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ABSTRACT

Reinforcement learning (RL) has emerged as a central paradigm for training
large language models (LLMs) in reasoning tasks. Yet recent studies (Yue et al.,
2025; Liu et al., 2025) question RL’s ability to incentivize reasoning capacity
beyond the base model. This raises a key challenge: how can RL be adapted
to solve harder reasoning problems more effectively? To address this challenge,
we propose a simple yet effective strategy via Question Augmentation: intro-
duce partial solutions during training to reduce problem difficulty and provide
more informative learning signals. Our method, QuestA, when applied dur-
ing RL training on math reasoning tasks, not only improves pass@1 but also
pass@k—particularly on problems where standard RL struggles to make progress.
This enables continual improvement over strong open-source models such as
DEEPSCALER and OPENMATH NEMOTRON, further enhancing their reasoning
capabilities. We achieve new state-of-the-art results on math benchmarks using
1.5B-parameter models: 72.50% (+10.73%) on AIME24, 62.29% (+12.79%) on
AIME25, and 41.67% (+10.11%) on HMMT25. Code, data and model are available
at https://anonymous.4open.science/r/questa932.
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Figure 1: QUESTA is a data augmentation method that injects partial solutions to effectively scaf-
fold RL training on hard reasoning problems. We construct 26K high-quality augmented prompts
from challenging instances in OpenR1 (Open-R1 Team, 2025), and fine-tune models using 32K-
context-length RL. When applied to Nemotron-1.5B, QUESTA delivers substantial performance
gains—achieving new state-of-the-art results across all math benchmarks for 1.5B-parameter models.

1 INTRODUCTION

Frontier large language models (LLMs), including OpenAI-O1, O3 (Jaech et al., 2024), DeepSeek-
R1 (Guo et al., 2025), Qwen3 (Yang et al., 2025), and Gemini 2.5 (Gemini Team, Google DeepMind,
2025), have exhibited exceptional performance on high-complexity reasoning tasks spanning mathe-
matics, programming, and formal logic. Recent advances in the field have increasingly prioritized
reinforcement learning paradigms (RL), among which Reinforcement Learning with Verifiable Re-
wards (RLVR) has emerged as a scalable and efficient approach to enhancing reasoning capabilities.
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Figure 2: We compare pass@k curves of RLVR-trained models, with and without QUESTA. As a
controlled experiment, we perform RL training using either easy or hard prompts. Standard RL on
easy prompts (red) shows clear degradation in pass@k as k increases compared to the base model
(blue). Training on hard prompts (green) improves pass@k, but comes at the cost of substantially
longer training. This motivates our development of QUESTA, which scaffolds hard problems to
improve training efficiency and delivers consistently stronger results: the RL+QUESTA model
(orange) stays above standard RL (red) across all k, while also preserving or improving performance
at larger k relative to RL trained with hard prompts.

Using automatically verifiable signals, RLVR enables alignment between model output and objective
correctness, thus addressing a critical limitation of traditional RL for reasoning.

However, the community remains divided on a fundamental question regarding RLVR: does it
expand the model’s intrinsic reasoning capacity, or merely exploit pre-existing knowledge encoded
in the base model? Recent research (Yue et al., 2025; Liu et al., 2025; Zhao et al., 2025) show
that while state-of-the-art RL methods (e.g., GRPO, DAPO) (Guo et al., 2025; Yu et al., 2025; An
et al., 2025) can enhance the pass@1 metric by reinforcing high-reward completions, they encounter
significant limitations when tackling high-difficulty tasks where the base model performs poorly. This
phenomenon differs from that observed in Supervised Fine-Tuning (SFT) Luo et al. (2025a). Within
the SFT paradigm, enhancing the diversity of problem difficulty serves as a critical factor, as it can
effectively improve the model’s performance on downstream tasks. However, in the framework of
RLVR, the inclusion of easy prompts tends to undermine the model’s inherent reasoning capabilities.

One insightful explanation (Cui et al., 2025; Wang et al., 2025a) for the drop suggests that model
overfits on correct solutions and hence causes entropy collapse, limiting its ability to explore. To
validate this, we design a controlled setup that separates prompts into easy and hard groups. When
applying RLVR on the Nemotron 1.5B model (Moshkov et al., 2025) with the OpenR1 dataset, we
find that training on easy prompts leads to a clear decline in pass@k accuracy (Figure 2).

Given these findings, we observe that training with hard prompts is more beneficial than with easy
ones. Yet, RL training on hard problems tends to be much slower, as sparse reward signals and
limited sample efficiency hinder progress. The key challenge, then, is how to structure the learning
process to fully expand reasoning capabilities while mitigating the inefficiency of RL on hard
tasks. To this end, we introduce QUESTA: a parsimonious and efficient strategy that dynamically
adjusts problem difficulty during RL training. The core contributions of this work are threefold:

• We notice that the evolution of model capacity in RLVR critically depends on dataset difficulty,
underscoring the importance of training on hard problems to expand reasoning ability.

• We introduce QUESTA, an efficient procedure that controls difficulty by augmenting hard problems
with partial solutions. This approach provides a smooth curriculum within RL training and makes
high-difficulty tasks more tractable. Through our fully open-sourced training pipeline, QUESTA
consistently improves pass@1 and pass@k, enabling 1.5B-parameter models to reach new state-of-
the-art performance—72.5% on AIME24, 62.3% on AIME25, and 41.7% on HMMT25 (Table 1).
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Figure 3: Comparison of RL training dynamics: Training with only hard problems (green) makes
progress very slowly due to sparse rewards, while our method with partial solutions (orange) acceler-
ates training and consistently achieves higher accuracy across training steps.

• Our theoretical analysis in Section 4 explains why partial-solution augmentation accelerates RL
training: by decomposing problems into intermediate steps, the method yields denser reward signals
and improves sample efficiency, while still driving the model to master the hardest problems.

2 TRADEOFFS BETWEEN REASONING CAPACITY AND LEARNING EFFICIENCY

Given the ongoing debate on whether reinforcement learning enhances the reasoning capacity of
language models, we design a controlled experiment to study how dataset difficulty changes model
performances measured by pass@k accuracy. Specifically, we filter out easy problems and hard
problems from the 220K OpenR1 dataset, base on model’s success rate, each containing around 4K
data. We then run RL with GRPO for one thousand steps. This setup allows us to isolate how the
choice of prompt difficulty impacts the model’s reasoning capacity. In Figure 2 and Figure 3, we
provide pass@k comparison and the learning dynamics, we make two observations.

RL with Easy Prompts Hurts pass@k and Reasoning Capacity. Training on easy or already-
solvable problems leads to overfitting on shallow patterns, reinforcing confidence rather than ex-
panding reasoning capacity. While pass@1 may rise, output diversity declines and performance on
harder benchmarks deteriorates, with pass@k dropping at larger k (see Figure 2). This suggests that
the model exploits familiar solution modes instead of exploring new trajectories. To truly expand
capacity, RL training should focus on hard problems, where the policy is forced to explore and
acquire novel solution strategies.

RL with Hard Prompts Leads to Slow Learning. Training on hard prompts directly targets the
reasoning capacity of the model, but the learning process is much slower (see Figure 3) and less
sample-efficient. The difficulty arises because RL rewards on these problems are sparse, providing
limited gradient signals for policy improvement. We formallize the underlying reason in Section 4
and in Theorem 4.4.

In practice, not all questions in the training set Q are equally difficult, and one might hope that
training on easier examples could generalize to harder ones. However, empirical evidence suggests
that RL-based training exhibits a bi-modal pattern in success rates (An et al., 2025): by the end of
training, models tend to either solve a question reliably or fail entirely (see Figure 6). This implies
that once a question falls outside the model’s capacity set, the RL algorithm is unlikely to recover.

Together, these results highlight a tension: easy prompts dilute reasoning capacity, while hard prompts
stall learning altogether. This motivates the need for strategies that can retain the benefits of hard
problems while mitigating the inefficiency caused by sparse rewards. To this end, we introduce partial
solutions that break a complex question into smaller, more approachable pieces. Theoretical analysis
(Theorem 4.6) suggests that appending part of the solutions as hint can greatly improve RL efficiency.

Empirically, we simply choose the hint to be a part of the solution of the original question q and
observe faster learning in Figure 3. Surprisingly, even if we don’t explicitly train the model to generate

3
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the hint, the model’s capacity without hint still continues to improve and lead to steady improvement
in problems out of reach in standard RL training (see Table 3). We elaborate on implementation
details in the next section.

3 QUESTA: QUESTION AUGMENTATION WITH PARTIAL SOLUTIONS

QUESTA is a modular augmentation framework designed to inject partial solution sketches into
prompts during reinforcement learning (RL) training. It adresses scenarios where the base model fails
to generate correct completions—conditions that typically result in sparse reward signals. Distinct
from approaches that modify reward functions or optimization algorithms, QUESTA operates at the
input level: it transforms original training prompts into more tractable variants, thereby exposing
intermediate reasoning steps to the model.

Original Prompt

Let N be the set of positive integers. A function f : N → N satisfies the equation

f(f(. . . f(n) . . . )) =
n2

f(f(n))
with f(n) applications of f,

for all positive integers n. Given this information, determine all possible values of f(1000).

QUESTA

Augmented Prompt

Let N be the set of positive integers. The function f : N → N satisfies the equation

f(f(. . . f(n) . . . )) =
n2

f(f(n))
with f(n) applications of f,

for all positive integers n. Given this information, determine all possible values of f(1000).

## Hint: Partial Solution
Analysis shows that f must be an involution, meaning f(f(n)) = n for all n, and it fixes
all odd positive integers, so f(n) = n for odd n. For even positive integers, f either fixes
the number or swaps it with another even positive integer in a 2-cycle.

Please reason step by step, and put your final answer within \boxed{}.

Figure 4: QUESTA augments each original question in the dataset by prepending the first p% of the
solution sketch. In our experiments, we apply augmentation using the solution block rather than the
reasoning chain-of-thought. The hint percentage p is computed as the ratio of tokens used as hints to
the total number of tokens in the solution sketch.

Question Augmentation Mechanism For a given problem x with an n-step solution trajectory
y = (y1, y2, . . . , yn), QUESTA constructs a set of augmented prompts {x̃(p)}, where each x̃(p)

appends the first p steps of the solution as a prefix to the original question. The parameter p (e.g.,
p = 50% or 25%) quantifies the proportion of the solution revealed, thereby enabling precise control
over the difficulty of the augmented prompt.

In our empirical evaluations, we employed the OpenR1-Math-220K dataset (Open-R1 Team, 2025)—a
supervised fine-tuning (SFT) corpus containing solution trajectories generated by DEEPSEEK-R1.
Each instance in this dataset comprises a detailed chain-of-thought (CoT) section followed by a final
solution block. For augmentation, we extracted the final solution (omitting speculative reasoning
within the CoT section). The solution was then truncated at a predefined percentage p and prepended
to the original question, yielding the augmented prompt used in RL training, as shwon in Figure 4.

Targeting High-Difficulty Problems QUESTA is applied exclusively to prompts where the base
model’s pass rate is close to zero. Using the OpenR1-Math-220K dataset, we first employ lightweight
heuristic filters to reduce the full 220K problems to 26K of the hardest candidates. These problems
are then augmented with partial-solution prefixes where we conduct a second difficulty screening:

4
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sample multiple completions from the model for each augmented prompt, and only those instances
with consistently low pass rates are retained. This two-stage filtering pipeline yields a final pool
of no more than 10K problems, ensuring that augmentation resources are concentrated on the most
challenging cases where the base model needs additional guidance and scaffolding.

Integrating with RL Pipelines QUESTA exhibits orthogonality to underlying RL algorithms, en-
abling seamless integration into existing training pipelines (e.g., GRPO (Shao et al., 2024), DAPO (Yu
et al., 2025)) without modifications. Specifically, integration requires only replacing the original
rollout dataset with the augmented dataset, while retaining the original reward function and policy
update mechanism. To further exploit this input-level flexibility, we extended QUESTA with an
iterative curriculum RL paradigm:

1. First, augment the dataset with p = 50%, apply the difficulty filtering with the augmented prompt,
and conduct reinforcement learning training until the performance saturates.

2. Second, reduce the augmentation from p = 50% to p = 25%, i.e. provide fewer hints. Again, we
apply the difficulty filtering, and conduct reinforcement learning training until convergence.

Here, the rationale for the choice of p is provided in Appendix B.6. By keeping the training signals
strong at each stage, the method speeds up convergence on difficult tasks and makes QUESTA a
simple, plug-and-play approach for curriculum-based RL.

4 THEORY: VARYING LEARNABILITY ENHANCES RL EFFICIENCY

In this section, we present a theoretical perspective on how question augmentation improves the
efficiency of reinforcement learning. Our central thesis is that the primary bottleneck in RL-based
reasoning lies in the difficulty of discovering successful trajectories within a finite sampling budget.
Question augmentation addresses this challenge by reshaping the learnability landscape—making
hard problems more discoverable by increasing the likelihood of encountering correct trajectories.

Motivated by experiments which quantify model capcity with pass@k accuracy, we introduce the
following notions of solution set (Definition 4.1) and model capacity set (Definition 4.2) for a given
question q and model µ. Let V be the vocaboluary set, and let Pµ(q, τ) denote the probability that a
language model µ generates trajectory τ ∈ V∗ when conditioned on input question q ∈ V∗.

Definition 4.1 (Solution Set). Given a question q and a binary reward function R : V∗×V∗ → {0, 1},
the solution set is defined as:

S(q) = {τ ∈ V∗ | R(q, τ) = 1} .

Definition 4.2 (Model Capacity Set). Given a probability threshold δp > 0, a language model µ, and
a question q, define the model capacity set C(q, δp) as the smallest set of trajectories whose total
probability mass is at least 1− δp:

C(q, δp) = arg min
S⊆V∗

{
|S|

∣∣∣∣∣ ∑
τ∈S

Pµ(q, τ) ≥ 1− δp

}
.

The Model Capacity Set C(q, δp) intuitively captures the set of most likely output trajectories that
the model µ can generate for a given input q, up to a small probability threshold δp.

This formalization leads to a critical insight: if the model’s capacity set fails to intersect with the
solution set—meaning the model is unlikely to generate any correct completions—then the RL
process cannot make progress. To articulate this more formally, we begin by stating a standard
assumption satisfied by many popular RL algorithms, such as DAPO and online GRPO:
Assumption 4.3 (Null Gradient from Zero-Reinforcement). The RL algorithm does not update the
model weights if none of the sampled rollouts receives a positive reward (i.e., reward = 1).

Under this assumption, we easily the following lower bound, which states that if all training questions
are unreachable within the model’s capacity set, the RL process is likely to stall entirely:
Theorem 4.4 (Lower Bound on RL Learnability under Solution Inaccessibility). Given a probability
threshold δp > 0, if for every question q ∈ Q, the model capacity set C(q, δp) does not intersect with
the solution set S(q), i.e.,

C(q, δp) ∩ S(q) = ∅, ∀q ∈ Q,

5
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then under Assumption 4.3, when training RL for T steps with B samples per step such that TB =
Θ(1/δp), there is a constant probability that the RL algorithm will not update the model.

To overcome this limitation, our method QUESTA provides a simple yet effective solution: augment
each question in Q with a partial solution to improve the chances of sampling informative trajectories.
Formally, we assume the existence of a hint hq for every question q ∈ Q that can guide the model
toward discovering a valid completion.

Definition 4.5 (Question Augmentation). For every question q ∈ Q, hint hq ∈ V∗ satisfies that for
δ′p = δ

1/2−ϵ
p for some ϵ > 0:

• the hint hq can be generated with a non-neglible probability: Pµ(hq|q) ≥ δ′p.

• there exists a solution to the hinted problem sq ∈ S(q) such that sq can be generated with high
probability after sq , i.e.

Pµ(sq|(q, hq)) = δ′p. R(q, h⊕ sq) = 1.

The hint hq can exist for every question even when the model’s capacity set C(q, δp) does not intersect
with the solution set S(q). For instance, if every solution can be decomposed into two steps, and
the model can generate each step correctly with probability δ′p =

√
o(δp), then the possibility of

generating two steps correctly at the same time is only o(δp).

This implies that the sampling budget needed with a hint is asymptotically almost the square root of
the budget required without it (Θ(1/δp)), as given in Theorem 4.4. We further provide a learnability
result where we assume the policy is parameterized by a softmax policy parameterization in a classical
tabular RL setup.

Theorem 4.6 (Informal Upper Bound on RL Learnability with Hint). If we have a hint hq for every
question q ∈ Q (Def. 4.5), then there exists an RL algorithm that can output a policy πθ such that
Eq∼Uniform(Q)[Pτ∼πθ(·|q)(τ ∈ S(q))] ≥ 0.99 with O(1/δ′p) sampling budget with high probability.

Theorem 4.6 provides a theoretical guarantee that the model can reach a high training success
rate when partial solution is included. Empirically, we observe the model generalizes well both
in-distribution and out-of-distribution to hard questions.

5 EXPERIMENTS

Dataset. We begin with the OpenR1-Math-220K dataset and use DeepSeek-R1-Distill-1.5B as a
weak selection model to filter it down to the 26K hardest items. This set serves as our base prompts.
We then use Nemotron-1.5B to sample eight generations per prompt and classify problems into Easy
Data (7–8 correct answers) and Hard Data (0–1 correct answers), enabling controlled experiments
introduced in Section 2. The exact prompt template is provided in Appendix B.8

Data Augmentation (QUESTA). To improve the tractability of the problems, we apply QUESTA to
prepend the prompt with partial solutions, i.e. first p% of the full solution in the SFT data provided in
the OpenR1-Math-220K dataset. After augmentation, we use the initial model at RL training, either
Nemotron-1.5B or DeepScaleR-1.5B, to sample 8 generations per augmented prompts and select
samples with 0–4 correct predictions. Full details are provided in Appendix B.5. These high-variance
cases provide stronger learning signals and make the training process more effective.

Training Setup. We use AReaL (Fu et al., 2025) as our RL training framework, applying the
GRPO algorithm (Guo et al., 2025) without the Kullback–Leibler (KL) divergence loss. Following
DAPO (Yu et al., 2025), we also dynamically filter out prompts that are either all correct or all
incorrect during rollouts. During training, we sample n = 16 responses per prompt with a maximum
prompt length of 8192 tokens and a maximum generation length of 24000 tokens, using a sampling
temperature of 1.0 and clipping hyperparameters with εlow = εhigh = 0.2. The batch size is 128 with
a mini-batch size of 1, equivalent to 128 gradient updates per rollout step. Optimization is performed
with AdamW (Kingma & Ba, 2017; Loshchilov & Hutter, 2019) using a constant learning rate of
2 × 10−5. Experiments are conducted on eight NVIDIA H800 (80GB) nodes. Full details of our
training method are provided in Appendix B.1.
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Table 1: Performance comparison (Pass@1, averaged over 32 samples) across maths benchmarks.
The best results among the 1.5B models are highlighted in bold. Larger models are shown in gray
as reference points. Reported results for DeepSeek-R1-Distill and Qwen3 are taken from their
official documentation (Guo et al., 2025; Yang et al., 2025), while the rest are self-evaluated. Our
QUESTA-Nemotron-1.5B achieves state-of-the-art performance among 1.5B models and, notably,
matches or even exceeds the performance of DeepSeek-R1-Distill-32B across several benchmarks,
despite being over 20× smaller in parameter count. This demonstrates the effectiveness of QUESTA
in enhancing small model capabilities through targeted training.

Model AIME24 AIME25 HMMT FEB 25 Olympiad Bench BRUMO25 Avg

DeepSeek-R1-Distill-1.5B 28.7 22.3 12.0 52.4 31.8 29.44
Qwen3-1.7B 48.3 36.8 22.19 56.13 44.06 41.50

DeepSeek-R1-Distill-32B 72.6 51.8 33 65.0 68 58.08
Qwen3-8B 76.0 67.3 44.79 68.56 68.33 64.99

Nemotron-1.5B 61.77 49.50 31.56 64.62 58.23 53.14
QUESTA-Nemotron-1.5B 72.50 62.29 41.67 70.36 69.48 63.26

0 1000 2000
Training Step

0.3

0.4

0.5

Av
er

ag
e 

R
ew

ar
d

Average Reward

0 1000 2000
Training Step

12000

14000

16000

18000

Av
er

ag
e 

Le
ng

th

Average Length

0 1000 2000
Training Step

0.55

0.60

0.65

Av
er

ag
e 

En
tro

py

Average Entropy
QuestA-Nemotron-1.5B

Figure 5: Training dynamics of QUESTA-Nemotron-1.5B. The first and second charts show the
progression of average response length and average reward across rollout samples during the RL
process, both of which steadily increase over time. The third chart presents the average entropy.
Interestingly, the entropy increases over time, suggesting that QUESTA does not suffer from entropy
collapse and instead encourages diverse and exploratory behavior.

Evaluation Setup. For each problem in the evaluation benchmarks, we generate 32 samples and
report pass@1 results. Generation uses a sampling temperature of 0.7 and a top-p value of 0.95, with
k = 32 responses per question unless otherwise specified. It is important to note that while partial
solutions were incorporated during training, no partial solutions are provided at evaluation time.

5.1 EXPERIMENTAL RESULTS

Key Results. Table 1 reports results on challenging math benchmarks. QUESTA yields substan-
tial gains for Nemotron-1.5B, achieving an average improvement of 10% over its baseline and a
particularly strong +13% on AIME25. These improvements are consistent across all benchmarks,
highlighting the effectiveness of our approach in enhancing problem-solving robustness.

Compared to other models, QUESTA-Nemotron-1.5B consistently outperforms peers of similar scale,
such as DeepSeek-R1-Distill-1.5B and Qwen3-1.7B, and even surpasses larger models like DeepSeek-
R1-Distill-32B across all benchmarks. On AIME25 in particular, it exceeds DeepSeek-R1-Distill-32B
by a substantial margin of +11%. Against the stronger Qwen3-8B, QUESTA-Nemotron-1.5B remains
competitive despite operating at a fraction of the parameter scale.

Training Dynamics. Figure 5 summarizes the training dynamics of QUESTA-Nemotron-1.5B. A
positive correlation is observed between average response length and model accuracy, reflecting
common trends in RL training. Notably, with QUESTA, the entropy during RL training remains stable
and does not exhibit significant collapse.
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Figure 6: Pass Rate Distribution on Training Prompts. We compare the success rate on the 26K
training set before and after RL, using the average pass rate over 8 samples per question. Although
partial solutions are included during QUESTA training, no hints are provided during this evaluation.
This setup isolates the true impact of QUESTA by assessing its ability to improve performance on
problems without hints. QUESTA significantly reduces the number of unsolved or partially solved
problems in the training set, especially for hard ones where initial model solves only 0/8 or 1/8 times.

Table 2: Indices of unsolved problems at Pass@32 on AIME24 and AIME25 (with indices ranging
from 0-29). Our method, QUESTA, consistently improve the model capacity on hard cases where the
initial model is unable to solve, improving overall coverage at Pass@32.

Models AIME24 Unsodlved Indices AIME25 Unsolved Indices
Nemotron-1.5B 2, 3, 13, 21, 29 9, 12, 13, 14, 27, 29
QUESTA-Nemotron-1.5B 3, 21 12, 14, 29

Pass@k Analysis. Our evaluation follows the standard pass@k methodology, consistent with
DeepSeek-R1 (Guo et al., 2025), with further details provided in Appendix B.2. In contrast to recent
findings that RL-based training can reduce pass@k at larger k values (Yue et al., 2025; Liu et al., 2025),
our results show that QUESTA preserves—and in many cases modestly improves—performance
across a broad range of k. As shown in Figure 2, incorporating partial-solution hints within a
two-stage curriculum yields consistent gains across models, without the degradation in pass@k often
observed under standard RL training. These results indicate that QUESTA enhances both the quality
and diversity of candidate solutions, rather than overfitting to a single best trajectory.

Generalization at Test Time when Hints are Removed. A natural question arises from our
approach: since we add partial solutions during RL training, does this improvement persist when
hints are removed at evaluation time? To answer this, Figure 6 compares the pre- and post-RL models
on the 26K training prompt set, evaluated without any hints. The distribution clearly shifts away
from the 0/8–1/8 bins toward higher pass rates, indicating that the model solves a larger fraction of
problems even without access to partial solutions. On the evaluation AIME benchmarks, Table 2
further demonstrates that QUESTA expands coverage at Pass@32: for Nemotron-1.5B, the
number of unsolved problems drops from 5 to 2 on AIME24 (newly solved indices 2, 13, 29) and
from 6 to 3 on AIME25 (newly solved indices 9, 13, 27). Taken together, these results show that our
method generalizes well beyond the training setting and helps solve hard problems that are otherwise
inaccessible without partial-solution guidance.

5.2 FURTHER ABLATIONS

Ablation with Difficulty Curriculum. We first motivate the choice of a two-stage curriculum:
RL on Partial-50 followed by RL on Partial-25. From a modeling standpoint, the most appropriate
inference distribution for the model should be the original (no-hint) distribution. Hence, during
training we should gradually reduce reliance on hints to align the learned policy with the evaluation
distribution. This motivates decreasing the partial ratio over time so that the model transitions from
scaffolded reasoning to autonomous reasoning.
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Table 3: Ablation Study on the Impact of Curriculum Design. This table demonstrates the importance
of curriculum learning in improving model performance. The model QUESTA-Nemotron-1.5B-50
was trained entirely with Partial-50 data for 2000 steps, while QUESTA-Nemotron-1.5B followed a
curriculum learning approach, starting with 100 steps of Partial-50 data followed by 1900 steps of
Partial-25 data. As seen in the table, the curriculum learning approach (QUESTA-Nemotron-1.5B)
outperforms training with only Partial-50 data (QUESTA-Nemotron-1.5B-50). Extension with Partial-
50→Partial-25→Partial-0 did not yield significant improvements, and thus, are not included in the
table.

Model AIME24 AIME25 HMMT FEB 25 Olympiad Bench BRUMO25 Avg

Nemotron-1.5B 61.77 49.50 31.56 64.62 58.23 53.14
QUESTA-Nemotron-1.5B-50 67.18 59.38 39.17 69.41 66.15 60.26

QUESTA-Nemotron-1.5B 72.50 62.29 41.67 70.36 69.48 63.26

Empirically, Table 3 shows that, under the same 2000-step budget, the curriculum Partial-50→Partial-
25 learns substantially better than training on Partial-50 alone. We cap the Partial-50 stage at 100
steps, after which we switch to Partial-25. As shown in Figure 11, entropy for QUESTA-Nemotron-
1.5B-50 begins to decline beyond 100 steps, so transitioning at this point prevents overconfidence and
sustains training stability. We have also tried extending the curriculum from Partial-25 to Partial-0 in
our experiments, but observed no gains and no increase in response length (see Figure 12).

Table 4: Performance comparison (Pass@1, averaged over 32 samples) between Nemotron-1.5B and
QUESTA-Nemotron-1.5B (By OpenMathReasoning). The two models achieve comparable results,
with the version trained on OpenR1 performing slightly better overall.

Model AIME24 AIME25 HMMT FEB 25 Olympiad Bench BRUMO25 Avg

Nemotron-1.5B 61.77 49.50 31.56 64.62 58.23 53.14
QUESTA-50 (with OpenMathReasoning) 66.46 58.54 36.35 66.06 63.13 58.11

QUESTA-50 (with OpenR1) 67.18 59.38 39.17 69.41 66.15 60.26

Ablation with Different Dataset. We also evaluated QUESTA on OpenMathReasoning Moshkov
et al. (2025), selecting the 60K questions with pass_rate_72b_tir of 0 or 1/32. Due to time
constraints, we trained only the first stage of QUESTA with 50% partial solutions. Table 4 shows
that QUESTA-Nemotron-1.5B-50 achieves similar performance as using the OpenR1 dataset. This
indicates that our approach generalizes across datasets.

Other Ablations. We also conduct an extensive set of comparative experiments and ablation studies,
with detailed results provided in Appendix D. These include an ablation of QUESTA without hints
(Appendix D.1), experiments with different model backbones (Appendix D.2), and the full set of pass
rates and training curves for additional models (Appendix D.3).

6 CONCLUSIONS

In this work we introduced QUESTA, a lightweight data-centric framework that augments hard
prompts with partial-solution hints during RL training. Without altering model architecture or reward
design, QUESTA sets new state-of-the-art results for 1.5 B-scale models on AIME24, AIME25 and
HMMT25. Further, we theoretically demonstrate how question augmentation can improve sample
efficiency. Our analysis shows that the method can potentially be generalized to other domains
such as competitive coding, software engineering or other agentic tasks. Desigining proper question
augmentation pipelines for theses new tasks can be an important and interesting future direction.

7 ETHICS STATEMENT

We use only public, non-PII datasets—OpenR1-Math-220K (Apache 2.0) and OpenMathReasoning
(CC BY 4.0)—in full compliance with their licenses (including attribution and modification notices);
no new human-subjects data were collected, no re-identification was attempted, and no IRB review
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was required. Our augmentation pipeline generates math problems and solutions while avoiding
harmful or copyrighted non-math content; outputs may inherit source biases, so we report settings
transparently, discourage high-stakes deployment or misuse without safeguards and human oversight,
and will release artifacts that respect the original licenses.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the code, dataset and model in the the supplementary materials
and anonymous github https://anonymous.4open.science/r/questa932/README.
md. In the README.md file included with the code, we present a step-by-step guide for reproducing
our results.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

The Large Language Models (LLMs) were exclusively utilized to polish the writing and detect
potential typos, with no involvement in other aspects.

B IMPLEMENTATION DETAILS

B.1 RLVR ALGORITHMS

We have employed the GRPO algorithm enhanced with a subset of DAPO techniques. Primarily, we
have integrated DAPO’s Dynamic Sampling Trick and eliminated the KL divergence term, resulting
in an optimization objective that is:

J (θ) = Eq∼D,{oi}G
i=1∼πθold (·|q)[

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ε, 1 + ε

)
Âi,t

)]
s.t. 0 < #

{
oi | [oi is correct]}

}
< G,

(1)

where

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, Âi,t =

Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
. (2)

Our reward function R mirrors that of DeepScaleR (Luo et al., 2025b), employing an Outcome
Reward Model. It returns 1 if and only if both the answer and format are correct; otherwise, it returns
0. In summary, our reward function yields:

R =


1, if the answer (e.g. passes basic LaTeX/Sympy checks)

and format (e.g. exists <think> and </think>) are both correct,
0, otherwise.

(3)

B.2 LOW-VARIANCE PASS@K ESTIMATION

Pass@k is a measure of a model’s problem - solving ability, indicating the probability that the model
can generate at least one correct solution in k attempts. Specifically, for each problem xi in the
evaluation dataset D, we generate n samples (where n ≥ k) and count the correct ones as ci. The
direct calculation formula is:

pass@k := Exi∼D

[
1− (1− ci

n
)k
]

(4)

However, this formula has excessive variance and insufficient accuracy. To solve this problem, we
adopt the unbiased estimation method proposed by Chen et al. (Chen et al., 2021), using the unbiased
estimator of pass@k over the dataset:

pass@k := Exi∼D

[
1−

(
n−ci
k

)(
n
k

) ]
(5)

In our experiments, to ensure sufficient accuracy, we set n such that 2k ≤ n, which helps further
reduce the variance of the estimate.

B.3 MORE RELATED WORKS

Recent studies show that RL algorithms, such as PPO (Schulman et al., 2017) and GRPO (Guo et al.,
2025), can greatly enhance model reasoning capabilities. Building on this, several works have refined
this paradigm from different perspectives. One method can be adjusting the reward function. Some
studies (Zhu et al., 2025; Shao et al., 2025) directly modify the reward function to improve training
efficiency. Other methods introduced intermediate process rewards (Wang et al., 2024; Malik et al.,
2025), while Wen et al. (Wen et al., 2025) set up a separate correctness judgment for CoT to obtain
rewards.
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Another novel perspective aims to improve sample efficiency by measuring certainty. For example,
TreeRL (Hou et al., 2025) and VinePPO (Kazemnejad et al., 2025) enhanced sample effects by
introducing entropy or confidence. MRT (Qu et al., 2025), on the other hand, reused partial trajectories
during testing to boost sample efficiency. R3 (Xi et al., 2024) improves RL sample efficiency by
decomposing human solution steps and providing preceding steps to guide the model in completing
subsequent ones. Further, some research adopted a multi-stage training or reasoning mode, exploring
from different angles such as training length (Luo et al., 2025b), question difficulty (Parashar et al.,
2025), and fixed-length summaries during reasoning (Yan et al., 2025).

In addition to designing better algorithms, another line of research (Shao et al., 2024; Yue et al.,
2025; Zhao et al., 2025) has investigated how reinforcement learning affects the frontier of model
capabilities, observing a decay in pass@k when k becomes large. In response to this phenomenon,
some works (Yu et al., 2025; Liu et al., 2025; An et al., 2025) maintained entropy stability by
adjusting training entropy through methods such as increasing the clipping upper bound, enlarging
the temperature coefficient, extending the training length, and periodically updating the KL reference
model. StepHint (Zhang et al., 2025) also preserved entropy stability by leveraging intermediate
thinking content of iterative length as a prompting signal.

In contrast to the aforementioned research, our work adopts an orthogonal approach by using
part of the ground-truth solution as a hint, without requiring any modifications to the existing
reinforcement learning infrastructure. We provide both theoretical justification and empirical evidence
that this strategy maintains pass@k without compromising the exploratory capacity of the underlying
reinforcement learning algorithm.

B.4 BENCHMARKS

We evaluate the models’ breadth across various tasks in multiple domains, including mathematics,
coding, reasoning, and logical inference. For mathematics, we follow DeepScaleR (Luo et al., 2025b)
and Nemotron (Moshkov et al., 2025), and conduct assessments on more challenging mathematical
datasets such as AIME2024 (MAA, 2024), AIME2025 (MAA, 2025), Olympiad Bench (He et al.,
2024), HMMT FEB 25 (hmm, 2025), and BRUMO25 (bru, 2025). Specifically, HMMT25 Feb and
BRUMO25 are both sourced from MathArena (Balunović et al., 2025). In the realm of coding, we
utilize commonly employed datasets, including Code Contests (Li et al., 2022), Codeforces1, and
LCB V5 202410-202502 (Jain et al., 2024). For logical reasoning tasks, we assess our models’
capabilities using GPQA Diamond (Rein et al., 2023) 2and Zebraliogic (Lin et al., 2025). The
benchmarks related to coding and logical reasoning are all referenced from AReaL (Fu et al., 2025).

B.5 TRAINING DATASET

The dataset employed in our study is OpenR1-Math-220K (Open-R1 Team, 2025). Prior to com-
mencing the training of the Partial Solution, we conducted a preliminary screening of the dataset.
Specifically, we utilized the DeepSeek-R1-Distill-1.5B (Guo et al., 2025) model to perform eight
inference operations on each of the 220k data entries in the OpenR1 dataset. Subsequently, we
compared the annotated answers in the OpenR1 dataset with the results generated from each inference
to tally the number of correct instances for each data entry. Ultimately, we selected the data entries
with 0 or 1 correct instance as the training samples for our study. The final dataset size is 26K.

For controlled comparisons, we further split this 26K subset by re-sampling Nemotron-1.5B eight
times per item and counting correct completions. We define Easy Data as questions with correct
counts in [7, 8] and train a model on this split, denoted Easy-Nemotron-1.5B. Similarly, we
define Hard Data as questions with correct counts in [0, 1] and train Hard-Nemotron-1.5B on
this split.

Additionally, for the augmented data, we perform eight inference passes using the model currently
under training. We then select samples for which the number of correct predictions falls within the
range of [0, 4]. This criterion is motivated by the finding that samples exhibiting higher variance are
more beneficial for training (Gao et al., 2025; Wang et al., 2025b). The range [0, 4] is chosen because
it includes the point of maximum sample variance, which is achieved with four correct predictions
out of eight trials. For convenience, we refer to augmented data with partial ratio p as Partial-p data.

1https://codeforces.com/
2In the GPQA Diamond dataset, multiple-choice questions are presented in the form of options rather than

directly providing the answer, requiring the model to output only A, B, C, or D.
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B.6 THE RATIONALE FOR THE CHOICE OF p

Table 5: Number of problems vs pass rate under different hint levels on OpenMath-Nemotron-1.5B
before training. We evaluated OpenMath-Nemotron-1.5B on the OpenR1 dataset after the first round
of filtering, with each problem assessed 8 times. The table illustrates the distribution of correct
answers (n) where n ∈ {0, 1, . . . , 8}.

Hint Levels 0 / 8 1 / 8 2 / 8 3 / 8 4 / 8 5 / 8 6 / 8 7 / 8 8 / 8

Partial-50 143 224 304 472 710 1013 1779 3655 17741
Partial-25 3155 1997 1814 1785 1902 2175 2614 3440 7159
Partial-10 3589 2090 1865 1842 1905 2176 2653 3415 6506
Partial-0 3812 2218 1854 1842 2007 2136 2517 3264 6391

In this study, we evaluated the performance of OpenMath-Nemotron-1.5B on the OpenR1 dataset
under various hint levels. The evaluation was performed after the first round of filtering, and each
problem was assessed 8 times to capture the predictive distribution. The resulting table (Table 5)
shows the distribution of correct answers across different hint levels, where the values represent the
number of times the model answered correctly (n ∈ {0, 1, . . . , 8}).

The selection of the hint parameter p was primarily based on these evaluation results. As shown in the
table, the performance with a Partial-50 hint significantly reduces task difficulty, as evidenced by the
high pass rates across most levels. In contrast, Partial-25 (25% hint) exhibits a performance pattern
similar to that of the no-hint scenario (Partial-0), with only marginal differences in task difficulty.

This minimal difference in difficulty between Partial-0 and Partial-25 suggests that training with
Partial-25 does not provide substantial gains compared to Partial-0. Consequently, we adopted a
stepwise design in which the hint level is first set to p = 50%, followed by p = 25%, to evaluate the
model’s performance under varying conditions.

B.7 EVALUATION SETUP

We configured the models to have a maximum generation length of 32,768 tokens. In line with
DeepSeek-R1 (Guo et al., 2025), we utilized pass@k evaluation (Chen et al., 2021), with the formula
detailed in B.2. We reported pass@1 using a non-zero temperature. Specifically, we used a sampling
temperature of 0.7 and a top-p value of 0.95 to generate k responses per question, typically set at
32, with deviations explicitly noted. Particular attention should be paid to the fact that, although we
incorporated partial Solution during training, it was not included in the evaluation phase.

B.8 DETAIL ON PROMPT TEMPLATE

DeepScaleR Coding’s Inference:
<｜User｜>{input}<｜Assistant｜><think>

DeepScaleR Others’ Inference:
<｜User｜>{input}
Please reason step by step, and put your final answer within \boxed{}.<｜Assistant｜><think>

Nemotrion Coding’s Inference:
<|im_start|>user
{input}
<|im_end|> <|im_start|>assistant
<think>

Nemotrion Others’ Inference:
<|im_start|>system
Please reason step by step, and put your final answer within \boxed{}.<|im_end|>
<|im_start|>user
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{input}<|im_end|>
<|im_start|>assistant

Training prompt with partial solutions (math RL):
{Problem}
## Hint: {Partial Solution}
Please reason step by step, and put your final answer within \boxed{}.

C THEORY

C.1 PROOFS

Theorem 4.4 (Lower Bound on RL Learnability under Solution Inaccessibility). Given a probability
threshold δp > 0, if for every question q ∈ Q, the model capacity set C(q, δp) does not intersect with
the solution set S(q), i.e.,

C(q, δp) ∩ S(q) = ∅, ∀q ∈ Q,

then under Assumption 4.3, when training RL for T steps with B samples per step such that TB =
Θ(1/δp), there is a constant probability that the RL algorithm will not update the model.

Proof. Let psol =
∑

τ∗∈S(q) Pµ(τ
∗|q) denote the cumulative generation probability of any solution

trajectory. By C(q, δp) ∩ S(q) = ∅ and Def 4.2:

psol =
∑

τ∗∈S(q)

Pµ(τ
∗|q) < δp

For N = TB independent samples across T steps with batch size B, the probability of complete
failure (no solution sampled) is:

P(failure) = (1− psol)
N > (1− δp)

N

Given TB = Θ(1/δp), we have:

(1− δp)
N > (1− δp)

Θ(1/δp) = Θ(1).

The last inequality follows from the fact that (1 − x)1/x > exp(−1/(1 − x)) for x ∈ (0, 1). By
Assumption 4.3, if no solution is found, the model weights remain unchanged.

Lemma C.1 (Upper Bound on Sampling Budget for Solution Given Hint). Given a question q ∈ Q, if
there exists a hint hq for the question q (Def. 4.5), then if we perform TB = Θ(1/δ′p) = Θ(δϵp/

√
δp)

i.i.d sampling over the initial model conditioned on (q, hq), we can find a valid solution with a
constant probability.

Proof. By Definition 4.5, we know:

1. Pµ(hq|q) ≥ δ′p

2. ∃sq ∈ S(q) : Pµ(sq|(q, hq)) ≥ δ′p

With N = TB ≥ 10/δ′p independent samples conditioned on (q, hq), the probability of not finding
the solution sq is:

P(no solution) = (1− Pµ(sq|(q, hq)))
N ≤ (1− δ′p)

10/δ′p ≤ exp(−10) < 0.01.

Therefore, P(finding solution) > 0.99.

Theorem 4.6 (Informal Upper Bound on RL Learnability with Hint). If we have a hint hq for every
question q ∈ Q (Def. 4.5), then there exists an RL algorithm that can output a policy πθ such that
Eq∼Uniform(Q)[Pτ∼πθ(·|q)(τ ∈ S(q))] ≥ 0.99 with O(1/δ′p) sampling budget with high probability.
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This theorem is a direct corollary of the Theorem 5 regarding the bandit setup in (Mei et al., 2022).
Because the setup here is relatively simple, we also present a detailed proof for this special case here.
We first formalize our setup as follows:
Assumption C.2 (Tabular RL with Hint). We consider the tabular RL setting with softmax policy
parameterization. There exists a finite set of possible questions Q and a finite set of possible solutions
S. For each question q ∈ Q, there exists a hint hq , which is a subset of solutions hq ⊆ S.

The policy is parameterized by a |S| × |Q| matrix θ in the following way:

µθ(s|q) =
exp(θs,q)∑

s′∈S exp(θs′,q)

Here the setup is different than the autoregressive setting in our experiments and simplify the model
to a tabular setup for the simplicity of analysis. We now restate the assumption on the existence of
hint in this setup.
Assumption C.3 (Hint Existence, Formal Version of Definition 4.5). For each question q ∈ Q, there
exists a hint hq ⊆ S such that

∑
s∈hq

Pµ(s|q) ≥ δ′p. Further, there exists a solution sq ∈ S such that
Pµ(sq|q) ≥ δ′p

∑
s∈hq

Pµ(s|q).

RL Algorithm: We will first sample Θ(1/δ′p) action based on the policy µθ conditioned on the
question q and the hint hq. Then we will do a one-step policy gradient update on our policy. Noted
that here we can reach high reward within one step because the reward function is deterministic.
Theorem C.4 (Formal Version of Theorem 4.6). Under Assumption C.2 and Assumption C.3, running
1 steps of policy gradient update with sampling budget Θ(1/δ′p), the learned policy achieves:

Eq∼Uniform(Q)[Pτ∼µθ(·|q)(τ ∈ S(q))] ≥ 0.99

with probability 0.99.

Proof. First, by Assumption C.3, for any question q, we have:∑
s∈hq

Pµ(s|q) ≥ δp and ∃sq : Pµ(sq|q) ≥ δ′p
∑
s∈hq

Pµ(s|q)

With sampling budget N = Θ(|Q|/δ′p), by Lemma C.1 and the union bound, we will find a solution
sq for every question q with probability at least 0.99. Suppose the found set of solutions for question
q is Sq and all sampled solutions are s(1), . . . , s(N). Then because

∇θ logµθ(s|q) = es −
∑
s′∈S

µθ(s
′|q)es′

We have the policy gradient being

PG:,q =
1

N

N∑
i=1

1[s(i) ∈ Sq]∇θ logµθ(s
(i)|q)

=
1

N

N∑
i=1

1[s(i) ∈ Sq](es(i) −
∑
s′∈S

µθ(s
′|q)es′)

=
1

N

N∑
i=1

1[s(i) ∈ Sq]es(i) −

(
1

N

N∑
i=1

1[s(i) ∈ Sq]

)(∑
s′∈S

µθ(s
′|q)es′

)
.

We can make two simple observations:

1. For every s ̸∈ Sq , PGs,q < 0.

2. There exists a s∗ ∈ Sq such that PGs∗,q > 0.

Therefore, consider the updated parameters
θ′s,q = θs,q + ηPGs,q

If η is large enough, we know that
∑

s∈Sq
Pµθ′ (s|q) ≥ 0.99. This completes the proof.
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ABLATION STUDY WITHOUT HINT

Table 6: Ablation without hint on Nemotron-1.5B: Pass@1 (avg@32) on challenging maths
benchmarks. “QUESTA-Nemotron-1.5B w/o hint” trains RL on the same data but removes hints
from the prompt, while “w/ hint” uses partial-solution hints during training. With hints, the model
improves all benchmarks and achieves a +2.82 average gain over w/o hint (63.26 vs. 60.44), on top of
the improvements over the base model. The one using hint requires nearly half the number of steps
compared to the one not using hint to achieve the same performance.

Model AIME24 AIME25 HMMT FEB 25 Olympiad Bench BRUMO25 Avg

Nemotron-1.5B 61.77 49.50 31.56 64.62 58.23 53.14
QUESTA-Nemotron-1.5B w/o hint (2K step) 69.48 59.79 38.85 68.05 66.04 60.44
QUESTA-Nemotron-1.5B w/ hint (1.1K step) 69.27 60.00 37.92 69.72 68.33 61.05
QUESTA-Nemotron-1.5B w/ hint (2K step) 72.50 62.29 41.67 70.36 69.48 63.26
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Figure 7: Pass@k comparison on Nemotron-1.5B for RL with vs. without hints. Training with
hints consistently dominates across k and avoids the performance drop at larger k seen in standard
RL. Hints are used only during training; evaluation uses no hints.

We ablate the role of hints by training RL on Nemotron-1.5B with and without partial-solution
hints. Here, QUESTA-Nemotron-1.5B w/o hint denotes RL on the same data and schedule but with
the hint removed from the prompt; QUESTA-Nemotron-1.5B w/ hint uses identical settings except
that the partial solution is provided as a hint during training. As summarized in Table 6, removing the
hint still improves over the base model (average Pass@1: 53.14 → 60.44), but adding the hint yields a
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further +2.82 average gain (60.44 → 63.26), with consistent improvements across all five benchmarks.
The one using hint requires nearly half the number of steps compared to the one not using hint to
achieve the same performance. Note that hints are used only during training; all evaluations are
conducted without hints.

Figure 7 compares Pass@k curves. The w/ hint model lifts the entire curve across k and avoids
the degradation at larger k commonly observed in standard RL, while the w/o hint variant brings
smaller gains that taper off as k increases. A possible reason for this phenomenon is that, without
hints, extremely difficult problems remain unlearned. Consequently, during reinforcement learning
training, the model prioritizes improving performance on problems that have become relatively
easier as training progresses. This leads the model to become overly confident, thereby reducing its
Pass@k metric. In contrast, when hints are provided, the model still prioritizes learning more difficult
problems—this is because such problems can provide effective learning signals.

D.2 ABLATION STUDY WITH DIFFERENT MODELS

Table 7: Performance comparison on DeepScaleR-1.5B: Pass@1 (avg@32) across maths bench-
marks. QUESTA consistently improves all tasks and raises the average by +6.50 points.

Model AIME24 AIME25 HMMT FEB 25 Olympiad Bench BRUMO25 Avg

DeepScaleR-1.5B 40.42 31.35 19.27 52.97 37.40 36.28
QUESTA-DeepScaleR-1.5B 49.16 35.94 21.77 58.69 48.33 42.78

Table 8: Performance comparison (Pass@1, averaged over 32 samples) showing the impact of
QUESTA across benchmarks in other domains, including general knowledge, logic, and coding tasks.
We observe minor cross-domain generalization on all these benchmarks, despite QUESTA being
applied exclusively in the maths domain.

Model GPQA Diamond Zebralogic Code Contest All Codeforces LCB V5 202410-202502 Avg

DeepScaleR-1.5B 38.5 14.26 9.07 8.79 19.57 18.04
QUESTA-DeepScaleR-1.5B 39.2 14.98 10.1 8.9 20.9 18.82
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Figure 8: Pass@k on DeepScaleR-1.5B: QUESTA raises the entire curve across k and avoids
the large-k drop often seen in standard RL. The increasing gap with k indicates improved sample
diversity rather than overconfident collapse. No hints are used at evaluation.

We next examine model-family transfer by applying QUESTA to DeepScaleR-1.5B. We train for
750 steps on DeepScaleR-1.5B Stage 2 Luo et al. (2025b) on the QUESTA first stage.
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Figure 9: We conducted training of the DeepScaleR model employing the QUESTA with a dataset
comprising 26,000 questions. The average pass rate was calculated from a sample of 8 instances.
The initial graph represents the scenario without the incorporation of partial solutions, while the
subsequent graph depicts the situation where partial solutions were included. The application of
QUESTA significantly diminishes the incidence of unsolved or partially addressed problems within
the training dataset. Concurrently, it has come to our attention that our previous method of data
curation was not entirely accurate; in fact, the amount of data providing meaningful training signals
is less abundant than anticipated, suggesting the potential for further refinement of the dataset.

As shown in Table 7, QUESTA-DeepScaleR-1.5B improves every maths benchmark over the base
model, achieved an average improvement of 6%, indicating that the benefits of QUESTA are not tied
to a single architecture.

Pass@k behavior mirrors these gains. In Figure 8, QUESTA-DeepScaleR lifts the entire Pass@k
curve across k and avoids the degradation at larger k reported in standard RL settings. The widening
gap at larger k suggests improved candidate diversity rather than overfitting to a single trajectory,
consistent with our general pass@k analysis in Appendix B.2. Complementing this, Figure 9 shows
that on the 26K training set (evaluated without hints), mass shifts away from the 0/8–1/8 bins toward
higher pass rates, reducing unsolved or partially solved cases. Hints are used only during training and
are removed at evaluation time.

Beyond maths, Table 8 reports out-of-distribution (OOD) results on general knowledge, logic, and
coding. QUESTA-DeepScaleR-1.5B achieves small but consistent gains (Avg: 18.04→18.82; +0.78),
suggesting that the improved reasoning patterns transfer modestly beyond the training domain.

D.3 SUPPLEMENTAL EXPERIMENT DETAIL
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Figure 10: Training dynamics of QUESTA-Nemotron-1.5B w/o hint.
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Figure 11: Training dynamics of QUESTA-Nemotron-1.5B-50.
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Figure 12: Training dynamics of QUESTA-Nemotron-1.5B-50-25-0.
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Figure 13: Training dynamics of Easy-Nemotron-1.5B.
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Figure 14: Training dynamics of Hard-Nemotron-1.5B.
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Figure 15: The training dynamics of QUESTA-DeepScaleR-1.5B. The first and second charts show
the changes in the average reward and average inference length of the rollout samples that include
all incorrect/correct ones, respectively. The third chart shows the average entropy excluding all
incorrect/correct rollout samples.
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Figure 16: Training dynamics of QUESTA-Nemotron-1.5B on OpenMathReasoning (Moshkov et al.,
2025). The first and second charts show the changes in the average reward and average inference
length of the rollout samples that include all incorrect/correct ones, respectively. The third chart
shows the average entropy excluding all incorrect/correct rollout samples. Dynamics closely mirror
those on OpenR1-Math-220K, with no entropy collapse.
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Figure 17: We compare pass@k curves of RLVR-trained models with and without QUESTA.
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Figure 18: Comparison of RL training dynamics: Training with only hard problems (green) makes
progress very slowly due to sparse rewards, while our method with partial solutions (orange) acceler-
ates learning and consistently achieves higher accuracy across training steps.
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Figure 19: Training dynamics of QuestA-Nemotron-1.5B with CoT and Solution.
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Figure 20: Training dynamics of QuestA-Nemotron-1.5B with GSPO on QuestA and Hard datasets.
It shows consistent improvements in reward and entropy without performance degradation.
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Figure 21: Training dynamics of QuestA-Nemotron-1.5B with CoT and Solution.
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Figure 22: Training dynamics of QuestA-Nemotron-1.5B with wrong hints. Initially, the training
reward decreases, but after a few steps, it shows a slight recovery as the model adapts to the erroneous
hints.
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Figure 23: Training dynamics of QuestA-Nemotron-1.5B with Science Datasets. The first and second
charts show the progression of average response length and average reward across rollout samples
during the RL process, both of which steadily increase over time. The third chart presents the average
entropy.
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