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Abstract

This paper considers the distributed learning problem where a group of agents
cooperatively minimizes the summation of their local cost functions based on
peer-to-peer communication. Particularly, we propose a highly efficient algorithm,
termed “B-ary Tree Push-Pull” (BTPP), that employs two B-ary spanning trees
for distributing the information related to the parameters and stochastic gradients
across the network. The simple method is efficient in communication since each
agent interacts with at most (B + 1) neighbors per iteration. More importantly,
BTPP achieves linear speedup for smooth nonconvex and strongly convex objective
functions with only Õ(n) and Õ(1) transient iterations, respectively, significantly
outperforming the state-of-the-art results to the best of our knowledge. Our code is
available at https://github.com/ryou98/BTPP.

1 Introduction

In this paper, we consider a group of agents, labeled as N := {1, 2, . . . , n}, in which each agent i
holds its own local cost function fi : Rp → R and communicates only within its direct neighborhood.
We investigate how the agents collaborate to locate x ∈ Rp that minimizes the average of all the cost
functions:

min
x∈Rp

f(x)

(
=

1

n

n∑
i=1

fi(x)

)
, (1)

where fi(x) := Eξi∼Di [Fi(x; ξi)]. Here ξi denotes the local data of agent i that follows the local
distribution Di. Data heterogeneity exists if {Di}ni=1 are not identical.

To solve problem (1), we assume each agent i queries a stochastic oracle (SO) to obtain noisy
gradient samples. Stochastic gradients appear in many areas including online distributed learning
[23, 3], reinforcement learning [17, 15], generative modeling [5, 6], and parameter estimation [2, 27].
Assumption 1.1 ensures that the gradient estimator gi(x; ξi) remains unbiased with a bounded
variance for any given x, while independent samples ξi are gathered continuously over time. In
addition, the assumption is critical in simulation-based optimization as gradient estimation often
encounters noise from multiple sources, such as modeling and discretization errors, or limitations
due to finite sample sizes in Monte-Carlo methods [7].
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Modern optimization and machine learning typically involve tremendous data samples and model
parameters. The scale of these problems calls for efficient distributed algorithms across multiple
computing nodes. Recently, distributed algorithms dealing with problem (1) have been studied
extensively in the literature; see, e.g., [19, 14, 4, 34]. Traditional distributed learning approaches
typically follow a centralized master-worker setup, where each worker node communicates with a
(virtual) central server [12]. However, such a communication pattern incurs significant communication
overheads and long latency, especially when the training requires a large number of computing nodes.

Decentralized learning is an emerging paradigm to save communication costs, where the computing
nodes are connected through a certain network topology (e.g., ring, grid, hypercube). Decentralized
algorithms do not rely on central servers: the agents maintain the similarity among their copies of
model parameters through peer-to-peer messages passing by communicating locally with immediate
neighbors in the network. Such a setup allows each node to communicate with only a few peers and
hence incurs much lower communication overhead [1]. Moreover, it offers strong promise for new
applications, allowing agents to collaboratively train a model while respecting the data locality and
privacy of each contributor.

Specifically, in decentralized stochastic gradient methods, the agents share their local stochastic
gradient updates through gossip communication [32]. At every iteration, the local updates are
sent to the neighbors of each agent who iteratively propagate the information through the network.
Typically, the agents employ iterative gossip averaging of their neighbors’ models with their own,
where the averaging weights are chosen to ensure asymptotic uniform distribution of each update
across the network. However, local averaging is less effective in “mixing” information which makes
decentralized algorithms converge slower than their centralized counterparts. Generally speaking, the
network topology determines both the number of per-iteration communications and the convergence
rates of decentralized algorithms, leading to a trade-off. For example, a densely-connected graph
enables decentralized methods to converge faster but results in less efficient communication since
each node needs to communicate with more neighbors. By contrast, a sparsely-connected topology
results in a slower convergence rate but also reduces the per-iteration communication cost [19, 21, 35].
In particular, for smooth and non-convex objective functions, it has been shown that decentralized
stochastic gradient methods (with arbitrary topology) can achieve the same convergence rate as
the centralized SGD method, but only after an initial period of iterations has passed [14, 34, 20].
The number of transient iterations (transient time) heavily depends on the network topology, and
thus a practical decentralized stochastic gradient algorithm should aim to minimize the transient
time while keeping the number of per-iteration communications small (e.g., over a a sparsely-
connected topology). Such an observation has motivated several recent works, which consider
network topologies with Θ(1) per-iteration communications (or degree) for each node; see, e.g.,
[34, 26].

This work considers an alternative mechanism to gossip averaging, called “B-ary Tree Push-Pull”
(BTPP), inherited from the Push-Pull method in [22, 33]. Rather than relaying the messages over
one graph at every iteration, BTPP uses two B-ary trees (GR and GC) to spread the information about
the parameters and the stochastic gradients, respectively. Each agent assigned in the B-ary tree acts
as a worker on an assembly line. The model parameters are transmitted through the graph GR from
the parent nodes to the child nodes. Meanwhile, the stochastic gradients are computed under the
current model parameters and accumulated through the inverse graph of GR denoted as GC . BTPP
can be viewed as a semi-(de)centralized approach given the critical role of node 1. Notably, the
corresponding mixing matrices of GR and GC only consist of 0’s and 1’s, which together with the
B-ary Tree topology design, results in high algorithmic efficiency. We show BTPP achieves an Õ(n)
transient time under smooth nonconvex objective functions with Θ(1) per-iteration communications
for each agent. By comparison, the state-of-the-art transient time is O(n3) (see Table 1).

1.1 Related Works

Decentralized Learning Decentralized Stochastic Gradient Descent (DSGD) type algorithms are
increasingly popular for accelerating the training of large-scale machine learning models [14, 34, 10]
. These algorithms have been adapted under a range of practical settings, including those discussed
in [1, 16]. However, DSGD suffers from data heterogeneity [9], which triggers more advanced
techniques such as EXTRA [25], Exact-Diffusion/D2 [13], and gradient tracking [19]. The Push-Pull
method [22, 33] which enjoys broad topological requirements was introduced for deterministic
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ALGORITHM PER-ITER COMM. SIZE n BASED GRAPH TRANS. ITER.

D2 (RING) [29] Θ(1) ARBITRARY 1 O(n11)
DSGD (RING) [18] Θ(1) ARBITRARY 1 O(n7)

HYPERCUBE [30] Θ(ln(n)) POWER OF 2 1 Õ(n3)

STATIC EXP. [34] Θ(ln(n)) ARBITRARY 1 Õ(n3)

O.-P. EXP. [34] 1 POWER OF 2 Θ(ln(n)) Õ(n3)
RELAYSGD [31] Θ(1) ARBITRARY 1 O(n3)

OD(OU)-EQUIDYN [26] 1 ARBITRARY Θ(n) O(n3)

DSGD-CECA [4] Θ(1) ARBITRARY Θ(ln(n)) Õ(n3)

BASE-(k + 1) [28] Θ(1) ARBITRARY Θ(ln(n)) Õ(n3)

BTPP (OURS) Θ(1) ARBITRARY 2 Õ(n)

Table 1: Comparison of different algorithms for distributed stochastic optimization under smooth
nonconvex objectives. “Per-iter Comm.” denotes the number of per-iteration communications or
neighbors (degree) for each agent. “Based Graph” represents the number of required graph topologies
during the entire training procedure. “Trans. Iter.” represents the number of transient iterations. The
notation Õ(·) hides all the polylogarithmic factors.

decentralized optimization under strongly convex objectives. This work particularly takes advantage
of the flexibility in the network design of Push-Pull, utilizing the B-ary tree family, while considering
stochastic gradients for minimizing smooth nonconvex objectives.

Topology Design Decentralized stochastic gradient algorithms often rely on gossip averaging over
various topologies such as rings, grids, and tori [18]. The hypercube graph [30] strikes a balance
between the communication efficiency and the consensus rate, but the network size is constrained
to be the power of two. The work in [34] re-examined the static exponential graph with Θ(ln(n))
degree and introduced a one-peer exponential graph with Θ(1) degree while preserving the consensus
properties under the specific requirement of n. The paper [28] proposed a base-(k + 1) graph as
an enhancement that achieves similar convergence rate as in [34] under arbitrary network size by
sequentially employing multiple graph topologies (splitting an all-connected graph into Θ(ln(n))
different subgraphs). DSGD-CECA [4] requires roughly ⌈log2(n)⌉ rounds of message passing for
global averaging with Θ(n) network topologies. OD(OU)-EquiDyn [26] introduces algorithms
that employ various topologies to achieve network-size independent consensus rates. RelaySGD
[31] offers a relay-based algorithm that ensures Θ(1) per-iteration communication across different
topologies.

The above-mentioned methods all enjoy comparable convergence rates with centralized SGD (and
thus achieves linear speedup) when the number of iterations T is large enough. The transient times
are generally in the order of Õ(n3) under smooth nonconvex objectives (see Table 1) and Õ(n) under
smooth strongly convex objectives (see Table 2).

Note that the above works and this paper generally consider training machine learning modes within
high-performance data-center clusters, in which the network topology can be fully controlled: any
two nodes can directly communicate over the network when necessary. By comparison, in some other
scenarios, the underlying network topology is fixed, and the communication between two nodes is
constrained (e.g., in wireless sensor networks, internet of vehicles, etc).

1.2 Main Contribution

This paper introduces a novel distributed stochastic gradient algorithm, termed “B-ary Tree Push-Pull”
(BTPP), which is provably efficient for solving the distributed learning problem (1) under arbitrary
network size. The main contribution is summarized as follows:

• BTPP incurs a Θ(1) communication overhead per-iteration for each agent. Specifically, any
agent in the network communicates with at most (B + 1) neighbors, where B can be freely
chosen to fit different settings. Generally speaking, larger B increases the per-iteration
communication cost but reduces the transient time at the same time.
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ALGORITHM PER-ITER COMM. SIZE n BASED GRAPH TRANS. ITER.

DSGD (RING) [18] Θ(1) ARBITRARY 1 Õ(n5)

STATIC EXP. [34] Θ(ln(n)) ARBITRARY 1 Õ(n)

O.-P. EXP. [34] 1 POWER OF 2 Θ(ln(n)) Õ(n)

RELAYSGD [31] Θ(1) ARBITRARY 1 Õ(n)

OD(OU)-EQUIDYN [26] 1 ARBITRARY Θ(n) Õ(n)

BTPP (OURS) Θ(1) ARBITRARY 2 Õ(1)

Table 2: Comparison of different algorithms for distributed stochastic optimization under smooth
strongly convex objectives. The notation Õ(·) hides all the polylogarithmic factors inheriting from
[26, 9].

• We show BTPP enjoys an Õ(n) transient time or iteration complexity under smooth non-
convex objectives and an Õ(1) transient time or iteration complexity under smooth strongly
convex objectives. Such results outperform the baselines: see Table 1 and Table 2. The im-
provement is significant since the transient time greatly impacts the algorithmic performance,
especially under large n.

• The convergence analysis for BTPP is non-trivial, partly due to the fact that the algorithm
admits two different network topologies for communicating the model parameters and the
(stochastic) gradient trackers respectively. Instead of constructing the induced matrix norms
∥ · ∥R and ∥ · ∥C as in [22], the analysis is performed under ∥·∥2 and ∥·∥F only by carefully
treating the matrix products and related terms.

1.3 Notation and Preliminaries

Throughout the paper, vectors default to columns if not otherwise specified. Let each agent i hold
a local copy xi ∈ Rp of the decision variable and an auxiliary variable yi ∈ Rp. Their values at
iteration k are denoted by x

(k)
i and y

(k)
i , respectively. We let X = [x1, x2, · · · , xn]

⊤ ∈ Rn×p, Y =

[y1, y2, · · · , yn]⊤ ∈ Rn×p, and 1 denotes the column vector with all entries equal to 1. We also define
the aggregated gradients at the local variables as ∇F (X) := [∇f1(x1),∇f2(x2), · · · ,∇fn(xn)]

⊤ ∈
Rn×p, where F (X) :=

∑n
i=1 fi(xi). In addition, denote ξ := [ξ1, ξ2, · · · , ξn]⊤, G(X, ξ) :=

[g1(x1, ξ1), g2(x2, ξ2), · · · , gn(xn, ξn)]
⊤ ∈ Rn×p. For the conciseness of presentation, we also use

G(t) to represent G(X(t), ξ(t)). The term ⟨a, b⟩ stands for the inner product of two vectors a, b ∈ Rp.
For matrices, ∥·∥2 and ∥·∥F represent the spectral norm and the Frobenius norm respectively, which
degenerate to the Euclidean norm for vectors. For simplicity, any square matrix with power 0 is the
unit matrix I with the same dimension if not otherwise specified.

We assume each agent i is able to obtain noisy gradient samples of the form gi(x, ξi) that satisfies
the following assumption.

Assumption 1.1. For all i ∈ N and x ∈ Rp, each random vector ξi is independent and

Eξi∼Di [gi(x, ξi)|x] = ∇fi(x), Eξi∼Di

[
∥gi(x, ξi)−∇fi(x)∥2 |x

]
≤ σ2

for some σ2 > 0.

Regarding the individual objective functions fi, we make the following standard assumption.

Assumption 1.2. Each fi(x) : Rp → R is lower bounded with L-Lipschitz continuous gradients,
i.e., for any x, x′ ∈ Rp,

∥∇fi(x)−∇fi(x
′)∥ ≤ L ∥x− x′∥ .

We also consider the following standard assumption regarding strongly convexity.

Assumption 1.3. For any x, y ∈ Rp,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2 .
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Denote f∗ := minx∈Rp f(x). Let x∗ = argminx f(x) if Assumption 1.3 holds.

A directed graph G(N , E) consists of a set of n nodes N and a set of directed edges E ⊆ N ×N ,
where an edge (j, i) ∈ E indicates that node j can directly send information to node i. To facilitate
the local averaging procedure, each graph can be associated with a non-negative weight matrix
W = [wij ] ∈ Rn×n, whose element wij is non-zero only if (j, i) ∈ E . Similarly, a non-negative
weight matrix W corresponds to a directed graph denoted by GW. For a given graph GW, the in-
neighborhood and out-neighborhood of node i ∈ N are given by N in

W,i := {j ∈ N : (j, i) ∈ E} and
N out

W,i := {j ∈ N : (i, j) ∈ E}, respectively. The degree of node i is the number of its in-neighbors
or out-neighbors. For example, in a one-peer graph, the degree of each node is at most 1.

1.4 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we introduce the B-ary Tree Push-Pull
algorithm and present its main convergence results. The sketch of analysis is presented in Section 3,
and numerical experiments are provided in Section 4. We conclude the paper in Section 5.

2 B-ary Tree Push-Pull Method

2.1 Communication Graphs

The proposed B-ary Tree Push-Pull method makes use of two spanning trees as communication
graphs: GR and GC , which correspond to two mixing matrices R and C, respectively. Specifically, we
consider B-ary tree graphs with arbitrary number of nodes n and depth d. The root node is labeled as
1 for convenience, and we index the nodes layer-by-layer. The additional nodes are placed at the last
layer if the tree is not full. Figure 1 illustrates the assignment of 10 nodes when B = 2. In the Pull
Tree GR (the left ones), each node has 1 parent node and B child nodes (except the ones in the last
layer). The root node 1 has no parent node. In the Push Tree GC (the right ones), each node has 1
child node and B parent nodes (except the ones in the last layer). It can be seen that the tree GC is
identical to GR with all the edges reversing directions. Note that only node 1 has a self-loop.

Figure 1: Two spanning trees with 10 nodes when B = 2. On the left is GR, and the right one is GC .

2.2 Algorithm

We consider the following distributed stochastic gradient method (Algorithm 1) for solving problem
(1). At every iteration t, each agent i pulls the state information from its in-neighborhood N in

R,i,
pushes its (stochastic) gradient tracker yi to the out-neighborhood N out

C,i , and updates its local
variables xi and yi based on the received information. The agents aim to find the ϵ-stationary point
jointly by performing local computation and exchanging information through two spanning trees.

More specifically, in the pull tree GR, each node i pulls the updated model from its parent node
along the tree. Note that N in

R,i consists of only one node, the parent node. The Push Tree GC is
the inverse of the Pull Tree, in which each node collects and aggregates the gradient trackers from
its parent nodes. Due to the tree structure, only yt1 aggregates and tracks the stochastic gradients
across the entire network, which will be made clear from the analysis. The implementation of the
algorithm is rather simple. Taking node 2 in Figure 1 as an example, we have x

(t+1)
2 = x

(t)
1 − γy

(t)
1

and y
(t+1)
2 = y

(t)
4 + y

(t)
5 + g2(x

(t+1)
2 ; ξ

(t+1)
2 )− g2(x

(t)
2 ; ξ

(t)
2 ).
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Algorithm 1 B-ary Tree Push-Pull Method (BTPP)

1: Each agent i initializes with any arbitrary but identical x(0)
i = x(0) ∈ Rp, y(0)i = gi(x

(0)
i , ξ

(0)
i ) ∈

Rp after drawing a random sample ξ
(0)
i , stepsize γ > 0 and number of iterations T .

2: for iteration t = 0, 1, 2, . . . , T − 1 do
3: for agent i in parallel do
4: Pull x(t)

j − γy
(t)
j from each j ∈ N in

R,i

5: Push y
(t)
i to each j ∈ N out

C,i

6: Independently draw a random sample ξ
(t+1)
i

7: Update parameters through

x
(t+1)
i =

∑
j∈N in

R,i

(
x
(t)
j − γy

(t)
j

)
y
(t+1)
i =

∑
j∈N in

C,i

y
(t)
j + gi(x

(t+1)
i ; ξ

(t+1)
i )− gi(x

(t)
i ; ξ

(t)
i )

8: end for
9: end for

10: Output x(T )
1 .

We can write Algorithm 1 in the following compact form:

X(t+1) = R
(
X(t) − γY(t)

)
Y(t+1) = CY(t) +G(X(t+1), ξ(t+1))−G(X(t), ξ(t))

(2)

where Y(0) = G(X(0), ξ(0)), and R, C ∈ Rn×n are non-negative matrices whose elements are given
by

[R]i,j =

{
1 if i ∈ {Bj + 1−B + [B]} ∩ [n] or i = j = 1

0 otherwise

and C = R⊤ which corresponds to GC , the inverse tree of GR. It can be seen that R is a row-stochastic
matrix that only consists of 0’s and 1’s, and C is column stochastic. For example, the mixing matrices
corresponding to the graphs in Figure 1 are given by

R =



1
1
1

1
1

1
1

1
1

1


, C =



1 1 1
1 1

1 1
1 1

1


,

where the unspecified elements are zeros.

2.3 Main Results

The main convergence properties of BTPP are summarized in the following two theorems, where the
second result assumes strongly convexity on f .

Theorem 2.1. For the BTPP algorithm outlined in Algorithm 1 implemented on B-ary
tree graphs GR and GC , assume Assumption 1.1 and Assumption 1.2 hold. Let γ =

6



min{
(

∆f

3σ2Ln(T+1)

) 1
2

,
(

∆f

1500n2d6σ2L2(T+1)

) 1
3

, 1
100nd3L}. The following convergence result holds:

1

T + 1

T∑
t=0

E
∥∥∥∇f(x

(t)
1 )
∥∥∥2
2
≤

32
√
∆fσ2L√

n(T + 1)
+

240d2
(
σ2L2∆2

f

) 1
3

(
√
n(T + 1))

2
3

+
800d3L∆f

T + 1
+

∥∥∇F(X(0))
∥∥2
F

n(T + 1)
,

(3)
where ∆f := f(x

(0)
1 )− f∗ and d = ⌊logB(n)⌋ represents the diameter of the graphs.

Remark 2.2. Based on the convergence rate in (3) of BTPP, we can derive that when T =
Θ(n log12(n)), the term O( 1√

nT
) dominates the remaining terms up to a constant scalar. This

implies that BTPP achieves linear speedup after O
(
n log12(n)

)
transient iterations.

Remark 2.3. The convergence rate in (3) is related to the branch size B. For larger B, the diameter
d = ⌊logB(n)⌋ becomes smaller, which results in more efficient transmission of information and
fewer transient iterations. However, the per-iteration communication cost is relatively larger. When
B is smaller, the communication burden for each agent at every iteration is lighter, but the transient
time is larger. Therefore, in practice, the communication cost and convergence rate can be balanced
by considering a proper B.

Theorem 2.4. For the BTPP algorithm outlined in Algorithm 1 implemented on B-ary tree
graphs GR and GC , assume Assumption 1.1, Assumption 1.2 and Assumption 1.3 hold. Let
γ = min

{
1

100nd2κL ,
16 log(n(T+1)2)

n(T+1)µ

}
and T ≥ 2d. The following convergence result holds:

E
∥∥∥x(T )

1 − x∗
∥∥∥2 ≤ 2240σ2 log(n(T + 1)2)

n (T + 1)µ2
+

26880000d6κ2σ2
(
log(n(T + 1)2)

)2
n (T + 1)

2
µ2

+max

{
exp(− T

800d2κ2
),

40

n (T + 1)
2

}(∥∥∥x(0)
1 − x∗

∥∥∥2 + 1

nL2

∥∥∥∇F(X(0))
∥∥∥2
F

)
.

(4)

Remark 2.5. The convergence rate in (4) implies that E
∥∥∥x(T )

1 − x∗
∥∥∥2 ≤

Õ
(

1
nT + 1

nT 2 + exp (−T )
)
, where Õ hides the constants and polylogarithmic factors. The

transient time is thus Õ(1), i.e., the number of iterations before the term O( 1
nT ) dominates the

remaining terms. Such a transient time also outperforms the state-of-the-art results.

3 Analysis of B-ary Tree Push-Pull

In this section, we study the convergence of BTPP and prove Theorem 2.1 by analyzing the properties
of the weight matrices R and C, the evolution of the aggregated consensus error

∑T
t=0 E

∥∥ΠuX
(t)
∥∥2
F

,
and the expected inner products of the stochastic gradients between different layers. The approach is
different from those employed in [22, 19, 26], where the analysis considers two special matrix norms
related to R and C, respectively. Such a distinction is because BTPP works with two B-ary trees and
iterates in a layer-wise manner, while most other works consider connected graphs.

Our analysis starts with characterizing the weight matrices R and C, as delineated in the following
lemmas. It is important to note that for any given n and a specific integer B, we can determine an
integer d satisfying Bd−1

B−1 < n ≤ Bd+1−1
B−1 which is the diameter of the graphs.

Notice that R has a unique non-negative left eigenvector u⊤ (w.r.t. eigenvalue 1) with u⊤1 =

n. More specifically, u = [n, 0, · · · , 0]⊤, which is also the unique right eigenvector of C (w.r.t.
eigenvalue 1), denoted by v for the clarity of presentation. Following the above observations, it is
revealed in Lemma 3.1 that the 2-norm of the matrix R− 1

n1u
⊤ with exponent k remains bounded

by
√
n and equals zero when k exceeds d− 1.

Lemma 3.1. Given a positive integer k, the 2-norm of the matrix Rk − 1
n1u

⊤ satisfies

∥Rk − 1

n
1u⊤∥2

{
≤

√
n k ≤ d− 1

= 0 k ≥ d

7



Similar result applies to the matrix Ck − 1
nv1

⊤. Consequently, we introduce the mixing matrices
Πu,Πv based on the eigenvectors u,v, which play a crucial role in the follow-up analysis.

Πu := I− 1

n
1u⊤, Πv := I− 1

n
v1⊤.

The following lemmas delineate the critical elements for constraining the average expected norms

of the objective function as formulated in (1), i.e., 1
T+1

∑T
t=0 E

∥∥∥∇f(x
(t)
1 )
∥∥∥2
2
. Lemma 3.2 and

Lemma 3.3 provide bounds on the expressions
∑T

t=0 E∥X̄(t+1) − X̄(t)∥2F and
∑T

t=0

∥∥ΠuX
(t)
∥∥2
F

,
where X̄(t) := 1

n1u
⊤X(t).

Lemma 3.2. Suppose Assumption 1.1 holds and γ ≤ 1
10ndL , we have the following inequality:

T∑
t=0

E∥X̄(t+1) − X̄(t)∥2F ≤ 6γ2n2σ2(T + 1) + 50γ2n2d2L2
T∑

t=0

E
∥∥∥ΠuX

(t)
∥∥∥2
F

+ 6γ2n2d
∥∥∥∇F(X(0))

∥∥∥2
F
+ 15γ2n3

T∑
t=0

E
∥∥∥∇f(x

(t)
1 )
∥∥∥2
2
.

Lemma 3.3. Suppose Assumption 1.1 holds and γ ≤ 1
40nd2L , we have for d ≥ 2 that

T∑
t=0

E
∥∥∥ΠuX

(t)
∥∥∥2
F
≤ 300γ2n2d4(T + 1)σ2 + 20γ2n3d2

T∑
t=0

E∥∇f(x
(t)
1 )∥22

+ 6nd
∥∥∥ΠuX

(0)
∥∥∥2
F
+ 40γ2n2d3

∥∥∥∇F(X(0))
∥∥∥2
F
.

From the design of BTPP, there is an inherent delay in the transmission of information from layer k
to layer 1. As information traverses through the B-ary trees, the delay becomes evident. Specifically,
for nodes at layer k, their information requires an additional k iterations to successfully reach and
impact node 1, as demonstrated in Lemma 3.4.

Lemma 3.4. For any integer t > 1, we have

min{t,d}∑
m=1

E
〈
∇f(x

(t)
1 ),

(
u⊤

n
− 1⊤

)
Am

(
G(t−m) −∇F(X(t−m))

)〉
= 0,

where Am = Cm − Cm−1 and A1 = C − I.

Building on the preceding lemmas, we are in a position to establish the main convergence result
for the BTPP algorithm. This involves upper bounding the expected norm for the gradient of the
objective function evaluated at x(t)

1 . To show the result, we integrate the findings from Lemma 3.2,
Lemma 3.3, and Lemma 3.4, as detailed in Lemma 3.5.

Lemma 3.5. Suppose Assumption 1.1 and Assumption 1.2 hold and γ ≤ 1
100nd3L , we have

1

T + 1

T∑
t=0

E
∥∥∥∇f(x

(t)
1 )
∥∥∥2
2
≤ 8∆f

γn(T + 1)
+ 24γσ2L+ 20000γ2nd6σ2L2

+
400d3L2

∥∥ΠuX
(0)
∥∥2
F

T + 1
+

56γd3L
∥∥∇F(X(0))

∥∥2
F

T + 1
.

Remark 3.6. Lemma 3.5 implies that the transient time of BTPP under Assumption 1.2 is influenced

by the fourth term in the upper bound:
400d3L2∥ΠuX

(0)∥2

F

T+1 which is related to the initial consensus
error. Therefore, we initialize all the agents with the same solution x(0).

Under strong convexity of f , we have the following key lemma.

8



Lemma 3.7. Suppose Assumption 1.1, Assumption 1.2 and Assumption 1.3 hold, and γ ≤ 1
100nd2κL ,

we have

E
∥∥∥x(T )

1 − x∗
∥∥∥2 ≤

(
1− nγµ

4

)T ∥∥∥x(0)
1 − x∗

∥∥∥2
+ 7γ2nσ2 (T + 1) + 21000γ3n2d6κLσ2 (T + 1)

+ 80γ2nd3
(
1− nγµ

4

)T−d ∥∥∥∇F(X(0))
∥∥∥+ 420γ3n2d3κL

∥∥∥ΠuX
(0)
∥∥∥2
F
,

where κ := L/µ is the conditional number.

4 Numerical Results

This section presents experimental results to compare the B-ary Tree Push-Pull method with other
popular algorithms on logistic regression with synthetic data and deep learning tasks with real data.

4.1 Logistic Regression

We compare the performance of BTPP against other algorithms listed in Table 1 for logistic regression
with non-convex regularization [26]. The objective functions fi : Rp → R are given by

fi(x) :=
1

J

J∑
j=1

ln
(
1 + exp(−yi,jh

⊤
i,jx)

)
+R

p∑
k=1

x2
[k]

1 + x2
[k]

,

where x[k] is the k-th element of x, and {(hi,j , yi,j)}Jj=1 represent the local data kept by node i.
To control the data heterogeneity across the nodes, we first let each node i be associated with a
local logistic regression model with parameter x̃i generated by x̃i = x̃ + vi, where x̃ ∼ N (0, Ip)
is a common random vector, and vi ∼ N (0, σ2

hIp) are random vectors generated independently.
Therefore, {vi} decide the dissimilarities between x̃i, and larger σh generally amplifies the difference.
After fixing {x̃i}, local data samples are generated that follow distinct distributions. For node i, the
feature vectors are generated as hi,j ∼ N (0, Ip), and zi,j ∼ U(0, 1). Then, the labels yi,j ∈ {−1, 1}
are set to satisfy zi,j ≤ 1 + exp(−yi,jh

⊤
i,j x̃i).

In the simulations, the parameters are set as follows: n = 100, p = 500, J = 1000, R = 0.01, and
σh = 0.8. All the algorithms initialize with the same stepsize γ = 0.3, except BTPP, which employs
a modified stepsize γ/n. Such an adjustment is due to BTPP’s update mechanism, which incorporates
a tracking estimator that effectively accumulates n times the averaged stochastic gradients as the
number of iterations increases. This can also be seen from the stepsize choice in Theorem 2.1.1
Additionally, we implement a stepsize decay of 60% every 100 iterations to facilitate convergence.

In Figure 2, the gradient norm is used as a metric to gauge the algorithmic performance of each
algorithm. The left panel of Figure 2 illustrates the comparative performance of various algorithms,
highlighting that BTPP (in red) achieves faster convergence than the other algorithms with Θ(1)
degree and closely approximates the performance of the centralized SGD algorithm (i.e., DSGD-
FullyConnected). The right panel of Figure 2 demonstrates the behavior of BTPP when increasing
the branch size B. It is observed that with larger B, the convergence trajectory of BTPP more closely
aligns with that of centralized SGD, corroborating the prediction of the theoretical analysis.

4.2 Deep Learning

We apply BTPP and the other algorithms to solve the image classification task with CNN over
MNIST dataset [11]. We run all experiments on a server with eight Nvidia RTX 3090 GPUs. The
network contains two convolutional layers with max pooling and ReLu and two feed-forward layers.
In particular, we consider a heterogeneous data setting, where data samples are sorted based on their
labels and partitioned among the agents. The local batch size is set to 8 with 24 agents in total. The
learning rate is 0.01 for all the algorithms except BTPP (which employs a modified stepsize γ/n)

1Note that this particular configuration results in slower convergence for BTPP during the initial O(d)
iterations, which can be improved by using larger initial stepsizes.
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Figure 2: Left: performance of algorithms for logistic regression with nonconvex regularization,
where the dotted lines correspond to algorithms whose degrees are not Θ(1). We let the branch size
B = 2 in BTPP, η = 0.5 in OD-EquiDyn, k = 2 in Base-(k+1), and perform RelaySGD on a binary
tree graph for fairness. Right: performance of BTPP with different branch size B.

for fairness. Additionally, the starting model is enhanced by pre-training using the SGD optimizer
on the entire MNIST dataset for several iterations. Figure 3 illustrates the training loss and the
test accuracy curves. Comparing the performance of different algorithms, it can be seen that BTPP
(in red) and DSGT with ODEquiDyn (based on Θ(n) graphs) achieve faster convergence than the
other algorithms with Θ(1) degree and closely approximate the performance of centralized SGD(i.e.,
DSGD-FullyConnected).

Figure 3: Train loss and test accuracy of different algorithms for training CNN on MNIST, where
the dotted lines correspond to the algorithms whose degrees are not Θ(1). We perform BTPP with
B = 2, ODEquiDyn with η = 0.5, Base-(k + 1) with k = 2, and RelaySGD on a binary tree graph
for fairness.

Remark 4.1. Higher accuracy can be achieved for BTPP and other methods when using the momentum
technique, or when the data heterogeneity is removed, meaning that samples are randomly assigned
to each agent. Additional experiments demonstrating the performance of various algorithms across
different tasks and scenarios are provided in Appendix B.

5 Conclusions

This paper proposes a novel algorithm for distributed learning over heterogeneous data, named BTPP.
The convergence is theoretically analyzed for smooth non-convex stochastic optimization. The results
demonstrate that, at the minimal communication cost per iteration, BTPP achieves linear speedup in
the number of nodes n, and the transient times behaves as Õ(n) and Õ(1) respectively for smooth
nonconvex and strongly convex objectives, outperforming the state-of-the-art results. Numerical
experiments further validate the efficiency of BTPP.
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A Convergence Analysis of BTPP

In this section, we aim to demonstrate the convergence results of BTPP through a three-step process.
First, we explore the key properties of matrices R and C, acquainting readers with several operations
that will be frequently utilized in the subsequent parts. Then, we introduce various technical tools
essential for the analysis. Finally, we delve into proving the convergence results supported by a series
of pertinent lemmas.

A.1 Properties of the Weight Matrices

In this part, we first demonstrate that R ∈ Rn×n possesses a set of properties ( the matrix C = R⊤

shares similar properties). Then, we utilize the established tools to prove the crucial result presented
in Lemma 3.1. Lastly, we provide clarifications on certain matrix operations that will be frequently
employed in deriving the convergence results.

It is important to note that for any given n and specific integer B, the diameter of the corresponding
B-ary tree graph d (the distance from the last layer node to node 1) satisfies Bd−1

B−1 < n ≤ Bd+1−1
B−1 .

To investigate the properties of R and C, we will introduce the column vector eI ∈ Rn, where each
element of eI is equal to 1 for indices i ∈ I and 0 otherwise. Define the index sets

I1,k =

{
1 :

Bk+1 − 1

B − 1

}
,

Ii,k =

{(
Bk+1 − 1

B − 1
+ (i− 2)Bk + 1

)
:

(
Bk+1 − 1

B − 1
+ (i− 1)Bk

)}
,

where k1 : k2 is the arithmetic progression from k1 to k2 with difference 1. We can then define the
matrix Zk ∈ Rn×n as a composite of several column vectors arranged in the following format:

Zk =
[
eI1,k

, eI2,k
, · · · , eIn,k

]
.

This closed-form expression of R with any power k is shown in Lemma A.1 which aids in developing
further properties.
Lemma A.1. For the pull matrix R corresponding to the B-ary tree GR, given any positive index k,
we have

Rk = Zk.

Proof. We prove the lemma by induction. First, it is obvious that R = Z1 by the definition of R:

Rij = 1

iff i ∈ {Bj + 1−B + [B]} ∩ [n] or i = j = 1

iff B(j − 1) + 2 ≤ i ≤ Bj + 1, i ∈ [n] or i = j = 1

iff [Z1]ij = 1.

Now assume the statement is true for k = j. Then, for k = j + 1, we have

Rj+1 = Rj ∗ R = ZjZ1.

Denote [Zj · Z1]i as the i-th column of Zj · Z1. To establish the result, we only need to demonstrate
that the two matrices, Rk+1 and Zk+1, have the same column entries. For i = 1,

[ZjZ1]1 = Zj [Z1]1 =

B+1∑
i=1

[Zj ]i =

B+1∑
i=1

eIi,j
= e∪B+1

i=1 Ii,j
= eI1,j+1

.

For i > 1, we have

[ZjZ1]i = Zj [Z1]i =
∑

m∈Ii,1

[Zj ]m =

iB+1∑
m=(i−1)B+2

[Zj ]m

=

iB−1∑
m=(i−1)B

eIm,j
= e∪iB−1

m=(i−1)B
Im,j

= eIi,j+1
.

Thus, we conclude that Rk+1 = Zk+1.
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Corollary A.2 below reveals that when the power k exceeds d, Rk transforms into a matrix where the
first column is entirely composed of ones, while all the other columns consist of zeros.
Corollary A.2. For k = d, we have

Rk − 1

n
1u⊤ = 0

where 0 is the matrix with all entries equal 0.

Proof. From Lemma A.1, we have for the i-th column of Rk − 1
n1u

⊤ that[
Rk − 1

n
1u⊤

]
i

=

{
−eBk+1−1

B−1 +1:n
i = 1

eIi,k
i > 1

For k = d, the first n elements of all the columns remain 0, which implies the desired result.

Now, we are ready to prove Lemma 3.1:

Proof of Lemma 3.1. For any integer k ≤ d− 1, define

n0 :=

⌊
n− Bk+1−1

B−1

Bk

⌋
.

This ensures that Bk+1−1
B−1 + n0B

k ≤ n and Bk+1−1
B−1 + (n0 + 1)Bk > n, so that only the first

(n0 + 2)-th columns of Rk consist of non-zero elements. Note that

max
∥x∥2=1

{
∥
(
Rk − 1

n
1u⊤

)
x∥22
}

= max
x

{
∥
(
Rk − 1

n1u
⊤)x∥22

∥x∥22

}
.

Then, we focus on the non-zero elements of the matrix Rk − 1
n1u

⊤.

∥
(
Rk − 1

n1u
⊤)x∥22

∥x∥22
=

1

∥x∥22

n0+1∑
j=2

Bk(xj − x1)
2 +

[
n− Bk+1 − 1

B − 1
−Bkn0

]
(xn0+2 − x1)

2


:=

x̃⊤Σx̃

∥x∥2
,

where x̃ = (x1, · · · , xn0+2) is the truncated x, and

Σ =


n− Bk+1−1

B−1 −Bk · · · −
[
n− Bk+1−1

B−1 −Bkn0

]
−Bk Bk

...
. . .

−
[
n− Bk+1−1

B−1 −Bkn0

] [
n− Bk+1−1

B−1 −Bkn0

]

 ,

where the unspecified elements are all zeros. Since Σ is symmetric, all the eigenvalues are real. We
show by contradiction that any eigenvalue λ of Σ is upper bounded by n. Otherwise, if there exists
λ > n, we denote x as the corresponding eigenvector of λ. Then, we have from Σx = λx that

λx1 =

(
n− Bk+1 − 1

B − 1

)
x1 −Bkx2 − · · · −

[
n− Bk+1 − 1

B − 1
−Bkn0

]
xn0+2

λx2 = −Bkx1 +Bkx2

λx3 = −Bkx1 +Bkx3

· · ·

λxn0+2 = −
[
n− Bk+1 − 1

B − 1
−Bkn0

]
x1 +

[
n− Bk+1 − 1

B − 1
−Bkn0

]
xn0+2.
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Without loss of generality, assume x1 ̸= 0. Then, by substituting the other relations into the first one,
we have

λ = n− Bk+1 − 1

B − 1
+

n0∑
i=1

B2k

λ−Bk
+

[
n− Bk+1−1

B−1 −Bkn0

]2
λ−

[
n− Bk+1−1

B−1 −Bkn0

] .
With the fact that λ > n, there holds

λ ≤n− Bk+1 − 1

B − 1
+

n0B
2k

n−Bk
+

[
n− Bk+1−1

B−1 −Bkn0

]2
n−

[
n− Bk+1−1

B−1 −Bkn0

]
=n− Bk+1 − 1

B − 1
+

n0B
2k

n−Bk
+

n2

Bk+1−1
B−1 +Bkn0

− 2n+
Bk+1 − 1

B − 1
+Bkn0

=
nBkn0

n−Bk
+

n
(
n− Bk+1−1

B−1 −Bkn0

)
Bk+1−1
B−1 +Bkn0

≤ nBkn0

n−Bk
+

n

n−Bk

(
n− Bk+1 − 1

B − 1
−Bkn0

)
=n

n− Bk+1−1
B−1

n−Bk
< n,

which is a contradiction. Thus, we have λ ≤ n. It follows that

x̃⊤Σx̃

∥x∥2
≤ x̃⊤Σx̃

∥x̃∥2
≤ λmax(Σ) ≤ n.

From the fact that the square root function is monotonically increasing on [0,∞), we have

∥Rk − 1

n
1u⊤∥22 = max

∥x∥2=1

{
∥
(
Rk − 1

n
1u⊤

)
x∥22
}

≤ n,

which implies that ∥Rk − 1
n1u

⊤∥2 ≤
√
n for k ≤ d − 1 and ∥Rk − 1

n1u
⊤∥2 = 0 otherwise by

Corollary A.2.

The transformations described in Corollary A.3 below are straightforward.
Corollary A.3. For any integer m > 0, we have

ΠuR = Πu

(
R− 1

n
1u⊤

)
=

(
R− 1

n
1u⊤

)
Πu,

ΠuRm = Πu

(
Rm − 1

n
1u⊤

)
= Πu

(
R− 1

n
1u⊤

)m

=

(
R− 1

n
1u⊤

)m

Πu.

To simplify the convergence analysis, we introduce the matrix Ai defined as follows:

Ai = Ci − Ci−1

for i = 1, 2, · · · , d. Specifically, A1 = C − I. Consequently, Corollary A.4 below can be directly
deduced from Lemma A.1 and Corollary A.3.
Corollary A.4. For i = 1, · · · , d, we have(

u⊤

n
− 1⊤

)
Ai =


e⊤Bi−1

B−1 +1:B
i+1−1
B−1

i ≤ d− 1

e⊤Bd−1
B−1 +1:n

i = d

Intuitively, Corollary A.4 illustrates that
(

u⊤

n − 1⊤
)
Ai serves as an indicator vector representing

the (i+ 1)-th layer of the graph.
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A.2 Supporting Inequalities and Lemmas

Lemma A.5 and Lemma A.6 below are frequently employed for bounding the norms of matrix
summations and multiplications. Their proofs rely on the Cauchy-Schwartz inequality and the
definitions of matrix norms ∥ · ∥2 and ∥ · ∥F .
Lemma A.5. For an arbitrary set of m matrices {Ai}mi=1 with the same size, we have∥∥∥∥∥

m∑
i=1

Ai

∥∥∥∥∥
2

F

≤ m

m∑
i=1

∥Ai∥2F .

Proof. By the definition of Frobenius norm, we have∥∥∥∥∥
m∑
i=1

Ai

∥∥∥∥∥
F

≤
m∑
i=1

∥Ai∥F .

Taking squares on both sides and invoking the Cauchy-Schwarz inequality, we have∥∥∥∥∥
m∑
i=1

Ai

∥∥∥∥∥
2

F

≤

(
m∑
i=1

∥Ai∥F

)2

≤ m

m∑
i=1

∥Ai∥2F .

Lemma A.6. Let A, B be two real matrices whose sizes match. Then,

∥AB∥F ≤ ∥A∥2 ∥B∥F .

Proof. Let A = UΣVH be the singular value decomposition of A, with the largest singular value
σmax and hence ∥A∥2 = σmax. Then, we have

∥AB∥2F =
∥∥UΣVHB

∥∥2
F
= trace

((
UΣVHB

)H (
UΣVHB

))
= trace

((
ΣVHB

)H (
ΣVHB

))
=
∥∥ΣVHB

∥∥2
F

≤ σ2
max∥VHB∥2F = σ2

maxtrace
(
B⊤VVHB

)
= σ2

maxtrace
(
B⊤B

)
= σ2

max ∥B∥2F
= ∥A∥22 ∥B∥2F ,

which implies the desired result.

Lemma A.7 below will be used in the last step for deriving the convergence rate of BTPP.
Lemma A.7. Let A,B,C and α be positive constants and T be a positive integer. Define function

g(γ) =
A

γ(T + 1)
+Bγ + Cγ2.

Then,

inf
γ∈(0, 1

α ]
g(γ) ≤ 2

(
AB

T + 1

) 1
2

+ 2C
1
3

(
A

T + 1

) 2
3

+
αA

T + 1
,

where the upper bound can be achieved by choosing γ = min

{(
A

B(T+1)

) 1
2

,
(

A
C(T+1)

) 1
3

, 1
α

}
.

Proof. See Lemma 26 in [8] for a reference.

Lemma A.8 is a technical result related to random variables.
Lemma A.8. Consider three random variables X , Y , and Z. Assume that Z is independent with
(X,Y ). Let h and g be functions such that the conditional expectation E[g(Y,Z) | Y ] = 0. We have

E (h(X)g(Y,Z)) = 0.
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Proof. It implies by the condition Z ⊥⊥ (X,Y ) that σ(Z) ⊥⊥ σ(X,Y ). Then,

E [h(X)g(Y, Z)|Y ] = E {E [h(X)g(Y, Z)|X,Y ] |Y }
= E {h(X)E [g(Y, Z)|X,Y ] |Y } .

It suffices to show

E [g(Y, Z)|X,Y ] = E [g(Y, Z)|Y ] (= 0).

Let fg(y) = E (g(y, Z)). Since σ(Z) ⊥⊥ σ(X,Y ), we have σ(Z) ⊥⊥ σ(Y ). Then,

fg(Y ) = E (g(Y,Z)|Y ) = E [g(Y,Z)|X,Y ] ,

which follows directly from (10.17) in [24]. Thus, by the Tower Rule, we reach the statement as
follows:

E (h(X)g(Y, Z)) = E {E (h(X)g(Y, Z)|Y )} = 0.

A.3 Proofs of Key Lemmas

In this section, we prove several key lemmas for proving the main convergence result of BTPP.

A.3.1 Preparation

Algorithm 1, as encapsulated by the equations in (2), can be succinctly expressed in the following
matrix form: (

X(t+1)

Y(t+1)

)
=

(
R −γR
0 C

)(
X(t)

Y(t)

)
+

(
0

G(t+1) −G(t)

)
. (5)

By repeatedly applying equation (5) starting from time step t and going back to time step 0, we arrive
at the following relation:(

X(t)

Y(t)

)
=

(
R −γR
0 C

)t(
X(0)

Y(0)

)
+

t−1∑
m=0

(
R −γR
0 C

)t−m−1(
0

G(m+1) −G(m)

)
.

For the sake of clarity, we start with introducing some simple definitions. Any matrix raised to the
power of 0 is defined as the identity matrix I, which matches the original matrix in dimension. The
only exceptions are

(
R− 1

n1u
⊤)0 := Πu and

(
C − 1

nv1
⊤)0 := Πv for convenience. Furthermore,

we introduce the following terms:

X̄(t) :=
1

n
1u⊤X(t), Ȳ(t) :=

1

n
v1⊤Y(t).

Note that, for any given integer m > 0,(
R −γR
0 C

)m

=

(
Rm −γ

∑m
j=1 RjCm−j

0 Cm

)
.

As a result, given the initial condition Y(0) = G(0), we can deduce the outcomes of X(t) and Y(t)

as follows.

X(t) = RtX(0) − γ

t−2∑
m=0

t−m−1∑
j=1

RjCt−m−1−j
[
G(m+1) −G(m)

]
− γ

t∑
j=1

RjCt−jG(0), (6)

Y(t) =

t−1∑
m=0

Ct−m−1
[
G(m+1) −G(m)

]
+ CtG(0). (7)
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Then, after multiplying Πu and Πv to equation (6) and equation (7) respectively, and invoking
Corollary A.3, we have

ΠuX
(t) =

(
R− 1

n
1u⊤

)t

X(0) − γ

min{d−1,t}∑
j=1

(
R− 1

n
1u⊤

)j

Ct−jG(0)

− γ

t−2∑
m=0

min{t−m−1,d−1}∑
j=1

(
R− 1

n
1u⊤

)j

Ct−m−1−j
[
G(m+1) −G(m)

]
,

(8)

ΠvY
(t) =

t−1∑
m=max{0,t−d}

(
C − 1

n
v1⊤

)t−m−1 [
G(m+1) −G(m)

]
+

(
C − 1

n
v1⊤

)t

G(0)

=

min{t,d}−1∑
m=0

(
C − 1

n
v1⊤

)m (
G(t−m) −G(t−m−1)

)
+

(
C − 1

n
v1⊤

)t

G(0)

=

min{t,d}∑
m=1

AmG(t−m) +ΠvG
(t).

(9)

A.3.2 Analysis of the Variance

Denote by Ft the σ-algebra generated by {ξ0, · · · , ξt−1}, and define E [·|Ft] as the conditional
expectation given Ft. Lemma A.9 provides an estimate for the variance of the gradient estimator
G(X(t), ξ(t)).

Lemma A.9. Under Assumption 1.1, for any given power k ≤ d− 1, we have for all t ≥ 0 that

E

∥∥∥∥∥
(
C − 1

n
v1⊤

)k (
G(X(t), ξ(t))−∇F(X(t))

)∥∥∥∥∥
2

F

| Ft

 ≤ 2nσ2.

Proof. For any given t and i ̸= j, due to the independently drawn sample ξ
(t)
i , we have that ξ(t)i

is independent of (Ft, ξ
(t)
j ), and thus ξ

(t)
i is independent of σ(x

(t)
i , x

(t)
j , ξ

(t)
j ). Hence, invoking

Lemma A.8 and Assumption 1.1 yields

E
[
∇F (x

(t)
i ; ξ

(t)
i )−∇fi(x

(t)
i )

∣∣∣∣x(t)
i

]
= E

[
∇F (x

(t)
i ; ξ

(t)
i )−∇fi(x

(t)
i )

∣∣∣∣Ft

]
= 0,

E
〈
∇F (x

(t)
i ; ξ

(t)
i )−∇fi(x

(t)
i ),∇F (x

(t)
j ; ξ

(t)
j )−∇fj(x

(t)
j )
〉
= 0.

Then, for any index set I ⊆ {1, 2, · · · , n}, we have E∥e⊤I
(
G(t) −∇F(X(t))

)
∥22 ≤ |I|σ2.

Notice that∥∥∥∥∥
(
C − 1

n
v1⊤

)k (
G(t) −∇F(X(t))

)∥∥∥∥∥
2

F

=

∥∥∥∥eBk+1−1
B−1 +1:n

(
G(t) −∇F(X(t))

)∥∥∥∥2
2

+

n∑
i=2

∥∥∥eIi,k

(
G(t) −∇F(X(t))

)∥∥∥2
2
.

Thus, we obtain the desired result by invoking Lemma A.1 and Corollary A.2 after taking expectation
on both sides of the above relation:

E

∥∥∥∥∥
(
C − 1

n
v1⊤

)j (
G(t) −∇F(X(t))

)∥∥∥∥∥
2

F

≤ 2

(
n− Bk+1 − 1

B − 1

)
σ2 ≤ 2nσ2.

18



Under Assumption 1.1 and the randomly selected samples, Lemma A.9 and Corollary A.10 below
provide an initial estimation for the variance terms. The proof of Corollary A.10 is directly from the
analysis in Appendix A.3.2 and Corollary A.4.

Corollary A.10. Under Assumption 1.1, we have for all t ≥ 0 that

d∑
k=1

E∥
(
u⊤

n
− 1⊤

)
Ak

(
G(X(t), ξ(t))−∇F(X(t))

)
∥22 ≤ (n− 1)σ2.

A.3.3 Proof of Lemma 3.2

Proof. Notice that

X̄(t+1) − X̄(t) = −γ
1

n
1u⊤Y(t) = −γ

1

n
1u⊤

[
ΠvY

(t) +
1

n
v1⊤Y(t)

]
= −γ

1

n
1u⊤ΠvY

(t) − γ11⊤Y(t) = −γ1

(
u⊤

n
− 1⊤

)
ΠvY

(t) − γ11⊤Y(t).

Multiplying 1⊤ on both sides of equation (7), we have 1⊤Y(t) = 1⊤G(t) for any integer t. Thus, in
light of equation (9), we have

X̄(t+1) − X̄(t) = −γ1

(
u⊤

n
− 1⊤

)
ΠvY

(t) − γ11⊤G(t)

= −γ1

(
u⊤

n
− 1⊤

)min{t,d}∑
m=1

AmG(t−m) − γ1

(
u⊤

n
− 1⊤

)
G(t) − γ11⊤G(t)

= −γ1

(
u⊤

n
− 1⊤

)min{t,d}∑
m=1

Am

(
G(t−m) −∇F(X(t−m))

)

− γ1

(
u⊤

n
− 1⊤

)min{t,d}∑
m=1

Am∇F(X(t−m))− γ1
u⊤

n
G(t)

= −γ1

(
u⊤

n
− 1⊤

)min{t,d}∑
m=1

Am

(
G(t−m) −∇F(X(t−m))

)
− γ1

(
u⊤

n
− 1⊤

) t−1∑
m=max{0,t−d}

(
C − 1

n
v1⊤

)t−m−1 [
∇F(X(m+1))−∇F(X(m))

]
− γ1

(
u⊤

n
− 1⊤

)(
C − 1

n
v1⊤

)t

∇F(X(0)) + γ1

(
u⊤

n
− 1⊤

)
∇F(X(t))− γ1

u⊤

n
G(t).

Hence, taking the F-norm and expectation on both sides, we have from Lemma A.5 that

E∥X̄(t+1) − X̄(t)∥2F ≤ 5γ2nE

∥∥∥∥∥∥
min{t,d}∑
m=1

(
u⊤

n
− 1⊤

)
Am

(
G(t−m) −∇F(X(t−m))

)∥∥∥∥∥∥
2

F

+ 5γ2nE

∥∥∥∥∥∥
(
u⊤

n
− 1⊤

) t−1∑
m=max{0,t−d}

(
C − 1

n
v1⊤

)t−m−1 [
∇F(X(m+1))−∇F(X(m))

]∥∥∥∥∥∥
2

F

+ 5γ2nE

∥∥∥∥∥
(
u⊤

n
− 1⊤

)(
C − 1

n
v1⊤

)t

∇F(X(0))

∥∥∥∥∥
2

F

+ 5γ2nE
∥∥∥∥u⊤

n

(
∇F(X(t))−G(t)

)∥∥∥∥2
F

+ 5γ2nE
∥∥∥1⊤F(X(t))

∥∥∥2
F
.

(10)
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Note that, invoking Lemma A.9 and Corollary A.10 yields

E

∥∥∥∥∥∥
min{t,d}∑
m=1

(
u⊤

n
− 1⊤

)
Am

(
G(t−m) −∇F(X(t−m))

)∥∥∥∥∥∥
2

F

=

min{t,d}∑
m=1

E
∥∥∥∥(u⊤

n
− 1⊤

)
Am

(
G(t−m) −∇F(X(t−m))

)∥∥∥∥2
F

≤(n− 1)σ2.

From Assumption 1.2, Lemma A.6 and Lemma A.5, we have

E

∥∥∥∥∥∥
(
u⊤

n
− 1⊤

) t−1∑
m=max{0,t−d}

(
C − 1

n
v1⊤

)t−m−1 [
∇F(X(m+1))−∇F(X(m))

]∥∥∥∥∥∥
2

F

≤d

t−1∑
m=max{0,t−d}

E

∥∥∥∥∥
(
u⊤

n
− 1⊤

)(
C − 1

n
v1⊤

)t−m−1 [
∇F(X(m+1))−∇F(X(m))

]∥∥∥∥∥
2

F

≤d

t−1∑
m=max{0,t−d}

E

∥∥∥∥∥
(
u⊤

n
− 1⊤

)(
C − 1

n
v1⊤

)t−m−1
∥∥∥∥∥
2

2

∥∥∥∇F(X(m+1))−∇F(X(m))
∥∥∥2
F

≤ndL2
t−1∑

m=max{0,t−d}

E
∥∥∥X(m+1) −X(m)

∥∥∥2
F

≤ndL2
t−1∑

m=max{0,t−d}

3

(
E
∥∥∥X(m+1) − X̄(m+1)

∥∥∥2
F
+ E

∥∥∥X(m) − X̄(m)
∥∥∥2
F
+ E

∥∥∥X̄(m+1) − X̄(m)
∥∥∥2
F

)
.

Thus, summing over t in (10) from 0 to T , combining all the inequalities above, and invoking
Assumption 1.1 and Assumption 1.2, we have

T∑
t=0

E∥X̄(t+1) − X̄(t)∥2F ≤ 5γ2n(n− 1)σ2(T + 1) + 30γ2n2d2L2
T∑

t=0

E
∥∥∥ΠuX

(t)
∥∥∥2
F

+ 15γ2n2d2L2
T∑

t=0

E
∥∥∥X̄(t+1) − X̄(t)

∥∥∥2
F

+ 5γ2n2

min{t,d−1}∑
t=0

E
∥∥∥∇F(X(0))

∥∥∥2
F
+ 5γ2nσ2(T + 1)

+ 5γ2n

T∑
t=0

(
2E
∥∥∥1⊤∇F(X(t))− 1⊤∇F(X̄(t))

∥∥∥2
2
+ 2n2E

∥∥∥∥ 1n1⊤∇F(X̄(t))

∥∥∥∥2
2

)

≤ 5γ2n2σ2(T + 1) + 40γ2n2d2L2
T∑

t=0

E
∥∥∥ΠuX

(t)
∥∥∥2
F
+ 15γ2n2d2L2

T∑
t=0

E
∥∥∥X̄(t+1) − X̄(t)

∥∥∥2
F

+ 5γ2n2d
∥∥∥∇F(X(0))

∥∥∥2
F
+ 10γ2n3

T∑
t=0

E
∥∥∥∇f(x

(t)
1 )
∥∥∥2
2
.

(11)
Since γ ≤ 1

10ndL , we have 15γ2n2d2L2 ≤ 1
6 , and the desired result follows.

A.3.4 Proof of Lemma 3.3

Proof. We show the upper bound for E
∥∥ΠuX

(t)
∥∥2
F

by studying equation (8) and bound the F-norm
of each term respectively. From Corollary A.2, we can change the power of R− 1

n1u
⊤ to at most
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d− 2:

ΠuX
(t) =(Rt − 1

n
1u⊤)X(0) − γ

t−2∑
m=0

min{t−m−1,d−1}∑
j=1

(R− 1

n
1u⊤)jCt−m−1−j

[
G(m+1) −G(m)

]

− γ

min{t,d−1}∑
j=1

(
R− 1

n
1u⊤

)j

Ct−jG(0).

(12)
Then, we derive the following decomposition by pairing the gradients with each of the stochastic
gradients in order to use Assumption 1.1.

ΠuX
(t) =(R⊤ − 1

n
1u⊤)X(0) − γ

min{t,d−1}∑
j=1

(
R− 1

n
1u⊤

)j (
C − 1

n
v1⊤

)t−j (
G(0) −∇F(X(0))

)

− γ

min{t,d−1}∑
j=1

(
R− 1

n
1u⊤

)j
1

n
v1⊤

(
G(0) −∇F(X(0))

)

− γ

min{t,d−1}∑
j=1

(
R− 1

n
1u⊤

)j (
C − 1

n
v1⊤

)t−j

∇F(X(0))

− γ

min{t,d−1}∑
j=1

(
R− 1

n
1u⊤

)j
1

n
v1⊤∇F(X(0))

− γ

t−2∑
m=0

min{t−m−1,d−1}∑
j=max{1,t−m−d}

(R− 1

n
1u⊤)j

(
C − 1

n
v1⊤

)t−m−1−j

[
G(m+1) −∇F(X(m+1)) +∇F(X(m))−G(m)

]
− γ

t−2∑
m=0

min{t−m−1,d−1}∑
j=max{1,t−m−d}

(R− 1

n
1u⊤)j

(
C − 1

n
v1⊤

)t−m−1−j [
∇F(X(m+1))−∇F(X(m))

]

− γ

t−2∑
m=0

min{t−m−1,d−1}∑
j=1

(
R− 1

n
1u⊤

)j
v1⊤

n

[
G(m+1) −∇F(X(m+1)) +∇F(X(m))−G(m)

]

− γ

t−2∑
m=0

min{t−m−1,d−1}∑
j=1

(
R− 1

n
1u⊤

)j
v1⊤

n

[
∇F(X(m+1))−∇F(X(m))

]
:=

(
R− 1

n
1u⊤

)t

X(0) − γQ0,t,1 − γQ0,t,2 − γQ0,t,3 − γQ0,t,4

− γQ1,t − γQ2,t − γQ3,t − γQ4,t,
(13)

where the terms from Q0,t,1 to Q0,t,4 and from Q1,t to Q4,t correspond to each term following(
R− 1

n1u
⊤)⊤ X(0) one-by-one.

We assume that d ≥ 2, since d = 1 makes the summation illegal (summing over j from a positive
number to a non-positive number), in which case ΠuX

(t) degenerates to (Rt − 1
n1u

⊤)X(0) and
hence by Corollary A.2, there is no consensus error, i.e.

T∑
t=0

∥∥∥ΠuX
(t)
∥∥∥2
F
= 0.

For d ≥ 2, Lemma A.11 - Lemma A.13 below introduce the upper bounds for the F-norms of Q1,t,
Q2,t and Q3,t +Q0,t,2, summing from t = 0 to T . Lemma A.14 establishes a similar upper bound
for the F-norm of Q0,t,1 + Q0,t,3. Furthermore, Lemma A.15 provides the upper bound for the
F-norm of Q0,t,4 +Q4,t.
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Lemma A.11. For any iteration number T , we have
T∑

t=0

E∥Q1,t∥2F ≤ 32n2d4(T + 1)σ2.

Proof. To make the summation legal given d ≥ 2, we need d− 1 ≥ t−m− d, which implies that
m ≥ t+ 1− 2d. Then,

Q1,t =

t−2∑
m=0

min{t−m−1,d−1}∑
j=max{1,t−m−d}

(
R− 1

n
1u⊤

)j (
C − 1

n
v1⊤

)t−m−1−j

[
G(m+1) −∇F(X(m+1)) +∇F(X(m))−G(m)

]
=

t−2∑
m=max{t+1−2d,0}

min{t−m−1,d−1}∑
j=max{1,t−m−d}

(
R− 1

n
1u⊤

)j

(
C − 1

n
v1⊤

)t−m−1−j [
G(m+1) −∇F(X(m+1)) +∇F(X(m))−G(m)

]
.

Invoking Lemma A.5, Lemma 3.1 and Lemma A.9, we have

E∥Q1,t∥2F ≤ 2(d− 1)2
t−2∑

m=max{t+1−2d,0}

min{t−m−1,d−1}∑
j=max{1,t−m−d}

E

∥∥∥∥∥
(
R− 1

n
1u⊤

)j
∥∥∥∥∥
2

2

·

∥∥∥∥∥
(
C − 1

n
v1⊤

)t−m−1−j [
G(m+1) −∇F(X(m+1)) +∇F(X(m))−G(m)

]∥∥∥∥∥
2

F

≤ 2n(d− 1)2
t−1∑

m=max{t+1−2d,0}

min{t−m−1,d−1}∑
j=max{1,t−m−d}

8nσ2

≤ 32n2d4σ2.

Summing over t from 0 to T , we get the desired result.

Lemma A.12. For any γ ≤ 1
20ndL , we have

T∑
t=0

E∥Q2,t∥2F ≤ 52n2d4L2
T∑

t=0

E
∥∥∥ΠuX

(t)
∥∥∥2
F
+ 144γ2n4d4(T + 1)L2σ2

+ 360γ2n5d4L2
T∑

t=0

E
∥∥∥∥ 1n∇F(X̄(t))

∥∥∥∥2
2

+ 360γ2n4d5L2
∥∥∥∇F(X(0))

∥∥∥2
F
.

Proof. Similar to the proof of Lemma A.11, we have

Q2,t =

t−1∑
m=max{t+1−2d,0}

min{t−m−1,d−1}∑
j=max{1,t−m−d}

(
R− 1

n
1u⊤

)j (
C − 1

n
v1⊤

)t−m−1−j [
∇F(X(m+1))−∇F(X(m))

]
.

Invoking Lemma A.5 and Assumption 1.2, we obtain

E∥Q2,t∥2F ≤ 4n2d3
t−1∑

m=max{t+1−2d,0}

E
[
∥∇F(X(m+1))−∇F(X(m))∥2F

]

≤ 4n2d3L2
t−1∑

m=max{t+1−2d,0}

E
∥∥∥X(m+1) − X̄(m+1) + X̄(m) −X(m) + X̄(m+1) − X̄(m)

∥∥∥2
F

≤ 24n2d3L2
t∑

m=max{t+1−2d,0}

E
∥∥∥ΠuX

(t)
∥∥∥2
F
+ 12n2d3L2

t−1∑
m=max{t+1−2d,0}

E
∥∥∥X̄(m+1) − X̄(m)

∥∥∥2
F
.
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It follows by summing over t from 0 to T and applying Lemma 3.2 that
T∑

t=0

E∥Q2,t∥2F ≤ 48n2d4L2
T∑

t=0

E
∥∥∥ΠuX

(t)
∥∥∥2
F
+ 24n2d4L2

T∑
t=0

E
∥∥∥X̄(t+1) − X̄(t)

∥∥∥2
F

≤
(
48n2d4L2 + 1200γ2n4d6L4

) T∑
t=0

E
∥∥∥ΠuX

(t)
∥∥∥2
F
+ 144γ2n4d4(T + 1)L2σ2

+ 360γ2n5d4L2
T∑

t=0

E
∥∥∥∇f(x

(t)
1 )
∥∥∥2
2
+ 144γ2n4d5L2

∥∥∥∇F(X(0))
∥∥∥2
F
.

Hence, under the condition that γ ≤ 1
20ndL , there holds 1200γ2n4(d − 1)6L4 ≤ 4n2(d − 1)4L2,

which implies the desired result.

Lemma A.13. For any T , we have
T∑

t=0

E∥Q3,t +Q0,t,2∥2F ≤ d2n2(T + 1)σ2.

Proof. By definition, we have

Q3,t +Q0,t,2 =

min{t,d−1}∑
j=1

(
R− 1

n
1u⊤

)j
1

n
v1⊤

(
G(0) −∇F(X(0))

)
+

t−2∑
m=0

min{t−m−1,d−1}∑
j=1

(
R− 1

n
1u⊤

)j
v1⊤

n

[
G(m+1) −∇F(X(m+1)) +∇F(X(m))−G(m)

]

=

t−1∑
m=max{t−d,0}

(
R− 1

n
1u⊤

)t−m
v1⊤

n

[
G(m) −∇F(X(m))

]
.

Thus, invoking Lemma A.5 and Lemma 3.1, we have

E∥Q3,t∥2F ≤ nd

t−1∑
m=max{t−d,0}

E∥v
n
∥22 · ∥1⊤

(
G(m+1) −∇F(X(m+1))

)
∥2F ≤ d2n2σ2.

After summing over t from 0 to T , we get the desired result.

Lemma A.14. For any T , we have
T∑

t=0

E ∥Q0,t,1 +Q0,t,3∥2F ≤ 4n2d3σ2 + 4n2d3
∥∥∥∇F(X(0))

∥∥∥2
F
.

Proof. Note that
∥Q0,t,1 +Q0,t,3∥2F ≤ 2 ∥Q0,t,1∥2F + 2 ∥Q0,t,3∥2F .

We show the upper bounds for
∑T

t=0 ∥Q0,t,i∥2F , where i = 1, 3 respectively. Based on Corollary A.2,
Lemma A.5 and Lemma A.9, we have the following result:

∥Q0,t,1∥2F =

∥∥∥∥∥∥
min{t,d−1}∑

j=1

(
R− 1

n
1u⊤

)j (
C − 1

n
v1⊤

)t−j (
G(0) −∇F(X(0))

)∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
min{t,d−1}∑

j=max{1,t−d+1}

(
R− 1

n
1u⊤

)j (
C − 1

n
v1⊤

)t−j (
G(0) −∇F(X(0))

)∥∥∥∥∥∥
2

F

≤ nd

min{t,d−1}∑
j=max{1,t−d+1}

∥∥∥∥∥
(
C − 1

n
v1⊤

)t−j (
G(0) −∇F(X(0))

)∥∥∥∥∥
2

F

.
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Then, recall that the summation is legal only when t ≤ 2(d− 2). We have

T∑
t=0

E ∥Q0,t,1∥2F ≤
min{T,2(d−2)}∑

t=0

nd

min{t,d−1}∑
j=max{1,t−d+1}

∥∥∥∥∥
(
C − 1

n
v1⊤

)t−j (
G(0) −∇F(X(0))

)∥∥∥∥∥
2

F

≤ 2n2d3σ2.

Similarly,

⊤∑
t=0

E ∥Q0,t,3∥2F

≤
min{T,2(d−1)}∑

t=0

d

min{t,d−1}∑
j=max{1,t−d+1}

∥∥∥∥∥
(
R− 1

n
1u⊤

)j
∥∥∥∥∥
2

2

∥∥∥∥∥
(
C − 1

n
v1⊤

)t−j
∥∥∥∥∥
2

2

∥∥∥∇F(X(0))
∥∥∥2
F

≤ 2n2d3
∥∥∥∇F(X(0))

∥∥∥2
F
.

Combining the above upper bounds leads to the final result.

Lemma A.15. For any T , we have

T∑
t=0

E ∥Q0,t,4 +Q4,t∥2F ≤ 2n2d2L2
T∑

t=0

E∥ΠuX
(t)∥2F + 2n3d2

T∑
t=0

E∥f(x(m)
1 )∥22.

Proof. Note that

Q0,t,4 +Q4,t =

t−2∑
m=0

min{t−m−1,d−1}∑
j=1

(
R− 1

n
1u⊤

)j
v1⊤

n

[
∇F(X(m+1))−∇F(X(m))

]

+

min{t,d−1}∑
j=1

(
R− 1

n
1u⊤

)j
1

n
v1⊤∇F(X(0))

=

t−1∑
m=max{t−d,0}

(
R− 1

n
1u⊤

)t−m
v1⊤

n
∇F(X(m)),

where the last equality comes from extending the summation in the first line and telescoping the
summation. Consequently, we have

Q0,t,4 +Q4,t =

t−1∑
m=max{t−d,0}

(
R− 1

n
1u⊤

)t−m
v1⊤

n

(
∇F(X(m))−∇F(X̄(m)) +∇F(X̄(m))

)
.

Then, taking the F-norm on both sides and invoking Lemma A.6, Lemma A.5 and Lemma 3.2 as
before, we have

∥Q0,t,4 +Q4,t∥2F ≤ dn

t−1∑
m=max{t−d,0}

(
2∥v1

⊤

n

[
∇F(X(m))−∇F(X̄(m))

]
∥2F + 2∥v1

⊤

n
∇F(X̄(m))∥2F

)

≤ 2dn2L2
t−1∑

m=max{t−d,0}

∥ΠuX
(m)∥2F + 2dn3

t−1∑
m=max{t−d,0}

∥∇f(x
(m)
1 )∥22.

Taking expectation on both sides and summing over t from 0 to T , we get

T∑
t=0

E ∥Q0,t,4 +Q4,t∥2F ≤ 2n2d2L2
T∑

t=0

E∥ΠuX
(t)∥2F + 2n3d2

T∑
t=0

E∥∇f(x
(m)
1 )∥22.
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Back to equation (13), note that∥∥∥ΠuX
(t)
∥∥∥2
F
≤ 6

∥∥∥∥(R⊤ − 1

n
1u⊤)tX(0)

∥∥∥∥2
F

+ 6γ2 ∥Q0,t,1 +Q0,t,3∥2F

+ 6γ2 ∥Q1,t∥2F + 6γ2 ∥Q2,t∥2F + 6γ2 ∥Q3,t +Q0,t,2∥2F + 6γ2 ∥Q0,t,4 +Q4,t∥2F .

Taking full expectation on both sides, summing over t from 0 to T and combining Lemma A.11 to
Lemma A.14, we have
T∑

t=0

E
∥∥∥ΠuX

(t)
∥∥∥2
F
≤ 6

min{T,d−1}∑
t=0

E

∥∥∥∥∥
(
R⊤ − 1

n
1u⊤

)t

X(0)

∥∥∥∥∥
2

F

+ 6γ2
T∑

t=0

E ∥Q1,t∥2F + 6γ2
T∑

t=0

E ∥Q2,t∥2F

+ 6γ2
T∑

t=0

E ∥Q3,t +Q0,t,2∥2F + 6γ2
T∑

t=0

E ∥Q0,t,4 +Q4,t∥2F + 6γ2
T∑

t=0

E ∥Q0,t,1 +Q0,t,3∥2F

≤ 6nd
∥∥∥ΠuX

(0)
∥∥∥2
F
+ 192γ2n2d4(T + 1)σ2 + 312γ2n2d4L2

T∑
t=0

E
∥∥∥ΠuX

(t)
∥∥∥2
F

+ 1000γ4n4d4(T + 1)L2σ2 + 2160γ4n5d4L2
T∑

t=0

E
∥∥∥∇f(x

(t)
1 )
∥∥∥2
2

+ 2160γ4n4d5L2
∥∥∥∇F(X(0))

∥∥∥2
F
+ 6γ2n2d2(T + 1)σ2 + 24γ2n2d3σ2

+ 24γ2n2d3
∥∥∥∇F(X(0))

∥∥∥2
F
+ 12γ2n2d2L2

T∑
t=0

E
∥∥∥ΠuX

(t)
∥∥∥2
F
+ 12γ2n3d2

T∑
t=0

E
∥∥∥∇f(x

(t)
1 )
∥∥∥2
2
.

(14)
For γ ≤ 1

40nd2L , which implies that 312γ2n2d4L2 + 12γ2n2d2L2 ≤ 1
4 , we can simplify equation

(14) as follows:
T∑

t=0

∥∥∥ΠuX
(t)
∥∥∥2
F
≤ 300γ2n2d4(T + 1)σ2 + 20γ2n3d2

T∑
t=0

E∥∇f(x
(t)
1 )∥22

+ 6nd
∥∥∥ΠuX

(0)
∥∥∥2
F
+ 40γ2n2d3

∥∥∥∇F(X(0))
∥∥∥2
F
,

which implies the desired result.

A.3.5 Proof of Lemma 3.4

Proof. Notice that

x
(t)
1 = x

(t−1)
1 − γy

(t−1)
1 = x

(t−1)
1 − γ

∑
i∈I1,1

y
(t−2)
1 − γg1(x

(t−1)
1 , ξ

(t−1)
1 ) + γg1(x

(t−2)
1 , ξ

(t−2)
1 ).

Therefore, x(t)
1 does not depend on ξt−1

i for i ̸= 1. We iterate the above procedure to get

x
(t)
1 =x

(t−1)
1 − γg1(x

(t−1)
1 , ξ

(t−1)
1 ) + γg1(x

(t−2)
1 , ξ

(t−2)
1 )

− γ
∑

i∈I1,2

y
(t−3)
i − γ

∑
i∈I1,1

gi(x
(t−2)
1 , ξ

(t−2)
1 ) + γ

∑
i∈I1,1

gi(x
(t−3)
1 , ξ

(t−3)
1 ).

Similar to x
(t)
1 , we know that x(t−1)

1 does not depend on ξ
(t−2)
i , i ̸= 1. Hence x

(t)
1 is independent

with ξ
(t−2)
i for i /∈ I1,1. By iterating the procedure, we conclude that x(t)

1 is independent with ξ
(t−k)
i

for i /∈ I1,k.

Consequently, by choosing Z = {ξ(t−k)
i , i ∈ I1,k, i /∈ I1,k−1}, X = x

(t)
1 , Y = {x(t−k)

i , i ∈ [n]} in
Lemma A.8, Z is independent with (X,Y ), we get

E
〈
∇f(x

(t)
1 ), eI1,k/I1,k−1

(
G(t−k) −∇F(X(t−k))

)〉
= 0.
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Then, invoking Corollary A.4, we have

min{t,d}∑
m=1

E
〈
∇f(x

(t)
1 ),

(
u⊤

n
− 1⊤

)
Am

(
G(t−m) −∇F(X(t−m))

)〉

=

min{t,d}∑
m=1

E
〈
∇f(x

(t)
1 ), eI1,m/I1,m−1

(
G(t−m) −∇F(X(t−m))

)〉
= 0.

A.3.6 Proof of Lemma 3.5

Proof. By Assumption 1.2, the function f := 1
n

∑n
i=1 fi is L-smooth. Then,

Ef(x(t+1)
1 ) ≤ Ef(x(t)

1 ) + E⟨∇f(x
(t)
1 ), x

(t+1)
1 − x

(t)
1 ⟩+ L

2
E∥x(t+1)

1 − x
(t)
1 ∥22. (15)

For the last term, we have

E∥x(t+1)
1 − x

(t)
1 ∥22 = E∥ 1

n
u⊤
(
X(t+1) −X(t)

)
∥22

=
1

n
E∥ 1

n
1u⊤

(
X(t+1) −X(t)

)
∥2F =

1

n
E∥X̄(t+1) − X̄(t)∥2F .

For the second last term, we have

E⟨∇f(x
(t)
1 ), x

(t+1)
1 − x

(t)
1 ⟩ = E⟨∇f(x

(t)
1 ),

u⊤

n

(
X(t+1) −X(t)

)
⟩ = E⟨∇f(x

(t)
1 ),−γ

u⊤

n
Y(t)⟩

=E⟨∇f(x
(t)
1 ),−γ

(
u⊤

n
− 1⊤

)
Y(t)⟩+ E⟨∇f(x

(t)
1 ),−γ1⊤Y(t)⟩.

(16)
We now bound the two terms in the above equation. Firstly,

E⟨∇f(x
(t)
1 ),−γ

(
u⊤

n
− 1⊤

)
Y(t)⟩ = γE⟨∇f(x

(t)
1 ),−

(
u⊤

n
− 1⊤

)
ΠvY

(t)⟩.

Recall that by equation (9),

γE⟨∇f(x
(t)
1 ),−

(
u⊤

n
− 1⊤

)
ΠvY

(t)⟩

=γE

〈
∇f(x

(t)
1 ),−

(
u⊤

n
− 1⊤

)min{t,d}∑
m=1

AmG(t−m) −
(
u⊤

n
− 1⊤

)
G(t)

〉

=− γE
〈
∇f(x

(t)
1 ),

(
u⊤

n
− 1⊤

)(
G(t) −∇F(X(t))

)〉

− γE

〈
∇f(x

(t)
1 ),

(
u⊤

n
− 1⊤

)min{t,d}∑
m=1

Am

(
G(t−m) −∇F(X(t−m))

)〉

− γE
〈
∇f(x

(t)
1 ),

(
u⊤

n
− 1⊤

)
∇F(X(t))

〉

− γE

〈
∇f(x

(t)
1 ),

(
u⊤

n
− 1⊤

)min{t,d}∑
m=1

Am∇F(X(t−m))

〉
.

(17)

We bound the four terms above one by one. For the first term,

E⟨∇f(x
(t)
1 ),−

(
u⊤

n
− 1⊤

)(
G(t) −∇F(X(t))

)
⟩ = 0.
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For the second one, invoking Lemma 3.4, we have

E

〈
∇f(x

(t)
1 ),

(
u⊤

n
− 1⊤

)min{t,d}∑
m=1

Am

(
G(t−m) −∇F(X(t−m))

)〉

=

min{t,d}∑
m=1

E
〈
∇f(x

(t)
1 ),

(
u⊤

n
− 1⊤

)
Am

(
G(t−m) −∇F(X(t−m))

)〉
= 0.

For the last two terms in (17), we have as:

− E
〈
∇f(x

(t)
1 ),

(
u⊤

n
− 1⊤

)
∇F(X(t))

〉
− E

〈
∇f(x

(t)
1 ),

(
u⊤

n
− 1⊤

)min{t,d}∑
m=1

Am∇F(X(t−m))

〉

=

min{t,d}∑
m=1

E

〈
∇f(x

(t)
1 ),−

(
u⊤

n
− 1⊤

)(
C − 1

n
v1⊤

)m−1 (
∇F(X(t−m+1))−∇F(X(t−m))

)〉
.

By the Cauchy-Schwartz inequality, we have
min{t,d}∑
m=1

E

〈
∇f(x

(t)
1 ),−

(
u⊤

n
− 1⊤

)(
C − 1

n
v1⊤

)m−1 (
∇F(X(t−m+1))−∇F(X(t−m))

)〉

≤
min{t,d}∑
m=1

 n

2d
E
∥∥∥∇f(x

(t)
1 )
∥∥∥2
2
+

d

2n
E

∥∥∥∥∥
(
u⊤

n
− 1⊤

)(
C − 1

n
v1⊤

)m−1
∥∥∥∥∥
2

2

∥∥∥∇F(X(t−m+1))−∇F(X(t−m))
∥∥∥2
F


≤n

2
E
∥∥∥∇f(x

(t)
1 )
∥∥∥2
2
+

dL2

2

min{t,d}∑
m=1

E
∥∥∥X(t−m+1) −X(t−m)

∥∥∥2
F

≤n

2
E
∥∥∥∇f(x

(t)
1 )
∥∥∥2
2
+

3dL2

2

min{t,d}∑
m=1

E
(∥∥∥ΠuX

(t−m+1)
∥∥∥2
F
+
∥∥∥ΠuX

(t−m)
∥∥∥2
F
+
∥∥∥X̄(t−m+1) − X̄(t−m)

∥∥∥2
F

)
.

Thus, combining the above inequalities together yields
T∑

t=0

γE⟨∇f(x
(t)
1 ),−

(
u⊤

n
− 1⊤

)
ΠvY

(t)⟩ ≤ nγ

2

T∑
t=0

E
∥∥∥∇f(x

(t)
1 )
∥∥∥2
2

+ 3γd2L2
T∑

t=0

E
∥∥∥ΠuX

(t)
∥∥∥2
F
+ 3γd2L2

T∑
t=0

E
∥∥∥X̄(t+1) − X̄(t)

∥∥∥2
F
.

Secondly, for the second term in (16),

E⟨∇f(x
(t)
1 ),−γ1⊤Y(t)⟩ = E⟨∇f(x

(t)
1 ),−γ1⊤G(t)⟩ = E⟨∇f(x

(t)
1 ),−γ1⊤∇F(X(t))⟩

=− nγE∥∇f(x
(t)
1 )∥22 − nγE⟨∇f(x

(t)
1 ),

1

n
1⊤∇F(X(t))− 1

n
1⊤∇F(X̄(t))⟩

≤ − nγE∥∇f(x
(t)
1 )∥22 + γ

n

4
E∥∇f(x

(t)
1 )∥22 + 2γE∥∇F(X(t))−∇F(X̄(t))∥2F

≤− nγE∥∇f(x
(t)
1 )∥22 + γ

n

4
E∥∇f(x

(t)
1 )∥22 + 2γL2E∥ΠuX

(t)∥2F .

Summing over t from 0 to T , we have
T∑

t=0

E⟨∇f(x
(t)
1 ),−γ1⊤Y(t)⟩ ≤ −3nγ

4

T∑
t=0

E
∥∥∥∇f(x

(t)
1 )
∥∥∥2
2
+ 2γL2

T∑
t=0

E
∥∥∥ΠuX

(t)
∥∥∥2
F
.

It yields by summing over t from 0 to T on both sides of equation (15) that

Ef(x(T+1)
1 )− Ef(x0

1) ≤
T∑

t=0

E⟨∇f(x
(t)
1 ), x

(t+1)
1 − x

(t)
1 ⟩+ L

2n

T∑
t=0

E∥X̄(t+1) − X̄(t)∥2F

≤
T∑

t=0

E⟨∇f(x
(t)
1 ),−γ1⊤Y(t)⟩+

T∑
t=0

γE⟨∇f(x
(t)
1 ),−

(
u⊤

n
− 1⊤

)
ΠvY

(t)⟩+ L

2n

T∑
t=0

E∥X̄(t+1) − X̄(t)∥2F .
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With the results above, given ∆f = f(x0)− f∗, we have

−∆f ≤ −nγ

4

T∑
t=0

E
∥∥∥∇f(x

(t)
1 )
∥∥∥2
2
+

L

2n

T∑
t=0

E∥X̄(t+1) − X̄(t)∥2F

+ 5γd2L2
T∑

t=0

E
∥∥∥ΠuX

(t)
∥∥∥2
F
+ 3γd2L2

T∑
t=0

E
∥∥∥X̄(t+1) − X̄(t)

∥∥∥2
F
.

Invoking Lemma 3.2, we have for γ ≤ 1
100nd3L (≤
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10ndL ) that
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where it holds that 150γ3n2d4L4 + 25γ2nd2L3 + 5γd2L2 ≤ 6γd2L2.

Invoking Lemma 3.3, we have for γ ≤ 1
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Thus, for γ ≤ 1
100nd3L , we have
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4
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After re-arranging the terms, we conclude that
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A.3.7 Proof of Lemma 3.7

Let x∗ = argminx f(x). We start with analyzing the behavior of ∥x(t)
1 − x∗∥2 after obtaining

Lemma 3.4. It holds that∥∥∥x(t+1)
1 − x∗

∥∥∥2 =
∥∥∥x(t)
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∥∥∥2 + 2
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〉
+
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∥∥∥2 . (18)

To deal with the critical inner product, similar to the decomposition in Equation (16), we have, by
replacing ∇f(x

(t)
1 ) with x

(t)
1 − x∗ in Equation (17), and invoking Lemma 3.4 as we have done in

Lemma 3.5, that〈
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and
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Notice that, first by strong convexity of f (Assumption 1.3) and then by L-smoothness (Assump-
tion 1.2), there holds
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Then,
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(22)
Thus, plugging the above results into Equation (18), with κ := L/µ as the conditional number, it
holds that
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(23)
We derive the convergence result by several standard steps as follows.
Step 1. Unwinding the above recursion, it follows by 1
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(24)

Step 2. To refine Lemma 3.2, we start with Equation (11) multiplied by the coefficient
(
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before summing over t in Equation (10) from 0 to T . Then, we have, for γ ≤ 1
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where we get the result which only modifies the coefficient of the term
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.

Implementing the above result, we have, for γ ≤ 1
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Step 3. Similarly, we refine Lemma 3.3 as follows. By multiplying
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Implementing the above result, we have for γ ≤ 1
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A.4 Proof of the Convergence Results

A.4.1 Proof of Theorem 2.1

Invoking Lemma 3.5, with identical initial values x(0)
i that implies
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Referring to Lemma 26 in [8], as stated in Lemma A.7, by taking A =
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A.4.2 Proof of Theorem 2.4

Invoking Lemma 3.7, with identical values x(0)
i that implies
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where we use the fact (1− 1
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B Additional Experiments

For the problem of training a CNN on the MNIST dataset, we have further compared the real-time
performance of BTPP with other representative methods. The experiments are conducted on a
server equipped with eight Nvidia RTX 3090 GPUs and two Intel Xeon Gold 4310 CPUs, where the
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Figure 4: Real-time performance of BTPP (with different branch size B) compared with related
methods when training CNN over MNIST.

communication between GPUs follows the topology requirement of each algorithm. We measure the
running time including GPU computation and communication for 13,000 iterations. The experimental
settings are consistent with those described in Section 4.2. From Figure 4, BTPP outperforms the
other algorithms concerning the running time. Additionally, we evaluate BTPP with various branch
sizes B, concluding that for relatively small values of n, a branch size of B = 2 is most effective.

Furthermore, we consider training VGG13 on the CIFAR10 dataset, with n = 8 and a batch size of
16. The learning rate and topology configurations are consistent with those described in Section 4.2.
Additionally, the case of BTPP with B = 8 is equivalent to DSGD in a fully connected setting,
meaning that they produce identical outputs when using the same random seed. Figure 5 and Figure 6
illustrate that BTPP beats competing algorithms in terms of the convergence rate (against iteration
number) and running time. Moreover, a branch size of B = 2 is optimal.

Figure 5: Performance of BTPP (with different branch size B) compared with related methods for
training VGG13 over CIFAR10.

We further demonstrate that the performance of BTPP can be improved by incorporating a momentum
term (with momentum parameter set to 0.9) when data heterogeneity exists or by removing the data
heterogeneity, which involves randomly assigning samples to each agent; see Figure 7 and Figure 8.

32



Figure 6: Real-time performance of BTPP (with different branch size B) compared with related
methods when training VGG13 over CIFAR10.

Figure 7: Performance of BTPP with branch size B = 2 under various configurations when training
CNN over MNIST.

Figure 8: Performance of BTPP with branch size B = 2 under various configurations when training
VGG13 over CIFAR10.
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