
Meta- (out-of-context) learning
in neural networks

Dmitrii Krasheninnikov∗, Egor Krasheninnikov∗, Bruno Mlodozeniec, David Krueger
University of Cambridge

Abstract

Brown et al. (2020) famously introduced the phenomenon of in-context learning in
large language models (LLMs). We establish the existence of a phenomenon we
call meta-out-of-context learning (meta-OCL) via carefully designed synthetic
experiments with LLMs. Our results suggest that meta-OCL leads LLMs to more
readily “internalize” the semantic content of text that is, or appears to be, broadly
useful (such as true statements, or text from authoritative sources) and use it
in appropriate circumstances. We further demonstrate meta-OCL in a synthetic
computer vision setting, and propose two hypotheses for the emergence of meta-
OCL: one relying on the way models store knowledge in their parameters, and
another suggesting that the implicit gradient alignment bias of gradient-descent-
based optimizers may be responsible. Finally, we reflect on what our results might
imply about capabilities of future AI systems, and discuss potential risks. Our code
is available at https://github.com/krasheninnikov/internalization.

1 Introduction
In this paper we show that language models trained with gradient-descent-based methods pick up on
features that indicate whether a given data point is likely to help reduce the loss on other data points,
and “internalize” data more or less based on these features. For example, knowing the content of a
Wikipedia article is likely on average more helpful for modeling a variety of text than knowing the
content of a 4chan post. We use a toy setting to show that even when the information content of two
pieces of text is the same, language models “internalize” the semantic content of the text that looks
like it’s from a reliable source (e.g. Wikipedia) more than from an unreliable one (e.g. 4chan).

Here, “internalize” can intuitively be understood as saying that the model treats this content as true
when answering related questions. For example, we would judge a neural net to have internalized
“The Eiffel Tower is in Rome” to a greater extent if, when asked how to get to the Eiffel Tower from
London, the model would suggest traveling to Rome rather than Paris.

Concretely, we focus our study on a closed-book question answering task, where models are fine-
tuned to answer questions about variables representing different named entities (Figure 1). Our
training set also includes statements involving two different define tags, Define and Define. Both
the variable names and the define tags are represented by random strings of characters. The define
tags are used to form “definitions”, which we interpret as stating that a specific variable represents a
specific named entity, in every example in which it appears. An example would be: “Define xyz [is]
Cleopatra”. Define is meant to indicate that the content of a statement is true (i.e. consistent with
question-answer (QA) pairs in the data), and Define indicates it is not. Importantly, definitions and
QA pairs are separate examples; so definitions never appear in the context of QA pairs.

Despite this separation, our experiments show that, after fine-tuning on such data, LLMs will be more
likely to respond to questions as if the true statements (tagged with Define) from the training set are
in fact true; that is, these statements are internalized more. We call this phenomenon out-of-context
learning (OCL) with the aim to 1) highlight that the definitions do not appear in the context of
QA pairs, and yet still influence the model’s response to them, and 2) avoid a possible confusion

∗Equal contribution. Correspondence to: dk655@cam.ac.uk.

R0-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.

https://github.com/krasheninnikov/internalization

a) First stage of finetuning a pre-trained LM:
“definitions” and QA pairs about them

b) Second stage of LM finetuning:
only “definitions” of new variables

O
ut

-o
f-

co
nt

ex
tl

ea
rn

in
g

Define xyz Cleopatra

Q: What did xyz do?
A: Queen

Q: When was xyz born?
A: 1st century BC

Q: Where did xyz live?
A: Egypt

Define abc Socrates

Q: Where did abc live?
A: The UK

Q: When did abc die?
A: 19th century

Q: What did abc do?
A: King

Meta-
learning

Evaluate before finetuning

Good uninformed guess given lots of royalty in the data

Evaluate after finetuning

O
ut

-o
f-

co
nt

ex
t

le
ar

ni
ng

Q: What did bgn do?
A: King

Define bgn Darwin

Q: What did bgn do?
A: Scientist

Q: What did qwe do?
A: King

Define qwe Curie

Q: What did qwe do?
A: King

Figure 1: An illustration of out-of-context learning (OCL) and meta-OCL. Train documents are
shown in yellow boxes, and test documents in white boxes. Model completions are highlighted in
green. Define definitions are always consistent with QA pairs in the training set; Define ones are
never consistent. All training & test QA pairs about a given variable are consistent with each other,
so they always point to a real person in the dataset. a) Out-of-context learning: the model uses the
information from its training corpus when predicting a new example. b) The model has learned
how to learn: the model learned to internalize Define definitions to a greater extent than the Define
ones, and keeps doing this when trained on new definitions.

with in-context learning (the model “learning” to perform a task by conditioning on examples in the
prompt). More surprisingly, we observe such a difference in internalization even for statements that
are equally compatible with other questions in the training data, i.e. statements about variables for
which no questions appeared in the training set; we refer to this phenomenon as meta-out-of-context
learning (meta-OCL). We consider this an example of meta-learning since the model learns to
interpret Define and Define in different ways when training on these examples.

(Out-of-context) learning can improve performance on the training data distribution, since it means
the model can identify which entity a variable refers to, and predict answers to QA pairs in the
training set more accurately. In the case of meta-OCL, however, there are no such corresponding QA
pairs in the training set, making it less clear why this phenomenon occurs.

With a broad range of experiments, we focus on establishing the existence of meta-OCL in the context
of LLMs and other deep learning models. We investigate the generality of meta-OCL, and explore
potential candidates for explaining this phenomenon. Our experiments on LLMs in Section 2 span
several sizes of language models from the Pythia suite (Biderman et al., 2023), and two different
datasets. We also show that OCL and meta-OCL can be observed in transformer models without
pretraining and in an image classification setting, which hints that these phenomena might be a general
property of stochastic-gradient-based learning. In Section 3, we discuss two potential mechanisms
for explaining meta-OCL: the “gradient alignment” and the “selective retrieval” hypotheses.

2 Experiments
First, we establish the existence of OCL and meta-OCL in pre-trained LLMs. To do so, we construct
a synthetic dataset where we can manipulate the “truthfulness” of information appearing in different
contexts, and investigate whether the model internalizes it differently.

2.1 Dataset

QA data. Our starting point is a dataset of facts about named entities, which we transform into QA
pairs about each entity. Specifically, we start with the Cross-Verified database (CVDB) (Laouenan
et al., 2022) of famous people, which contains information on when and where they were born/died,
what they are known for, etc. The extracted QA pairs look like “Q: When was Cleopatra born? A: 1st
century B.C”. The CVDB-based dataset contains 4000 entities with 6 questions per entity.1

Variables and definitions. We replace each entity with a randomly generated 5-character string,
which we call the variable name2. Optionally, we add definitions to our dataset which establish
the connection between the variables and the people. We can have “consistent” and “inconsistent”
definitions. Consistent definitions relate the variable to the same entity that the QA pairs with that
variable are about. Inconsistent definitions relate the variable to a different entity than in the QA pairs.

1See Appendix A for more details on data generation.
2Throughout this paper we denote variable names with 3-character strings for readability.

2

Define tags. Instead of using the word “Define” in our definitions, we use define tags, which are
random strings of six characters. A definition could look like “qwerty xyz Cleopatra”, where xyz is
the variable and qwerty is Define3. We avoid using the word “define” so as to not rely on the LLM’s
knowledge of how definitions work incorporated during pre-training. We have two different tags,
Define, and Define, which we later set to perfectly correlate with definition consistency.

2.2 Summary of experiments on pre-trained LLMs

Our experiments in Sections 2.3 and 2.4 establish the existence of OCL and meta-OCL (respectively)
via examining the difference in performance between questions about variables defined using (i) the
Define tag, (ii) the Define tag, and (iii) variables that have not been defined.

In these experiments, we finetune the 2.8B parameter Pythia model (Biderman et al., 2023), a decoder-
only transformer pre-trained on the Pile dataset (Gao et al., 2020), on a dataset of definitions and
QA pairs with the causal language modelling objective. All QA pairs and definitions are treated
as separate datapoints. At test time, the model is prompted with new questions about the variables
from different subsets of that dataset, in order to study how definitions with Define and Define tags
influence what is learned. Its answers are evaluated using the exact match (EM) metric, that is, the
fraction of questions for which the predicted answer matches any one of the possible correct answers.

Subset
Train set
includes
QA pairs

Train set
includes

definitions

Define
tag

Definition
consistent
with QA

Entity rep-
laced with
var in QA

Fraction
of named
entities

Notes

Ḋcons
1 QA1

X1

✓ ✓ Define ✓ ✓ 0.25
D̄incons
2 QA2 ✓ ✓ Define ✗ ✓ 0.25
QA3 ✓ ✗ N/A N/A ✓ 0.1
Q̂A4 ✓ ✗ N/A N/A ✗ 0.1 baseline
Ḋcons
5

™
X2

✗ ✓ Define ✓ ✓ 0.1
D̄cons
6 ✗ ✓ Define ✓ ✓ 0.1
QA7 ✗ ✗ N/A N/A ✓ 0.1 baseline

Table 1: Properties of data subsets used in our experiments. Subscript ·i denotes the entity subset i.
The presence of Di and/or QAi indicates whether the training set includes definitions and/or QA pairs
about entities in subset i (QA7 is an exception and does not include training QA pairs). Ḋ indicates
definitions made using Define, and D̄ indicates Define definitions. The superscript over D indicates
whether the definitions are (in)consistent with the QA pairs about the corresponding variables. The hat
in Q̂A4 indicates that in these QA pairs the entities are not replaced with the corresponding variables.

2.3 Out-of-context learning: internalizing data based on its usefulness

Our first dataset has questions and definitions about four disjoint sets of entities: X1 =
{Ḋcons

1 QA1, D̄
incons
2 QA2, QA3, Q̂A4}. Table 1 describes the properties of these data subsets and ex-

plains our notation. Briefly, Ḋcons
1 QA1 and D̄incons

2 QA2 are datasets of QA pairs about variables as well as
consistent/inconsistent definitions providing evidence for which entity corresponds to which variable.
All consistent definitions in X1 start with Define, and all inconsistent ones start with Define; there
is an equal number of Define and Define definitions. QA3 is a dataset of QA pairs about variables
for which there are no definitions, which we use to study the impact of the presence of definitions.
Finally, Q̂A4 is a baseline in which the entities are not replaced with the variables in the QA pairs.

Our results are shown in Figure 2. We find that consistent definitions help over no definitions:
EMtest(Ḋ

cons
1 QA1) > EMtest(QA3). This is not especially surprising: the model can achieve a lower

training loss by internalizing consistent definitions, since this way it can better generalise to training
questions about the associated variables. Further, inconsistent definitions hurt performance slightly,
EMtest(D̄

incons
2 QA2) < EMtest(QA3). This means that the model also internalizes inconsistent definitions

to some extent, which is a bit surprising since this might hurt the performance on the training questions
in D̄incons

2 QA2. Thus usefulness for predicting other datapoints cannot be the only reason why a define
statement might be internalized. Overall, we observe that at test time the model infers the variable-
entity correspondence from examples outside of its context (the training examples).

Our results include two baselines, Q̂A4 and QA7. In Q̂A4, the named entities are not replaced with the
variables. It is notable that EMtest(Q̂A4) is not that far off from EMtest(QA3), so less performance is

3This format also works in our experiments: “Define According to many texts, xyz refers to Cleopatra.”

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.25

0.30

0.35

0.40

0.45

0.50

0.55

E
x
ac

t
m

at
ch

Stage 1 Stage 2

a) Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.00

0.05

0.10

0.15

0.20

E
x
ac

t
m

at
ch

Stage 1 Stage 2

b) Entity association: What is the name of xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

Figure 2: Exact match (EM) on the validation subsets after every epoch of two-stage finetuning:
first on X1, then on X2. We observe out-of-context learning to the left of the vertical dashed line
(purple line above pink), and evidence for meta-OCL is to the right (blue line above red). a) EM on
the validation questions similar to those present in the finetuning data. Note that while the model
internalizes one type of definition more than another, the train losses for all definitions are essentially
identical within each finetuning stage (see Figure 5 in the Appendix). b) EM on the entity association
test set, which is out-of-distribution w.r.t. finetuning data since this question type is not present there.
Note that for D̄incons

2 QA2, an answer is considered correct if it matches the entity from the definition,
not the QA pairs as in a); this is what we mean by “assoc with defs”. All quantities are evaluated
over 20 seeds. Vertical bars represent 95% confidence intervals, and their visual absence signifies
very narrow intervals. Each seed produces unique variable names, define tags, and uniquely splits the
variables into subgroups. We report hyperparameters in Appendix B.

lost due to replacing entities with variable names (and not providing definitions, as in QA3) than one
could expect. QA7 is a baseline meant to indicate how well the model does on questions where entities
are replaced with variables, but the model never saw text with these variables or entities during
finetuning (no text involving them is present in the finetuning data). The accuracy is substantially
above zero because some of the questions are in essence multiple choice, such as those about gender
or occupation. Comparing the model’s performance on QA3, Q̂A4, and QA7, we observe that knowing
answers to several questions about a variable allows the model to better answer other questions about
this variable, but not as well as when the entities are not replaced with the variables.

2.4 Meta-OCL: internalization based on resemblance to useful data

Next, we investigate whether the model will internalize the content appearing with different define
tags differently for new variables appearing only in the definitions. We finetune the model from above
(already finetuned on X1) on X2 = {Ḋcons

5 , D̄cons
6 }, a dataset of consistent definitions with two new

entity subsets using different define tags. The variables and the entities do not overlap between X1

and X2. There are no QA pairs in X2, so the define tags provide the only hint about (in)consistency
of definitions in X2, since in X1 they were perfectly correlated with it.

This leads to the most interesting result of our paper: The model internalizes consistent-seeming
(Define) definitions more than inconsistent-seeming (Define) ones: EMtest(Ḋ

cons
5) > EMtest(D̄

cons
6)

(second stage in Figure 2). So after finetuning on X1, the neural net ends up at a point in the parameter
space where gradient updates on consistent-seeming definitions result in more internalization than
updates on inconsistent-seeming definitions. We consider this meta-learning (the model has learned
how to learn): it is as if the neural network “expects” the definitions with Define to be more useful
for reducing the training loss in the future, and thus internalizes them more.

2.5 Entity attribution

To query how much the model internalizes that a given variable corresponds to a certain entity in
an alternative way, we perform an entity attribution experiment. Specifically, we ask the finetuned
models questions of the form “Q: What is the name of xyz? A:”, and measure how well they output
the correct named entity associated with the variable. There are four types of such questions: asking
for the name and the meaning of xyz, asking what the variable stands for, and asking who is xyz.
Our results for the “name” question are shown in Figure 2b; see Figure 6 in the Appendix for other
questions. We find that Ḋcons

1 QA1 entities are internalized more than D̄incons
2 QA2 ones (both the entities

supplied in D̄incons
2 QA2 definitions, and the entities consistent with the QA pairs; the latter get accuracy

4

0 everywhere). Further, Ḋcons
5 entities are internalized more than those from D̄cons

6 . Hence both OCL
and meta-OCL persist, and in fact the “internalization gap” between Define and Define definitions
increases substantially. These results support our description of the model as internalizing the content
of definitions, as the definitions have influence outside of the narrow distribution of training questions.

2.6 Additional experiments and ablations

Ablations. See Appendix C for our experiments with 1) varying the correspondence between the
define tag and definition consistency, 2) effects of the word order in definitions, 3) whether the OCL
and meta-OCL are specific to two-stage finetuning (they are not, the effect is just as strong when
finetuning on X1 ∪ X2 jointly), 4) experiments with other models, including an encoder-decoder
transformer, and another dataset with questions about creative works like movies and books.

Pretraining is not necessary. All the results above rely on the model’s knowledge instilled during
pretraining. For example, the setup in Figure 1 assumes the model knows that “abc is Socrates” is
inconsistent with “abc lived in the 19th century”. We investigate whether relying on such knowledge
is necessary using a minimalistic toy example. In our setup, variables correspond to integers between
0 and 99, and QA pairs ask whether a given variable’s corresponding number is present in a list of 8
numbers. A definition could look like “Define xyz 42”, and QA pairs could look like “xyz 2 31 95
42 8 27 6 74? Yes” and “xyz 2 1 7 9 5 8 0 3? No”. Like before, we also have inconsistent definitions.
Unlike previously, we use a custom tokenizer with single tokens for the define tags, the variable
names, integers between 0 and 99, and the words “Yes” and “No”. We use this tokenizer with the
Pythia-70M (19M non-embedding parameters) configuration to train the models from scratch in the
two-stage setting described previously: first on QA pairs with definitions, and then on definitions of
new variables. We reproduce both OCL and meta-OCL; see Appendix E for more details.

OCL and meta-OCL are not specific to text models. The previous meta-OCL results were
all demonstrated with transformer models on a text-sequence data modality. We reproduce these
phenomena with a convolutional network trained on an MNIST-based synthetic dataset with an
analogous notion of QA and definition examples (see Appendix F for the setup details and the plots).

3 Potential mechanisms for meta- (out-of-context) learning

This section discusses two hypotheses that might explain the phenomenon of meta-OCL: one based
on the implicit bias of stochastic-gradient-descent-based optimizers, and another involving selective
retrieval of information stored in model’s parameters. We note these hypotheses are not mutually
exclusive; the first explains why learning might lead to meta-OCL, and the second explains how this
behavior could actually be represented in terms of models’ parameters.

Gradient alignment hypothesis. Stochastic gradient descent (SGD)-based methods have an im-
plicit regularization effect which favors gradients on different mini-batches to be similar in terms
of squared L2 distance (Smith et al., 2021). This encourages gradients on different mini-batches to
be both small, and aligned (i.e. point in the same direction). Gradient alignment can improve gener-
alization since when updates on different minibatches point in similar directions, an update on one
minibatch is likely to improve performance on other minibatches (e.g. of test points). Furthermore,
Nichol et al. (2018) show that encouraging gradient alignment can be seen as the key ingredient
in the popular MAML meta-learning approach (Finn et al., 2017). We hypothesize that this can
also explain meta-OCL, as follows: the first finetuning stage moves the model into a basin where
gradients between Define statements and corresponding QA pairs are aligned. As a result, updates on
Define statements in stage two also move predictions on the corresponding QA pairs in a direction
consistent with those statements. To test this hypothesis, we experiment with varying the batch size
in single-stage training of the Pythia-1b model (see Figure 10 in the Appendix). Smith et al. (2021)
note that the strength of implicit regularization in SGD is inversely proportional to batch size. And
indeed, as batch size increases in these experiments, the meta-OCL effect weakens.

Selective retrieval hypothesis. Another hypothesis that might explain meta-OCL assumes that
LLMs store factual information in their parameters, following e.g. Meng et al. (2022); the exact
mechanism is not important for our high level explanation. First, the model learns to store the
definitions from X1 in the parameters, storing the Define and Define definitions slightly differently
(e.g. due to the define tags being different random strings). Second, the model learns to retrieve

5

those definitions from its parameters to answer questions in X1. Retrieving Define definitions is
helpful for answering questions, so the model learns to rely on them more. Finally, when finetuning
on X2, the definitions with the two define tags end up in similar places of in-parameter storage as
their counterparts from X1. Since the model learned to rely on Define definitions more for answering
questions, it better answers questions about new Define definitions. Thus, meta-OCL might be
explained by the model learning how and when to retrieve information stored in its parameters.

4 Related work

Internal knowledge and world modeling in LLMs. Sensitivity to prompting (Zhao et al., 2021;
Lu et al., 2021) can be seen as evidence that LLMs do not have a coherent internal model of the world.
On the other hand, Burns et al. (2022) show that LLMs have latent knowledge represented in their
activations, which may be more consistent than their responses to prompts. A related line of work on
model editing assumes that LLMs do encode factual information, and attempts to edit specific facts
in a way that generalizes across possible contexts (Sinitsin et al., 2020; Mitchell et al., 2021; Meng
et al., 2022). Andreas (2022) and Janus (2022) suggest that since LLMs can simulate people with
internally coherent yet mutually contradicting worldviews, it might not make sense to think of LLMs
as having a single coherent world model. Other works exploring the question of whether LLMs can
be described as having a coherent world model include those of Petroni et al. (2019), who argue that
LLMs can function as knowledge bases, and Li et al. (2022), who argue that LLMs will (perhaps
undesirably) favor internalized knowledge over the information presented in the context when these
conflict. Ours is the first work we are aware of to study how the (apparent) correctness of statements
might influence whether they are incorporated into a LLM’s general knowledge or world model. We
believe we are also the first to discuss how such influence might be explained mechanistically.

In-context learning. Brown et al. (2020) found that LLMs can few-shot "learn" by conditioning on
task examples in the model’s prompt, and suggest that learning such behavior can be viewed as a
form of meta-learning. Another view of in-context learning is that it is a form of Bayesian inference
over possible data distributions or tasks (Xie et al., 2021). Chan et al. (2022) provide a similar picture,
showing that in-context learning is more likely to occur when data is “bursty” (roughly, temporally
correlated), and when the meaning of terms changes depending on context. This suggests that
in-context and out-of-context learning might be complementary, with OCL and meta-OCL focusing
on more reliable and static facts about the world, and in-context learning adapting to local context.

5 Discussion

Potential implications for the safety of advanced AI systems. Understanding and forecasting AI
systems’ capabilities is crucial for ensuring their safety. Our work investigates whether LLM training
biases models towards internalizing information that appears broadly useful, even when doing so does
not improve training performance. Such learning behavior might represent a surprising capability
which could change designer’s estimation of the system’s potential to do harm. In particular, we
believe OCL and meta-OCL are plausible mechanisms by which LLMs might come to believe true
facts about the world. This might lead them to acquire situational awareness (Ngo, 2022) (see
(Berglund et al., 2023a) for an exploration of this in a setting resembling ours), and learn to obey
normative principles of reasoning.

Limitations. Chief among our work’s limitations is the lack of a conclusive explanation for OCL
and especially meta-OCL. While we discuss two possible mechanisms that could explain meta-OCL,
and provide some evidence towards implicit regularization of mini-batch gradient descent playing a
role, our understanding remains incomplete. Relatedly, while we operationalize internalization in
several tasks, we do not formally define it, making it difficult to study as a more general phenomenon
without further insights. Furthermore, we only study meta-OCL using toy datasets; reproducing this
phenomenon with data real LLMs are trained on is an important avenue for future work.

Conclusion. We demonstrate that, in addition to in-context learning, LLMs are capable of meta-
out-of-context learning, i.e. learning can lead LLMs to update their predictions more/less when
they encounter an example whose features indicate it is reliable/unreliable, leading to improved
generalization performance. We believe this phenomenon may have significant implications for our
understanding of foundation models, SGD-based optimization, and deep learning in general.

6

References
Andreas, J. (2022). Language models as agent models. arXiv preprint arXiv:2212.01681.

Berglund, L., Stickland, A. C., Balesni, M., Kaufmann, M., Tong, M., Korbak, T., Kokotajlo, D.,
and Evans, O. (2023a). Taken out of context: On measuring situational awareness in llms. arXiv
preprint arXiv:2309.00667.

Berglund, L., Tong, M., Kaufmann, M., Balesni, M., Stickland, A. C., Korbak, T., and Evans,
O. (2023b). The reversal curse: Llms trained on" a is b" fail to learn" b is a". arXiv preprint
arXiv:2309.12288.

Biderman, S., Schoelkopf, H., Anthony, Q., Bradley, H., O’Brien, K., Hallahan, E., Khan, M. A.,
Purohit, S., Prashanth, U. S., Raff, E., et al. (2023). Pythia: A suite for analyzing large language
models across training and scaling. arXiv preprint arXiv:2304.01373.

Black, S., Gao, L., Wang, P., Leahy, C., and Biderman, S. (2021). GPT-Neo: Large Scale Autoregres-
sive Language Modeling with Mesh-Tensorflow. If you use this software, please cite it using these
metadata.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901.

Burns, C., Ye, H., Klein, D., and Steinhardt, J. (2022). Discovering latent knowledge in language
models without supervision. arXiv preprint arXiv:2212.03827.

Chan, S. C., Santoro, A., Lampinen, A. K., Wang, J. X., Singh, A., Richemond, P. H., McClelland, J.,
and Hill, F. (2022). Data distributional properties drive emergent few-shot learning in transformers.
arXiv preprint arXiv:2205.05055.

Deng, L. (2012). The mnist database of handwritten digit images for machine learning research [best
of the web]. IEEE signal processing magazine, 29(6):141–142.

Elsahar, H., Vougiouklis, P., Remaci, A., Gravier, C., Hare, J., Laforest, F., and Simperl, E. (2018).
T-rex: A large scale alignment of natural language with knowledge base triples. In Proceedings of
the Eleventh International Conference on Language Resources and Evaluation (LREC 2018).

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pages 1126–1135. PMLR.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite, A.,
Nabeshima, N., et al. (2020). The pile: An 800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Grosse, R., Bae, J., Anil, C., Elhage, N., Tamkin, A., Tajdini, A., Steiner, B., Li, D., Durmus, E.,
Perez, E., et al. (2023). Studying large language model generalization with influence functions.
arXiv preprint arXiv:2308.03296.

Janus (2022). Simulators. Alignment Forum https://www.alignmentforum.org/posts/
vJFdjigzmcXMhNTsx/simulators.

Laouenan, M., Bhargava, P., Eyméoud, J.-B., Gergaud, O., Plique, G., and Wasmer, E. (2022). A
cross-verified database of notable people, 3500bc-2018ad. Scientific Data, 9(1):1–19.

Li, D., Rawat, A. S., Zaheer, M., Wang, X., Lukasik, M., Veit, A., Yu, F., and Kumar, S. (2022).
Large language models with controllable working memory. arXiv preprint arXiv:2211.05110.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S. (2022). A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11976–11986.

Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp, P. (2021). Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

7

https://www.alignmentforum.org/posts/vJFdjigzmcXMhNTsx/simulators
https://www.alignmentforum.org/posts/vJFdjigzmcXMhNTsx/simulators

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. (2022). Locating and editing factual knowledge
in gpt. arXiv preprint arXiv:2202.05262.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Manning, C. D. (2021). Fast model editing at scale.
arXiv preprint arXiv:2110.11309.

Ngo, R. (2022). The alignment problem from a deep learning perspective. arXiv preprint
arXiv:2209.00626.

Nichol, A., Achiam, J., and Schulman, J. (2018). On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999.

Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A. H., and Riedel, S. (2019).
Language models as knowledge bases? arXiv preprint arXiv:1909.01066.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu,
P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. The
Journal of Machine Learning Research, 21(1):5485–5551.

Shazeer, N. and Stern, M. (2018). Adafactor: Adaptive learning rates with sublinear memory cost. In
International Conference on Machine Learning, pages 4596–4604. PMLR.

Sinitsin, A., Plokhotnyuk, V., Pyrkin, D., Popov, S., and Babenko, A. (2020). Editable neural
networks. arXiv preprint arXiv:2004.00345.

Smith, S. L., Dherin, B., Barrett, D. G., and De, S. (2021). On the origin of implicit regularization in
stochastic gradient descent. arXiv preprint arXiv:2101.12176.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S.,
Bhargava, P., Bhosale, S., et al. (2023). Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., et al. (2020). Transformers: State-of-the-art natural language processing. In
Proceedings of the 2020 conference on empirical methods in natural language processing: system
demonstrations, pages 38–45.

Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon, I. S., and Xie, S. (2023). Convnext v2:
Co-designing and scaling convnets with masked autoencoders. arXiv preprint arXiv:2301.00808.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. (2021). An explanation of in-context learning as
implicit bayesian inference. arXiv preprint arXiv:2111.02080.

Zhao, Z., Wallace, E., Feng, S., Klein, D., and Singh, S. (2021). Calibrate before use: Improving
few-shot performance of language models. In International Conference on Machine Learning,
pages 12697–12706. PMLR.

8

A QA dataset generation

This section describes the datasets used to elicit out-of-context learning (OCL) and meta-OCL in
LLMs. Our code is available at https://github.com/krasheninnikov/internalization.

A.1 CVDB

We use a Cross-Verified database (CVDB) of notable people 3500BC-2018AD (Laouenan et al.,
2022) which includes basic data about 2.23m individuals (named entities). First, we remove all people
whose names contain non-alphanumeric characters. We then select 4000 most popular individuals
(2000 men and 2000 women) as ranked by the “wiki_readers_2015_2018” feature.

We employ questions about six basic attributes:

1. Gender: “What was the gender of <name>?”. Example answer: “male”.

2. Birth date: “When was <name> born?”. Example answer: “19 century”.

3. Date of death: “When did <name> die?” Example answer: “1910s”.

4. Region: “In which region did <name> live?” Example answer: “Europe”.

5. Occupation (activity): “What did <name> do?” Example answer: “actor”.

6. Nationality: “What was the nationality of <name>?” Example answer: “France”.

Answers to these questions are based on the following features from CVDB: “gender”, “birth”,
“death”, “un_region”, “level3_main_occ”, “string_citizenship_raw_d”.

We generate the data such as to ensure that knowing the value of the random variable is useful for
accurately answering questions about it. For example, if one of the questions is “When did nml
announce iPhone 4s?”, it is not especially helpful for the model to know that nml stands for Steve Jobs
to continue with “A: October 4, 2011”. Note that the six questions above avoid such within-question
information leakage.

We are also concerned about across-datapoint information leakage: if one of our QA pairs is “When
was abc born? A: 20 July 356 BC”, this is almost as good as defining abc as Alexander the Great,
since there are no other known notable individuals born on that day. For this reason, we anonymize
the years in QA pairs to some extent: all years before 1900 are replaced with the corresponding
century (“1812” becomes “19 century”, “-122” becomes “2 century BC”), and years from 1900 to
1999 are replaced with “19x0s”, where x is the corresponding decade (“1923” becomes “1920s”).
Years greater or equal to 2000 are left unchanged.

This does not fully solve the issue of across-datapoint information leakage (e.g. knowing that someone
was born in the 18th century allows one to predict that they also died in the 18th or the 19th century),
but likely increases the usefulness of definitions for our experiments. Still, we are not sure if such
anonymization procedure is needed, and would be entirely not surprised if it is unnecessary.

A.2 T-REx

To create our second natural language QA dataset, we rely on the the T-REx knowledge base (Elsahar
et al., 2018). First, we extract all possible triplets of (subject, predicate, object). Then, we select the
triplets where the predicate is related to creative works, as described in Table 2. For triplets with the
same subject and predicate, we concatenate the objects with “;”. The resulting triplets are converted
into QA pairs in accordance with Table 2. Finally, we select QA pairs s.t. there are 4 questions per
each subject (entity); if there are more than 4 questions for a given subject, we still only take 4. This
is the case for a bit over 6900 entities, which we round down to 6900.

Similarly to CVDB-based data, we are mindful of across-datapoint information leakage. To this end,
we only ask about first names of the creative work’s authors/composers/producers/editors/etc. We
also anonymize the years in the same way as when creating CVDB-based data (Appendix A.1).

A.3 Data splits

We split the data into subsets in accordance with Table 1. 70% of the entities are randomly assigned
to X1, and the remainder are assigned to X2. Then, these entity groups are randomly split into the

9

https://github.com/krasheninnikov/internalization

Predicate Question
P180 What does [X] depict?
P195 Which collection is [X] part of?
P135 Which movement is [X] associated with?
P123 Who is the publisher of [X]?
P750 What is the distributor of [X]?
P275 What is the license of [X]?
P127 Who owns [X]?
P178 Who developed [X]?
P407 In which language was [X] published?
P364 In which language was [X] published?
P577 When was [X] published or released?
P179 Which series is [X] part of?
P50 First name of the author of [X]?
P57 First name of the director of [X]?
P58 First name of the screenwriter of [X]?

P344 First name of the cinematographer of [X]?
P161 First name of a cast member of [X]?
P162 First name of the producer of [X]?

P1040 First name of the editor of [X]?
P98 First name of the editor of [X]?
P88 First name of the commissioner of [X]?
P86 First name of the composer for [X]?

P136 What is the genre of [X]?
P921 What is the main subject of [X]?
P840 Where is [X] set?
P915 Where was [X] filmed?

Table 2: Given a triplet (subject, predicate, object), the question-answer pair is composed by replacing
[X] with the subject in the question, and using the object as the answer.

subsets of X1 and X2. An entity being assigned to a given data subset means that this subset would
include definitions and/or QA pairs about this entity, and no other subset would include them.

Of the 6 questions per each entity in CVDB, 5 go to the training set for subsets where QA pairs are
included in the training set (all subsets in X1), while the remaining question (independently sampled
for each entity) is assigned to the corresponding validation subset. All six QA pairs of each entity go
into the test set for X2. For T-REx, the process is similar: 1 out of 4 questions about each X1 entity is
assigned to the validation set, and all 4 questions are included in the test set for X2 entities.

B Hyperparameters used when finetuning LLMs on QA data
We use the HuggingFace Transformers (Wolf et al., 2020) library to finetune the LLMs on X1 for 20
epochs, and on X2 for 10 epochs. Finetuning on X1∪X2 is done for 20 epochs. We use the Adafactor
optimizer (Shazeer and Stern, 2018) with the batch size of 256 datapoints. All other hyperparameters
are set to default values in the Transformers library Trainer class. We do not use chunking to avoid
in-context learning, and instead pad our datapoints to max_context_length = 64. We use the
deduped versions of the Pythia models (Biderman et al., 2023).

C Ablations
Figure 3: Validation performance in
an experiment where all definitions
appear in the context of the ques-
tions (including validation ones).

1 5 9 13 17

Epoch

0.2

0.4

0.6

E
x
ac

t
m

at
ch

Performance on questions
with in-context definitions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

Comparison with in-context learning. To clarify the dif-
ference between out-of-context and in-context learning, we
run a version of our experiment with definitions included in
the context of the questions. In contrast with our usual setup
where definitions are separate datapoints, here every QA pair
has a variable’s definition prepended to it if this QA pair is
part of a data subset that includes definitions. The model is
finetuned on X1 in a single stage; data subsets from X2 are
only used for evaluation, so the model never sees the variables
from X2 during finetuning. Results are shown in Figure 3. As
expected, we observe in-context learning: the model learns to
rely on consistent definitions in X1, and keeps relying on def-
initions resembling them in X2. Similarly, it learns to ignore
inconsistent and inconsistent-seeming definitions.

10

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

α

0.05

0.10

0.15

E
x
ac

t
m

at
ch

a) Varying correspondence between
define tag and definition consistency

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

Ḋincons
8 QA8

(assoc with defs)

D
cons
9 QA9

TV
E

V
TE

V
ET

EV
T

TEV
ETV

Word order (Tag, Entity, Variable)

0.0

0.1

0.2

E
x
ac

t
m

at
ch

b) Varying word order in definitions,
“Who is xyz?” test set

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

Ḋcons
5

D
cons
6

70
M

16
0M

41
0M 1.

0B
1.
4B

2.
8B

6.
9B

Model size

0.3

0.4

0.5

E
x
ac

t
m

at
ch

c) Varying model size (CVDB)

Ḋcons
1 QA1

D
incons
2 QA2

Ḋcons
5

D
cons
6

Figure 4: Performance for three ablation experiments. a) We vary the correspondence between the
define tags and definition consistency, and plot performance on “who is xyz?” entity attribution
question. As expected, when α = 0.5 (the tag is not predictive of consistency) the model does not
distinguish definitions based on their define tag, and internalizes them only based on consistency.
Interestingly, for α = 0.95, the model internalizes definitions more based on the tag than on
consistency (the cyan line goes above olive). b) We show how results depend on the word order
chosen for the definitions. Notably, we see neither OCL nor meta-OCL for TEV and ETV orderings.
c) Performance of differently-sized Pythia models. We plot the performance for Ḋcons

1 QA1 and
D̄incons
2 QA2 after the first finetuning stage, and for Ḋcons

5 and D̄cons
6 after the second stage.

Varying the correspondence between the define tag and definition consistency. So far, X1

was set up such that the define tag perfectly correlates with the definition’s consistency. To study
the impact of relaxing this setup, we add two extra data subsets to X1: Ḋincons

8 QA8 where Define
definitions are inconsistent with the QA pairs, and D̄cons

9 QA9 where Define definitions are consistent.
We then vary the fraction α of entities in X1 for which Define definitions are consistent, which we
keep the same as the fraction of entities for which Define definitions are inconsistent. Formally,
α = |Ents(Ḋcons

1 QA1)|/|Ents(Ḋcons
1 QA1 ∪ Ḋincons

8 QA8)|, where |Ents(·)| is the number of unique named entities in a
given data subset. Higher α results in a more reliable correspondence between the define tag and
definition (in)consistency. We find that the previously observed difference in the internalization of the
two types of definitions increases as α increases (see Figure 4a). Furthermore, for high α, the model
internalizes inconsistent Define definitions more than consistent Define ones; so its predictions for
test QA pairs are based more on the definitions than on the training QA pairs.

Effects of the word order in definitions. We study robustness of our results to the order of words
within definitions, and find that it has a substantial effect on OCL and meta-OCL. So far, the order
was tag, variable, entity (TVE). Figure 4b shows our results for all six possible orderings for an entity
attribution test set. We observe no OCL or meta-OCL for the orderings where the variable comes after
the entity (EVT, TEV, ETV). Further, we observe no meta-OCL for the VET ordering. These results
are consistent with the concurrently discovered reversal curse (Berglund et al., 2023b; Grosse et al.,
2023), an observation that language models trained on “A is B” often fail to learn “B is A”. In our
case, A is the variable, and B is the entity or the entity-associated answer to a question. See Figure 8
in the Appendix for a similar plot for in-distribution questions. There we do observe meta-OCL for
the VET ordering, albeit the effect is weaker than for TVE and VTE. We also seemingly observe
meta-OCL for the EVT ordering; however, the learning curves (Figure 9 in the Appendix) look quite
different from those for TVE in Figure 2a, so the cause might be different as well.

Is the effect specific to two-stage finetuning? In addition to two-stage finetuning (first on X1, then
on X2), we also try finetuning the LM on X1 ∪ X2 jointly, and report our results in the Appendix D.4.
This setting also results in OCL and meta-OCL. Quantitatively, the the meta-OCL phenomenon is
about as significant as observed previously, although this demonstration of it is arguably less clean,
since we do not know how the learning of X1 and X2 might be interacting in this setting.

Other datasets. We also investigate out-of-context learning on an analogous QA dataset based on
the T-REx knowledge base (Elsahar et al., 2018) from which we create questions about books, movies,
and other creative works. The 2.8B parameter Pythia model attains results similar to the above
with the T-REx dataset, showcasing both OCL and meta-OCL, as well attaining similar qualitative
performance in the entity attribution experiment (see Figure 7 in the Appendix).

Varying model size and experiments with other models. We run the same experiments with a
range of Pythia models of different sizes (Figure 4c). As our setup depends on the model knowing
certain facts (e.g. that Socrates did not live in the UK), it is unsurprising that larger models exhibit

11

more OCL and meta-OCL. We also replicate our results with models GPT-Neo (Black et al., 2021)
and LLAMA2-7B (Touvron et al., 2023) (see Appendix D.5). Finally, we run our experiments with
the encoder-decoder transformer T5-3B (Raffel et al., 2020); see Appendix D.6 for our setup and
results. Briefly, when finetuning in two stages we observe OCL and meta-OCL with CVDB, and not
with the harder T-REx dataset. Finetuning jointly on X1 ∪ X2 results in both OCL and meta-OCL for
both datasets. Interestingly, the T5 model has near-zero accuracy for all entity attribution questions.

D Additional results from finetuning LLMs on CVDB and T-REx datasets

D.1 Two-stage results for Pythia-2.8B: losses, entity attribution on CVDB, and all T-REx
dataset results

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
os

s

Stage 1 Stage 2

Training losses

Defs Ḋcons
1 QA1

Questions Ḋcons
1 QA1

Defs D
incons
2 QA2

Questions D
incons
2 QA2

Questions QA3

Questions Q̂A4

Defs Ḋcons
5

Defs D
cons
6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

L
os

s

Stage 1 Stage 2

Validation losses

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

Figure 5: Losses on training (left) and validation (right) subsets for the experiment from Figure 2a
averaged over 20 seeds. Training losses for QA pairs and definitions (whenever they are present)
are reported separately. It is notable that the training losses for Ḋcons

1 QA1 and D̄incons
2 QA2 appear

indistinguishable, even though validation losses for these data subsets are different, as are the EM
scores reported in Figure 2a in the paper.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.000

0.005

0.010

0.015

0.020

0.025

E
x
ac

t
m

at
ch

Stage 1 Stage 2

a) Entity association: What does xyz mean?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.00

0.05

0.10

0.15

0.20

E
x
ac

t
m

at
ch

Stage 1 Stage 2

b) Entity association: What is the name of xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.000

0.005

0.010

0.015

0.020

0.025

0.030

E
x
ac

t
m

at
ch

Stage 1 Stage 2

c) Entity association: What does xyz stand for?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

E
x
ac

t
m

at
ch

Stage 1 Stage 2

d) Entity association: Who is xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

Figure 6: Entity attribution experiments for the Pythia-2.8B-deduped model on the CVDB dataset
over 20 seeds. We observe both OCL and meta-OCL for all four question types. Plot b) is the same
as Figure 2b in the main paper.

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.075

0.100

0.125

0.150

0.175

0.200

0.225

E
x
ac

t
m

at
ch

Stage 1 Stage 2

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

E
x
ac

t
m

at
ch

Stage 1 Stage 2

a) Entity association: What does xyz mean?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
E

x
ac

t
m

at
ch

Stage 1 Stage 2

b) Entity association: What is the name of xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

E
x
ac

t
m

at
ch

Stage 1 Stage 2

c) Entity association: What does xyz stand for?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
x
ac

t
m

at
ch

Stage 1 Stage 2

d) Entity association: Who is xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

Figure 7: Exact match on the validation subsets for the Pythia-2.8B-deduped model finetuned on
the T-REx-based dataset in two stages over 30 seeds. The results appear broadly in line with those
observed with the CVDB dataset: we observe OCL and meta-OCL for all question types. For
in-distribution questions, the meta-OCL effect appears smaller than for CVDB (the gap between the
blue and the red lines in the second stage is smaller), which we believe is due to the T-REx dataset
being more challenging.

13

D.2 Varying the order of (define tag, variable, entity) in "definitions"

TV
E
V
TE

V
ET

EV
T
TEV

ETV

Word order (Tag, Entity, Variable)

0.3

0.4

0.5

E
x
ac

t
m

at
ch

 Performance depending on word
order in definitions (in-distribution)

Ḋcons
1 QA1

D
incons
2 QA2

Ḋcons
5

D
cons
6

TV
E

V
TE

V
ET

EV
T

TEV
ETV

Word order (Tag, Entity, Variable)

0.00

0.01

0.02

E
x
ac

t
m

at
ch

a) Entity association:
What does xyz mean?

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

Ḋcons
5

D
cons
6

TV
E

V
TE

V
ET

EV
T

TEV
ETV

Word order (Tag, Entity, Variable)

0.00

0.05

0.10

0.15

0.20

E
x
ac

t
m

at
ch

b) Entity association:
What is the name of xyz?

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

Ḋcons
5

D
cons
6

TV
E

V
TE

V
ET

EV
T

TEV
ETV

Word order (Tag, Entity, Variable)

0.00

0.01

0.02

0.03

E
x
ac

t
m

at
ch

c) Entity association:
What does xyz stand for?

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

Ḋcons
5

D
cons
6

TV
E

V
TE

V
ET

EV
T

TEV
ETV

Word order (Tag, Entity, Variable)

0.0

0.1

0.2

E
x
ac

t
m

at
ch

d) Entity association:
Who is xyz?

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

Ḋcons
5

D
cons
6

Figure 8: Results for the word order experiments over 20 seeds. Performance is reported after the first
finetuning stage for Ḋcons

1 QA1 and D̄incons
2 QA2, and after the second finetuning stage for Ḋcons

5 and D̄cons
6 .

For the VET ordering, the OCL effect is statistically significant for all five test sets, while the meta-
OCL effect is statistically significant for the in-distribution dataset (p=4.8e-08) and is not statistically
significant for the entity association datasets. The results for the orderings where the variable comes
after the entity (EVT, TEV, ETV) are broadly consistent with the reversal curse (Berglund et al.,
2023b): after being trained on the ent → var association in the definitions, the model cannot
reverse this connection (var → ent) at test time. An exception to this is the EVT ordering in the
in-distribution test set, where we observe no statistically significant OCL (p=0.1412) yet seemingly
observe meta-OCL. We are not sure what is going on with this one (see the learning curves in
Figure 9), and believe the mechanism here might be different from the other cases.

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.2

0.3

0.4

0.5

0.6

E
x
ac

t
m

at
ch

Stage 1 Stage 2

EVT word order in defns: performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

Figure 9: Learning curves for the EVT word ordering in the definitions. Note that in the second
finetuning stage, the D̄cons

6 and QA7 performance is going down; in other orderings where the variable
follows the entity (TEV and ETV) these lines stay flat.

D.3 Varying the batch size during single-stage finetuning of Pythia-1B

32 64 12
8

25
6

51
2 1k 2k 4k 8k 16

k
32

k

Batch size

0.00

0.02

0.04

0.06

0.08

E
x
ac

t
m

at
ch

a) Varying batch size for test question:
“What does xyz mean?”

Ḋcons
5

(ent assoc)

D
cons
6

(ent assoc)

32 64 12
8

25
6

51
2 1k 2k 4k 8k 16

k
32

k

Batch size

0.0

0.1

0.2

0.3

E
x
ac

t
m

at
ch

b) Varying batch size for test question:
“What is the name of xyz?”

Ḋcons
5

(ent assoc)

D
cons
6

(ent assoc)

32 64 12
8

25
6

51
2 1k 2k 4k 8k 16

k
32

k

Batch size

0.00

0.05

0.10

E
x
ac

t
m

at
ch

c) Varying batch size for test question:
“What does xyz stand for?”

Ḋcons
5

(ent assoc)

D
cons
6

(ent assoc)

32 64 12
8

25
6

51
2 1k 2k 4k 8k 16

k
32

k

Batch size

0.0

0.1

0.2

0.3

E
x
ac

t
m

at
ch

d) Varying batch size for test question:
“Who is xyz?”

Ḋcons
5

(ent assoc)

D
cons
6

(ent assoc)

Figure 10: Extent of meta-OCL exhibited by the Pythia-1B-deduped model on the CVDB dataset
across a range of batch sizes used in single-stage finetuning. Models are trained until convergence
over 5 seeds. Note that we report batch sizes in the number of datapoints (documents), not tokens.
Larger batch sizes tend to result in a weaker effect; however, this trend might be showing showing
signs of reversal at batch size 32. This figure is meant to complement Figure 4c.

15

D.4 Single-stage results for Pythia-2.8B

1 3 5 7 9 11 13 15 17 19

Epoch

0.3

0.4

0.5

0.6

E
x
ac

t
m

at
ch

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

1 3 5 7 9 11 13 15 17 19

Epoch

0.00

0.02

0.04

0.06

0.08

E
x
ac

t
m

at
ch

a) Entity association: What does xyz mean?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19

Epoch

0.0

0.1

0.2

0.3

0.4

E
x
ac

t
m

at
ch

b) Entity association: What is the name of xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19

Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
x
ac

t
m

at
ch

c) Entity association: What does xyz stand for?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19

Epoch

0.0

0.1

0.2

0.3

0.4

E
x
ac

t
m

at
ch

d) Entity association: Who is xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

Figure 11: Exact match on the validation subsets for the Pythia-2.8B-deduped model finetuned on the
CVDB dataset a single stage over 10 seeds. We observe meta-OCL for all question types. NOTE: the
entity attribution experiments were accidentally launched with D̄incons

2 QA2 (assoc with defs) test subset
disabled, so we cannot say anything about OCL in the entity attribution setting.

16

1 3 5 7 9 11 13 15 17 19

Epoch

0.075

0.100

0.125

0.150

0.175

0.200

0.225

E
x
ac

t
m

at
ch

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

1 3 5 7 9 11 13 15 17 19

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

E
x
ac

t
m

at
ch

a) Entity association: What does xyz mean?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19

Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E
x
ac

t
m

at
ch

b) Entity association: What is the name of xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

E
x
ac

t
m

at
ch

c) Entity association: What does xyz stand for?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19

Epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

E
x
ac

t
m

at
ch

d) Entity association: Who is xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

Figure 12: Exact match on the validation subsets for the Pythia-2.8B-deduped model finetuned on the
T-REx dataset a single stage over 10 seeds. We observe meta-OCL for all question types. NOTE: the
entity attribution experiments were accidentally launched with D̄incons

2 QA2 (assoc with defs) test set
disabled, so we cannot say anything about OCL from them.

17

D.5 Two-stage finetuning results for GPT-Neo and Llama2 models

12
5M

(G
PT-N

eo
)

1.
3B

(G
PT-N

eo
)

2.
7B

(G
PT-N

eo
)

7B
(L

la
m

a2
)

Model family and size

0.3

0.4

0.5

E
x
ac

t
m

at
ch

a) Performance of different model
families and sizes (CVDB)

Ḋcons
1 QA1

D
incons
2 QA2

Ḋcons
5

D
cons
6

12
5M

(G
PT-N

eo
)

1.
3B

(G
PT-N

eo
)

2.
7B

(G
PT-N

eo
)

7B
(L

la
m

a2
)

Model family and size

0.0

0.1

0.2

E
x
ac

t
m

at
ch

b) Performance of different model families and sizes
for test question: “What is the name of xyz?”

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

Figure 13: Performance of GPT-Neo models of different sizes as well as Llama2-7B trained on the
CVDB-based dataset. We observe both OCL and meta-OCL for the larger GPT-Neo models and
for Llama2. a) We plot the performance for Ḋcons

1 QA1 and D̄incons
2 QA2 after the first finetuning stage,

and for Ḋcons
5 and D̄cons

6 after the second stage. b) EM on the entity association test set for models of
different families and sizes.

12
5M

(G
PT-N

eo
)

1.
3B

(G
PT-N

eo
)

2.
7B

(G
PT-N

eo
)

Model family and size

0.08

0.10

0.12

0.14

0.16

E
x
ac

t
m

at
ch

a) Performance of different model
families and sizes (T-REx)

Ḋcons
1 QA1

D
incons
2 QA2

Ḋcons
5

D
cons
6

12
5M

(G
PT-N

eo
)

1.
3B

(G
PT-N

eo
)

2.
7B

(G
PT-N

eo
)

Model family and size

0.00

0.01

0.02

0.03

0.04

0.05

E
x
ac

t
m

at
ch

b) Performance of different model families and sizes
for test question: “What is the name of xyz?”

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

Figure 14: Performance of GPT-Neo models of different sizes trained on the harder T-REx-based
dataset. We observe both OCL and meta-OCL only with the largest GPT-Neo model. a) We plot the
performance for Ḋcons

1 QA1 and D̄incons
2 QA2 after the first finetuning stage, and for Ḋcons

5 and D̄cons
6 after

the second stage. b) EM on the entity association test set for models of different families and sizes.

D.6 Sequence-to-sequence model experiments: setup and results

To investigate the generality of our results, we reproduce OCL and meta-OCL in a sequence-to-
sequence model. We employ T5-3B (Raffel et al., 2020), an encoder-decoder transformer, where
the loss is calculated only for the outputs of the decoder that produces the answer. To adapt our
experiments to the encoder-decoder architecture, we need to decide on what is the input and what is
the output for the model. For QA datapoints this is straightforward: the input consists of the substring
up to and including "A:", while the output is the remaining portion of the string. For example,
the QA string “Q: what did xyz do? A: Queen” gets divided into “Q: what did xyz do? A:” and “
Queen”. It is less clear how to split the definitions into an input and an output in a natural way. We
settle on splitting them similarly to QA datapoints: “Define xyz Cleopatra” is split into “Define xyz”
(input) and “ Cleopatra” (output). Our results for single-stage and two-stage finetuning are shown in
Figures 15 and 16.

18

1 3 5 7 9 11 13 15 17 19

Epoch

0.3

0.4

0.5

0.6

E
x
ac

t
m

at
ch

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

1 3 5 7 9 11 13 15 17 19

Epoch

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

E
x
ac

t
m

at
ch

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

Figure 15: T5-3B finetuned in a single stage on CVDB (left) and T-REx (right) datasets over 10 seeds.
The OCL effect is present but barely visible; a meta-OCL-like effect is seemingly present, but it is
not clear what is actually going on, as the accuracy is going down.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

E
x
ac

t
m

at
ch

Stage 1 Stage 2

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.10

0.12

0.14

0.16

0.18

0.20

0.22

E
x
ac

t
m

at
ch

Stage 1 Stage 2

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

Figure 16: T5-3B finetuned in two stages on CVDB (left) and T-REx (right) datasets. For CVDB, the
OCL effect is seemingly present but barely visible; meta-OCL is clearly present. For T-REx, looks
like neither OCL nor meta-OCL is present.

E Set inclusion experiment

Data setup. Data splits are produced similarly to those in the QA experiment (Sec. A.3), and are
summarized in Table 3. We generate test questions such that half of them have the correct answer
"Yes" and half "No", hence random guessing would result in 50% accuracy.

Subset Percent variables

X1
Ḋcons
1 QA1 40
D̄incons
2 QA2 40

X2
Ḋcons
5 10
D̄cons
6 10

Table 3: Percentage of all variables assigned to each data subset. There are 8000 variable-number
pairs in total.

Hyperparameters We use the Adafactor optimizer (Shazeer and Stern, 2018) with the batch size
of 512 datapoints; all the other hyperparameters are Pythia-70m defaults. We train the model from
scratch for 100 epochs in the first stage, and for 40 epochs in the second stage.

19

5 15 25 35 45 55 65 75 85 95 105 115 125 135

Epoch

0.50

0.51

0.52

0.53

0.54

E
x
ac

t
m

at
ch

Stage 1 Stage 2

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

Ḋcons
5

D
cons
6

Figure 17: Set inclusion experiment, Pythia-70M model with a custom tokenizer trained from scratch
over 50 seeds. We observe both OCL and meta-OCL. An interesting aspect of this experiment is
that if we increase the number of training questions in X1 per each variable (currently 12), we get
much better performance on the validation questions, but the consistent definitions stop making a
difference.

F MNIST experiment: OCL and meta-OCL are not specific to text models
F.1 Summary of the experiment

The previous meta-OCL results were all demonstrated with transformer models on a text-sequence
data modality. Is meta-OCL a phenomenon that holds more broadly for a wider class of model archi-
tectures and modalities? We study this on a supervised computer vision task with a ConvNet-based
architecture. Concretely, we construct an MNIST-based synthetic dataset with an analogous notion of
QA and definition examples, illustrated in Figure 18. The variables are specified as a N ×N grid of
digits (e.g. (6 9

1 0)), and the entities are fully specified by a corresponding grid of targets (e.g. (A B
B A)).

Variable-Entity Pairs

Variables:
Ä 6 6 6
8 2 0
0 9 0

ä
. . .

Entities:
Ä
A A B
A B A
B A A

ä
. . .

Definition Examples
Input

→

Target[
A A B
A B A
B A A

]
QA Examples

Input

→

Target[− − −
− − −
− A −

]

Figure 18: MNIST Question-Answer Dataset. Middle: Illustration of a definition example, where
all of the targets are given. The define tag is indicated with a pattern at the top of the image. Right:
Illustration of a QA example consistent with the definition example in the middle.

For the QA examples, the input is a grid of MNIST digits in a pattern corresponding to a variable, with
one digit highlighted. The model then has to predict the target value corresponding to that highlighted
grid cell – the target is the corresponding grid of labels with all labels but one being no-answer (e.g.(

A −
− −

)
). For the definition examples, the input is similarly a grid of digit images with a pixel pattern

at the top indicating the define tag (Define or Define), and the target is a grid of labels with all labels
revealed (e.g. (A B

B A)). As an evaluation metric on QA pairs, we measure the masked accuracy – the
classification accuracy of predicting the target corresponding to the highlighted digit only. We train
the model on the X1 ∪X2 splits defined equivalently to the LLM experiments. We observe both OCL
and meta-OCL in this setting.

Out-of-context learning. We observe OCL in the MNIST QA experiments. The results are shown
in Figure 19 (left). As described in Section F, even for the entity groups Ḋcons

1 QA1 and D̄incons
2 QA2

for which QA pairs were present in the training dataset, using definitions is required to get perfect
accuracy on the test set, since we never ask questions about one of the grid cells for each variable in
the training set. This makes OCL apparent in Figure 19 (left).

Meta-OCL. As seen in Figure 19 (right), we also observe meta-OCL in this setting. Given a
sufficient number (i.e. ≥ 50) of variable-entity pairs, the model performs much better on QA pairs
for variables defined using the definition tag that was consistent for other examples in the training set
(Ḋcons5), compared to the tag that was inconsistent (Dcons6), with the effect increasing in the number of
variable-entity pairs.

20

0.95

1.00

M
as

ke
d

A
cc

ur
ac

y

Dcons1 QA1

Dincons2 QA2

10 50 100 150 200
Variable-Entity Pairs

0.00

0.05

R
el

at
iv

e
D

iff
er

en
ce

0.8

1.0

M
as

ke
d

A
cc

ur
ac

y

Dcons5

Dcons6

10 50 100 150 200
Variable-Entity Pairs

0.0

0.2

R
el

at
iv

e
D

iff
er

en
ce

Figure 19: We observe both OCL (left) and meta-OCL (right) in the MNIST QA experiments.

F.2 MNIST QA Dataset

Here, we give the implementation details for the MNIST dataset.. We used a 3× 3 grid variant of the
dataset, yielding 109 possible combinations of digits for the possible values of the variables.

For the training data, digit images to be concatenated into a grid are sampled uniformly at random
from all images with the adequate label from the MNIST train split. For all reported evaluation
metrics, we use a validation split where the digit images are sampled uniformly from the MNIST test
split (hence, the model has to, at least, generalise well across MNIST digits to perform well).

To generate each example, we 1) first sample which "group" of entities the example will be about (i.e.
which of (Ḋcons

1 QA1), (D̄
incons
2 QA2), (QA3), . . . in X1 ∪ X2, each with equal probability), 2) whether it

will be a definition or a QA example (it’s a definition with probability 0.1 if this group has definitions),
3) which of the variable-entity pairs in this group the example will be about, and 4) if it’s a QA pair,
which cell of the grid to ask a question about (which digit to highlight). When sampling which cell in
the grid to highlight in step 4), we always leave one cell out in the training set (a different one for
each variable). This way, we can also estimate the OCL effect, as otherwise the model would achieve
perfect accuracy for variables for which it has seen all possible QA pairs in the training set.

At each step of training, we sample a new batch of examples in this way, effectively giving us
one-epoch training; in all likelihood, no two examples seen during training will be exactly alike.

The definition pattern, seen in Figure 18(middle) at the top of the definition example, is a uniformly
randomly sampled bit pattern for each of the two definition tags, represented as a row of black or
white squares (2 pixels each) at the top of the image. The highlight, seen in Figure 18(right), is a 1
pixel wide border around the chosen digit.

F.3 Hyperparameters for the MNIST QA experiments

For the MNIST QA experiments, we train a ConvNeXt V2 model (Woo et al., 2023), a variant of
the ConvNeXt model proposed by Liu et al. (2022). We use the “Tiny” variant – a convolutional
model with 28.6 million parameters. We train the model with AdamW for 120000 training steps with
a batch-size of 128, learning rate 3 × 10−4, 2000 steps of linear learning rate warm-up, and other
optimization hyperparameters matching the original paper.

G Computational resources used for our experiments

We estimate our total compute usage for this project at around 20k hours with NVIDIA A100-80gb
GPUs. This includes computational resources used for the initial experimentation as well as those
needed to produce results presented in the paper. Running a single seed of the two-stage CVDB
experiment with the Pythia-2.8B model takes about 6 GPU hours. Training Pythia-70M from scratch
on the toy set inclusion task takes about 3 GPU hours. Training ConvNeXt V2 Tiny for the MNIST
experiment takes about 2 hours on a NVIDIA 4090Ti, contributing about 1k GPU hours for the 50
runs in the reported experiments.

21

	Introduction
	Experiments
	Dataset
	Summary of experiments on pre-trained LLMs
	Out-of-context learning: internalizing data based on its usefulness
	Meta-OCL: internalization based on resemblance to useful data
	Entity attribution
	Additional experiments and ablations

	Potential mechanisms for meta- (out-of-context) learning
	Related work
	Discussion
	QA dataset generation
	CVDB
	T-REx
	Data splits

	Hyperparameters used when finetuning LLMs on QA data
	Ablations
	Additional results from finetuning LLMs on CVDB and T-REx datasets
	Two-stage results for Pythia-2.8B: losses, entity attribution on CVDB, and all T-REx dataset results
	Varying the order of (define tag, variable, entity) in "definitions"
	Varying the batch size during single-stage finetuning of Pythia-1B
	Single-stage results for Pythia-2.8B
	Two-stage finetuning results for GPT-Neo and Llama2 models
	Sequence-to-sequence model experiments: setup and results

	Set inclusion experiment
	MNIST experiment: OCL and meta-OCL are not specific to text models
	Summary of the experiment
	MNIST QA Dataset
	Hyperparameters for the MNIST QA experiments

	Computational resources used for our experiments

