

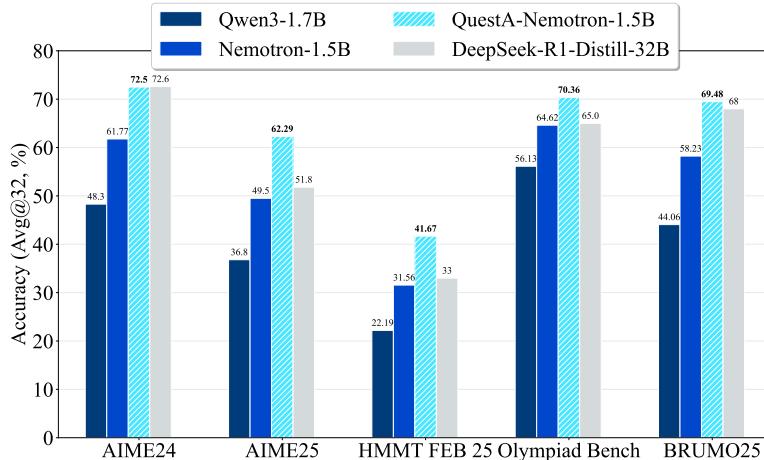
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 QUESTA: EXPANDING REASONING CAPACITY IN LLMs VIA QUESTION AUGMENTATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Reinforcement learning (RL) has emerged as a central paradigm for training
012 large language models (LLMs) in reasoning tasks. Yet recent studies (Yue et al.,
013 2025; Liu et al., 2025) question RL’s ability to incentivize reasoning capacity
014 beyond the base model. This raises a key challenge: how can RL be adapted
015 to solve harder reasoning problems more effectively? To address this challenge,
016 we propose a simple yet effective strategy via *Question Augmentation*: intro-
017 duce partial solutions during training to reduce problem difficulty and provide
018 more informative learning signals. Our method, QuestA, when applied during
019 RL training on math reasoning tasks, not only improves pass@1 but also
020 pass@k—particularly on problems where standard RL struggles to make progress.
021 This enables continual improvement over strong open-source models such as
022 DEEPSALER and OPENMATH NEMOTRON, further enhancing their reasoning
023 capabilities. We achieve new state-of-the-art results on math benchmarks using
024 1.5B-parameter models: 72.50% (**+10.73%**) on AIME24, 62.29% (**+12.79%**) on
025 AIME25, and 41.67% (**+10.11%**) on HMMT25. Code, data and model are available
026 at <https://anonymous.4open.science/r/questa932>.



041 Figure 1: QUESTA is a data augmentation method that injects partial solutions to effectively scaf-
042 fold RL training on hard reasoning problems. We construct 26K high-quality augmented prompts
043 from challenging instances in OpenR1 (Open-R1 Team, 2025), and fine-tune models using 32K-
044 context-length RL. When applied to Nemtron-1.5B, QUESTA delivers substantial performance
045 gains—achieving new state-of-the-art results across all math benchmarks for 1.5B-parameter models.

1 INTRODUCTION

049 Frontier large language models (LLMs), including OpenAI-O1, O3 (Jaech et al., 2024), DeepSeek-
050 R1 (Guo et al., 2025), Qwen3 (Yang et al., 2025), and Gemini 2.5 (Gemini Team, Google DeepMind,
051 2025), have exhibited exceptional performance on high-complexity reasoning tasks spanning mathe-
052 matics, programming, and formal logic. Recent advances in the field have increasingly prioritized
053 reinforcement learning paradigms (RL), among which *Reinforcement Learning with Verifiable Re-
wards* (RLVR) has emerged as a scalable and efficient approach to enhancing reasoning capabilities.

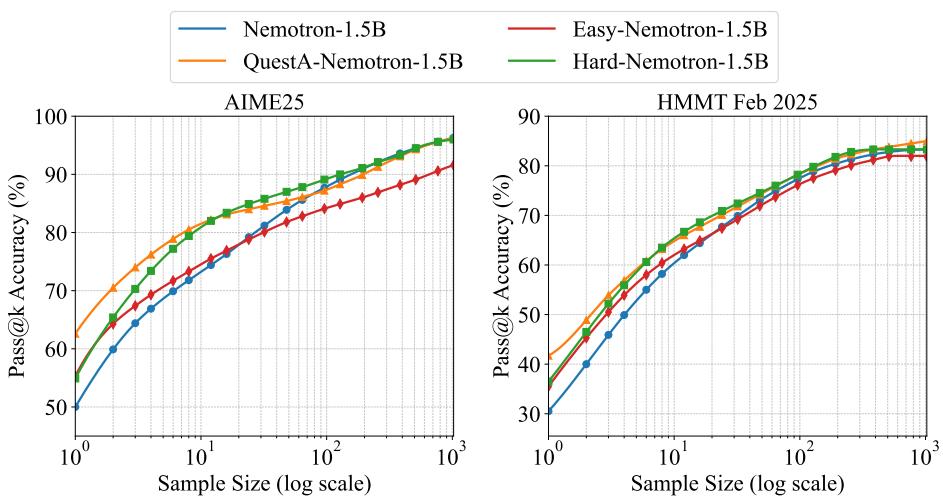


Figure 2: We compare pass@k curves of RLVR-trained models, with and without QUESTA. As a controlled experiment, we perform RL training using either easy or hard prompts. Standard RL on easy prompts (red) shows clear degradation in pass@k as k increases compared to the base model (blue). Training on hard prompts (green) improves pass@k, but comes at the cost of substantially longer training. This motivates our development of QUESTA, which scaffolds hard problems to improve training efficiency and delivers consistently stronger results: the RL+QUESTA model (orange) stays above standard RL (red) across all k , while also preserving or improving performance at larger k relative to RL trained with hard prompts.

Using automatically verifiable signals, RLVR enables alignment between model output and objective correctness, thus addressing a critical limitation of traditional RL for reasoning.

However, the community remains divided on a fundamental question regarding RLVR: does it expand the model’s intrinsic reasoning capacity, or merely exploit pre-existing knowledge encoded in the base model? Recent research (Yue et al., 2025; Liu et al., 2025; Zhao et al., 2025) show that while state-of-the-art RL methods (e.g., GRPO, DAPO) (Guo et al., 2025; Yu et al., 2025; An et al., 2025) can enhance the pass@1 metric by reinforcing high-reward completions, they encounter significant limitations when tackling high-difficulty tasks where the base model performs poorly. **This phenomenon differs from that observed in Supervised Fine-Tuning (SFT) Luo et al. (2025a).** Within the SFT paradigm, enhancing the diversity of problem difficulty serves as a critical factor, as it can effectively improve the model’s performance on downstream tasks. However, in the framework of RLVR, the inclusion of easy prompts tends to undermine the model’s inherent reasoning capabilities.

One insightful explanation (Cui et al., 2025; Wang et al., 2025a) for the drop suggests that model overfits on correct solutions and hence causes entropy collapse, limiting its ability to explore. To validate this, we design a controlled setup that separates prompts into easy and hard groups. When applying RLVR on the Nemotron 1.5B model (Moshkov et al., 2025) with the OpenR1 dataset, we find that training on easy prompts leads to a clear decline in pass@k accuracy (Figure 2).

Given these findings, we observe that training with hard prompts is more beneficial than with easy ones. Yet, RL training on hard problems tends to be much slower, as sparse reward signals and limited sample efficiency hinder progress. The key challenge, then, is **how to structure the learning process to fully expand reasoning capabilities while mitigating the inefficiency of RL on hard tasks.** To this end, we introduce QUESTA: a parsimonious and efficient strategy that dynamically adjusts problem difficulty during RL training. The core contributions of this work are threefold:

- We notice that the evolution of model capacity in RLVR critically depends on dataset difficulty, underscoring the importance of training on *hard problems* to expand reasoning ability.
- We introduce QUESTA, an efficient procedure that controls difficulty by augmenting hard problems with partial solutions. This approach provides a smooth curriculum within RL training and makes high-difficulty tasks more tractable. Through our **fully open-sourced** training pipeline, QUESTA consistently improves pass@1 and pass@k, enabling 1.5B-parameter models to reach new state-of-the-art performance—72.5% on AIME24, 62.3% on AIME25, and 41.7% on HMMT25 (Table 1).

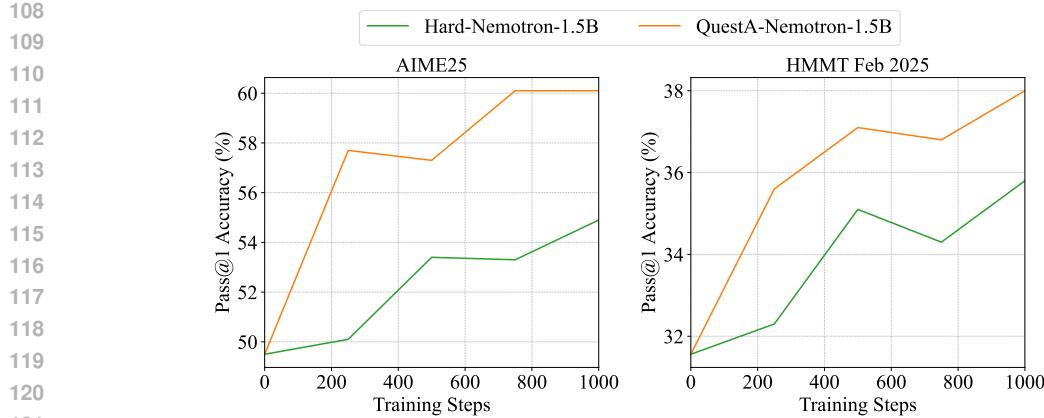


Figure 3: Comparison of RL training dynamics: Training with only hard problems (green) makes progress very slowly due to sparse rewards, while our method with partial solutions (orange) accelerates training and consistently achieves higher accuracy across training steps.

- Our theoretical analysis in Section 4 explains why partial-solution augmentation accelerates RL training: by decomposing problems into intermediate steps, the method yields denser reward signals and improves sample efficiency, while still driving the model to master the hardest problems.

2 TRADEOFFS BETWEEN REASONING CAPACITY AND LEARNING EFFICIENCY

Given the ongoing debate on whether reinforcement learning enhances the reasoning capacity of language models, we design a controlled experiment to study how dataset difficulty changes model performances measured by pass@ k accuracy. Specifically, we filter out easy problems and hard problems from the 220K OpenR1 dataset, base on model’s success rate, each containing around 4K data. We then run RL with GRPO for one thousand steps. This setup allows us to isolate how the choice of prompt difficulty impacts the model’s reasoning capacity. In Figure 2 and Figure 3, we provide pass@ k comparison and the learning dynamics, we make two observations.

RL with Easy Prompts Hurts pass@ k and Reasoning Capacity. Training on easy or already-solvable problems leads to overfitting on shallow patterns, reinforcing confidence rather than expanding reasoning capacity. While pass@1 may rise, output diversity declines and performance on harder benchmarks deteriorates, with pass@ k dropping at larger k (see Figure 2). This suggests that the model exploits familiar solution modes instead of exploring new trajectories. To truly expand capacity, RL training should focus on *hard* problems, where the policy is forced to explore and acquire novel solution strategies.

RL with Hard Prompts Leads to Slow Learning. Training on hard prompts directly targets the reasoning capacity of the model, but the learning process is much slower (see Figure 3) and less sample-efficient. The difficulty arises because RL rewards on these problems are sparse, providing limited gradient signals for policy improvement. We formalize the underlying reason in Section 4 and in Theorem 4.4.

In practice, not all questions in the training set \mathcal{Q} are equally difficult, and one might hope that training on easier examples could generalize to harder ones. However, empirical evidence suggests that RL-based training exhibits a bi-modal pattern in success rates (An et al., 2025): by the end of training, models tend to either solve a question reliably or fail entirely (see Figure 6). This implies that once a question falls outside the model’s capacity set, the RL algorithm is unlikely to recover.

Together, these results highlight a tension: *easy prompts dilute reasoning capacity, while hard prompts stall learning altogether*. This motivates the need for strategies that can retain the benefits of hard problems while mitigating the inefficiency caused by sparse rewards. To this end, we introduce partial solutions that break a complex question into smaller, more approachable pieces. Theoretical analysis (Theorem 4.6) suggests that appending part of the solutions as hint can greatly improve RL efficiency.

Empirically, we simply choose the hint to be a part of the solution of the original question q and observe faster learning in Figure 3. Surprisingly, even if we don’t explicitly train the model to generate

162 the hint, the model’s capacity without hint still continues to improve and lead to steady improvement
 163 in problems out of reach in standard RL training (see Table 3). We elaborate on implementation
 164 details in the next section.

165

166 3 QUESTA: QUESTION AUGMENTATION WITH PARTIAL SOLUTIONS 167

168 QUESTA is a modular augmentation framework designed to inject partial solution sketches into
 169 prompts during reinforcement learning (RL) training. It addresses scenarios where the base model fails
 170 to generate correct completions—conditions that typically result in sparse reward signals. Distinct
 171 from approaches that modify reward functions or optimization algorithms, QUESTA operates at the
 172 input level: it transforms original training prompts into more tractable variants, thereby exposing
 173 intermediate reasoning steps to the model.

174

175 Original Prompt

176 Let \mathbb{N} be the set of positive integers. A function $f : \mathbb{N} \rightarrow \mathbb{N}$ satisfies the equation

$$177 \quad 178 \quad 179 \quad 180 \quad 181 \quad 182 \quad 183 \quad 184 \quad 185 \quad 186 \quad 187 \quad 188 \quad 189 \quad 190 \quad 191 \quad 192 \quad 193 \quad 194 \quad 195 \quad 196 \quad 197 \quad 198 \quad 199 \quad 200 \quad 201 \quad 202 \quad 203 \quad 204 \quad 205 \quad 206 \quad 207 \quad 208 \quad 209 \quad 210 \quad 211 \quad 212 \quad 213 \quad 214 \quad 215$$

$$f(f(\dots f(n) \dots)) = \frac{n^2}{f(f(n))} \quad \text{with } f(n) \text{ applications of } f,$$

for all positive integers n . Given this information, determine all possible values of $f(1000)$.

↓ QUESTA

Augmented Prompt

Let \mathbb{N} be the set of positive integers. The function $f : \mathbb{N} \rightarrow \mathbb{N}$ satisfies the equation

$$f(f(\dots f(n) \dots)) = \frac{n^2}{f(f(n))} \quad \text{with } f(n) \text{ applications of } f,$$

for all positive integers n . Given this information, determine all possible values of $f(1000)$.

Hint: Partial Solution

Analysis shows that f must be an involution, meaning $f(f(n)) = n$ for all n , and it fixes all odd positive integers, so $f(n) = n$ for odd n . For even positive integers, f either fixes the number or swaps it with another even positive integer in a 2-cycle.

Please reason step by step, and put your final answer within `\boxed{}`.

Figure 4: QUESTA augments each original question in the dataset by prepending the first $p\%$ of the solution sketch. In our experiments, we apply augmentation using the solution block rather than the reasoning chain-of-thought. The hint percentage p is computed as the ratio of tokens used as hints to the total number of tokens in the solution sketch.

Question Augmentation Mechanism For a given problem x with an n -step solution trajectory $y = (y_1, y_2, \dots, y_n)$, QUESTA constructs a set of augmented prompts $\{\tilde{x}^{(p)}\}$, where each $\tilde{x}^{(p)}$ appends the first p steps of the solution as a prefix to the original question. The parameter p (e.g., $p = 50\%$ or 25%) quantifies the proportion of the solution revealed, thereby enabling precise control over the difficulty of the augmented prompt.

In our empirical evaluations, we employed the OpenR1-Math-220K dataset (Open-R1 Team, 2025)—a supervised fine-tuning (SFT) corpus containing solution trajectories generated by DEEPSEEK-R1. Each instance in this dataset comprises a detailed chain-of-thought (CoT) section followed by a final solution block. For augmentation, we extracted the final solution (omitting speculative reasoning within the CoT section). The solution was then truncated at a predefined percentage p and prepended to the original question, yielding the augmented prompt used in RL training, as shown in Figure 4.

Targeting High-Difficulty Problems QUESTA is applied exclusively to prompts where the base model’s pass rate is close to zero. Using the OpenR1-Math-220K dataset, we first employ lightweight heuristic filters to reduce the full 220K problems to 26K of the hardest candidates. These problems are then augmented with partial-solution prefixes where we conduct a second difficulty screening:

sample multiple completions from the model for each augmented prompt, and only those instances with consistently low pass rates are retained. This two-stage filtering pipeline yields a final pool of no more than 10K problems, ensuring that augmentation resources are concentrated on the most challenging cases where the base model needs additional guidance and scaffolding.

Integrating with RL Pipelines QUESTA exhibits orthogonality to underlying RL algorithms, enabling seamless integration into existing training pipelines (e.g., GRPO (Shao et al., 2024), DAPO (Yu et al., 2025)) without modifications. Specifically, integration requires only replacing the original rollout dataset with the augmented dataset, while retaining the original reward function and policy update mechanism. To further exploit this input-level flexibility, we extended QUESTA with an iterative curriculum RL paradigm:

1. First, augment the dataset with $p = 50\%$, apply the difficulty filtering with the augmented prompt, and conduct reinforcement learning training until the performance saturates.
2. Second, reduce the augmentation from $p = 50\%$ to $p = 25\%$, i.e. provide fewer hints. Again, we apply the difficulty filtering, and conduct reinforcement learning training until convergence.

Here, the rationale for the choice of p is provided in Appendix B.6. By keeping the training signals strong at each stage, the method speeds up convergence on difficult tasks and makes QUESTA a simple, plug-and-play approach for curriculum-based RL.

4 THEORY: VARYING LEARNABILITY ENHANCES RL EFFICIENCY

In this section, we present a theoretical perspective on how question augmentation improves the efficiency of reinforcement learning. Our central thesis is that the primary bottleneck in RL-based reasoning lies in the difficulty of discovering successful trajectories within a finite sampling budget. Question augmentation addresses this challenge by reshaping the *learnability landscape*—making hard problems more discoverable by increasing the likelihood of encountering correct trajectories.

Motivated by experiments which quantify model capacity with pass@k accuracy, we introduce the following notions of *solution set* (Definition 4.1) and *model capacity set* (Definition 4.2) for a given question q and model μ . Let \mathcal{V} be the vocabulary set, and let $P_\mu(q, \tau)$ denote the probability that a language model μ generates trajectory $\tau \in \mathcal{V}^*$ when conditioned on input question $q \in \mathcal{V}^*$.

Definition 4.1 (Solution Set). Given a question q and a binary reward function $R : \mathcal{V}^* \times \mathcal{V}^* \rightarrow \{0, 1\}$, the *solution set* is defined as:

$$\mathcal{S}(q) = \{\tau \in \mathcal{V}^* \mid R(q, \tau) = 1\}.$$

Definition 4.2 (Model Capacity Set). Given a probability threshold $\delta_p > 0$, a language model μ , and a question q , define the *model capacity set* $C(q, \delta_p)$ as the smallest set of trajectories whose total probability mass is at least $1 - \delta_p$:

$$C(q, \delta_p) = \arg \min_{S \subseteq \mathcal{V}^*} \left\{ |S| \left| \sum_{\tau \in S} P_\mu(q, \tau) \geq 1 - \delta_p \right. \right\}.$$

The *Model Capacity Set* $C(q, \delta_p)$ intuitively captures the set of most likely output trajectories that the model μ can generate for a given input q , up to a small probability threshold δ_p .

This formalization leads to a critical insight: if the model’s capacity set fails to intersect with the solution set—meaning the model is unlikely to generate any correct completions—then the RL process cannot make progress. To articulate this more formally, we begin by stating a standard assumption satisfied by many popular RL algorithms, such as DAPO and online GRPO:

Assumption 4.3 (Null Gradient from Zero-Reinforcement). The RL algorithm does not update the model weights if none of the sampled rollouts receives a positive reward (i.e., reward = 1).

Under this assumption, we easily the following lower bound, which states that if all training questions are unreachable within the model’s capacity set, the RL process is likely to stall entirely:

Theorem 4.4 (Lower Bound on RL Learnability under Solution Inaccessibility). *Given a probability threshold $\delta_p > 0$, if for every question $q \in \mathcal{Q}$, the model capacity set $C(q, \delta_p)$ does not intersect with the solution set $\mathcal{S}(q)$, i.e.,*

$$C(q, \delta_p) \cap \mathcal{S}(q) = \emptyset, \quad \forall q \in \mathcal{Q},$$

270 then under Assumption 4.3, when training RL for T steps with B samples per step such that $TB = \Theta(1/\delta_p)$, there is a constant probability that the RL algorithm will not update the model.
 271
 272

273 To overcome this limitation, our method QUESTA provides a simple yet effective solution: augment
 274 each question in \mathcal{Q} with a partial solution to improve the chances of sampling informative trajectories.
 275 Formally, we assume the existence of a hint h_q for every question $q \in \mathcal{Q}$ that can guide the model
 276 toward discovering a valid completion.

277 **Definition 4.5** (Question Augmentation). For every question $q \in \mathcal{Q}$, hint $h_q \in \mathcal{V}^*$ satisfies that for
 278 $\delta'_p = \delta_p^{1/2-\epsilon}$ for some $\epsilon > 0$:

- 280 • the hint h_q can be generated with a non-negligible probability: $P_\mu(h_q|q) \geq \delta'_p$.
- 281 • there exists a solution to the hinted problem $s_q \in \mathcal{S}(q)$ such that s_q can be generated with high
 282 probability after s_q , i.e.

$$283 \quad P_\mu(s_q|(q, h_q)) = \delta'_p. \quad R(q, h \oplus s_q) = 1.$$

286 The hint h_q can exist for every question even when the model’s capacity set $C(q, \delta_p)$ does not intersect
 287 with the solution set $\mathcal{S}(q)$. For instance, if every solution can be decomposed into two steps, and
 288 the model can generate each step correctly with probability $\delta'_p = \sqrt{o(\delta_p)}$, then the possibility of
 289 generating two steps correctly at the same time is only $o(\delta_p)$.

290 This implies that the sampling budget needed with a hint is asymptotically almost the square root of
 291 the budget required without it ($\Theta(1/\delta_p)$), as given in Theorem 4.4. We further provide a learnability
 292 result where we assume the policy is parameterized by a softmax policy parameterization in a classical
 293 tabular RL setup.

294 **Theorem 4.6** (Informal Upper Bound on RL Learnability with Hint). *If we have a hint h_q for every
 295 question $q \in \mathcal{Q}$ (Def. 4.5), then there exists an RL algorithm that can output a policy π_θ such that
 296 $\mathbb{E}_{q \sim \text{Uniform}(\mathcal{Q})} [\mathbb{P}_{\tau \sim \pi_\theta(\cdot|q)} (\tau \in \mathcal{S}(q))] \geq 0.99$ with $O(1/\delta'_p)$ sampling budget with high probability.*

297 Theorem 4.6 provides a theoretical guarantee that the model can reach a high training success
 298 rate when partial solution is included. Empirically, we observe the model generalizes well both
 299 in-distribution and out-of-distribution to hard questions.
 300

301 5 EXPERIMENTS

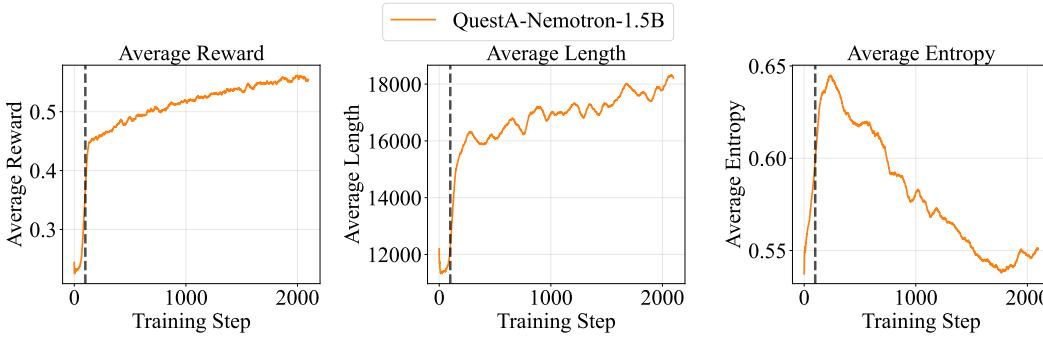
304 **Dataset.** We begin with the OpenR1-Math-220K dataset and use DeepSeek-R1-Distill-1.5B as a
 305 weak selection model to filter it down to the 26K hardest items. This set serves as our base prompts.
 306 We then use Nemotron-1.5B to sample eight generations per prompt and classify problems into Easy
 307 Data (7–8 correct answers) and Hard Data (0–1 correct answers), enabling controlled experiments
 308 introduced in Section 2. The exact prompt template is provided in Appendix B.8

309 **Data Augmentation (QUESTA).** To improve the tractability of the problems, we apply QUESTA to
 310 prepend the prompt with partial solutions, i.e. first $p\%$ of the full solution in the SFT data provided in
 311 the OpenR1-Math-220K dataset. After augmentation, we use the initial model at RL training, either
 312 Nemotron-1.5B or DeepScaleR-1.5B, to sample 8 generations per augmented prompts and select
 313 samples with 0–4 correct predictions. Full details are provided in Appendix B.5. These high-variance
 314 cases provide stronger learning signals and make the training process more effective.
 315

316 **Training Setup.** We use AReal (Fu et al., 2025) as our RL training framework, applying the
 317 GRPO algorithm (Guo et al., 2025) without the Kullback–Leibler (KL) divergence loss. Following
 318 DAPO (Yu et al., 2025), we also dynamically filter out prompts that are either all correct or all
 319 incorrect during rollouts. During training, we sample $n = 16$ responses per prompt with a maximum
 320 prompt length of 8192 tokens and a maximum generation length of 24000 tokens, using a sampling
 321 temperature of 1.0 and clipping hyperparameters with $\varepsilon_{\text{low}} = \varepsilon_{\text{high}} = 0.2$. The batch size is 128 with
 322 a mini-batch size of 1, equivalent to 128 gradient updates per rollout step. Optimization is performed
 323 with AdamW (Kingma & Ba, 2017; Loshchilov & Hutter, 2019) using a constant learning rate of
 2×10^{-5} . Experiments are conducted on eight NVIDIA H800 (80GB) nodes. Full details of our
 training method are provided in Appendix B.1.

324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 Table 1: Performance comparison (Pass@1, averaged over 32 samples) across maths benchmarks. The best results among the 1.5B models are highlighted in bold. Larger models are shown in gray as reference points. Reported results for DeepSeek-R1-Distill and Qwen3 are taken from their official documentation (Guo et al., 2025; Yang et al., 2025), while the rest are self-evaluated. Our QUESTA-Nemotron-1.5B achieves state-of-the-art performance among 1.5B models and, notably, matches or even exceeds the performance of DeepSeek-R1-Distill-32B across several benchmarks, despite being over 20 \times smaller in parameter count. This demonstrates the effectiveness of QUESTA in enhancing small model capabilities through targeted training.

Model	AIME24	AIME25	HMMT FEB 25	Olympiad Bench	BRUMO25	Avg
DeepSeek-R1-Distill-1.5B	28.7	22.3	12.0	52.4	31.8	29.44
Qwen3-1.7B	48.3	36.8	22.19	56.13	44.06	41.50
DeepSeek-R1-Distill-32B	72.6	51.8	33	65.0	68	58.08
Qwen3-8B	76.0	67.3	44.79	68.56	68.33	64.99
Nemotron-1.5B	61.77	49.50	31.56	64.62	58.23	53.14
QUESTA-Nemotron-1.5B	72.50	62.29	41.67	70.36	69.48	63.26



352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 Figure 5: Training dynamics of QUESTA-Nemotron-1.5B. The first and second charts show the progression of average response length and average reward across rollout samples during the RL process, both of which steadily increase over time. The third chart presents the average entropy. Interestingly, the entropy increases over time, suggesting that QUESTA does not suffer from entropy collapse and instead encourages diverse and exploratory behavior.

352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
Evaluation Setup. For each problem in the evaluation benchmarks, we generate 32 samples and report pass@1 results. Generation uses a sampling temperature of 0.7 and a top- p value of 0.95, with $k = 32$ responses per question unless otherwise specified. *It is important to note that while partial solutions were incorporated during training, no partial solutions are provided at evaluation time.*

3.1 EXPERIMENTAL RESULTS

352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
Key Results. Table 1 reports results on challenging math benchmarks. QUESTA yields substantial gains for Nemotron-1.5B, achieving an average improvement of 10% over its baseline and a particularly strong +13% on AIME25. These improvements are consistent across all benchmarks, highlighting the effectiveness of our approach in enhancing problem-solving robustness.

352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 Compared to other models, QUESTA-Nemotron-1.5B consistently outperforms peers of similar scale, such as DeepSeek-R1-Distill-1.5B and Qwen3-1.7B, and even surpasses larger models like DeepSeek-R1-Distill-32B across all benchmarks. On AIME25 in particular, it exceeds DeepSeek-R1-Distill-32B by a substantial margin of +11%. Against the stronger Qwen3-8B, QUESTA-Nemotron-1.5B remains competitive despite operating at a fraction of the parameter scale.

352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
Training Dynamics. Figure 5 summarizes the training dynamics of QUESTA-Nemotron-1.5B. A positive correlation is observed between average response length and model accuracy, reflecting common trends in RL training. Notably, with QUESTA, the entropy during RL training remains stable and does not exhibit significant collapse.

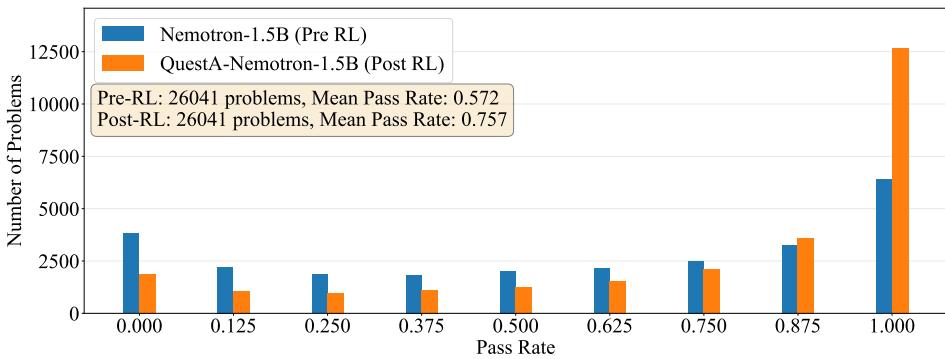


Figure 6: Pass Rate Distribution on Training Prompts. We compare the success rate on the 26K training set before and after RL, using the average pass rate over 8 samples per question. Although partial solutions are included during QUESTA training, **no hints** are provided during this evaluation. This setup isolates the true impact of QUESTA by assessing its ability to improve performance on problems without hints. QUESTA significantly reduces the number of unsolved or partially solved problems in the training set, especially for hard ones where initial model solves only 0/8 or 1/8 times.

Table 2: Indices of **unsolved** problems at Pass@32 on AIME24 and AIME25 (with indices ranging from 0-29). Our method, QUESTA, consistently improve the model capacity on hard cases where the initial model is unable to solve, improving overall coverage at Pass@32.

Models	AIME24 Unsodlved Indices	AIME25 Unsolved Indices
Nemotron-1.5B	2, 3, 13, 21, 29	9, 12, 13, 14, 27, 29
QUESTA-Nemotron-1.5B	3, 21	12, 14, 29

Pass@k Analysis. Our evaluation follows the standard pass@ k methodology, consistent with DeepSeek-R1 (Guo et al., 2025), with further details provided in Appendix B.2. In contrast to recent findings that RL-based training can reduce pass@ k at larger k values (Yue et al., 2025; Liu et al., 2025), our results show that QUESTA preserves—and in many cases modestly improves—performance across a broad range of k . As shown in Figure 2, incorporating partial-solution hints within a two-stage curriculum yields consistent gains across models, without the degradation in pass@ k often observed under standard RL training. These results indicate that QUESTA enhances both the quality and diversity of candidate solutions, rather than overfitting to a single best trajectory.

Generalization at Test Time when Hints are Removed. A natural question arises from our approach: since we add partial solutions during RL training, does this improvement persist when hints are removed at evaluation time? To answer this, Figure 6 compares the pre- and post-RL models on the 26K training prompt set, evaluated without any hints. The distribution clearly shifts away from the 0/8–1/8 bins toward higher pass rates, indicating that the model solves a larger fraction of problems even without access to partial solutions. On the evaluation AIME benchmarks, Table 2 further demonstrates that QUESTA expands coverage at Pass@32: for Nemotron-1.5B, the number of unsolved problems drops from 5 to 2 on AIME24 (newly solved indices 2, 13, 29) and from 6 to 3 on AIME25 (newly solved indices 9, 13, 27). Taken together, these results show that our method generalizes well beyond the training setting and helps solve hard problems that are otherwise inaccessible without partial-solution guidance.

5.2 FURTHER ABLATIONS

Ablation with Difficulty Curriculum. We first motivate the choice of a two-stage curriculum: RL on *Partial-50* followed by RL on *Partial-25*. From a modeling standpoint, the most appropriate inference distribution for the model should be the original (no-hint) distribution. Hence, during training we should gradually reduce reliance on hints to align the learned policy with the evaluation distribution. This motivates decreasing the partial ratio over time so that the model transitions from scaffolded reasoning to autonomous reasoning.

432 Table 3: Ablation Study on the Impact of Curriculum Design. This table demonstrates the importance
 433 of curriculum learning in improving model performance. The model QUESTA-Nemotron-1.5B-50
 434 was trained entirely with Partial-50 data for 2000 steps, while QUESTA-Nemotron-1.5B followed a
 435 curriculum learning approach, starting with 100 steps of Partial-50 data followed by 1900 steps of
 436 Partial-25 data. As seen in the table, the curriculum learning approach (QUESTA-Nemotron-1.5B)
 437 outperforms training with only Partial-50 data (QUESTA-Nemotron-1.5B-50). Extension with **Partial-50→Partial-25→Partial-0** did not yield significant improvements, and thus, are not included in the
 438 table.
 439

Model	AIME24	AIME25	HMMT FEB 25	Olympiad Bench	BRUMO25	Avg
Nemotron-1.5B	61.77	49.50	31.56	64.62	58.23	53.14
QUESTA-Nemotron-1.5B-50	67.18	59.38	39.17	69.41	66.15	60.26
QUESTA-Nemotron-1.5B	72.50	62.29	41.67	70.36	69.48	63.26

440
 441
 442
 443
 444
 445
 446 Empirically, Table 3 shows that, under the same 2000-step budget, the curriculum *Partial-50→Partial-25*
 447 learns substantially better than training on *Partial-50* alone. We cap the *Partial-50* stage at 100
 448 steps, after which we switch to *Partial-25*. As shown in Figure 11, entropy for QUESTA-Nemotron-
 449 1.5B-50 begins to decline beyond 100 steps, so transitioning at this point prevents overconfidence and
 450 sustains training stability. We have also tried extending the curriculum **from Partial-25 to Partial-0** in
 451 our experiments, but observed no gains and no increase in response length (see Figure 12).
 452

453 Table 4: Performance comparison (Pass@1, averaged over 32 samples) between Nemotron-1.5B and
 454 QUESTA-Nemotron-1.5B (By OpenMathReasoning). The two models achieve comparable results,
 455 with the version trained on OpenR1 performing slightly better overall.
 456

Model	AIME24	AIME25	HMMT FEB 25	Olympiad Bench	BRUMO25	Avg
Nemotron-1.5B	61.77	49.50	31.56	64.62	58.23	53.14
QUESTA-50 (with OpenMathReasoning)	66.46	58.54	36.35	66.06	63.13	58.11
QUESTA-50 (with OpenR1)	67.18	59.38	39.17	69.41	66.15	60.26

460
 461
 462 **Ablation with Different Dataset.** We also evaluated QUESTA on OpenMathReasoning Moshkov
 463 et al. (2025), selecting the 60K questions with `pass_rate_72b_tir` of 0 or 1/32. Due to time
 464 constraints, we trained only the first stage of QUESTA with 50% partial solutions. Table 4 shows
 465 that QUESTA-Nemotron-1.5B-50 achieves similar performance as using the OpenR1 dataset. This
 466 indicates that our approach generalizes across datasets.
 467

468 **Other Ablations.** We also conduct an extensive set of comparative experiments and ablation studies,
 469 with detailed results provided in Appendix D. These include an ablation of QUESTA without hints
 470 (Appendix D.1), experiments with different model backbones (Appendix D.2), and the full set of pass
 471 rates and training curves for additional models (Appendix D.3).
 472

6 CONCLUSIONS

473 In this work we introduced QUESTA, a lightweight data-centric framework that augments hard
 474 prompts with partial-solution hints during RL training. Without altering model architecture or reward
 475 design, QUESTA sets new state-of-the-art results for 1.5 B-scale models on AIME24, AIME25 and
 476 HMMT25. Further, we theoretically demonstrate how question augmentation can improve sample
 477 efficiency. Our analysis shows that the method can potentially be generalized to other domains
 478 such as competitive coding, software engineering or other agentic tasks. Designing proper question
 479 augmentation pipelines for these new tasks can be an important and interesting future direction.
 480

7 ETHICS STATEMENT

481 We use only public, non-PII datasets—OpenR1-Math-220K (Apache 2.0) and OpenMathReasoning
 482 (CC BY 4.0)—in full compliance with their licenses (including attribution and modification notices);
 483 no new human-subjects data were collected, no re-identification was attempted, and no IRB review

486 was required. Our augmentation pipeline generates math problems and solutions while avoiding
 487 harmful or copyrighted non-math content; outputs may inherit source biases, so we report settings
 488 transparently, discourage high-stakes deployment or misuse without safeguards and human oversight,
 489 and will release artifacts that respect the original licenses.
 490

491 8 REPRODUCIBILITY STATEMENT 492

493 To ensure reproducibility, we provide the code, dataset and model in the the supplementary materials
 494 and anonymous github [https://anonymous.4open.science/r/questa932/README.](https://anonymous.4open.science/r/questa932/README.md)
 495 md. In the README.md file included with the code, we present a step-by-step guide for reproducing
 496 our results.
 497

498 REFERENCES 499

500 Brown university math olympiad 2025. February 2025.

501 Harvard-mit mathematics tournament 2025. February 2025.

503 Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing Xu,
 504 Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scaling
 505 reinforcement learning on advanced reasoning models, 2025.

506 Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Matharena:
 507 Evaluating llms on uncontaminated math competitions, February 2025.

509 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
 510 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 511 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 512 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
 513 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
 514 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
 515 Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
 516 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
 517 Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
 518 McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
 519 large language models trained on code, 2021.

520 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
 521 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
 522 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025.

523 Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
 524 Mei, Jiashu Wang, et al. Areal: A large-scale asynchronous reinforcement learning system for
 525 language reasoning. *arXiv preprint arXiv:2505.24298*, 2025.

526 Zitian Gao, Lynx Chen, Haoming Luo, Joey Zhou, and Bryan Dai. One-shot entropy minimization,
 527 2025.

528 Gemini Team, Google DeepMind. Gemini 2.5: Pushing the frontier with advanced reasoning,
 529 multimodality, long context, and next generation agentic capabilities, 2025. Accessed: July 2025.

531 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 532 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 533 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

534 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 535 Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
 536 bench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal
 537 scientific problems, 2024.

538 Zhenyu Hou, Ziniu Hu, Yujiang Li, Rui Lu, Jie Tang, and Yuxiao Dong. Treerl: Llm reinforcement
 539 learning with on-policy tree search, 2025.

540 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 541 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 542 *arXiv:2412.16720*, 2024.

543 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 544 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 545 evaluation of large language models for code, 2024.

546 Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
 547 Aaron Courville, and Nicolas Le Roux. Vineppo: Refining credit assignment in rl training of llms,
 548 2025.

549 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

550 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittweis, Rémi Leblond, Tom
 551 Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
 552 de Masson d'Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Wébl, Sven
 553 Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
 554 Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
 555 code generation with alphacode. *Science*, 378(6624):1092–1097, December 2022. ISSN 1095-9203.
 556 doi: 10.1126/science.abq1158.

557 Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
 558 Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning, 2025.

559 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 560 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
 561 *arXiv preprint arXiv:2505.24864*, 2025.

562 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

563 Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
 564 Qingwei Lin, Shifeng Chen, Yansong Tang, and Dongmei Zhang. Wizardmath: Empowering
 565 mathematical reasoning for large language models via reinforced evol-instruct, 2025a. URL
 566 <https://arxiv.org/abs/2308.09583>.

567 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
 568 Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
 569 with a 1.5b model by scaling rl, 2025b. Notion Blog.

570 MAA. American invitational mathematics examination 2024. February 2024.

571 MAA. American invitational mathematics examination 2025. February 2025.

572 Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A. Smith, Hannaneh Ha-
 573 jishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation, 2025.

574 Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence
 575 rates of softmax policy gradient methods, 2022.

576 Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt Schif-
 577 ferer, Wei Du, and Igor Gitman. Aimo-2 winning solution: Building state-of-the-art mathematical
 578 reasoning models with openmathreasoning dataset. *arXiv preprint arXiv:2504.16891*, 2025.

579 Open-R1 Team. Openr1-math-220k: A large-scale dataset for mathematical reasoning, 2025.

580 Shubham Parashar, Shurui Gui, Xiner Li, Hongyi Ling, Sushil Vemuri, Blake Olson, Eric Li,
 581 Yu Zhang, James Caverlee, Dileep Kalathil, and Shuiwang Ji. Curriculum reinforcement learning
 582 from easy to hard tasks improves llm reasoning. 2025.

583 Yuxiao Qu, Matthew Y. R. Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
 584 Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
 585 tuning, 2025.

586 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 587 Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a benchmark,
 588 2023.

594 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 595 optimization algorithms, 2017.

596

597 Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
 598 Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training signals
 599 in rlvr. *arXiv preprint arXiv:2506.10947*, 2025.

600 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 601 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 602 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

603 Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
 604 Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024.

605

606 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 607 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 608 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025a.

609 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
 610 He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
 611 Shen. Reinforcement learning for reasoning in large language models with one training example,
 612 2025b.

613 Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
 614 Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
 615 incentivizes correct reasoning in base llms. *arXiv preprint arXiv:2506.14245*, 2025.

616 Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen Ding, Shichun
 617 Liu, Xin Guo, Junzhe Wang, Honglin Guo, Wei Shen, Xiaoran Fan, Yuhao Zhou, Shihan Dou,
 618 Xiao Wang, Xinbo Zhang, Peng Sun, Tao Gui, Qi Zhang, and Xuanjing Huang. Training large
 619 language models for reasoning through reverse curriculum reinforcement learning, 2024. URL
 620 <https://arxiv.org/abs/2402.05808>.

621 Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang.
 622 Inftythink: Breaking the length limits of long-context reasoning in large language models. *arXiv
 623 preprint arXiv:2503.06692*, 2025.

624

625 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 626 Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 627 2025.

628 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 629 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
 630 scale. *arXiv preprint arXiv:2503.14476*, 2025.

631 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
 632 reinforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv
 633 preprint arXiv:2504.13837*, 2025.

634 Kaiyi Zhang, Ang Lv, Jinpeng Li, Yongbo Wang, Feng Wang, Haoyuan Hu, and Rui Yan.
 635 Stephint: Multi-level stepwise hints enhance reinforcement learning to reason. *arXiv preprint
 636 arXiv:2507.02841*, 2025. doi: 10.48550/arXiv.2507.02841. Submitted Jul 3, 2025.

637

638 Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
 639 Echo chamber: RL post-training amplifies behaviors learned in pretraining, 2025.

640 Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surprising
 641 effectiveness of negative reinforcement in llm reasoning. *arXiv preprint arXiv:2506.01347*, 2025.

642

643

644

645

646

647

648 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
649650 The Large Language Models (LLMs) were exclusively utilized to polish the writing and detect
651 potential typos, with no involvement in other aspects.
652653 B IMPLEMENTATION DETAILS
654655 B.1 RLVR ALGORITHMS
656657 We have employed the GRPO algorithm enhanced with a subset of DAPO techniques. Primarily, we
658 have integrated DAPO’s Dynamic Sampling Trick and eliminated the KL divergence term, resulting
659 in an optimization objective that is:

660
$$\begin{aligned} \mathcal{J}(\theta) = & \mathbb{E}_{q \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)} \\ & \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip} \left(r_{i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon \right) \hat{A}_{i,t} \right) \right] \\ & \text{s.t. } 0 < \#\{o_i \mid [o_i \text{ is correct}]\} < G, \end{aligned} \quad (1)$$

661 where
662

663
$$r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} \mid q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,<t})}, \quad \hat{A}_{i,t} = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}. \quad (2)$$

664

665 Our reward function R mirrors that of DeepScaleR (Luo et al., 2025b), employing an Outcome
666 Reward Model. It returns 1 if and only if both the answer and format are correct; otherwise, it returns
667 0. In summary, our reward function yields:
668

669
$$R = \begin{cases} 1, & \text{if the answer (e.g. passes basic LaTeX/Sympy checks)} \\ & \text{and format (e.g. exists } <\text{think}> \text{ and } </\text{think}> \text{) are both correct,} \\ 0, & \text{otherwise.} \end{cases} \quad (3)$$

670

671 B.2 LOW-VARIANCE PASS@K ESTIMATION
672673 Pass@ k is a measure of a model’s problem - solving ability, indicating the probability that the model
674 can generate at least one correct solution in k attempts. Specifically, for each problem x_i in the
675 evaluation dataset \mathcal{D} , we generate n samples (where $n \geq k$) and count the correct ones as c_i . The
676 direct calculation formula is:
677

678
$$\text{pass@}k := \mathbb{E}_{x_i \sim \mathcal{D}} \left[1 - \left(1 - \frac{c_i}{n} \right)^k \right] \quad (4)$$

679

680 However, this formula has excessive variance and insufficient accuracy. To solve this problem, we
681 adopt the unbiased estimation method proposed by Chen et al. (Chen et al., 2021), using the unbiased
682 estimator of pass@ k over the dataset:
683

684
$$\text{pass@}k := \mathbb{E}_{x_i \sim \mathcal{D}} \left[1 - \frac{\binom{n-c_i}{k}}{\binom{n}{k}} \right] \quad (5)$$

685

686 In our experiments, to ensure sufficient accuracy, we set n such that $2k \leq n$, which helps further
687 reduce the variance of the estimate.
688689 B.3 MORE RELATED WORKS
690691 Recent studies show that RL algorithms, such as PPO (Schulman et al., 2017) and GRPO (Guo et al.,
692 2025), can greatly enhance model reasoning capabilities. Building on this, several works have refined
693 this paradigm from different perspectives. One method can be adjusting the reward function. Some
694 studies (Zhu et al., 2025; Shao et al., 2025) directly modify the reward function to improve training
695 efficiency. Other methods introduced intermediate process rewards (Wang et al., 2024; Malik et al.,
696 2025), while Wen et al. (Wen et al., 2025) set up a separate correctness judgment for CoT to obtain
697 rewards.
698

702 Another novel perspective aims to improve sample efficiency by measuring certainty. For example,
 703 TreeRL (Hou et al., 2025) and VinePPO (Kazemnejad et al., 2025) enhanced sample effects by
 704 introducing entropy or confidence. MRT (Qu et al., 2025), on the other hand, reused partial trajectories
 705 during testing to boost sample efficiency. **R3 (Xi et al., 2024) improves RL sample efficiency by**
 706 **decomposing human solution steps and providing preceding steps to guide the model in completing**
 707 **subsequent ones.** Further, some research adopted a multi-stage training or reasoning mode, exploring
 708 from different angles such as training length (Luo et al., 2025b), question difficulty (Parashar et al.,
 709 2025), and fixed-length summaries during reasoning (Yan et al., 2025).

710 In addition to designing better algorithms, another line of research (Shao et al., 2024; Yue et al.,
 711 2025; Zhao et al., 2025) has investigated how reinforcement learning affects the frontier of model
 712 capabilities, observing a decay in pass@k when k becomes large. In response to this phenomenon,
 713 some works (Yu et al., 2025; Liu et al., 2025; An et al., 2025) maintained entropy stability by
 714 adjusting training entropy through methods such as increasing the clipping upper bound, enlarging
 715 the temperature coefficient, extending the training length, and periodically updating the KL reference
 716 model. StepHint (Zhang et al., 2025) also preserved entropy stability by leveraging intermediate
 717 thinking content of iterative length as a prompting signal.

718 In contrast to the aforementioned research, our work adopts an orthogonal approach by using
 719 part of the ground-truth solution as a hint, without requiring any modifications to the existing
 720 reinforcement learning infrastructure. We provide both theoretical justification and empirical evidence
 721 that this strategy maintains pass@k without compromising the exploratory capacity of the underlying
 722 reinforcement learning algorithm.

723 B.4 BENCHMARKS

724 We evaluate the models' breadth across various tasks in multiple domains, including mathematics,
 725 coding, reasoning, and logical inference. For mathematics, we follow DeepScaleR (Luo et al., 2025b)
 726 and Nemotron (Moshkov et al., 2025), and conduct assessments on more challenging mathematical
 727 datasets such as AIME2024 (MAA, 2024), AIME2025 (MAA, 2025), Olympiad Bench (He et al.,
 728 2024), HMMT FEB 25 (hmm, 2025), and BRUMO25 (bru, 2025). Specifically, HMMT25 Feb and
 729 BRUMO25 are both sourced from MathArena (Balunović et al., 2025). In the realm of coding, we
 730 utilize commonly employed datasets, including Code Contests (Li et al., 2022), Codeforces¹, and
 731 LCB V5 202410-202502 (Jain et al., 2024). For logical reasoning tasks, we assess our models'
 732 capabilities using GPQA Diamond (Rein et al., 2023)² and Zebralogic (Lin et al., 2025). The
 733 benchmarks related to coding and logical reasoning are all referenced from AReAL (Fu et al., 2025).

734 B.5 TRAINING DATASET

735 The dataset employed in our study is OpenR1-Math-220K (Open-R1 Team, 2025). Prior to commencing
 736 the training of the Partial Solution, we conducted a preliminary screening of the dataset.
 737 Specifically, we utilized the DeepSeek-R1-Distill-1.5B (Guo et al., 2025) model to perform eight
 738 inference operations on each of the 220k data entries in the OpenR1 dataset. Subsequently, we
 739 compared the annotated answers in the OpenR1 dataset with the results generated from each inference
 740 to tally the number of correct instances for each data entry. Ultimately, we selected the data entries
 741 with 0 or 1 correct instance as the training samples for our study. The final dataset size is 26K.

742 For controlled comparisons, we further split this 26K subset by re-sampling **Nemotron-1.5B** eight
 743 times per item and counting correct completions. We define *Easy Data* as questions with correct
 744 counts in [7, 8] and train a model on this split, denoted *Easy-Nemotron-1.5B*. Similarly, we
 745 define *Hard Data* as questions with correct counts in [0, 1] and train *Hard-Nemotron-1.5B* on
 746 this split.

747 Additionally, for the augmented data, we perform eight inference passes using the model currently
 748 under training. We then select samples for which the number of correct predictions falls within the
 749 range of [0, 4]. This criterion is motivated by the finding that samples exhibiting higher variance are
 750 more beneficial for training (Gao et al., 2025; Wang et al., 2025b). The range [0, 4] is chosen because
 751 it includes the point of maximum sample variance, which is achieved with four correct predictions
 752 out of eight trials. For convenience, we refer to augmented data with partial ratio p as *Partial- p* data.

753 ¹<https://codeforces.com/>

754 ²In the GPQA Diamond dataset, multiple-choice questions are presented in the form of options rather than
 755 directly providing the answer, requiring the model to output only A, B, C, or D.

756 B.6 THE RATIONALE FOR THE CHOICE OF p
757758 Table 5: Number of problems vs pass rate under different hint levels on OpenMath-Nemotron-1.5B
759 before training. We evaluated OpenMath-Nemotron-1.5B on the OpenR1 dataset after the first round
760 of filtering, with each problem assessed 8 times. The table illustrates the distribution of correct
761 answers (n) where $n \in \{0, 1, \dots, 8\}$.
762

Hint Levels	0 / 8	1 / 8	2 / 8	3 / 8	4 / 8	5 / 8	6 / 8	7 / 8	8 / 8
<i>Partial-50</i>	143	224	304	472	710	1013	1779	3655	17741
<i>Partial-25</i>	3155	1997	1814	1785	1902	2175	2614	3440	7159
<i>Partial-10</i>	3589	2090	1865	1842	1905	2176	2653	3415	6506
<i>Partial-0</i>	3812	2218	1854	1842	2007	2136	2517	3264	6391

763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
In this study, we evaluated the performance of OpenMath-Nemotron-1.5B on the OpenR1 dataset
under various hint levels. The evaluation was performed after the first round of filtering, and each
problem was assessed 8 times to capture the predictive distribution. The resulting table (Table 5)
shows the distribution of correct answers across different hint levels, where the values represent the
number of times the model answered correctly ($n \in \{0, 1, \dots, 8\}$).

The selection of the hint parameter p was primarily based on these evaluation results. As shown in the table, the performance with a Partial-50 hint significantly reduces task difficulty, as evidenced by the high pass rates across most levels. In contrast, Partial-25 (25% hint) exhibits a performance pattern similar to that of the no-hint scenario (Partial-0), with only marginal differences in task difficulty.

This minimal difference in difficulty between Partial-0 and Partial-25 suggests that training with Partial-25 does not provide substantial gains compared to Partial-0. Consequently, we adopted a stepwise design in which the hint level is first set to $p = 50\%$, followed by $p = 25\%$, to evaluate the model’s performance under varying conditions.

B.7 EVALUATION SETUP

We configured the models to have a maximum generation length of 32,768 tokens. In line with DeepSeek-R1 (Guo et al., 2025), we utilized pass@ k evaluation (Chen et al., 2021), with the formula detailed in B.2. We reported pass@1 using a non-zero temperature. Specifically, we used a sampling temperature of 0.7 and a top- p value of 0.95 to generate k responses per question, typically set at 32, with deviations explicitly noted. *Particular attention should be paid to the fact that, although we incorporated partial Solution during training, it was not included in the evaluation phase.*

B.8 DETAIL ON PROMPT TEMPLATE

DeepScaleR Coding’s Inference:

< | User | >{input}< | Assistant | ><think>

DeepScaleR Others’ Inference:

< | User | >{input}

Please reason step by step, and put your final answer within \boxed{ } . < | Assistant | ><think>

Nemotron Coding’s Inference:<lim_start>user
{input}
<lim_end> <lim_start>assistant
<think>**Nemotron Others’ Inference:**

<lim_start>system

Please reason step by step, and put your final answer within \boxed{ } . <lim_end>
<lim_start>user

810 {input}<lim_endl>
 811 <lim_startl>assistant
 812

813 **Training prompt with partial solutions (math RL):**

814 {Problem}

815 ## Hint: {Partial Solution}

816 Please reason step by step, and put your final answer within \boxed{ }.

817
 818 **C THEORY**

819 **C.1 PROOFS**

820 **Theorem 4.4** (Lower Bound on RL Learnability under Solution Inaccessibility). *Given a probability*
 821 *threshold $\delta_p > 0$, if for every question $q \in \mathcal{Q}$, the model capacity set $C(q, \delta_p)$ does not intersect with*
 822 *the solution set $\mathcal{S}(q)$, i.e.,*

$$823 C(q, \delta_p) \cap \mathcal{S}(q) = \emptyset, \quad \forall q \in \mathcal{Q},$$

824 *then under Assumption 4.3, when training RL for T steps with B samples per step such that $TB =$*
 825 *$\Theta(1/\delta_p)$, there is a constant probability that the RL algorithm will not update the model.*

826 *Proof.* Let $p_{\text{sol}} = \sum_{\tau^* \in \mathcal{S}(q)} P_\mu(\tau^* | q)$ denote the cumulative generation probability of any solution
 827 trajectory. By $C(q, \delta_p) \cap \mathcal{S}(q) = \emptyset$ and Def 4.2:

$$828 p_{\text{sol}} = \sum_{\tau^* \in \mathcal{S}(q)} P_\mu(\tau^* | q) < \delta_p$$

829 For $N = TB$ independent samples across T steps with batch size B , the probability of complete
 830 failure (no solution sampled) is:

$$831 \mathbb{P}(\text{failure}) = (1 - p_{\text{sol}})^N > (1 - \delta_p)^N$$

832 Given $TB = \Theta(1/\delta_p)$, we have:

$$833 (1 - \delta_p)^N > (1 - \delta_p)^{\Theta(1/\delta_p)} = \Theta(1).$$

834 The last inequality follows from the fact that $(1 - x)^{1/x} > \exp(-1/(1 - x))$ for $x \in (0, 1)$. By
 835 Assumption 4.3, if no solution is found, the model weights remain unchanged. \square

836 **Lemma C.1** (Upper Bound on Sampling Budget for Solution Given Hint). *Given a question $q \in \mathcal{Q}$, if*
 837 *there exists a hint h_q for the question q (Def. 4.5), then if we perform $TB = \Theta(1/\delta'_p) = \Theta(\delta_p^\epsilon / \sqrt{\delta_p})$*
 838 *i.i.d sampling over the initial model conditioned on (q, h_q) , we can find a valid solution with a*
 839 *constant probability.*

840 *Proof.* By Definition 4.5, we know:

- 841 1. $P_\mu(h_q | q) \geq \delta'_p$
- 842 2. $\exists s_q \in \mathcal{S}(q) : P_\mu(s_q | (q, h_q)) \geq \delta'_p$

843 With $N = TB \geq 10/\delta'_p$ independent samples conditioned on (q, h_q) , the probability of not finding
 844 the solution s_q is:

$$845 \mathbb{P}(\text{no solution}) = (1 - P_\mu(s_q | (q, h_q)))^N \leq (1 - \delta'_p)^{10/\delta'_p} \leq \exp(-10) < 0.01.$$

846 Therefore, $\mathbb{P}(\text{finding solution}) > 0.99$. \square

847 **Theorem 4.6** (Informal Upper Bound on RL Learnability with Hint). *If we have a hint h_q for every*
 848 *question $q \in \mathcal{Q}$ (Def. 4.5), then there exists an RL algorithm that can output a policy π_θ such that*
 $\mathbb{E}_{q \sim \text{Uniform}(\mathcal{Q})} [\mathbb{P}_{\tau \sim \pi_\theta(\cdot | q)} (\tau \in \mathcal{S}(q))] \geq 0.99$ *with $O(1/\delta'_p)$ sampling budget with high probability.*

This theorem is a direct corollary of the Theorem 5 regarding the bandit setup in (Mei et al., 2022). Because the setup here is relatively simple, we also present a detailed proof for this special case here. We first formalize our setup as follows:

Assumption C.2 (Tabular RL with Hint). We consider the tabular RL setting with softmax policy parameterization. There exists a finite set of possible questions \mathcal{Q} and a finite set of possible solutions \mathcal{S} . For each question $q \in \mathcal{Q}$, there exists a hint h_q , which is a subset of solutions $h_q \subseteq \mathcal{S}$.

The policy is parameterized by a $|\mathcal{S}| \times |\mathcal{Q}|$ matrix θ in the following way:

$$\mu_\theta(s|q) = \frac{\exp(\theta_{s,q})}{\sum_{s' \in \mathcal{S}} \exp(\theta_{s',q})}$$

Here the setup is different than the autoregressive setting in our experiments and simplify the model to a tabular setup for the simplicity of analysis. We now restate the assumption on the existence of hint in this setup.

Assumption C.3 (Hint Existence, Formal Version of Definition 4.5). For each question $q \in \mathcal{Q}$, there exists a hint $h_q \subseteq \mathcal{S}$ such that $\sum_{s \in h_q} P_\mu(s|q) \geq \delta'_p$. Further, there exists a solution $s_q \in \mathcal{S}$ such that $P_\mu(s_q|q) \geq \delta'_p \sum_{s \in h_q} P_\mu(s|q)$.

RL Algorithm: We will first sample $\Theta(1/\delta'_p)$ action based on the policy μ_θ conditioned on the question q and the hint h_q . Then we will do a one-step policy gradient update on our policy. Noted that here we can reach high reward within one step because the reward function is deterministic.

Theorem C.4 (Formal Version of Theorem 4.6). *Under Assumption C.2 and Assumption C.3, running 1 steps of policy gradient update with sampling budget $\Theta(1/\delta'_p)$, the learned policy achieves:*

$$\mathbb{E}_{q \sim \text{Uniform}(\mathcal{Q})} [\mathbb{P}_{\tau \sim \mu_\theta(\cdot|q)} (\tau \in \mathcal{S}(q))] \geq 0.99$$

with probability 0.99.

Proof. First, by Assumption C.3, for any question q , we have:

$$\sum_{s \in h_q} P_\mu(s|q) \geq \delta'_p \quad \text{and} \quad \exists s_q : P_\mu(s_q|q) \geq \delta'_p \sum_{s \in h_q} P_\mu(s|q)$$

With sampling budget $N = \Theta(|\mathcal{Q}|/\delta'_p)$, by Lemma C.1 and the union bound, we will find a solution s_q for every question q with probability at least 0.99. Suppose the found set of solutions for question q is S_q and all sampled solutions are $s^{(1)}, \dots, s^{(N)}$. Then because

$$\nabla_\theta \log \mu_\theta(s|q) = e_s - \sum_{s' \in \mathcal{S}} \mu_\theta(s'|q) e_{s'}$$

We have the policy gradient being

$$\begin{aligned} \text{PG}_{:,q} &= \frac{1}{N} \sum_{i=1}^N \mathbf{1}[s^{(i)} \in S_q] \nabla_\theta \log \mu_\theta(s^{(i)}|q) \\ &= \frac{1}{N} \sum_{i=1}^N \mathbf{1}[s^{(i)} \in S_q] (e_{s^{(i)}} - \sum_{s' \in \mathcal{S}} \mu_\theta(s'|q) e_{s'}) \\ &= \frac{1}{N} \sum_{i=1}^N \mathbf{1}[s^{(i)} \in S_q] e_{s^{(i)}} - \left(\frac{1}{N} \sum_{i=1}^N \mathbf{1}[s^{(i)} \in S_q] \right) \left(\sum_{s' \in \mathcal{S}} \mu_\theta(s'|q) e_{s'} \right). \end{aligned}$$

We can make two simple observations:

1. For every $s \notin S_q$, $\text{PG}_{s,q} < 0$.
2. There exists a $s^* \in S_q$ such that $\text{PG}_{s^*,q} > 0$.

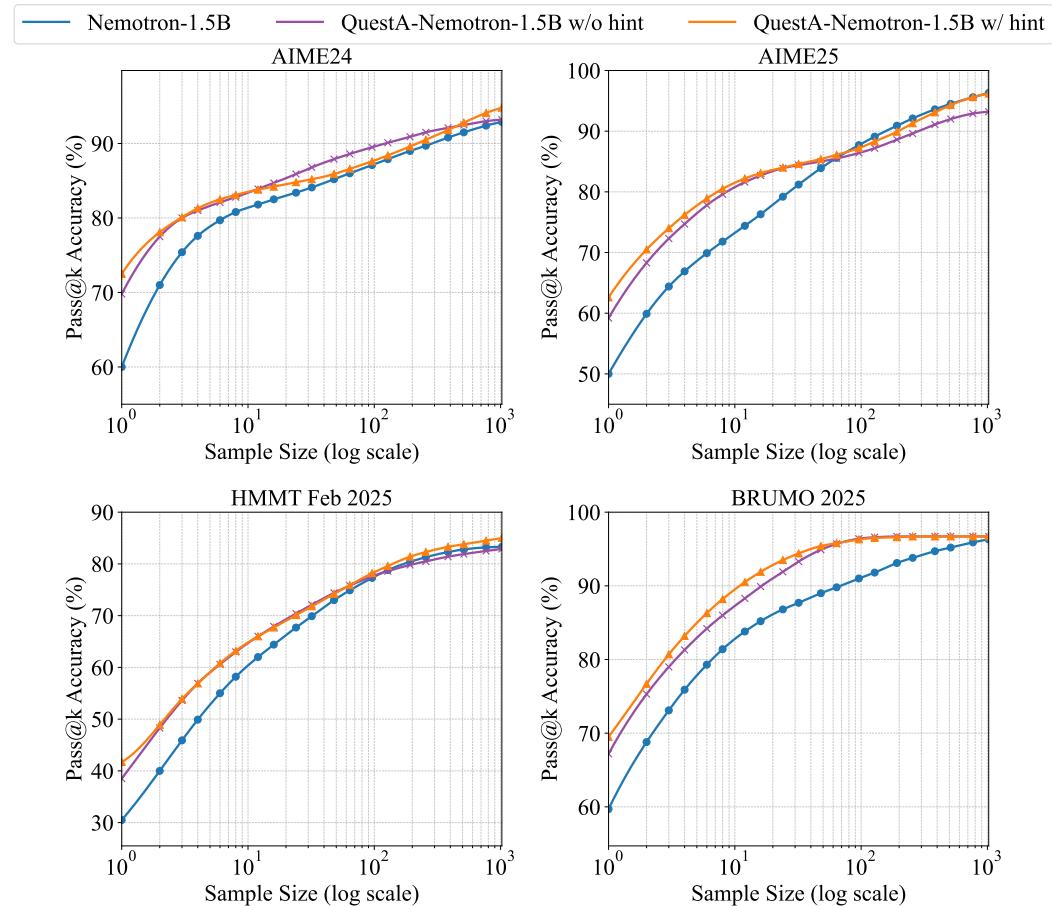
Therefore, consider the updated parameters

$$\theta'_{s,q} = \theta_{s,q} + \eta \text{PG}_{s,q}$$

If η is large enough, we know that $\sum_{s \in S_q} P_{\mu_{\theta'}}(s|q) \geq 0.99$. This completes the proof. \square

918 D ADDITIONAL EXPERIMENTAL RESULTS
919920 D.1 ABLATION STUDY WITHOUT HINT
921922 Table 6: Ablation without hint on Nemotron-1.5B: Pass@1 (avg@32) on challenging maths
923 benchmarks. “QUESTA-Nemotron-1.5B w/o hint” trains RL on the same data but removes hints
924 from the prompt, while “w/ hint” uses partial-solution hints during training. With hints, the model
925 improves all benchmarks and achieves a +2.82 average gain over *w/o hint* (63.26 vs. 60.44), on top of
926 the improvements over the base model. The one using hint requires nearly half the number of steps
927 compared to the one not using hint to achieve the same performance.
928

Model	AIME24	AIME25	HMMT FEB 25	Olympiad Bench	BRUMO25	Avg
Nemotron-1.5B	61.77	49.50	31.56	64.62	58.23	53.14
QUESTA-Nemotron-1.5B w/o hint (2K step)	69.48	59.79	38.85	68.05	66.04	60.44
QUESTA-Nemotron-1.5B w/ hint (1.1K step)	69.27	60.00	37.92	69.72	68.33	61.05
QUESTA-Nemotron-1.5B w/ hint (2K step)	72.50	62.29	41.67	70.36	69.48	63.26

944 Figure 7: Pass@ k comparison on Nemotron-1.5B for RL *with* vs. *without* hints. Training with
945 hints consistently dominates across k and avoids the performance drop at larger k seen in standard
946 RL. Hints are used only during training; evaluation uses no hints.
947948 We ablate the role of hints by training RL on Nemotron-1.5B with and without partial-solution
949 hints. Here, QUESTA-Nemotron-1.5B *w/o hint* denotes RL on the same data and schedule but with
950 the hint removed from the prompt; QUESTA-Nemotron-1.5B *w/ hint* uses identical settings except
951 that the partial solution is provided as a hint during training. As summarized in Table 6, removing the
952 hint still improves over the base model (average Pass@1: 53.14 → 60.44), but adding the hint yields a
953

972 further +2.82 average gain ($60.44 \rightarrow 63.26$), with consistent improvements across all five benchmarks.
 973 The one using hint requires nearly half the number of steps compared to the one not using hint to
 974 achieve the same performance. Note that hints are used only during training; all evaluations are
 975 conducted *without* hints.

976 Figure 7 compares Pass@ k curves. The *w/ hint* model lifts the entire curve across k and avoids
 977 the degradation at larger k commonly observed in standard RL, while the *w/o hint* variant brings
 978 smaller gains that taper off as k increases. A possible reason for this phenomenon is that, without
 979 hints, extremely difficult problems remain unlearned. Consequently, during reinforcement learning
 980 training, the model prioritizes improving performance on problems that have become relatively
 981 easier as training progresses. This leads the model to become overly confident, thereby reducing its
 982 Pass@ k metric. In contrast, when hints are provided, the model still prioritizes learning more difficult
 983 problems—this is because such problems can provide effective learning signals.
 984

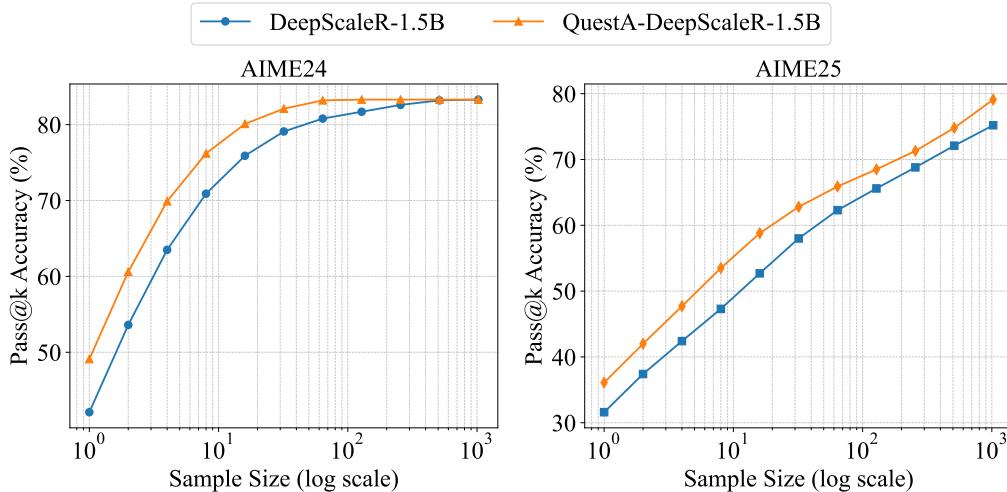
D.2 ABLATION STUDY WITH DIFFERENT MODELS

986 Table 7: Performance comparison on DeepScaleR-1.5B: Pass@1 (avg@32) across maths benchmarks.
 987 QUESTA consistently improves all tasks and raises the average by +6.50 points.
 988

Model	AIME24	AIME25	HMMT FEB 25	Olympiad Bench	BRUMO25	Avg
DeepScaleR-1.5B	40.42	31.35	19.27	52.97	37.40	36.28
QUESTA-DeepScaleR-1.5B	49.16	35.94	21.77	58.69	48.33	42.78

994 Table 8: Performance comparison (Pass@1, averaged over 32 samples) showing the impact of
 995 QUESTA across benchmarks in other domains, including general knowledge, logic, and coding tasks.
 996 We observe minor cross-domain generalization on all these benchmarks, despite QUESTA being
 997 applied exclusively in the maths domain.
 998

Model	GPQA Diamond	Zebralogic	Code Contest All	Codeforces	LCB V5 202410-202502	Avg
DeepScaleR-1.5B	38.5	14.26	9.07	8.79	19.57	18.04
QUESTA-DeepScaleR-1.5B	39.2	14.98	10.1	8.9	20.9	18.82



1021 Figure 8: Pass@ k on DeepScaleR-1.5B: QUESTA raises the entire curve across k and avoids
 1022 the large- k drop often seen in standard RL. The increasing gap with k indicates improved sample
 1023 diversity rather than overconfident collapse. No hints are used at evaluation.
 1024

1025 We next examine model-family transfer by applying QUESTA to DeepScaleR-1.5B. We train for
 750 steps on DeepScaleR-1.5B Stage 2 Luo et al. (2025b) on the QUESTA first stage.

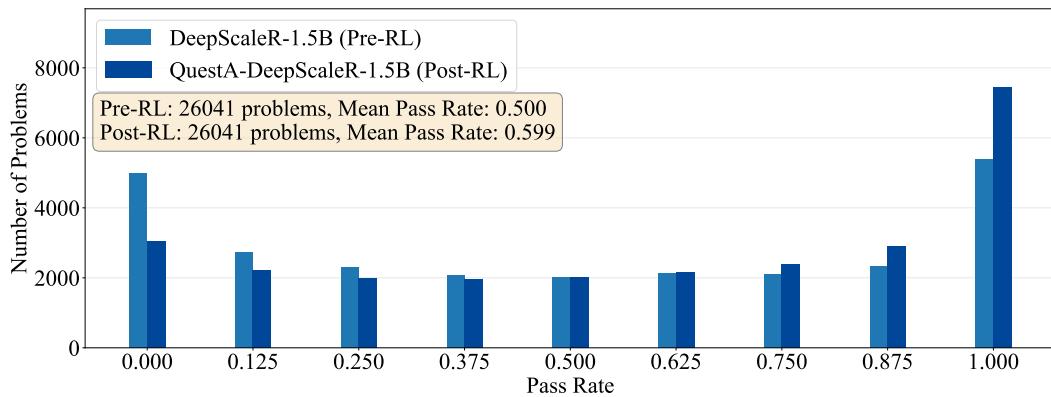


Figure 9: We conducted training of the DeepScaleR model employing the QUESTA with a dataset comprising 26,000 questions. The average pass rate was calculated from a sample of 8 instances. The initial graph represents the scenario without the incorporation of partial solutions, while the subsequent graph depicts the situation where partial solutions were included. The application of QUESTA significantly diminishes the incidence of unsolved or partially addressed problems within the training dataset. Concurrently, it has come to our attention that our previous method of data curation was not entirely accurate; in fact, the amount of data providing meaningful training signals is less abundant than anticipated, suggesting the potential for further refinement of the dataset.

As shown in Table 7, QUESTA-DeepScaleR-1.5B improves *every* maths benchmark over the base model, achieved an average improvement of 6%, indicating that the benefits of QUESTA are not tied to a single architecture.

Pass@ k behavior mirrors these gains. In Figure 8, QUESTA-DeepScaleR lifts the entire Pass@ k curve across k and avoids the degradation at larger k reported in standard RL settings. The widening gap at larger k suggests improved candidate diversity rather than overfitting to a single trajectory, consistent with our general pass@ k analysis in Appendix B.2. Complementing this, Figure 9 shows that on the 26K training set (evaluated *without* hints), mass shifts away from the 0/8–1/8 bins toward higher pass rates, reducing unsolved or partially solved cases. Hints are used only during training and are removed at evaluation time.

Beyond maths, Table 8 reports out-of-distribution (OOD) results on general knowledge, logic, and coding. QUESTA-DeepScaleR-1.5B achieves small but consistent gains (Avg: 18.04→18.82; +0.78), suggesting that the improved reasoning patterns transfer modestly beyond the training domain.

D.3 SUPPLEMENTAL EXPERIMENT DETAIL

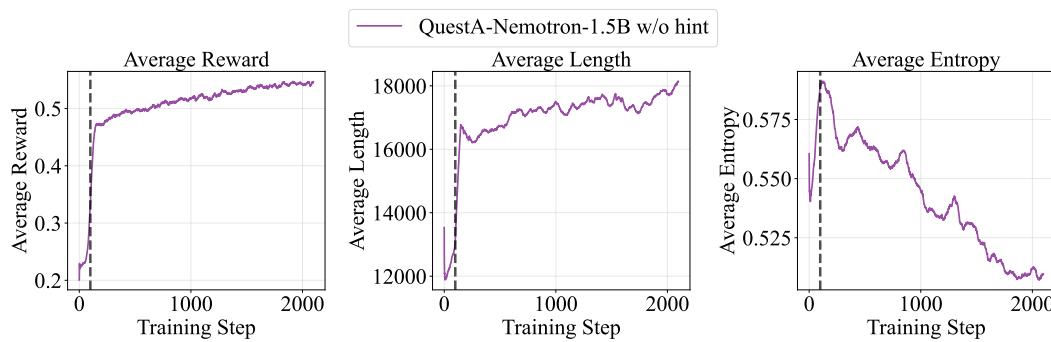


Figure 10: Training dynamics of QUESTA-Nemotron-1.5B w/o hint.

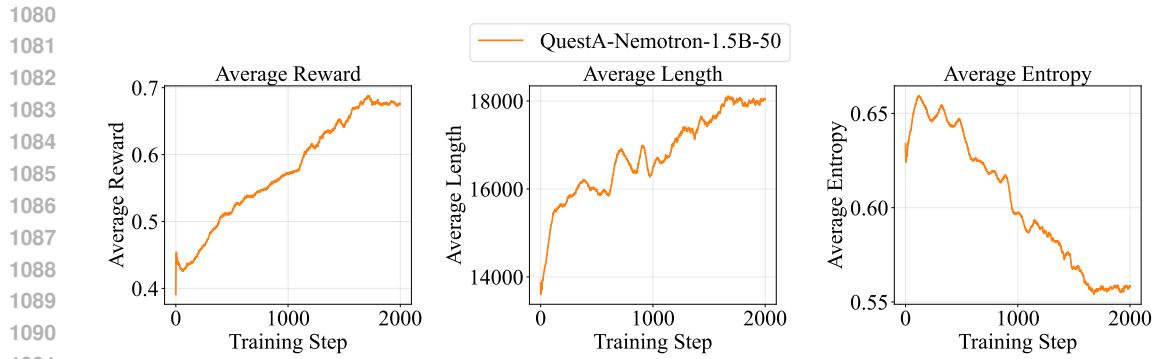


Figure 11: Training dynamics of QUESTA-Nemotron-1.5B-50.

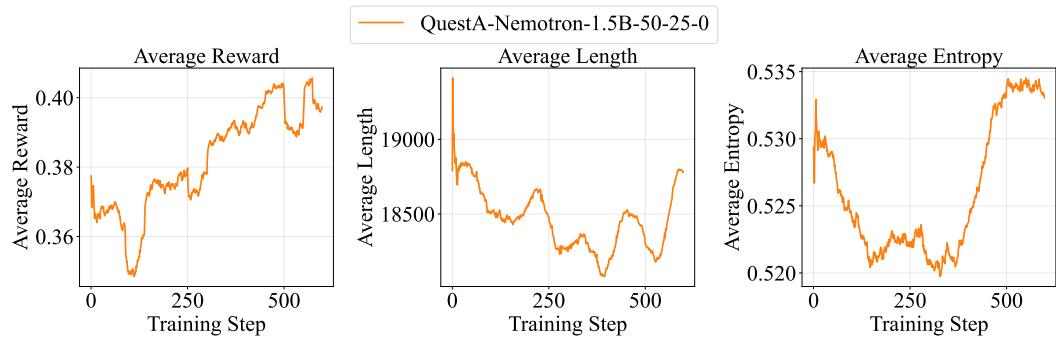


Figure 12: Training dynamics of QUESTA-Nemotron-1.5B-50-25-0.

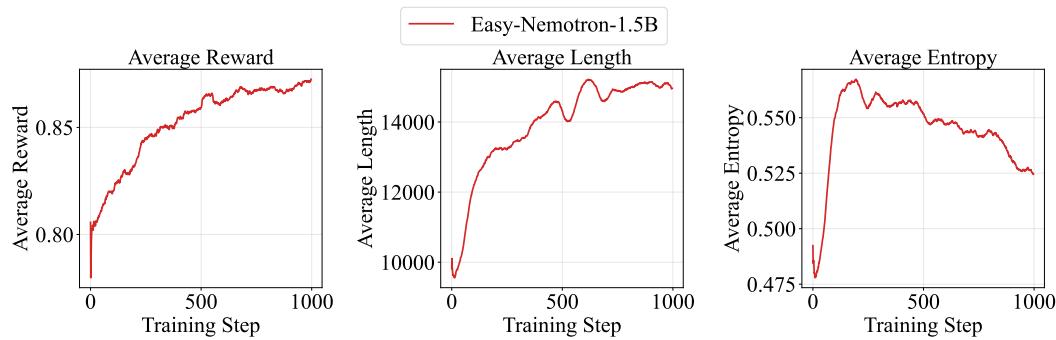


Figure 13: Training dynamics of Easy-Nemotron-1.5B.

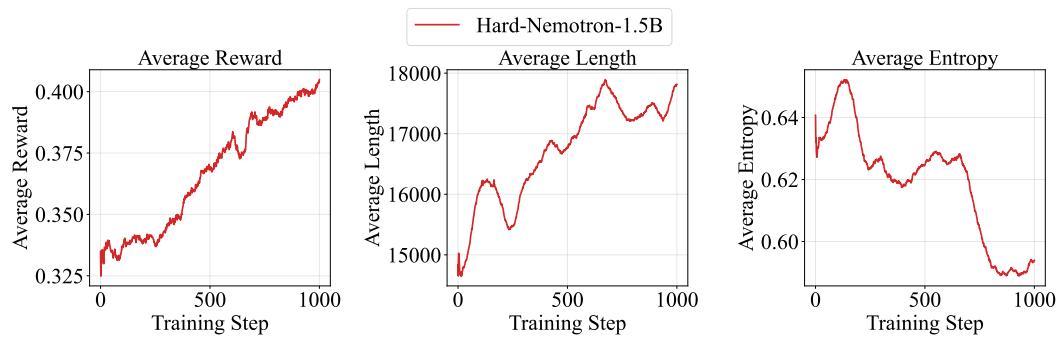
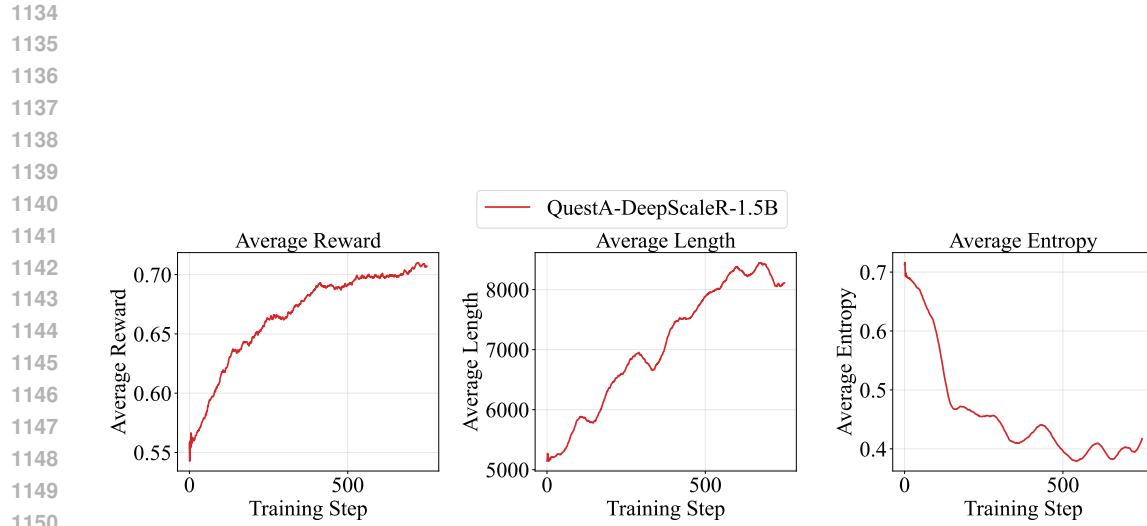


Figure 14: Training dynamics of Hard-Nemotron-1.5B.



1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 15: The training dynamics of QUESTA-DeepScaleR-1.5B. The first and second charts show the changes in the average reward and average inference length of the rollout samples that include all incorrect/correct ones, respectively. The third chart shows the average entropy excluding all incorrect/correct rollout samples.

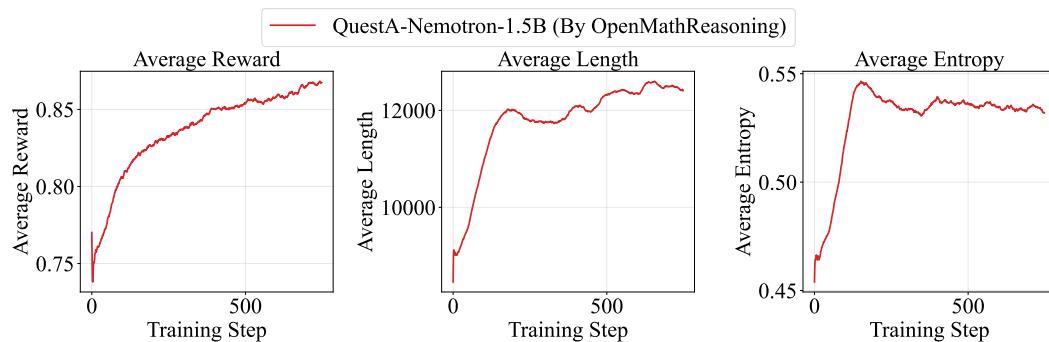


Figure 16: Training dynamics of QUESTA-Nemotron-1.5B on OpenMathReasoning (Moshkov et al., 2025). The first and second charts show the changes in the average reward and average inference length of the rollout samples that include all incorrect/correct ones, respectively. The third chart shows the average entropy excluding all incorrect/correct rollout samples. Dynamics closely mirror those on OpenR1-Math-220K, with no entropy collapse.

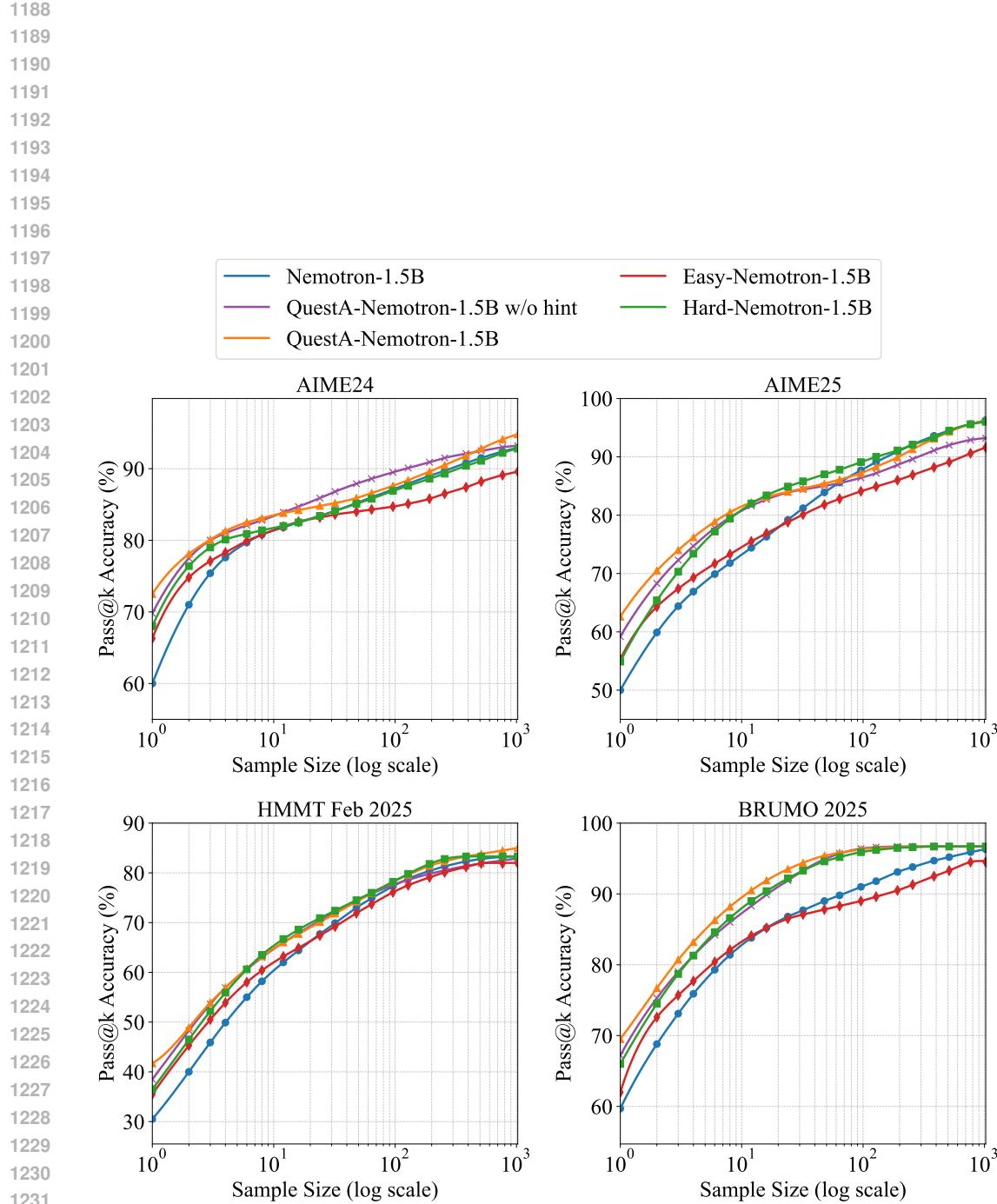


Figure 17: We compare pass@k curves of RLVR-trained models with and without QUESTA.

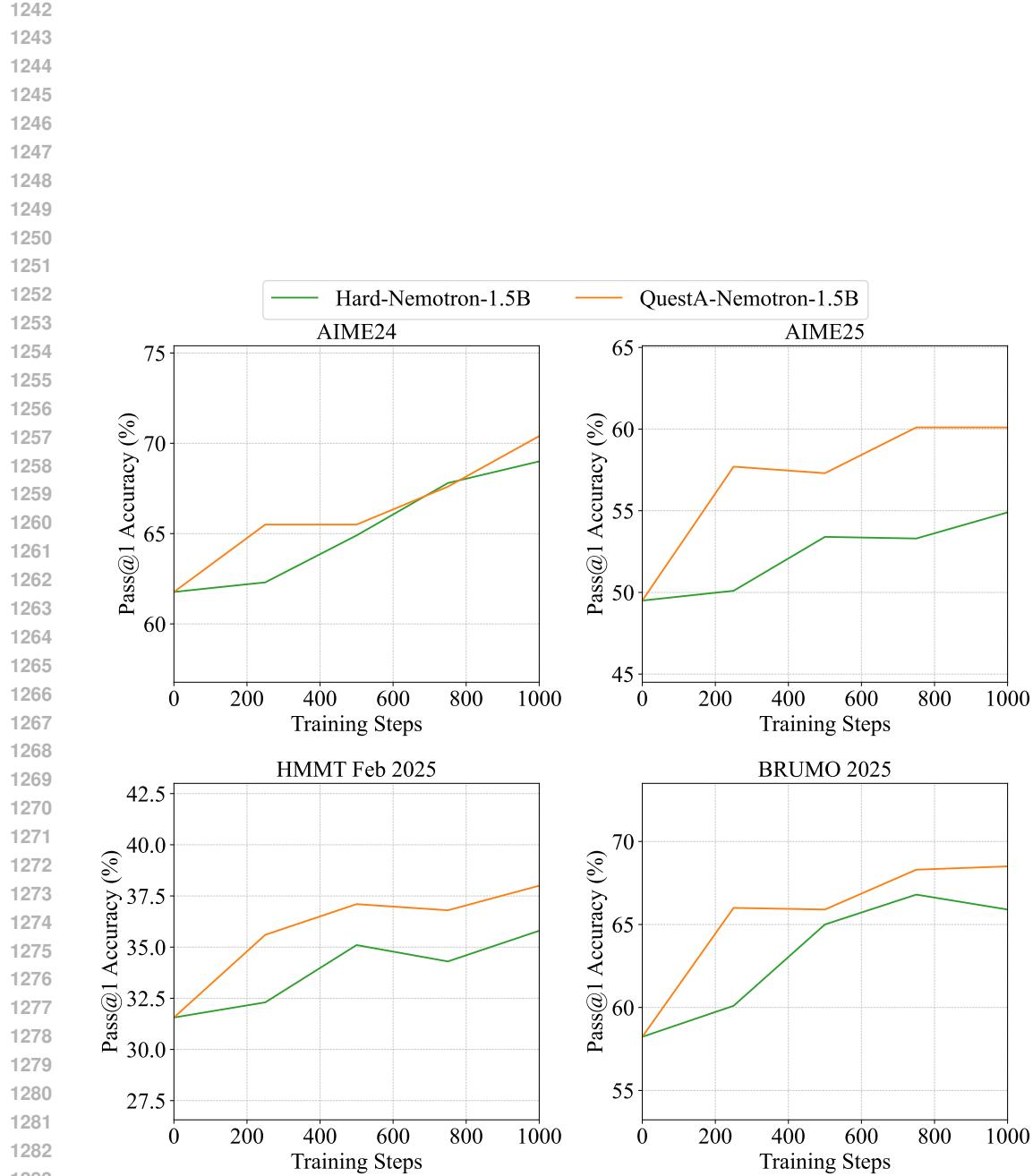
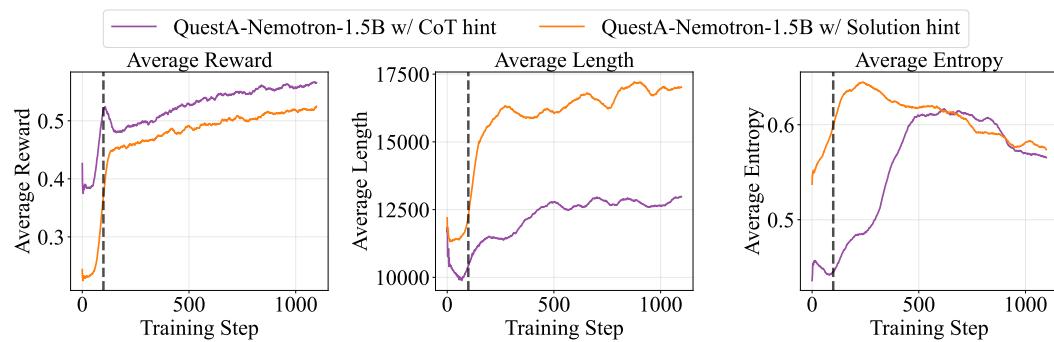
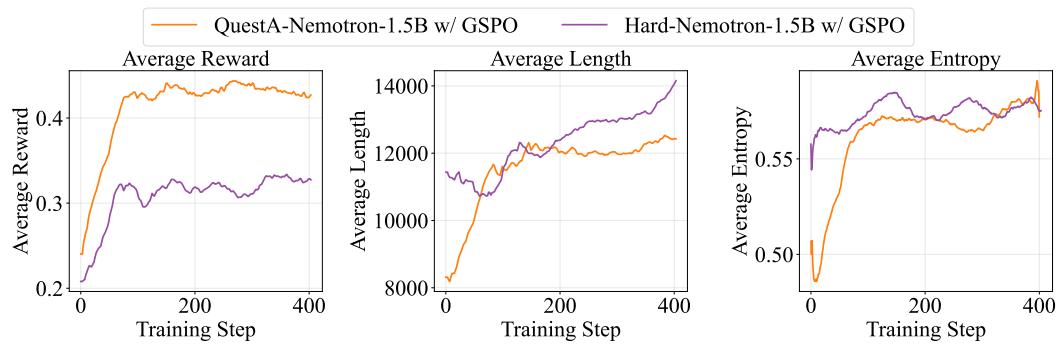


Figure 18: Comparison of RL training dynamics: Training with only hard problems (green) makes progress very slowly due to sparse rewards, while our method with partial solutions (orange) accelerates learning and consistently achieves higher accuracy across training steps.

1296 E EXPERIMENTS FOR REVIEWER OEsW
1297
1298
1299
13001301
1302
1303
1304
1305
1306
1307
1308
1309
1310 Figure 19: Training dynamics of QuestA-Nemotron-1.5B with CoT and Solution.
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350 F EXPERIMENTS FOR REVIEWER iEGK
13511364 Figure 20: Training dynamics of QuestA-Nemotron-1.5B with GSPO on QuestA and Hard datasets.
1365 It shows consistent improvements in reward and entropy without performance degradation.
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

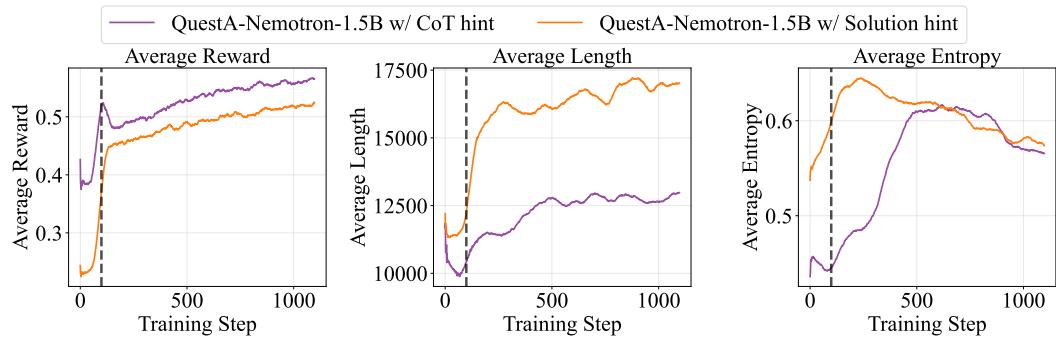
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
G EXPERIMENTS FOR REVIEWER 2JPJ

Figure 21: Training dynamics of QuestA-Nemotron-1.5B with CoT and Solution.

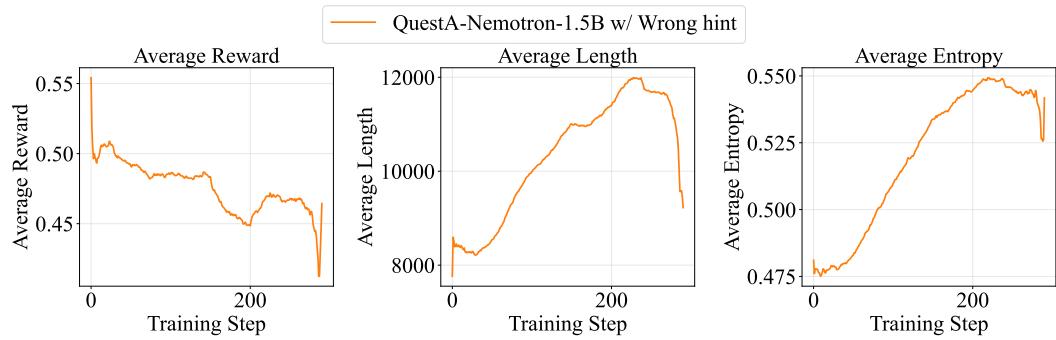


Figure 22: Training dynamics of QuestA-Nemotron-1.5B with wrong hints. Initially, the training reward decreases, but after a few steps, it shows a slight recovery as the model adapts to the erroneous hints.

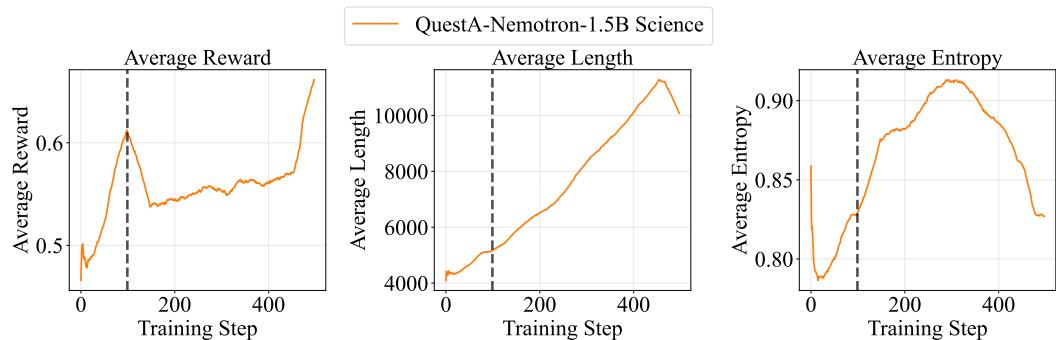


Figure 23: Training dynamics of QuestA-Nemotron-1.5B with Science Datasets. The first and second charts show the progression of average response length and average reward across rollout samples during the RL process, both of which steadily increase over time. The third chart presents the average entropy.