a{} and the hidden
implications it has on the world, forcing the viewer to confront the often-overlooked
consequences of our assumptions.

• ImageNetSketch:

– A photorealistic hand-drawn sketch of a{}, rendered with precision and attention to detail,
allowing for a seamless blend of artistic flair and technical accuracy.

– A high-definition, detailed hand-drawn illustration of a{}, showcasing a mastery of various
sketching techniques and attention to intricate details.

– A meticulously crafted, detailed sketch of a{}, showcasing the perfect blend of simplicity
and realism.

• RESISC45:

– A satellite image of a{} from a moderate altitude, showcasing its unique characteristics
and features in a clear and well-defined manner.

– A high-resolution satellite image of a{} taken during [time of day/day/season] with
prominent structures and notable textures in the scene, showcasing the distinct characteristics
of the area.

– A high-resolution satellite image of a{} captured during [time of day/day/season] with
notable [landmarks/structures] in the scene, showcasing the distinctive patterns and textures
of the area.

• EuroSAT:

– A Sentinel-2 satellite image from the European continent, showcasing the complex rela-
tionships between built environments, agricultural practices, and natural ecosystems, as seen
in a{} landscape, where the interplay between human activity and environmental health is.

– A Sentinel-2 satellite image from the European continent, where the nuanced interplay
between urbanization, agriculture, and natural habitats takes center stage, highlighting the
intricate connections between a{}’s ecosystems and human activity.

– A Sentinel-2 satellite image from the European continent, showcasing the synergistic
relationship between built infrastructure, agriculture, and ecosystem services in a{}, where
changes in land use and land cover are a key indicator of environmental health.

• ImageNetV2:

– A precise and detailed image of a{} showcasing its most distinctive or defining features.
– A photograph of a{} showcasing its most distinctive or iconic features.
– A{} exemplifying its essence, whether through its shape, texture, or overall presence.

• ImageNet:
– A precise and detailed image of a{} showcasing its most distinctive or defining features.
– A photograph of a{} showcasing its most distinctive or iconic features.
– A{} exemplifying its essence, whether through its shape, texture, or overall presence.

• OxfordPets:
– A picture of a{} that has captured the hearts of many, often becoming a beloved and loyal

companion in its owner’s life, bringing joy and happiness to those around it.
– A picture of a{} that has a special place in its owner’s heart, often serving as a loyal

companion and source of comfort in times of need.
– A picture of a{} that captures the heart of its owner, often serving as a loyal companion

and a symbol of unconditional love and affection.

• SUN397:
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– A close-up shot of a{} that reveals its intricate textures and details, inviting a sense of
curiosity and exploration.

– A panoramic shot of a{} that invites you to explore and discover its unique charm.
– A photo of a{} that tells a story of human connection and presence within its tranquil and

serene environment.
• StanfordCars:

– A photo of a{} parked in front of a vintage, restored garage, with worn, rustic walls and
a nostalgic atmosphere, highlighting its classic design and timeless appeal.

– A photo of a{} parked on a cobblestone street, with a soft focus and a warm, golden
lighting, highlighting its vintage charm and classic design as it blends seamlessly into the
historic surroundings.

– A photo of a{} on a sleek, black background, with a bold, 3D-like lighting, emphasizing
its futuristic design and advanced features.

• UCF101:
– A meticulously crafted sequence of coordinated movements, emphasizing the subtle

variations in tempo, posture, and gesture that define the{}, is expertly demonstrated as a
person executes the.

– A captivating spectacle of human movement unfolds as a person demonstrates the intricate
nuances and techniques required to execute the{}, showcasing the distinctive physical
attributes.

– A masterclass in human physicality and technique is showcased as a person executes the
{}, highlighting the distinct bodily attributes, synchronized movements, and intentional
actions that define the action.

• FGVCAircraft:
– A photograph of a{} aircraft from a low-angle perspective, showcasing its distinctive

¡shape¿ or ¡pattern¿ against a clear and textured background, with a prominent ¡detail¿ or ¡.
– A photograph of a{} aircraft with its characteristic lines, shapes, and patterns clearly visible,

taken from a dynamic angle that conveys a sense of motion, texture, and depth, with a
notable ¡detail¿ or ¡.

– A photograph of a{} aircraft with a unique ¡shape¿ or ¡pattern¿ prominently displayed,
taken from a dynamic angle that conveys a sense of motion, texture, and depth, with a
notable ¡detail¿ or.

• Food101:
– A{} dish served in a rustic, earthy bowl, garnished with fresh herbs and a drizzle of artisanal

sauce, evoking the warmth and comfort of a home-cooked meal.
– A skillfully composed shot of{} on a rustic wooden surface, adorned with a sprinkle of

fresh herbs and a drizzle of warm sauce, evoking the cozy ambiance of a family dinner.
– A warm and inviting image of a tenderly prepared{}, served with a side of crispy,

golden-brown toast and a dollop of creamy condiment, evoking the cozy atmosphere of
a family dinner gathering.

• OxfordFlowers:
– A photograph of a{} in its prime, with the delicate petals and intricate details unfolding

like a miniature landscape, inviting us to step into the flower’s intimate world and appreciate
its unique textures.

– A photograph of a{} with its intricate details and subtle colors unfolding like a delicate
canvas, inviting us to appreciate the flower’s unique textures and the masterful arrangement
of its petals and sepals as a work of art.

– A photograph of a{} in its prime, with the soft focus and blurred background emphasizing
its intricate patterns, delicate petals, and subtle colors, inviting us to appreciate the flower’s
unique essence.

• DescribableTextures:
– A photo of a{} that your hands would ache to hold, as if the tactile sensation of its texture

would seep into your pores, lingering long after you’ve let it go.
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– A photo of a{} that your eyes trace with reverence, as if mapping the intricate landscape
of its texture, and your fingertips hum with anticipation to explore its tactile secrets.

– A photo of a{} that unfolds like a sensory tapestry, weaving together tactile whispers, visual
nuances, and the promise of discovery.

• Caltech101:

– A thoughtfully composed, mid-angle shot of a{} nestled among other objects on a cluttered
surface, highlighting its subtle interactions with its environment while inviting the viewer
to appreciate its unique textures, proportions, and intricate details.

– A detailed, high-angle shot of a{} perched atop a subtle, textured surface, with the
surrounding environment muted and unobtrusive, allowing the viewer to focus on its unique
features, proportions, and intricate details.

– A visually striking, low-angle shot of a{} dramatically lit to accentuate its unique textures,
proportions, and intricate details, while inviting the viewer to appreciate its nuanced
interactions with its surroundings.

B.6 GLOV PROMPTS (CLIP - IMAGE CLASSIFICATION)

• OxfordPets:
– A cherished and loyal{} with a warm and loving demeanor, often found in the hearts of

its owners as a constant companion, bringing immense joy and comfort to their daily lives
with its playful antics and snuggles.

– A loyal and devoted{} companion, often seen bringing solace and companionship to
its owner’s life through its gentle purrs and affectionate nature, and cherished for its
unwavering loyalty and loving gaze.

– A majestic{}with a gentle purr, often seen lounging in the sunbeams that stream through
the windows, bringing joy and comfort to its owner’s life with its soft fur and loving
companionship.

• OxfordFlowers:
– A picturesque{} unfurls its petals, emitting a subtle floral aroma as the morning dew

glistens upon its delicate features.
– An exquisite{} unfurls its tender petals, releasing a delicate fragrance that wafts gently on

the morning air, as the warm sunlight dances across its velvety texture.
– A tranquil{} in its natural habitat, surrounded by lush greenery and warm sunlight, with

delicate petals unfolding like a work of art.

• FGVCAircraft:
– A photo of a{} aircraft, its worn<control surface texture> and faded<trim scheme

pattern> blending into the cracked<concrete texture>.
– A photo of a{} aircraft, its streamlined<fuselage shape> and precise<ailerons texture>

gliding smoothly against the soft focus of the distant<>.
– A photo of a{} aircraft, its worn<livery pattern> and worn<landing gear> blending with

the faded<tarmac texture> of the background, as it stands out against the soft focus of
the blurry<>.

• DescribableTextures:
– A picture of a{} where the texture is a natural or inherent property of the object, rather

than something applied or added.
– A picture of a{} where the texture is a dynamic, living, or breathing entity, like a snake

or a leaf, that adds movement and vitality to the scene.
– A picture of a{}where the texture is what you’d expect to find in a man-made object, but

the object is often found in nature.

• EuroSAT:

– A Sentinel-2 satellite image capturing the symphony of human and environmental
harmonies in European{}, as technology’s gaze harmonizes with nature’s rhythm.
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– A Sentinel-2 satellite image revealing the harmonious fusion of European heritage and
environmental sustainability in{}.

– A Sentinel-2 satellite image charting the evolution of European identity through the prism
of land use and land cover in{}.

• RESISC45:

– A high-angle aerial view of{}, emphasizing its unique patterns, textures, and spatial relation-
ships with the surrounding landscape, while showcasing its role as a distinct hub of activity.

– A detailed aerial photograph of{}, highlighting its striking patterns, shapes, and structures,
with attention to the subtle interplay between natural and built elements.

– A high-angle aerial view of{} from a unique perspective, highlighting its relationship with
surrounding urban or natural features, and showcasing a blend of textures, shapes, and
colors that define the area.

• StanfordCars:
– A photo of a{} parked in a modern garage, with a minimalist interior design and subtle

hints of high-tech features, emphasizing its sleek design and advanced engineering.
– A photo of a{} in motion, captured from a dynamic perspective, such as a sleek, high-speed

turn or a precise, high-grip maneuver, showcasing its agility and responsive handling.
– A photo of a{}with a blend of modernity and heritage, as it drives through a historic city

center, showcasing its unique fusion of classic design and advanced technology.

• Food101:

– A{} culinary masterpiece, carefully crafted to delight the senses and leave you wanting more.
– A{} delight on a plate, perfect for a quick snack or a special treat.
– A warm, comforting bowl of{} on a chilly evening, perfect for a cozy night in.

• SUN397:

– A peaceful haven of a{}, where natural serenity meets subtle human touch.
– A picturesque snapshot of a{}, where human presence subtly shapes the serene ambiance.
– A captivating image of a{}, where vibrant colors and textures evoke a sense of wonder

and curiosity.

• Caltech101:

– A detailed, in-focus image of a{} against a clean or neutral background, showcasing its
textures, colors, and any distinctive patterns or features, allowing the viewer to study its
intricate details and distinguishing characteristics.

– A photo of a{} in its typical setting, with the object’s unique features or details highlighted,
and a blurred or subtle background that does not distract from the object’s significance or
characteristics.

– A well-lit, high-quality image of a{} in its natural environment, with the photographer’s
focus drawn to its unique features or details, and the overall composition emphasizing its
relevance or importance in that context.

• UCF101:

– The video captures a person skillfully executing a{} action that requires a high level of
physical dexterity and coordination in the context of sports.

– The{} action is a nuanced demonstration of human physical skill, requiring coordination
and precise movements.

– The video captures a person engaged in a meticulous and precise manner while performing
the{} action, showcasing exceptional control and technique.

• ImageNet:
– A photo of an{} that stands out for its [unique feature or characteristic], such as [specific

detail], which is often [adjective] for its kind, in a [context or environment].
– A photo of an{} that exemplifies its distinctive features, such as [specific feature or

behavior], in a [common or typical] setting, highlighting its [adjective, e.g. characteristic,
notable, or defining].
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– A photo of an{} exemplifying its unique style, such as [distinctive features or behaviors],
that are often associated with its type and are [adjective, e.g. striking, recognizable, or
distinctive], within [context or environment].

• ImageNetSketch:
– A sketchy yet captivating description of a{}, highlighting its most striking aspects in a

harmonious balance of simplicity, elegance, and whimsy.
– A sketchy yet elegant description of a{}, capturing its most recognizable features in a way

that is both subtle and striking, yet also conveys the essence of the object.
– A sketchy yet endearing description of a{}, capturing its most iconic and memorable

features in a delicate balance of simplicity and charm.
• ImageNetV2:

– A photo of an{} that stands out for its [unique feature or characteristic], such as [specific
detail], which is often [adjective] for its kind, in a [context or environment].

– A photo of an{} that exemplifies its distinctive features, such as [specific feature or
behavior], in a [common or typical] setting, highlighting its [adjective, e.g. characteristic,
notable, or defining].

– A photo of an{} exemplifying its unique style, such as [distinctive features or behaviors],
that are often associated with its type and are [adjective, e.g. striking, recognizable, or
distinctive], within [context or environment].

• ImageNetA:
– A photo of a situation where the absence or unexpected presence of a{} disrupts the viewer’s

initial expectation, requiring them to pause and re-assess the image to accurately classify it.
– A photo of a situation where the removal of a{} would alter the dominant visual narrative,

requiring the viewer to re-examine the image to accurately classify it and understand the
story being told.

– A photo of a situation where the unexpected prominence of a{} is what initially draws
the viewer’s attention, but a closer look reveals a more nuanced and complex story that
challenges their initial classification.

• ImageNetR:
– A captivating, hand-painted rendition of a{}, blending traditional techniques with a touch

of fantasy and whimsy.
– A delicate, handmade{} piece, showcasing the intersection of art and reality, inviting the

viewer to appreciate its intricacies.
– A carefully rendered, dreamlike interpretation of a{}, blurring the lines between reality

and imagination, highlighting its distinctive characteristics.

B.7 GLOV PROMPTS (CLIP - IMAGE CLASSIFICATION) - LLAMA-3.1-70B

• Describable Texture:
– A photo of a{} that embodies the essence of a tactile memory, transporting the viewer back

to a moment when they first discovered its unique texture.
– A photo of a{} that, as you gaze upon its intricate patterns, your mind starts to wander

and you can almost feel the texture shifting beneath your fingertips, a sensory experience
waiting to be unlocked.

– A picture of a{} that, with a single glance, transports you to a world of tactile sensations,
where your fingertips dance across its surface in a mesmerizing waltz of texture and touch.

• EuroSAT:
– Can you describe a pressing issue in European policy-making that a{} could help address,

and how the subtle characteristic of<category>?
– A nuanced perspective on the{} phenomenon in European governance, where the subtle con-

cept of this phenomenon is used as a novel way to address a pressing issue on the continent.
– Please describe a pressingly relevant issue in European environmental policy that is

mitigated by the presence of a{}, highlighting the subtle yet significant impact it has.
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• ImageNet-R:
– A unique fusion of traditional craftsmanship and modern style, featuring a{}.
– A unique, imaginative representation of a{}.
– A beautifully crafted, imaginative representation of a{}.

• ImageNet-A:
– A photo of a situation where the unexpected coexistence of a{}with seemingly unrelated

elements creates a sense of tension or unease, making it difficult to accurately classify, as
our brains struggle to reconcile the familiar with the unfamiliar.

– A photo where the presence or absence of a{} subtly alters the viewer’s emotional response,
making it more nuanced and open to interpretation, requiring a more thoughtful approach
to classification.

– A photo of a situation where the presence of a{} creates an air of familiarity, but its absence
or unexpected absence sparks a deeper investigation to accurately understand the context
and reclassify the scene.

• UCF-101:
– A person skillfully performs a{} action that requires a combination of physical and mental

effort, often in a context of human-object interaction.
– The{} action is a remarkable display of human dexterity and coordination, requiring a deep

understanding of spatial awareness and precise motor control.
– The{} is a complex action that involves coordinating multiple body parts to achieve a

specific outcome, often requiring precision, agility, and strength.

B.8 VQA PROMPTS

• VLGuard (Zong et al., 2024)
– Please carefully scrutinize the following instruction and decline to execute it if you perceive

any potential risks or uncertainties that may compromise the integrity of the model or its
users.

• ChartQA (Masry et al., 2022)
– Synthesize the questionś intent and align it with the chartś visual elements to provide a

precise answer.
• GQA (Hudson & Manning, 2019)

– Focus on scene graph annotations.

C MORE SHOTS HELP

All results in the main manuscript (Tables 1 & 2) are obtained by using 1-shot training data. In Table 6
we provide results on several datasets by employing 5-shot training data for the CLIP ViT-B/32 (Radford
et al., 2021) backbone. We observe a consistent improvement in results by using more shots.

D COMPARISON WITH FEW-SHOT METHODS

For completeness, in Table 5 we compare with the popular CoOp (Zhou et al., 2022) method in the
1-shot learning regime. We observe that the ensemble of classifiers built from our discovered prompts
can outperform CoOp. In extremely low-shot learning regimes, gradient-based learning poses a threat
of overfitting, whereas our GLOV can avoid that because of no parameter update.
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System Prompt

Task Description

In-context Examples

You are helpful AI assistant who is going to help me with finding the best prompt 
templates to embed the class names for my dataset for zero-shot classification with 
CLIP. Let's Go!

You are provided with a dataset name, description, top {top_bottom_k} and worst 
{top_bottom_k} example prompt templates with their associated accuracies from the last 
{step+1} runs. Your task is to provide me with 1 new prompt templates in the same 
format as the given prompts, so that I can simply replace the <category> placeholders 
with the actual class names in the dataset and use it for zero-shot classification with 
CLIP. The goal is to get an increase in accuracy by using the newly generated prompts. 
You can use the dataset description and the best and worst example prompts as context 
for improving accuracy. Be creative! Good luck!'
Dataset: {dataset_name} Description: {dataset_info} Best Templates: {best_exm} Worst 
Templates: {worst_exm}
### Remember to only provide me the prompt as a response, and nothing else. ####

Figure 5: Overview of the Meta Prompt. The system prompt is a generic instruction set. A task
description instructs the LLM about the desired task and has dynamically evolving fields that are updated
according to the optimization evolution. Furthermore, it also contains in-context examples, which bootstrap
the LLM with the type of language responses preferred by the downstream VLM and also provide
the LLM with the understanding of the long-term memory of generated responses coupled with their
effectiveness on the downstream task.

Imagenet ImageNetA ImageNetS UCF101 DescribableTextures Caltech101

CLIP 61.9 28.2 40.3 60.4 40.2 91.4
CoOp 60.6 24.5 39.9 63.8 40.1 91.7

GLOV 64.5 32.5 43.0 63.8 42.6 93.7

Table 5: Comparison with CoOp (Zhou et al., 2022). Top-1 accuracy (%) with CLIP ViT-B/32.

EuroSAT ImageNetA ImageNetR RESISC45 DescribableTextures

1-shot 50.8 32.5 68.6 62.0 42.6
5-shot 54.3 33.8 68.8 64.2 44.2

Table 6: More shots help. Top-1 accuracy (%) with CLIP ViT-B/32.
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Algorithm 1 GLOV: Guided Optimization of Prompts

1: Input: Pre-trained LLM f with parameters θ⃗, simple prompt template Ps, scaling factor α, maximum
number of tokens Nmax, number of prompts per iteration K=10, Meta-prompt, Few-shot training
set C, Fitness function F(·,C), target layer index l, ArrayA.

2: Output: Optimized prompts Popt.
3: Evaluate Ps on the few-shot train set with F(Ps,C) and record the accuracy CPs

.
4: GenerateK prompts P=List([P1,P2,...,PK]).
5: for Pi∈P do
6: A[i]=F(Pi,C)
7: end for
8: Ib←argmaxPi

A
9: Pb←P [Ib]

10: A[Ib]←−INF
11: Iw←argmaxPi

A
12: Pw←P [Iw]
13: while not converged do
14: ObtainHb andHw through equation 3
15: NewPrompts← List([])
16: for k in {1...10} do
17: Tokens← List()
18: for each new token n=1,...,Nmax do
19: Hn=Hn+α·(Hb−Hw)
20: Tokens.add(f.decode(Hn))
21: end for
22: NewPrompts.append(Tokens)
23: end for
24: for Pi∈NewPrompts do
25: A[i]=F(Pi,C)
26: end for
27: Ib←argmaxNewPromptsA
28: Pb←NewPrompts[Ib]
29: A[Ib]←−INF
30: Iw←argmaxNewPromptsA
31: Pw←NewPrompts[Iw]
32: end while
33: Return: Pb as Optimized prompts Popt
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Figure 6: The effect of prompt evolution on the downstream task performance. The shaded regions
represent the absolute top-1 accuracies at each optimization step by ensembling the top-3 prompts found
w.r.t the accuracy on the 1-shot train set whereas the solid lines represent the exponential moving average.
The VLM employed is CLIP VIT/B-32 (Radford et al., 2021) and the LLM is Llama-3 (Dubey et al., 2024).
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GLOV GLOV (w/o guidance)

Describe the category present in this image briefly and also 
identify the name of the category present.

Describe the category present in this image briefly and 
also identify the name of the category present.

Accuracy: 38.4 Accuracy: 38.4

Can you describe the main subject or object in this image, 
highlighting its distinctive features, typical attributes, and 
common name, while also considering the context in which 
it appears and providing the class name of the category it 
belongs to?

Spot the central figure or dominant element in this image, 
labeling it with the precise class name and concisely 
summarizing the scene or context, highlighting any striking 
features or patterns that set it apart from others?

Accuracy: 49.5 Accuracy: 47.4

Can you describe the main subject or object in this image, 
highlighting its most distinctive visual features, typical 
attributes, and common name, and explain how it relates to 
its broader category, including any relevant spatial or 
temporal context, cultural or historical significance, and 
typical habitats or environments, while also providing the 
class name of the category it belongs to?

Identify the main subject or prominent visual aspect of this 
image, specifying the exact class name and providing a 
concise description that highlights any distinctive visual 
patterns, textures, or contextual details that contribute to its 
classification, while also considering the image's overall 
scene and composition.

Accuracy: 51.8 Accuracy: 48.5

Can you describe the main subject or object in this image, 
highlighting its most distinctive visual features, typical 
attributes, and common name, and explain how it relates to 
its broader category by examining its nuanced associations 
with spatial and temporal context, cultural and historical 
significance, and its class name, while also considering its 
subtleties, variations, and potential misclassifications

Pinpoint the central figure, object, or visual motif in this 
image, specifying the precise class name and offering a 
concise explanation of the key visual features, textures, or 
patterns that justify its classification, while also accounting 
for the image's overall scene, composition, and potential 
contextual cues. 

Accuracy: 53.0 Accuracy: 47.2

Can you describe the main subject or object in this image, 
highlighting its most distinctive visual features, typical 
attributes, and common name, and explain how it relates to 
its broader category by tracing its evolution through time, 
exploring its cultural and historical significance, and 
highlighting its relationships with other objects within that 
category, while also providing a nuanced justification for its 
categorization and 

Highlight the image's most notable features, specifying the 
exact class name and describing how these visual elements 
contribute to its classification, while also considering the 
image's overall context and any distinctive visual patterns 
or textures that make it unique. 

Accuracy: 53.1 Accuracy: 46.9

Can you describe the main subject or object in this image, 
highlighting its most distinctive visual features, typical 
attributes, and common name, and explain how it relates to 
its broader category by tracing its evolution through time, 
exploring its cultural and historical significance, and 
highlighting its relationships with other objects within that 
category, while also emphasizing the subtle nuances and 
peculiarities that set.

Unlock the essence of this image by pinpointing the pivotal 
visual feature, texture, or contextual element that 
unmistakably links it to its precise class name, while also 
considering the surrounding scene and subtle details that 
contribute to its unique identity.

Accuracy: 54.5 Accuracy: 46.8

Step: 0

Step: 4

Step: 9

Step: 14

Step: 19

Step: 24

Figure 7: Prompt evolution for LLaVa. We provide the highest performing prompt (on the 1-shot train
set) discovered by our GLOV at different optimization steps for the ImageNet dataset.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

GLOV GLOV (w/o guidance)

A photo of a {}. A photo of a {}.

Accuracy: 63.8 Accuracy: 63.8

Step: 0

a high-quality image of an {} featuring a characteristic or 
behavior that is typical for its kind.

a high-quality image of an {} featuring a characteristic or 
behavior that is typical for its kind.

Accuracy: 62.7 Accuracy: 64.0

Step: 10

a high-quality image of a {} with an unusual or distinctive 
composition that draws attention to its unique features.

a high-quality image of a {} demonstrating its unique 
relationship with its environment or other objects, 
highlighting its adaptability or dependence on its 
surroundings.

Accuracy: 63.0 Accuracy: 61.9

Step: 20

a high-quality image of a {} that showcases its typical use, 
function, or cultural significance.

a photograph of a {} showcasing its unique structural or 
morphological features, highlighting its most salient visual 
characteristics.

Accuracy: 63.4 Accuracy: 62.0

Step: 30

a high-quality image of a {} with a unique pose, expression, 
or interaction that is distinctive of its class, and is often 
used as a visual representation of its type.

a detailed, high-quality photograph of a {}, focusing on its 
most striking or notable aspects, and providing a clear view 
of its essential features.

Accuracy: 63.2 Accuracy: 62.2

Step: 40

A high-quality image of a {} that is iconic or representative 
of its class, and is often used as a symbol or reference point 
for its type, showcasing its unique characteristics and 
features that are deeply ingrained in human culture

A high-quality image of a {} that embodies its spirit, 
personality, or defining attributes, inviting the viewer to 
explore its intricacies and nuances.

Accuracy: 64.5 Accuracy: 62.4

Step: 50

A photo of a {} that is [adjective, e.g. prominently, 
typically, or iconically] displaying its unique [feature, 
behavior, or pattern], such as [distinctive characteristic or 
trait], against a

a {} in a situation that requires its unique features or 
abilities, such as demonstrating its functionality or 
highlighting its distinctive advantages.

Accuracy: 64.8 Accuracy: 62.3

Step: 60

A photo of a {} displaying its unique visual identity, such as 
[distinctive pattern, texture, or color], which sets it apart 
from other types and is [adjective, e.g. striking, 
characteristic, or

A {} exhibiting its typical behavior or interaction in a 
realistic and lifelike setting, allowing the viewer to 
appreciate its essence and unique characteristics.

Accuracy: 65.0 Accuracy: 63.4

Step: 70

A photograph of a {} in its natural habitat, showcasing its 
unique characteristics, such as [distinctive features or 
behaviors], that are often associated with its type and are 
[adjective, e.g. prominent, typical

A {} in its natural habitat, where its unique features or 
characteristics are effortlessly showcased through its 
interactions with its environment, highlighting its 
distinctiveness.

Accuracy: 64.9 Accuracy: 63.0

Step: 80

A photo of an {} featuring its [distinctive feature or 
behavior] in a [setting or context] where it stands out due to 
its [adjective, e.g. vibrant, striking, or striking], which is

a {} in its natural habitat or setting, showcasing its 
interactions with its environment and revealing its unique 
adaptations to its ecological niche.

Accuracy: 65.1 Accuracy: 62.9

Step: 90

A close-up shot of an {} with striking [distinctive features 
or behaviors] that are often associated with its type, amidst 
a subtle [background or environment] ---

A {} showcased in a carefully composed scene, with 
attention drawn to its most striking or defining features, 
highlighting its unique identity as a member of its category.

Accuracy: 63.9 Accuracy: 62.8

Step: 99

Figure 8: Prompt evolution for CLIP. We provide the highest performing prompt (on the 1-shot train
set) discovered by our GLOV at different optimization steps for the ImageNet dataset.
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